The Curry-Howard Isomorphism

Software Formal Verification

Maria João Frade

Departmento de Informática Universidade do Minho

2009/2010

Maria João Frade (DI-UM)

The Curry-Howard Isomorphism

MFES 2009/10

1 / 30

Classical versus intuitionistic logic

- Classical logic is based on the notion of *truth*.
 - ► The truth of a statement is "absolute": statements are either true or false.
 - ▶ Here "false" means the same as "not true".
 - $\phi \lor \neg \phi$ must hold no matter what the meaning of ϕ is.
 - ▶ Information contained in the claim $\phi \lor \neg \phi$ is quite limited.
 - ▶ Proofs using the excluded middle law, $\phi \lor \neg \phi$, or the double negation law, $\neg \neg \phi \to \phi$ (proof by contradiction), are not *constructive*.
- Intuitionistic (or constructive) logic is based on the notion of *proof*.
 - ▶ Rejects the guiding principle of "absolute" truth.
 - lacktriangledown ϕ is "true" if we can prove it.
 - lacktriangledown ϕ is "false" if we can show that if we have a proof of ϕ we get a contradiction.
 - ▶ To show " $\phi \lor \neg \phi$ " one have to show ϕ or $\neg \phi$. (If neither of these can be shown, then the putative truth of the disjunction has no justification.)

Intuitionistic (or constructive) logic

Judgements about statements are based on the existence of a proof or "construction" of that statement.

Informal constructive semantics of connectives (BHK-interpretation)

- A proof of $\phi \wedge \psi$ is given by presenting a proof of ϕ and a proof of ψ .
- A proof of $\phi \lor \psi$ is given by presenting either a proof of ϕ or a proof of ψ (plus the stipulation that we want to regard the proof presented as evidence for $\phi \lor \psi$).
- A proof $\phi \to \psi$ is a construction which permits us to transform any proof of ϕ into a proof of ψ .
- Absurdity \bot (contradiction) has no proof; a proof of $\neg \phi$ is a construction which transforms any hypothetical proof of ϕ into a proof of a contradiction.
- A proof of $\forall x. \phi(x)$ is a construction which transforms a proof of $d \in D$ (D the intended range of the variable x) into a proof of $\phi(d)$.
- A proof of $\exists x. \phi(x)$ is given by providing $d \in D$, and a proof of $\phi(d)$.

Maria João Frade (DI-UM)

The Curry-Howard Isomorphism

MFES 2009/10

3 / 30

Intuitionistic logic

Some classical tautologies that are not intuitionistically valid

$$\phi \lor \neg \phi$$

$$\neg \neg \phi \to \phi$$

$$((\phi \to \psi) \to \phi) \to \phi$$

$$(\phi \to \psi) \lor (\psi \to \phi)$$

$$(\phi \to \psi) \to (\neg \phi \lor \psi)$$

$$\neg (\phi \land \psi) \to (\neg \phi \lor \neg \psi)$$

$$(\neg \phi \to \psi) \to (\neg \psi \to \phi)$$

$$(\neg \phi \to \neg \psi) \to (\psi \to \phi)$$

$$\neg \forall x. \neg \phi(x) \to \exists x. \phi(x)$$

 $\neg \exists x. \neg \phi(x) \to \forall x. \phi(x)$ $\neg \forall x. \phi(x) \to \exists x. \neg \phi(x)$

excluded middle law double negation law Pierce's law

The constructive independence of the logical connectives contrast with the classical situation.

Semantics of intuitionistic logic

The semantics of intuitionistic logic are rather more complicated than for the classical case. A model theory can be given by

- Heyting algebras or,
- Kripke semantics.

Maria João Frade (DI-UM)

The Curry-Howard Isomorphism

 $\mathsf{MFES}\ 2009/10$

5 / 30

Proof systems for intuitionistic logic

- A natural deduction system for intuitionistic propositional logic or intuitionistic first-order logic are given by the set of rules presented for PL or FOL, respectively, except the rule for the elimination of double negation (¬¬_E).
- Traditionally, classical logic is defined by extending intuitionistic logic with the double negation law, the excluded middle law or with Pierce's law.

The Curry-Howard isomorphism

The Curry-Howard isomorphism establishes a correspondence between natural deduction for intuitionistic logic and λ -calculus.

Observe the analogy between the implicational fragment of intuitionistic propositional logic and $\lambda\!\to\!$

$$\frac{\phi \in \Gamma}{\Gamma \vdash \phi} \text{ (assumption)} \qquad \qquad \frac{(x : \phi) \in \Gamma}{\Gamma \vdash x : \phi} \text{ (var)}$$

$$\frac{\Gamma, \phi \vdash \psi}{\Gamma \vdash \phi \to \psi} \; (\to_I) \qquad \qquad \frac{\Gamma, x : \phi \vdash e : \psi}{\Gamma \vdash (\lambda x : \phi . e) : \phi \to \psi} \; (\mathsf{abs})$$

$$\frac{\Gamma \vdash \phi \to \psi \quad \Gamma \vdash \phi}{\Gamma \vdash \psi} \ (\to_E) \qquad \qquad \frac{\Gamma \vdash a : \phi \to \psi \quad \Gamma \vdash b : \phi}{\Gamma \vdash a \ b : \psi} \ (\mathsf{app})$$

◆ロト ◆昼 ▶ ◆ 圭 ト ■ り९(

Maria João Frade (DI-UM)

The Curry-Howard Isomorphism

MFES 2009/10

7 / 30

The Curry-Howard isomorphism

The connection of type theory to logic is via the *proposition-as-types* principle that establishes a precise relation between intuitionistic logic and λ -calculus.

- a proposition A can be seen as a type (the type of its proofs);
- ullet and a proof of A as a term of type A.

Hence: A is provable \iff A is inhabited

Therefore, the formalization of mathematics in type theory becomes

 $\Gamma \, \vdash \, t : A$ which is equivalent to $\mathsf{Type}_{\Gamma}(t) = A$

Proof checking boils down to type checking.

Type-theoretic notions for proof-checking

In the practice of an interactive proof assistant based on type theory, the user types in tactics, guiding the proof development system to construct a proof-term. At the end, this term is type checked and the type is compared with the original goal.

In connection to proof checking there are some decision problems:

Type Checking Problem (TCP) $\Gamma \vdash t : A$?

Type Synthesis Problem (TSP) $\Gamma \vdash t : ?$

Type Inhabitation Problem (TIP) $\Gamma \vdash ?: A$

TIP is usually undecidable for type theories of interest.

TCP and TSP are decidable for a large class of interesting type theories.

Maria João Frade (DI-UM)

The Curry-Howard Isomorphism

 $\mathsf{MFES}\ 2009/10$

9 / 30

The reliability of machine checked proofs

Why would one believe a system that says it has verified a proof?

The proof checker should be a *very small program* that can be verified by hand, giving the highest possible reliability to the proof checker.

de Bruijn criterion

A proof assistant satisfies the de Bruijn criterion if it generates proof-objects (of some form) that can be checked by an 'easy' algorithm.

Proof-objects may be large but they are self-evident. This means that a small program can verify them. The program just follows whether locally the correct steps are being made.

Type-theoretic approach to interactive theorem proving

So, decidability of type checking is at the core of the type-theoretic approach to theorem proving.

Maria João Frade (DI-UM)

The Curry-Howard Isomorphism

MFES 2009/10

11 / 30

Proof assistants based on type theory

The first systems of proof checking (type checking) based on the propositions-as-types principle were the systems of the AUTOMATH project.

Modern proof assistants, aggregate to the proof checker a proof-development system for helping the user to develop the proofs interactively.

Examples of proof assistants based on type theory:

- Coq based on the Calculus of Inductive Constructions
- Lego based on the Extended Calculus of Constructions
- Agda based on Martin-Lof's type theory
- Nuprl based on extensional Martin-Lof's type theory

Higher-Order Logic and Type Theory

Maria João Frade (DI-UM)

The Curry-Howard Isomorphism

MFES 2009/10

13 / 30

Higher-order logic and type theory

- Following Church's original definition of higher-order logic, simply typed λ -calculus is used to describe the language of HOL.
- Recall the basic *constructive* core (\forall, \Rightarrow) of HOL:

$$(axiom) \qquad \overline{\Delta \vdash \phi} \qquad \text{if } \phi \in \Delta$$

$$(\Rightarrow_I) \qquad \frac{\Delta, \phi \vdash \psi}{\Delta \vdash \phi \Rightarrow \psi}$$

$$(\Rightarrow_E) \qquad \frac{\Delta \vdash \phi \Rightarrow \psi \quad \Delta \vdash \phi}{\Delta \vdash \psi}$$

$$(\forall_I) \qquad \frac{\Delta \vdash \psi}{\Delta \vdash \forall x : \sigma . \psi} \qquad \text{if } x : \sigma \not\in \mathsf{FV}(\Delta)$$

$$(\forall_E) \qquad \frac{\Delta \vdash \forall x : \sigma . \psi}{\Delta \vdash \psi [e/x]} \qquad \text{if } e : \sigma$$

$$(\mathsf{conversion}) \qquad \frac{\Delta \vdash \psi}{\Delta \vdash \phi} \qquad \text{if } \phi = \beta \psi \qquad \blacksquare \qquad \blacksquare$$

Maria João Frade (DI-UM)

The Curry-Howard Isomorphism

MFES 2009/10

Higher-order logic and type theory

Following the Curry-Howard isomorphism, why not introduce a λ -term notation for proofs ?

$$(axiom) \qquad \overline{\Delta} \vdash_{\Gamma} \underline{x} : \overline{\phi} \qquad \text{if} \quad \underline{x} : \phi \in \Delta$$

$$(\Rightarrow_I) \qquad \overline{\Delta}, \underline{x} : \phi \vdash_{\Gamma} \underline{e} : \psi$$

$$\overline{\Delta} \vdash_{\Gamma} \underline{\lambda} \underline{x} : \phi . \underline{e} : \phi \Rightarrow \psi$$

$$(\Rightarrow_E) \qquad \overline{\Delta} \vdash_{\Gamma} \underline{a} : \phi \Rightarrow \psi \quad \underline{\Delta} \vdash_{\Gamma} \underline{b} : \phi$$

$$\overline{\Delta} \vdash_{\Gamma} \underline{a} \underline{b} : \psi$$

$$(\forall_I) \qquad \overline{\Delta} \vdash_{\Gamma} \underline{\lambda} \underline{x} : \underline{\sigma} . \underline{e} : \psi$$

$$\overline{\Delta} \vdash_{\Gamma} \underline{\lambda} \underline{x} : \underline{\sigma} . \underline{e} : \forall \underline{x} : \underline{\sigma} . \psi$$

$$(\forall_E) \qquad \overline{\Delta} \vdash_{\Gamma} \underline{t} : \forall \underline{x} : \underline{\sigma} . \psi$$

$$\overline{\Delta} \vdash_{\Gamma} \underline{t} : \psi [\underline{e}/\underline{x}] \qquad \text{if} \quad \Gamma \vdash \underline{e} : \sigma$$

$$(\text{conversion}) \qquad \overline{\Delta} \vdash_{\Gamma} \underline{t} : \psi$$

$$\overline{\Delta} \vdash_{\Gamma} \underline{t} : \psi \qquad \text{if} \quad \varphi =_{\beta} \psi$$

Maria João Frade (DI-UM)

The Curry-Howard Isomorphism

MFES 2009/10

15 / 30

Higher-order logic and type theory

Here we have two "levels" of types theories:

- the (simple) type theory describing the language of HOL
- the type theory for the proof-terms of HOL

These levels can be put together into one type theory: λHOL .

λHOL

- Instead of having two separate categories of expressions (terms and types) we have a unique category of expressions, which are called *pseudo-terms*.
- Pseudo-terms The set $\mathcal T$ of pseudo-terms is defined by $A,B,M,N ::= \text{Prop} \mid \text{Type} \mid \text{Type}' \mid x \mid MN \mid \lambda x : A.M \mid \Pi x : A.B$ We assume a countable set of $variables: x,y,z,\ldots$
- $\mathcal{S} \stackrel{\text{def}}{=} \{ \mathsf{Prop}, \mathsf{Type}, \mathsf{Type}' \}$ is the set of *sorts* (constants that denote the universes of the type system). We let s range over \mathcal{S} .
- Both Π and λ bind variables. We have the usual notation for free and bound variables.
- Both \Rightarrow and \forall are generalized by a single construction Π . We write $A \rightarrow B$ instead of $\Pi x : A : B$ whenever $x \notin FV(B)$.

Maria João Frade (DI-UM)

The Curry-Howard Isomorphism

MFES 2009/10

17 / 30

$\lambda \mathbf{HOL}$

Contexts and judgments

- Contexts are used to declare free variables.
- The set of contexts is given by the abstract syntax: $\Gamma ::= \langle \rangle \mid \Gamma, x : A$
- The *domain* of a context is defined by the clause $\mathsf{dom}(x_1\!:\!A_1,...,x_n\!:\!A_n)=\{x_1,...,x_n\}$
- A *judgment* is a triple of the form $\Gamma \vdash A : B$ where $A, B \in \mathcal{T}$ and Γ is a context.
- A judgment is *derivable* if it can be inferred from the typing rules of next slide.
 - ▶ If $\Gamma \vdash A : B$ then Γ , A and B are *legal*.
 - ▶ If $\Gamma \vdash A : s$ for $s \in \mathcal{S}$ we say that A is a type.

The typing rules are parametrized.

λHOL - typing rules

(axioms)
$$\langle \rangle \vdash \mathsf{Prop} : \mathsf{Type} \qquad \langle \rangle \vdash \mathsf{Type} : \mathsf{Type}'$$

$$\frac{\Gamma \vdash A : s}{\Gamma \cdot x : A \vdash x : A} \qquad \text{if } x \not\in \mathsf{dom}(\Gamma)$$

(weak)
$$\frac{\Gamma \vdash M : A \quad \Gamma \vdash B : s}{\Gamma \cdot x : B \vdash M : A} \quad \text{if } x \not\in \mathsf{dom}(\Gamma)$$

(
$$\Pi$$
)
$$\frac{\Gamma \vdash A: s_1 \quad \Gamma, x: A \vdash B: s_2}{\Gamma \vdash (\Pi x: A. B): s_2} \quad \text{if } (s_1, s_2) \in \{(\mathsf{Type}, \mathsf{Type}), (\mathsf{Prop}, \mathsf{Prop}), (\mathsf{Type}, \mathsf{Prop})\}$$

(app)
$$\frac{\Gamma \vdash M : (\Pi x : A.B) \quad \Gamma \vdash N : A}{\Gamma \vdash MN : B[N/x]}$$

(
$$\lambda$$
)
$$\frac{\Gamma, x : A \vdash M : B \quad \Gamma \vdash (\Pi x : A.B) : s}{\Gamma \vdash \lambda x : A.M : (\Pi x : A.B)}$$

$$\frac{\Gamma \vdash M : A \quad \Gamma \vdash B : s}{\Gamma \vdash M : B} \qquad \text{if } A =_{\beta} B$$

◆□▶ ◆□▶ ◆필▶ ◆필▶ ● 필 · 约의

Maria João Frade (DI-UM)

The Curry-Howard Isomorphism

MFES 2009/10

19 / 30

$\lambda \mathbf{HOL}$ - dependencies

$$(\Pi) \quad \frac{\Gamma \vdash A: s_1 \quad \Gamma, x: A \vdash B: s_2}{\Gamma \vdash (\Pi x: A. B): s_2} \quad \text{if } (s_1, s_2) \in \{(\mathsf{Type}, \mathsf{Type}), (\mathsf{Prop}, \mathsf{Prop}), (\mathsf{Type}, \mathsf{Prop})\}$$

- (Type, Type) forms the function type $A \rightarrow B$ for A: Type and B: Type; predicate types. This comprises
 - unary or binary predicates like: $A \rightarrow \mathsf{Prop}$ or $A \rightarrow A \rightarrow \mathsf{Prop}$;
 - ▶ higher-order predicates like: $(A \rightarrow A \rightarrow \mathsf{Prop}) \rightarrow \mathsf{Prop}$.
- (Prop, Prop) forms the propositional type $\phi \to \psi$ for ϕ : Prop and ψ : Prop; propositional formulas.
- (Type, Prop) forms the dependent propositional type ($\Pi x : A. \psi$) for A: Type and ψ : Prop; universally quantified formulas.

Dependent types

Type constructor Π captures in the type theory the set-theoretic notion of *generic* or *dependent function space*.

Dependent functions

The type of this kind of functions is $\Pi x : A.B$, the product of a family $\{B(x)\}_{x:A}$ of types. Intuitively

$$\Pi x : A. B(x) = \left\{ f : A \to \bigcup_{x : A} B(x) \mid \forall a : A. fa : B(a) \right\}$$

i.e., a type of functions f where the range-set depends on the input value.

If $f: \Pi x: A. B(x)$, then f is a function with domain A and such that fa: B(a) for every a: A.

Maria João Frade (DI-UM)

The Curry-Howard Isomorphism

MFES 2009/10

21 / 30

Dependent types

A dependent type is a type that may depend on a value, typically like:

 a predicate, which depends on its domain. For instance, the predicate even over natural numbers

even :
$$nat \rightarrow Prop$$

Universal quantification is a dependent function. For instance, $\forall x:$ nat. even x is encoded by

 Πx : nat. even x

 an array type (or vector), which depends on its length. For instance, the polymorphic dependent type constructor

$$Vec: Type \rightarrow nat \rightarrow Type$$

Here is an example of a dependent function in a Haskell like syntax:

gen :: Πy : nat. $a \rightarrow \text{Vec } a y$ gen $0 \ x = []$ gen $(n+1) \ x = x : (\text{gen } n x)$

Maria João Frade (DI-UM)

The Curry-Howard Isomorphism

MFES 2009/10

λHOL - examples

Recall the Leibniz equality. For A: Type, x:A, y:A,

$$(x =_L y) \stackrel{\text{def}}{=} \Pi P : A \rightarrow \text{Prop. } Px \rightarrow Py$$

Let $\Gamma \stackrel{\text{def}}{=} A$: Type, x : A

Reflexivity
$$A: \mathsf{Type}, x: A \vdash (\lambda P: A \to \mathsf{Prop}.\lambda q: Px.q): (x =_L x)$$

$$\begin{array}{c} (3) \\ \hline \hline {\Gamma, P: A \rightarrow \mathsf{Prop} \; \vdash \; Px : \mathsf{Prop}} \\ \hline {\Gamma, P: A \rightarrow \mathsf{Prop} \; \vdash \; Px : \mathsf{Prop}} \\ \hline \hline {\Gamma, P: A \rightarrow \mathsf{Prop}, q: Px \; \vdash \; q: Px} \end{array} \begin{array}{c} (\mathsf{var}) & \underbrace{ \begin{array}{c} (2) \\ \hline {\Gamma, P: A \rightarrow \mathsf{Prop} \; \vdash \; Px \rightarrow Px : \mathsf{Prop}} \end{array}}_{\Gamma, P: A \rightarrow \mathsf{Prop} \; \vdash \; \lambda q: Px. q: Px \rightarrow Px} \end{array} (\lambda) & \underbrace{ \begin{array}{c} (1) \\ \hline {\Gamma \; \vdash \; (x =_L \; x) : \mathsf{Prop}} \end{array}}_{\Gamma \; \vdash \; (\lambda P: A \rightarrow \mathsf{Prop}. \lambda q: Px. q) : (x =_L \; x)} \end{array}$$

$$\begin{array}{c|c} \textbf{(1)} \\ \hline \frac{C \vdash A \to \mathsf{Prop} : \mathsf{Type}}{\Gamma \vdash A \to \mathsf{Prop} : \mathsf{Type}} & \textbf{(2)} \\ \hline \frac{\Gamma, P : A \to \mathsf{Prop} \vdash A \to \mathsf{Prop} : \mathsf{Type}}{\Gamma \vdash \Pi P : A \to \mathsf{Prop} . Px \to Px : \mathsf{Prop}} \\ \hline \end{array} (\Pi)$$

Maria João Frade (DI-UM)

The Curry-Howard Isomorphism

MFES 2009/10

→□▶→□▶→□▶→□

23 / 30

λHOL - examples

$$\frac{ (3) }{ \frac{ (3) }{ \Gamma, P: A \rightarrow \mathsf{Prop} \ \vdash Px : \mathsf{Prop} } } \frac{ \frac{ (3) }{ \Gamma, P: A \rightarrow \mathsf{Prop} \ \vdash Px : \mathsf{Prop} } }{ \frac{ \Gamma, P: A \rightarrow \mathsf{Prop} \ \vdash Px : \mathsf{Prop} }{ \Gamma, P: A \rightarrow \mathsf{Prop}, z : Px \ \vdash Px : \mathsf{Prop} } } }_{ \Gamma, P: A \rightarrow \mathsf{Prop} \ \vdash Px \rightarrow Px : \mathsf{Prop} }$$
 (weak)

λHOL - examples

$$\frac{ \frac{ }{ \vdash \text{ Prop : Type }} \frac{ (\text{axiom}) }{ \vdash \text{ Type : Type'}} \frac{ (\text{axiom}) }{ (\text{weak}) } \frac{ (5) }{ \Gamma \vdash A : \text{ Type}} \\ \frac{ A : \text{Type} \vdash \text{ Prop : Type }}{ \Gamma \vdash A : \text{ Type}} \frac{ (\text{bosse}) }{ \Gamma \vdash A : \text{ Type }} \\ \frac{ (5) }{ \Gamma \vdash A : \text{ Type }} \\ \frac{ \Gamma \vdash \text{ Prop : Type }}{ \Gamma, z : A \vdash \text{ Prop : Type }} \\ \frac{ (\text{bosse}) }{ \Gamma \vdash A : \text{$$

$$\frac{\frac{}{\vdash \text{ Type : Type'}} \frac{(\text{axiom})}{(\text{var})} \frac{\frac{}{\vdash \text{ Type : Type'}} \frac{(\text{axiom})}{A : \text{Type } \vdash A : \text{Type}} \frac{(\text{var})}{A : \text{Type } \vdash A : \text{Type}} \frac{(\text{var})}{(\text{weak})}$$

Maria João Frade (DI-UM)

The Curry-Howard Isomorphism

MFES 2009/10

25 / 30

λHOL - examples

Recall the Leibniz equality. For A: Type, x:A, y:A,

$$(x =_L y) \stackrel{\text{def}}{=} \Pi P : A \rightarrow \mathsf{Prop}. \ Px \rightarrow Py$$

Let us now prove symmetry for the Leibniz equality.

Let
$$\Gamma \stackrel{\text{def}}{=} A$$
: Type, $x:A, y:A, t:(x =_L y)$

Properties of λHOL

There is a formulas-as-types isomorphism between intuitionistic HOL and λHOL

Uniqueness of types

If $\Gamma \vdash M : A$ and $\Gamma \vdash M : B$, then $A =_{\beta} B$.

Subject reduction

If $\Gamma \, \vdash \, M : A$ and $M \! o_{\!eta} N$, then $\Gamma \, \vdash \, N : A$.

Strong normalization

If $\Gamma \vdash M : A$, then all β -reductions from M terminate.

Confluence

If $M =_{\beta} N$, then $M \twoheadrightarrow_{\beta} R$ and $N \twoheadrightarrow_{\beta} R$, for some term R .

Maria João Frade (DI-UM)

The Curry-Howard Isomorphism

MFES 2009/10

27 / 30

Properties of λHOL

Recall the decidability problems:

Type Checking Problem (TCP) $\Gamma \vdash M : A$? Type Synthesis Problem (TSP) $\Gamma \vdash M : ?$ Type Inhabitation Problem (TIP) $\Gamma \vdash P : A$

For λHOL :

- TIP is undecidable.
- TCP and TSP are decidable.

Remark

Normalization and type checking are intimately connected due to (conv) rule.

Deciding equality of dependent types, and hence deciding the well-typedness of a dependent typed terms, requires to perform computations. If non-normalizing terms are allowed in types, then TCP and TSP become undecidable.

Encoding of logic in type theory

Direct encoding.

- Each logical construction have a counterpart in the type theory.
- Theorem proving consists of the (interactive) construction of a proof-term, which can be easily checked independently.
- Examples:
 - Coq based on the Calculus of Inductive Constructions
 - Agda based on Martin-Lof's type theory
 - Lego based on the Extended Calculus of Constructions
 - Nuprl based on extensional Martin-Lof's type theory

Maria João Frade (DI-UM)

The Curry-Howard Isomorphism

MFES 2009/10

29 / 30

Encoding of logic in type theory

Shallow encoding (Logical Frameworks).

- The type theory is used as a logical framework, a meta system for encoding a specific logic one wants to work with.
- The encoding of a logic L is done by choosing an appropriate context Γ_L , in which the language of L and the proof rules are declared.
- Usually, the proof-assistants based on this kind of encoding do not produce standard proof-objects, just proof-scripts.
- Examples:
 - HOL, based on the Church's simple type theory. This is a classical higher-order logic.
 - Isabelle, based on intuitionistic simple type theory (used as the meta logic). Various logics (FOL, HOL, sequent calculi,...) are described.