Time-critical reactive systems (I)

Luis S. Barbosa

DI-CCTC
Universidade do Minho
Braga, Portugal

May, 2010

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Traces

Definition
A timed trace over a temporal LTS is a (finite or infinite) sequence
(t1,a1), (t2,32),--- in RT x Act such that there exists a path

d
() & (hyma) < (loym) < (lo,m0)

such that
ti=ti-1+d

with tp = 0 and, for all clock x, g x = 0.

Intuitively, each t; is an absolute time value acting as a time-stamp.

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Traces

Definition
A timed trace over a temporal LTS is a (finite or infinite) sequence
(t1,a1), (t2,32),--- in RT x Act such that there exists a path

d d
) <2 () < oy m) <2 (I 7o)
such that
ti = ti—1+d

with tp = 0 and, for all clock x, g x = 0.

Intuitively, each t; is an absolute time value acting as a time-stamp.

Warning
All results from now on are given over an arbitrary temporal LTS; they
naturally apply to 7 (ta) for any timed automata ta.

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Traces
Given a timed trace tc, the corresponding untimed trace is (m2)¥ tc.

Definition

e two states s; and s, of a timed LTS are timed-language equivalent if
the set of finite timed traces of s; and s, coincide;

e .. similar definition for untimed-language equivalent ...

Example

‘ are not timed-language

equivalent: ((0,t)) is not a trace of the TLTS generated by the second
system.

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Bisimulation

Timed bisimulation
A relation R is a timed simulation iff whenever s; Rsy, for any action a
and delay d,

a . e a
s; ¢— s1 = there is a transition sj +— s A s{Rs)

d . " d
s, ¢— s1 = there is a transition s, +— s, A s{Rs)

And a timed bisimulation if its converse is also a bisimulation.

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Bisimulation

Example

w1 ‘ w2 w3

O x==1 & <=2 O

x:=0
Z1 (Z:?\ Z3
O x==1 w (<=1 O
X:=0
(W1, [x =0]),(Z1,[x=0])) € R

where

R ={{(WLx=d]),(Z1,[x=d]) |deRs} U
(W2, [x =d +1]),(Z2,[x = d])) | d € R§} U
{{(W3,[x = d]),(Z3,[x=e])) | d,e € R} }

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Bisimulation

Untimed bisimulation
A relation R is a untimed simulation iff whenever s;Rs,, for any action a
and delay t,

a . . a
s; ¢— s1 = there is a transition s, +— s, A s{Rs)
;) d . i , d / /
§) <— s1 = there is a transition s, <— 55 A 5| Rs;,
And a untimed bisimulation if its converse is also a untimed bisimulation.

Alternatively, it can be defined over a modified LTS in which all delays
are abstracted on a unique, special transition labelled by e.

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Properties: expression and satisfaction

The satisfaction problem
Given a timed automata, ta, and a property, ¢, show that

T(ta) = ¢

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Properties: expression and satisfaction

The satisfaction problem
Given a timed automata, ta, and a property, ¢, show that

T(ta) = ¢

e in which logic language shall ¢ be specified?

e how is = defined?

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Expressing properties: UPPAAL

UPPAAL variant of CTL

e state formulae: describes individual states in T (ta)

e path formulae: describes properties of paths in 7 (ta)

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Expressing properties: UPPAAL

State formulae

Any expression which can be evaluated to a boolean value for a state
(typically involving the clock constraints used for guards and invariants
and similar constraints over integer variables):

x > 8,1 ==8 and x < 2, ...

Additionally,

e ta.l which tests current location: (/,7) |= ta.l
provided (/,7) is a state in T (ta)

e deadlock: (/,7) |= Vg - there is no transition from (/,7 + d)

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Expressing properties: UPPAAL

Path formulae

N =A0V | AQV | EOV | EQV | d~ W
where

e A, E quantify (universally and existentially, resp.) over paths

e [J, O quantify (universally and existentially, resp.) over states in a
path

also notice that

O~V L AD(G= EOV)

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion
Expressing properties: UPPAAL
Al p and AQ ¢

P %
< &
i 2

%0;
SD

EQpand EQ o

<

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Expressing properties: UPPAAL

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Reachability properties

EC¢

Is there a path starting at the initial state, such that a state formula ¢ is
eventually satisfied?

e Often used to perform sanity checks on a model:

e is it possible for a sender to send a message?
e can a message possibly be received?
° .

e Do not by themselves guarantee the correctness of the protocol (i.e.
that any message is eventually delivered), but they validate the
basic behavior of the model.

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Safety properties

AC ¢ and EQ 6

Something bad will never happen
or something bad will possibly never happen

Examples

® In a nuclear power plant the temperature of the core is always
(invariantly) under a certain threshold.

e |n a game a safe state is one in which we can still win, ie, will
possibly not loose.

In Uppaal these properties are formulated positively: something good is
invariantly true.

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Liveness properties

AO ¢ and ¢ ~»

Something good will eventually happen
or if something good happen, then something else will eventually happen!

Examples

e When pressing the on button, then eventually the television should
turn on.

® n a communication protocol, any message that has been sent should
eventually be received.

Behavioural equivalences

e A train can not be stopped or restart instantly

Behavioural properties

The train gate example

X>=3
eave[id]!

Stop

Events model approach/leave, order to stop/go

After approaching it has 10m to receive a stop.

Case-study: proving mutual exclusion

After that it takes further 10 time units to reach the bridge

After restarting takes 7 to 15m to reach the cross and 3-5 to cross

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

The train gate example

Free
i)
©
en > 0 en e 0 é——. t‘-o'm’\
go[front()]! | appr{e]? eavele]?

enqueue(e) | dequeue()

3

"« Occ
;i::‘sl'_c]? stop[tail()]!
enqueue(e)

e

e Note the use of parameters and the select clause on transitions

e Programming ...

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Demo

e The train gate case study (included in the UPPAAL distribution).

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Mutual exclusion

Properties

e mutual exclusion: no two processes are in their critical sections at
the same time

o deadlock freedom: if some process is trying to access its critical
section, then eventually some process (not necessarily the same) will
be in its critical section; similarly for exiting the critical section

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Mutual exclusion

The Problem

e Dijkstra’s original asynchronous algorithm (1965) requires, for n
processes to be controlled, O(n) read-write registers and O(n)

operations.

e This result is a theoretical limit (proved by Lynch and Shavit in
1992) which compromises scalability.

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Mutual exclusion

The Problem

e Dijkstra’s original asynchronous algorithm (1965) requires, for n
processes to be controlled, O(n) read-write registers and O(n)

operations.

e This result is a theoretical limit (proved by Lynch and Shavit in
1992) which compromises scalability.

’ but it can be overcome by introducing specific timing constraints‘

Two timed algorithms:

e Fisher's protocol (included in the UPPAAL distribution)

e Lamport's protocol

Behavioural equivalences Behavioural properties

Fisher's algorithm

The algorithm

repeat
repeat
await id =0
id:=1i
delay(k)
until id =i

(critical section)
id:=0

forever

Case-study: proving mutual exclusion

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Fisher's algorithm

Comments

e One shared read/write register (the variable id)
e Behaviour depends crucially on the value for k — the time delay

e Constant k should be larger than the longest time that a process
may take to perform a step while trying to get access to its critical
section

e This choice guarantees that whenever process i finds id = i on
testing the loop guard it can enter safely ist critical section: all
other processes are out of the loop or with their index in id
overwritten by /.

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Fisher's algorithm in UPPAAL

e Each process uses a local clock x to guarantee that the upper
bound between between its successive steps, while trying to access
the critical section, is k (cf. invariant in state req).

e |nvariant in state req establishes k as such an upper bound

e Guard in transition from wait to cs ensures the correct delay before
entering the critical section

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Fisher's algorithm in UPPAAL

Properties

A[] forall (i:id _t) forall (j:id t) P(i).cs && P(Jj).cs imply i == j
A[]1 not deadlock

F{l).req ==> P(l}.walit

e The algorithm is deadlock-free
e [t ensures mutual exclusion if the correct timing constraints.

e ... but it is critically sensible to small violations of such constraints:

for example, replacing x > k by x > k in the transition leading to
¢s compromises both mutual exclusion and liveness.

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Lamport’s algorithm

The algorithm

start: a:=1i
if b # 0 then goto start
b:=1i
if a # i then delay(k)
else if b # i then goto start
(critical section)
b:=0

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Lamport’s algorithm

Comments

e Two shared read/write registers (variables a and b)

e Avoids forced waiting when no other processes are requiring access
to their critical sections

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Lamport’s algorithm in UPPAAL

b!=0

() waitl

b=0 ¥ <= kvr
b 1= pid and x > k b = pid, x=10
a == pid
x=0
5 bes wait2
¥ <= kvr

b==pidand x> k
x=10

wait3

Case-study: proving mutual exclusion

Lamport’s algorithm
Model time constants:

k — time delay
kvr — max bound for register access

kecs — max bound for permanence in critical section

Typically

k > kvr + kes

Experiments

k | kvr | kes | verified?
Mutual Exclusion | 4 1 1 Yes
Mutual Exclusion | 2 1 1 Yes
Mutual Exclusion | 1 1 1 No
No deadlock 4 1 1 Yes
No deadlock 2 1 1 Yes
No deadlock 1 1 1 Yes

Behavioural equivalences Behavioural properties

Reading suggestions

A Fast Mutual Exclusion
Algorithm

Leslie Lamport

November 14, 1985, Revised October 31, 1986

Case-study: proving mutual exclusion

Behavioural equivalences

Behavioural properties

Reading suggestions

Distrib Comput (1996) 10: 1-10

Fast timing-based algorithms

Rajeev Alur', Gadi Taubenfeld*

DISTRIBUTED
QUIMPUTNG

© Springer-Verlag 1996

! Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA. ¢-mail: alur@bell-labs.com

2 The Open University, 16 Klausner Street, P.O. Box 39328, Tel-Aviv 61392,

Received: July 1993/Accepted: February 1996

Summary. Concurrent systems in which there is a known
upper bound 4 on memory access time are considered.
Two prototypical synchronization problems, mutual ex-
clusion and consensus, are studied, and solutions that have
constant (ie. independent of 4 and the total number of
processes) time complexity in the absence of contention
are presented. For mutual exclusion, in the absence of
contention, a process needs only five accesses to the shared
memory to enter its critical section, and in the presence of
contention, the winning process may need to delay itself
for 4- A time units. For consensus, in absence of conten-
tion, a process decides after four accesses to the shared
memory, and in the presence of contention, it may need to
delay itself for 4 time units.

Key words: Shared-memory algorithms — Mutual exclu-
sion — Consensus — Timing-based model — Conten-
tion—free complexity

racl, and AT&T Bell Laboratories. e-mailgadi@research.att.com

tive that enables us to design efficient algorithms. We refer
to our model as the known-delay model.

To measure the time complexity of an algorithm in the
known-delay model, we account for the step complexity
that measures the number of times a process accesses
shared registers, along with the explicit-delay complexity
that is the sum of the explicit delays executed using the
delay statement. Apart from the usual worst case complex-
ity that indicates the maximum time it takes a process to
attain its goal, we will also be interested in the contention-
firee complexity, which gives an upper bound on the time
required for a process to attain its goal, when the pro-
cess runs by itself without any interference from other
processes. Since contention should be rare in well-
designed systems, it is important to design algorithms
that perform well also in the absence of contention. This
was first pointed out in [11] where a mutual exclusion
algorithm is presented, in which a process accesses shared
registers only a constant number of times to enter its
critical section in the absence of contention. A fast algo-

Case-study: proving mutual exclusion

	Behavioural equivalences
	Behavioural properties
	Case-study: proving mutual exclusion

