
Time-critical reactive systems (II)

Lúıs S. Barbosa

DI-CCTC
Universidade do Minho

Braga, Portugal

May, 2010

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Traces

Definition
A timed trace over a temporal LTS is a (finite or infinite) sequence
〈t1, a1〉, 〈t2, a2〉, · · · in R+ × Act such that there exists a path

· · · a2←− 〈l1, η3〉
d2←− 〈l1, η2〉

a1←− 〈l0, η1〉
d1←− 〈l0, η0〉

such that
ti = ti−1 + di

with t0 = 0 and, for all clock x , η0 x = 0.

Intuitively, each ti is an absolute time value acting as a time-stamp.

Warning
All results from now on are given over an arbitrary temporal LTS; they
naturally apply to T (ta) for any timed automata ta.

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Traces

Definition
A timed trace over a temporal LTS is a (finite or infinite) sequence
〈t1, a1〉, 〈t2, a2〉, · · · in R+ × Act such that there exists a path

· · · a2←− 〈l1, η3〉
d2←− 〈l1, η2〉

a1←− 〈l0, η1〉
d1←− 〈l0, η0〉

such that
ti = ti−1 + di

with t0 = 0 and, for all clock x , η0 x = 0.

Intuitively, each ti is an absolute time value acting as a time-stamp.

Warning
All results from now on are given over an arbitrary temporal LTS; they
naturally apply to T (ta) for any timed automata ta.

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Traces
Given a timed trace tc , the corresponding untimed trace is (π2)ω tc .

Definition

• two states s1 and s2 of a timed LTS are timed-language equivalent if
the set of finite timed traces of s1 and s2 coincide;

• ... similar definition for untimed-language equivalent ...

Example

are not timed-language

equivalent: 〈(0, t)〉 is not a trace of the TLTS generated by the second
system.

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Bisimulation

Timed bisimulation
A relation R is a timed simulation iff whenever s1Rs2, for any action a
and delay d ,

s ′1
a←− s1 ⇒ there is a transition s ′2

a←− s2 ∧ s ′1Rs
′
2

s ′1
d←− s1 ⇒ there is a transition s ′2

d←− s2 ∧ s ′1Rs
′
2

And a timed bisimulation if its converse is also a bisimulation.

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Bisimulation

Example

〈〈W 1, [x = 0]〉, 〈Z1, [x = 0]〉〉 ∈ R

where

R = {〈〈W 1, [x = d]〉, 〈Z1, [x = d]〉〉 | d ∈ R+
0 } ∪

{〈〈W 2, [x = d + 1]〉, 〈Z2, [x = d]〉〉 | d ∈ R+
0 } ∪

{〈〈W 3, [x = d]〉, 〈Z3, [x = e]〉〉 | d , e ∈ R+
0 }

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Bisimulation

Untimed bisimulation
A relation R is a untimed simulation iff whenever s1Rs2, for any action a
and delay t,

s ′1
a←− s1 ⇒ there is a transition s ′2

a←− s2 ∧ s ′1Rs
′
2

s ′1
d←− s1 ⇒ there is a transition s ′2

d′

←− s2 ∧ s ′1Rs
′
2

And a untimed bisimulation if its converse is also a untimed bisimulation.

Alternatively, it can be defined over a modified LTS in which all delays

are abstracted on a unique, special transition labelled by ε.

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Properties: expression and satisfaction

The satisfaction problem
Given a timed automata, ta, and a property, φ, show that

T (ta) |= φ

• in which logic language shall φ be specified?

• how is |= defined?

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Properties: expression and satisfaction

The satisfaction problem
Given a timed automata, ta, and a property, φ, show that

T (ta) |= φ

• in which logic language shall φ be specified?

• how is |= defined?

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Expressing properties: Uppaal

Uppaal variant of Ctl

• state formulae: describes individual states in T (ta)

• path formulae: describes properties of paths in T (ta)

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Expressing properties: Uppaal

State formulae
Any expression which can be evaluated to a boolean value for a state
(typically involving the clock constraints used for guards and invariants
and similar constraints over integer variables):

x >= 8, i == 8 and x < 2, ...

Additionally,

• ta.l which tests current location: (l , η) |= ta.l
provided (l , η) is a state in T (ta)

• deadlock: (l , η) |= ∀d∈R+
0
. there is no transition from 〈l , η + d〉

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Expressing properties: Uppaal

Path formulae

Π ::= A�Ψ | A♦Ψ | E�Ψ | E♦Ψ | Φ Ψ

where

• A, E quantify (universally and existentially, resp.) over paths

• �, ♦ quantify (universally and existentially, resp.) over states in a
path

also notice that

Φ Ψ
abv
= A� (Φ⇒ E♦Ψ)

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Expressing properties: Uppaal

A�ϕ and A♦ϕ

E�ϕ and E♦ϕ

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Expressing properties: Uppaal

ϕ ψ

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Reachability properties

E♦φ
Is there a path starting at the initial state, such that a state formula φ is
eventually satisfied?

• Often used to perform sanity checks on a model:

• is it possible for a sender to send a message?
• can a message possibly be received?
• ...

• Do not by themselves guarantee the correctness of the protocol (i.e.
that any message is eventually delivered), but they validate the
basic behavior of the model.

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Safety properties

A�φ and E�φ

Something bad will never happen
or something bad will possibly never happen

Examples

• In a nuclear power plant the temperature of the core is always
(invariantly) under a certain threshold.

• In a game a safe state is one in which we can still win, ie, will
possibly not loose.

In Uppaal these properties are formulated positively: something good is
invariantly true.

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Liveness properties

A♦φ and φ ψ

Something good will eventually happen
or if something good happen, then something else will eventually happen!

Examples

• When pressing the on button, then eventually the television should
turn on.

• n a communication protocol, any message that has been sent should
eventually be received.

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

The train gate example

• Events model approach/leave, order to stop/go

• A train can not be stopped or restart instantly

• After approaching it has 10m to receive a stop.

• After that it takes further 10 time units to reach the bridge

• After restarting takes 7 to 15m to reach the cross and 3-5 to cross

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

The train gate example

• Note the use of parameters and the select clause on transitions

• Programming ...

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Demo

• The train gate case study (included in the Uppaal distribution).

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Mutual exclusion

Properties

• mutual exclusion: no two processes are in their critical sections at
the same time

• deadlock freedom: if some process is trying to access its critical
section, then eventually some process (not necessarily the same) will
be in its critical section; similarly for exiting the critical section

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Mutual exclusion

The Problem

• Dijkstra’s original asynchronous algorithm (1965) requires, for n
processes to be controlled, O(n) read-write registers and O(n)
operations.

• This result is a theoretical limit (proved by Lynch and Shavit in
1992) which compromises scalability.

but it can be overcome by introducing specific timing constraints

Two timed algorithms:

• Fisher’s protocol (included in the Uppaal distribution)

• Lamport’s protocol

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Mutual exclusion

The Problem

• Dijkstra’s original asynchronous algorithm (1965) requires, for n
processes to be controlled, O(n) read-write registers and O(n)
operations.

• This result is a theoretical limit (proved by Lynch and Shavit in
1992) which compromises scalability.

but it can be overcome by introducing specific timing constraints

Two timed algorithms:

• Fisher’s protocol (included in the Uppaal distribution)

• Lamport’s protocol

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Fisher’s algorithm

The algorithm

repeat

repeat

await id = 0

id := i

delay(k)

until id = i

(critical section)

id := 0

forever

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Fisher’s algorithm

Comments

• One shared read/write register (the variable id)

• Behaviour depends crucially on the value for k — the time delay

• Constant k should be larger than the longest time that a process
may take to perform a step while trying to get access to its critical
section

• This choice guarantees that whenever process i finds id = i on
testing the loop guard it can enter safely ist critical section: all
other processes are out of the loop or with their index in id
overwritten by i .

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Fisher’s algorithm in Uppaal

• Each process uses a local clock x to guarantee that the upper
bound between between its successive steps, while trying to access
the critical section, is k (cf. invariant in state req).

• Invariant in state req establishes k as such an upper bound

• Guard in transition from wait to cs ensures the correct delay before
entering the critical section

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Fisher’s algorithm in Uppaal

Properties

• The algorithm is deadlock-free

• It ensures mutual exclusion if the correct timing constraints.

• ... but it is critically sensible to small violations of such constraints:
for example, replacing x > k by x ≥ k in the transition leading to
cs compromises both mutual exclusion and liveness.

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Lamport’s algorithm

The algorithm

start : a := i

if b 6= 0 then goto start

b := i

if a 6= i then delay(k)

else if b 6= i then goto start

(critical section)

b := 0

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Lamport’s algorithm

Comments

• Two shared read/write registers (variables a and b)

• Avoids forced waiting when no other processes are requiring access
to their critical sections

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Lamport’s algorithm in Uppaal

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Lamport’s algorithm

Model time constants:

k — time delay

kvr — max bound for register access

kcs — max bound for permanence in critical section

Typically

k ≥ kvr + kcs

Experiments
k kvr kcs verified?

Mutual Exclusion 4 1 1 Yes
Mutual Exclusion 2 1 1 Yes
Mutual Exclusion 1 1 1 No
No deadlock 4 1 1 Yes
No deadlock 2 1 1 Yes
No deadlock 1 1 1 Yes

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Reading suggestions

Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Reading suggestions

	Behavioural equivalences
	Behavioural properties
	Case-study: proving mutual exclusion

