Logics for processes (II)

Luís S. Barbosa

DI-CCTC Universidade do Minho Braga, Portugal

April, 2010

Is Hennessy-Milner logic expressive enough?

- It cannot detect deadlock in an arbitrary process
- ullet or general safety: all reachable states verify ϕ
- ullet or general liveness: there is a reachable states which verifies ϕ
- ..

... essentially because

formulas in ${\mathcal M}$ cannot see deeper than their modal depth

where

```
\mathsf{mdepth}(\mathsf{true}) = \mathsf{mdepth}(\mathsf{false}) = 0 \mathsf{mdepth}(\langle K \rangle \psi) = \mathsf{mdepth}([K]\psi) = \mathsf{mdepth}(\psi) + 1 \mathsf{ndepth}(\phi \land \psi) = \mathsf{mdepth}(\phi \lor \psi) = \mathsf{max}\{\mathsf{mdepth}(\phi), \mathsf{mdepth}(\psi)\}
```

Is Hennessy-Milner logic expressive enough?

- It cannot detect deadlock in an arbitrary process
- or general safety: all reachable states verify ϕ
- or general liveness: there is a reachable states which verifies ϕ

... essentially because

formulas in \mathcal{M} cannot see deeper than their modal depth

where

```
mdepth(true) = mdepth(false) = 0
 mdepth(\langle K \rangle \psi) = mdepth([K]\psi) = mdepth(\psi) + 1
\mathsf{mdepth}(\phi \land \psi) = \mathsf{mdepth}(\phi \lor \psi) = \mathsf{max}\{\mathsf{mdepth}(\phi), \mathsf{mdepth}(\psi)\}\
```

Example

 $\phi = a taxi$ eventually returns to its Central

$$\phi \ = \ \langle \mathit{reg} \rangle \mathsf{true} \lor \langle - \rangle \langle \mathit{reg} \rangle \mathsf{true} \lor \langle - \rangle \langle - \rangle \langle \mathit{reg} \rangle \mathsf{true} \lor \langle - \rangle \langle - \rangle \langle \mathit{reg} \rangle \mathsf{true} \lor \dots$$

Example

$$A \triangleq \sum_{i \geq 0} A_i$$
 with $A_0 \triangleq \mathbf{0}$ e $A_{i+1} \triangleq a.A_i$
 $A' \triangleq A + D$ with $D \triangleq a.D$

- A ≈ A'
- but there is no modal formula in \mathcal{M} to distinguish A from A'
- notice $A' \models \langle a \rangle^{i+1}$ true which A_i fails
- a distinguishing formula would require infinite conjunction
- what we want to express is the possibility of doing a in the long run

Temporal properties as limits

idea: introduce recursion in formulas

$$X \triangleq \langle a \rangle X$$

meaning?

 the recursive formula is interpreted as the fixed points of a function in PP:

$$\lambda_{X\subseteq\mathbb{P}}$$
 . $\|\langle a\rangle\|(X)$

• i.e., the solutions, i.e., $S \subseteq \mathbb{P}$ such that of

$$S = \|\langle a \rangle\|(S)$$

• how do we solve this equation?

Solving equations ...

over natural numbers

$$x = 3x$$
 one solution $(x = 0)$
 $x = 1 + x$ no solutions
 $x = 1x$ many solutions (every natural x)

over sets of integers

```
x = \{22\} \cap x one solution (x = \{22\})

x = \mathbb{N} \setminus x no solutions

x = \{22\} \cup x many solutions (every x st \{22\} \subseteq x)
```

Solving equations ...

over natural numbers

$$x = 3x$$
 one solution $(x = 0)$
 $x = 1 + x$ no solutions
 $x = 1x$ many solutions (every natural x)

over sets of integers

```
x = \{22\} \cap x one solution (x = \{22\})

x = \mathbb{N} \setminus x no solutions

x = \{22\} \cup x many solutions (every x st \{22\} \subseteq x)
```

In general, for a monotonic function f, i.e.

$$X \subseteq Y \Rightarrow f X \subseteq f Y$$

Knaster-Tarski Theorem [1928]

A monotonic function f in a complete lattice has a

• unique maximal fixed point:

$$\nu_f = \bigcup \{ X \in \mathcal{PP} \mid X \subseteq f X \}$$

• unique minimal fixed point:

$$\mu_f = \bigcap \{ X \in \mathcal{PP} \mid f X \subseteq X \}$$

moreover the space of its solutions form a complete lattice

Solving equations ...

In general, for a monotonic function f, i.e.

$$X \subseteq Y \Rightarrow f X \subseteq f Y$$

Knaster-Tarski Theorem [1928]

A monotonic function f in a complete lattice has a

unique maximal fixed point:

$$\nu_f = \bigcup \{X \in \mathcal{PP} \mid X \subseteq fX\}$$

• unique minimal fixed point:

$$\mu_f = \bigcap \{ X \in \mathcal{PP} \mid f X \subseteq X \}$$

• moreover the space of its solutions form a complete lattice

 $S \in \mathcal{PP}$ is a pre-fixed point of

$$\lambda_{X\subseteq\mathbb{P}}$$
 . $\|\langle a \rangle\|(X)$

iff

$$\|\langle a \rangle\|(S) \subseteq S$$

Recalling.

$$\|\langle a \rangle\|(S) = \{E \in \mathbb{P} \mid \exists_{E' \in S} . E' \stackrel{a}{\longleftarrow} E\}$$

the set of sets of processes we are interested in is

Pre =
$$\{S \subseteq \mathbb{P} \mid \{E \in \mathbb{P} \mid \exists_{E' \in S} . E' \stackrel{a}{\longleftarrow} E\} \subseteq S\}$$

= $\{S \subseteq \mathbb{P} \mid \forall_{Z \in \mathbb{P}} . (Z \in \{E \in \mathbb{P} \mid \exists_{E' \in S} . E' \stackrel{a}{\longleftarrow} E\} \Rightarrow Z \in S)\}$
= $\{S \subseteq \mathbb{P} \mid \forall_{E \in \mathbb{P}} . ((E \in \mathbb{P} \land \exists_{E' \in S} . E' \stackrel{a}{\longleftarrow} E) \Rightarrow E \in S)\}$

$$(\mathsf{PRE}) \qquad (E \in \mathbb{P} \ \land \ \exists_{E' \in S} \ . \ E' \xleftarrow{a} \ E) \Rightarrow E \in S \qquad (\mathsf{for \ all} \ E \in P)$$

 $S \in \mathcal{PP}$ is a pre-fixed point of

$$\lambda_{X\subseteq\mathbb{P}}$$
 . $\|\langle a\rangle\|(X)$

iff

$$\|\langle a \rangle\|(S) \subseteq S$$

Recalling,

$$\|\langle a \rangle\|(S) = \{E \in \mathbb{P} \mid \exists_{E' \in S} . E' \stackrel{a}{\longleftarrow} E\}$$

the set of sets of processes we are interested in is

Pre =
$$\{S \subseteq \mathbb{P} \mid \{E \in \mathbb{P} \mid \exists_{E' \in S} . E' \stackrel{a}{\longleftarrow} E\} \subseteq S\}$$

= $\{S \subseteq \mathbb{P} \mid \forall_{Z \in \mathbb{P}} . (Z \in \{E \in \mathbb{P} \mid \exists_{E' \in S} . E' \stackrel{a}{\longleftarrow} E\} \Rightarrow Z \in S)\}$
= $\{S \subseteq \mathbb{P} \mid \forall_{E \in \mathbb{P}} . ((E \in \mathbb{P} \land \exists_{E' \in S} . E' \stackrel{a}{\longleftarrow} E) \Rightarrow E \in S)\}$

which can be characterized by predicate

$$(\mathsf{PRE}) \qquad (E \in \mathbb{P} \ \land \ \exists_{E' \in S} \ . \ E' \xleftarrow{a} E) \Rightarrow E \in S \qquad (\mathsf{for all} \ E \in P)$$

The set of pre-fixed points of

$$\lambda_{X\subseteq \mathbb{P}}$$
 . $\|\langle a \rangle\|(X)$

is

$$\mathsf{Pre} \ = \ \{ S \subseteq \mathbb{P} \ | \ \forall_{E \in \mathbb{P}} \ . \ ((E \in \mathbb{P} \land \exists_{E' \in S} \ . \ E' \xleftarrow{a} E) \Rightarrow E \in S) \}$$

- Clearly, $\{A \triangleq a.A\} \in \mathsf{Pre}$
- but $\emptyset \in \mathsf{Pre}$ as well

Therefore, its least solution is

$$\bigcap \mathsf{Pre} = \emptyset$$

Conclusion: taking the meaning of $X = \langle a \rangle X$ as the least solution of the equation leads us to equate it to false

The set of pre-fixed points of

$$\lambda_{X\subseteq \mathbb{P}}$$
 . $\|\langle a \rangle\|(X)$

is

$$\mathsf{Pre} \ = \ \{ S \subseteq \mathbb{P} \ | \ \forall_{E \in \mathbb{P}} \ . \ ((E \in \mathbb{P} \land \exists_{E' \in S} \ . \ E' \xleftarrow{a} E) \Rightarrow E \in S) \}$$

- Clearly, $\{A \triangleq a.A\} \in \mathsf{Pre}$
- but $\emptyset \in \mathsf{Pre}$ as well

Therefore, its least solution is

$$\bigcap \mathsf{Pre} = \emptyset$$

Conclusion: taking the meaning of $X = \langle a \rangle X$ as the least solution of the equation leads us to equate it to false

but there is another possibility ...

 $S \in \mathcal{PP}$ is a post-fixed point of

$$\lambda_{X\subseteq\mathbb{P}}$$
 . $\|\langle a \rangle\|(X)$

iff

$$S \subseteq \|\langle a \rangle\|(S)$$

leading to the following set of post-fixed points

Post =
$$\{S \subseteq \mathbb{P} \mid S \subseteq \{E \in \mathbb{P} \mid \exists_{E' \in S} . E' \stackrel{a}{\leftarrow} E\}\}\$$

= $\{S \subseteq \mathbb{P} \mid \forall_{Z \in \mathbb{P}} . (Z \in S \Rightarrow Z \in \{E \in \mathbb{P} \mid \exists_{E' \in S} . E' \stackrel{a}{\leftarrow} E\})\}\$
= $\{S \subseteq \mathbb{P} \mid \forall_{E \in \mathbb{P}} . (E \in S \Rightarrow \exists_{E' \in S} . E' \stackrel{a}{\leftarrow} E)\}\$

(POST) If $E \in S$ then $E' \stackrel{a}{\leftarrow} E$ for some $E' \in S$ (for all $E \in P$)

• i.e., if $E \in S$ it can perform a and this ability is maintained in its continuation

- i.e., if E ∈ S it can perform a and this ability is maintained in its continuation
- the greatest subset of $\mathbb P$ verifying this condition is the set of processes with at least an infinite computation

$$\cdots \xleftarrow{a} E_3 \xleftarrow{a} E_2 \xleftarrow{a} E_1 \xleftarrow{a} E$$

Conclusion: taking the meaning of $X = \langle a \rangle X$ as the greatest solution of the equation characterizes the property occurrence of a is possible

... but there is another possibility ...

- i.e., if E ∈ S it can perform a and this ability is maintained in its continuation
- the greatest subset of $\mathbb P$ verifying this condition is the set of processes with at least an infinite computation

$$\cdots \xleftarrow{a} E_3 \xleftarrow{a} E_2 \xleftarrow{a} E_1 \xleftarrow{a} E$$

Conclusion: taking the meaning of $X = \langle a \rangle X$ as the greatest solution of the equation characterizes the property occurrence of a is possible

The general case

- The meaning (i.e., set of processes) of a formula $X \triangleq \phi X$ where X occurs free in ϕ
- is a solution of equation

$$X = f(X)$$
 with $f = \lambda_{S \subseteq \mathbb{P}} \cdot \{S/X\} \|\phi\|$

in \mathcal{PP} , where $\|.\|$ is extended to formulae with variables by $\|X\| = X$

The general case

The Knaster-Tarski theorem gives precise characterizations of the

• smallest solution: the intersection of all S such that

(PRE) If
$$E \in \mathbb{P}$$
 and $E \in f(S)$ then $E \in S$

to be denoted by

$$\mu X \cdot \phi$$

greatest solution: the union of all S such that

(POST) If
$$E \in S$$
 then $E \in f(S)$

to be denoted by

$$\nu X \cdot \phi$$

In the previous example:

$$\nu X \cdot \langle a \rangle$$
true $\mu X \cdot \langle a \rangle$ tru

The general case

The Knaster-Tarski theorem gives precise characterizations of the

smallest solution: the intersection of all S such that

(PRE) If
$$E \in \mathbb{P}$$
 and $E \in f(S)$ then $E \in S$

to be denoted by

$$\mu X \cdot \phi$$

greatest solution: the union of all S such that

(POST) If
$$E \in S$$
 then $E \in f(S)$

to be denoted by

$$\nu X \cdot \phi$$

In the previous example:

$$\nu X$$
 . $\langle a \rangle$ true

$$\mu X \cdot \langle a \rangle$$
 true

... Hennessy-Milner + recursion (i.e. fixed points):

$$\phi ::= X \mid \phi_1 \wedge \phi_2 \mid \phi_1 \vee \phi_2 \mid \langle K \rangle \phi \mid [K] \phi \mid \mu X \cdot \phi \mid \nu X \cdot \phi$$

where $K \subseteq Act$ and X is a set of propositional variables

Note that

true
$$\stackrel{\text{abv}}{=} \nu X . X$$
 and false $\stackrel{\text{abv}}{=} \mu X . X$

The modal μ -calculus: syntax

... Hennessy-Milner + recursion (i.e. fixed points):

$$\phi ::= X \mid \phi_1 \wedge \phi_2 \mid \phi_1 \vee \phi_2 \mid \langle K \rangle \phi \mid [K] \phi \mid \mu X \cdot \phi \mid \nu X \cdot \phi$$

where $K \subseteq Act$ and X is a set of propositional variables

Note that

true
$$\stackrel{\text{abv}}{=} \nu X . X$$
 and false $\stackrel{\text{abv}}{=} \mu X . X$

The modal μ -calculus: denotational semantics

• Presence of variables requires models parametric on valuations:

$$V: \mathcal{PP} \longleftarrow X$$

Then,

$$||X||_{V} = V(X)$$

$$||\phi_{1} \wedge \phi_{2}||_{V} = ||\phi_{1}||_{V} \cap ||\phi_{2}||_{V}$$

$$||\phi_{1} \vee \phi_{2}||_{V} = ||\phi_{1}||_{V} \cup ||\phi_{2}||_{V}$$

$$||[K]\phi||_{V} = ||[K]||(||\phi||_{V})$$

$$||\langle K \rangle \phi||_{V} = ||\langle K \rangle ||(||\phi||_{V})$$

and add

$$\|\nu X \cdot \phi\|_{V} = \bigcup \{ S \in \mathbb{P} \mid S \subseteq \|\phi\|_{\{S/X\}V} \}$$
$$\|\mu X \cdot \phi\|_{V} = \bigcap \{ S \in \mathbb{P} \mid \|\phi\|_{\{S/X\}V} \subseteq S \}$$

Notes

the modal μ -calculus [Kozen, 1983] is

- decidable
- ullet strictly more expressive than PDL and CTL^*

Moreover

 The correspondence theorem of the induced temporal logic with bisimilarity is kept Look for fixed points of

$$f \triangleq \lambda_{X \subseteq \mathbb{P}} . \|\phi\| \cup \|\langle a \rangle\|(X)$$

```
(PRE) If E \in \mathbb{P} and E \in f(X) then E \in X
      \equiv If E \in \mathbb{P} and E \in (\|\phi\| \cup \|\langle a \rangle\|(X)) then E \in X
      \equiv If E \in \mathbb{P} and E \in \{F \mid F \models \phi\} \cup \{F \in \mathbb{P} \mid \exists_{F' \in X} : F' \xleftarrow{a} F\}
                       then F \in X
      \equiv if E \in \mathbb{P} and E \models \phi \lor \exists_{E' \in X} . E' \xleftarrow{a} E then E \in X
```

The smallest set of processes verifying this condition is composed of processes with at least a computation along which a can occur until ϕ holds. Taking its intersection, we end up with processes in which ϕ holds in a finite number of steps.

```
(POST) If E \in X then E \in f(X)
\equiv \text{ If } E \in X \text{ then } E \in (\|\phi\| \cup \|\langle a \rangle\|(X))
\equiv \text{ If } E \in X \text{ then } E \in \{F \mid F \models \phi\} \cup \{F \in X \mid \exists_{F' \in X} . F' \stackrel{a}{\longleftarrow} F\}
\equiv \text{ If } E \in X \text{ then } E \models \phi \lor \exists_{E' \in X} . E' \stackrel{a}{\longleftarrow} E
```

The greatest fixed point also includes processes which keep the possibility of doing a without ever reaching a state where ϕ holds.

• strong until:

$$\mu X \cdot \phi \vee \langle a \rangle X$$

weak until

$$\nu X \cdot \phi \vee \langle a \rangle X$$

Relevant particular cases:

ullet ϕ holds after internal activity:

$$\mu X \cdot \phi \vee \langle \tau \rangle X$$

 \bullet ϕ holds in a finite number of steps

$$\mu X.\phi \vee \langle - \rangle \lambda$$

strong until:

$$\mu X \cdot \phi \vee \langle a \rangle X$$

weak until

$$\nu X \cdot \phi \vee \langle a \rangle X$$

Relevant particular cases:

ullet ϕ holds after internal activity:

$$\mu X \cdot \phi \vee \langle \tau \rangle X$$

• ϕ holds in a finite number of steps

$$\mu X \cdot \phi \vee \langle - \rangle X$$

Examples

If $E \in \mathbb{P}$ and $E \models \phi \land \exists_{E' \in X} . E' \stackrel{a}{\longleftarrow} E$ then $E \in X$ (PRE) implies that $\mu X \cdot \phi \wedge \langle a \rangle X \Leftrightarrow \text{false}$

(POST) If
$$E \subset X$$
 then $E \vdash \phi \land \exists c \vdash x \in E' \downarrow^a = E$

$$\nu X \cdot \phi \wedge \langle a \rangle X$$

$$\cdots \xleftarrow{a} E_3 \xleftarrow{a} E_2 \xleftarrow{a} E_1 \xleftarrow{a}$$

(PRE) If $E \in \mathbb{P}$ and $E \models \phi \land \exists_{E' \in X} . E' \xleftarrow{a} E$ then $E \in X$ implies that $\mu X . \phi \land \langle a \rangle X \Leftrightarrow \text{false}$

implies that

$$\nu X \cdot \phi \wedge \langle a \rangle X$$

(POST) If $E \in X$ then $E \models \phi \land \exists_{E' \in X} . E' \stackrel{a}{\longleftarrow} E$

denote all processes which verify $\boldsymbol{\phi}$ and have an infinite computation

$$\cdots \xleftarrow{a} E_3 \xleftarrow{a} E_2 \xleftarrow{a} E_1 \xleftarrow{a} E$$

Variant:

• ϕ holds along a finite or infinite a-computation:

$$\nu X \cdot \phi \wedge (\langle a \rangle X \vee [a] \text{false})$$

In general:

weak safety:

$$\nu X \cdot \phi \wedge (\langle K \rangle X \vee [K] \text{false})$$

• weak safety, for K = Act:

$$\nu X \cdot \phi \wedge (\langle - \rangle X \vee [-] \text{false})$$

Examples

```
(POST) If E \in X then E \in \|[-]\|(X)
        \equiv If E \in X then (if E' \stackrel{\times}{\longleftarrow} E and x \in Act then E' \in X)
implies \nu X. [-]X \Leftrightarrow \text{true}
```

(PRE) If
$$E \in \mathbb{P}$$
 and (if $E' \xleftarrow{x} E$ and $x \in Act$ then $E' \in X$) then $E \in X$

Example 3: $X \triangleq [-]X$

```
(POST) If E \in X then E \in \|[-]\|(X)
       \equiv If E \in X then (if E' \stackrel{\times}{\longleftarrow} E and x \in Act then E' \in X)
implies \nu X. [-]X \Leftrightarrow \text{true}
```

(PRE) If
$$E \in \mathbb{P}$$
 and (if $E' \xleftarrow{x} E$ and $x \in Act$ then $E' \in X$) then $E \in X$

implies μX . [-]X represent convergent processes (why?)

Introduce new modalities which express possibility or necessity in terms of observable transitions:

leading to the following observable versions of $\langle K \rangle$ and [K]:

Introduce new modalities which express possibility or necessity in terms of observable transitions:

leading to the following observable versions of $\langle K \rangle$ and [K]:

Examples:

- *《a*》true
- $\langle\!\langle a_1\rangle\!\rangle\langle\!\langle a_2\rangle\!\rangle\langle\!\langle a_3\rangle\!\rangle...\langle\!\langle a_n\rangle\!\rangle$ true
- \bullet [-]false
- inevitability (in an observational setting):
 - $\langle \rangle$ true $\wedge [-a]$ false is not enough (because it holds for $P \triangleq a.P + \tau.0$)
 - [] $\langle \rangle$ true \wedge [-a] false is also not enough (holds for $P \triangleq a.P + \tau.P$)
 - $\llbracket\downarrow \rrbracket \phi \stackrel{\text{abv}}{=} \mu X . \phi \wedge [\tau] X$

Note that taking the least solution in the definition of $[\![\downarrow]\!]$ ϕ rules out infinite sequences of τ actions

Examples:

- *《a*》true
- $\langle\!\langle a_1 \rangle\!\rangle \langle\!\langle a_2 \rangle\!\rangle \langle\!\langle a_3 \rangle\!\rangle ... \langle\!\langle a_n \rangle\!\rangle$ true
- [-]false
- inevitability (in an observational setting):
 - $\langle -\rangle$ true $\wedge [-a]$ false is not enough (because it holds for $P \triangleq a.P + \tau.0$)
 - [] $\langle \rangle$ true \wedge [-a] false is also not enough (holds for $P \triangleq a.P + \tau.P$)
 - $\llbracket\downarrow\rrbracket$ $\phi \stackrel{\text{abv}}{=} \mu X . \phi \wedge [\tau] X$

Note that taking the least solution in the definition of $\llbracket\downarrow\,\rrbracket$ ϕ rules out infinite sequences of τ actions

Examples:

- *《a*》 true
- $\langle\!\langle a_1\rangle\!\rangle\langle\!\langle a_2\rangle\!\rangle\langle\!\langle a_3\rangle\!\rangle...\langle\!\langle a_n\rangle\!\rangle$ true
- [-]false
- inevitability (in an observational setting):
 - $\langle \rangle$ true $\wedge [-a]$ false is not enough (because it holds for $P \triangleq a.P + \tau.0$)
 - [] $\langle \rangle$ true \wedge [-a] false is also not enough (holds for $P \triangleq a.P + \tau.P$)
 - $\llbracket\downarrow\rrbracket$ $\phi \stackrel{\text{abv}}{=} \mu X . \phi \land [\tau] X$

Note that taking the least solution in the definition of $\llbracket\downarrow\,\rrbracket$ ϕ rules out infinite sequences of τ actions

Examples:

- *《a*》 true
- $\langle\!\langle a_1 \rangle\!\rangle \langle\!\langle a_2 \rangle\!\rangle \langle\!\langle a_3 \rangle\!\rangle ... \langle\!\langle a_n \rangle\!\rangle$ true
- [-]false
- inevitability (in an observational setting):
 - $\langle \rangle$ true $\wedge [-a]$ false is not enough (because it holds for $P \triangleq a.P + \tau.0$)
 - [] $\langle \rangle$ true \wedge [-a] false is also not enough (holds for $P \triangleq a.P + \tau.P$)
 - $\llbracket\downarrow\rrbracket$ $\phi \stackrel{\text{abv}}{=} \mu X . \phi \land [\tau] X$

Note that taking the least solution in the definition of $\llbracket\downarrow\,\rrbracket$ ϕ rules out infinite sequences of τ actions

weak liveness:

$$\mu X \cdot \phi \vee \langle - \rangle X$$

strong safety

$$\nu X \cdot \psi \wedge [-]X$$

making $\psi = \phi^{c}$ both properties are dual

- ullet there is at least a computation reaching a state s such that $s\models\phi$
- all states s reached along all computations maintain ϕ , ie, $s \models \phi^c$

weak liveness:

$$\mu X \cdot \phi \vee \langle - \rangle X$$

strong safety

$$\nu X \cdot \psi \wedge [-]X$$

making $\psi = \phi^{c}$ both properties are dual:

- there is at least a computation reaching a state s such that $s \models \phi$
- all states s reached along all computations maintain ϕ , ie, $s \models \phi^{\mathsf{c}}$

Qualifiers weak and strong refer to a quatification over computations

weak liveness:

$$\mu X \cdot \phi \vee \langle - \rangle X$$

corresponds to Ctl formula E F ϕ

strong safety

$$\nu X \cdot \psi \wedge [-]X$$

corresponds to Ctl formula A G ψ

cf, liner time vs branching time

Duality

$$(\mu X \cdot \phi)^{c} = \nu X \cdot \phi^{c}$$
$$(\nu X \cdot \phi)^{c} = \mu X \cdot \phi^{c}$$

Example

• divergence:

$$\nu X \cdot \langle \tau \rangle X$$

• convergence (= all non observable behaviour is finite)

$$(\nu X . \langle \tau \rangle X)^{c} = \mu X . (\langle \tau \rangle X)^{c} = \mu X . [\tau] \lambda$$

Duality

$$(\mu X \cdot \phi)^{c} = \nu X \cdot \phi^{c}$$
$$(\nu X \cdot \phi)^{c} = \mu X \cdot \phi^{c}$$

Example:

• divergence:

$$\nu X \cdot \langle \tau \rangle X$$

• convergence (= all non observable behaviour is finite)

$$(\nu X . \langle \tau \rangle X)^{c} = \mu X . (\langle \tau \rangle X)^{c} = \mu X . [\tau] X$$

• weak safety:

$$\nu X \cdot \phi \wedge (\langle -\rangle X \vee [-] \text{false})$$

(there is a computation along which ϕ holds)

strong liveness

$$\mu X \cdot \psi \vee ([-]X \wedge \langle -\rangle \text{true})$$

(a state where the complement of ϕ holds can be finitely reached)

Consider the following strong liveness requirement: $\phi_0 = a \ taxi \ will \ end \ up \ returning \ to \ the \ Central$

state-oriented:

$$\mu X \cdot \langle reg \rangle true \vee ([-]X \wedge \langle -\rangle true)$$

(all computations reach a state where reg can happen)

action-oriented

$$\mu X \cdot [-reg] X \wedge \langle - \rangle$$
true

(action reg occurs)

Its dual is the action-oriented weak safety:

$$\nu X \cdot \langle -reg \rangle X \vee [-]$$
 false

State-oriented vs action-oriented

Example:

$$A_0 \triangleq a. \sum_{i>0} A_i$$
 with $A_{i+1} \triangleq b.A_i$

For a k > 0, process $(A_k \mid A_k)$ verifies 'a certainly occurs'

$$\mu X$$
 . $[-a]X \wedge \langle - \rangle$ true

$$\mu X \cdot (\langle - \rangle \mathsf{true} \wedge [-a] \mathsf{false}) \vee (\langle - \rangle \mathsf{true} \wedge [-] X$$

State-oriented vs action-oriented

Example:

$$A_0 \triangleq a. \sum_{i>0} A_i$$
 with $A_{i+1} \triangleq b.A_i$

For a k > 0, process $(A_k \mid A_k)$ verifies 'a certainly occurs'

$$\mu X$$
 . $[-a]X \wedge \langle - \rangle$ true

but fails

$$\mu X \cdot (\langle - \rangle \mathsf{true} \wedge [-a] \mathsf{false}) \vee (\langle - \rangle \mathsf{true} \wedge [-] X)$$

which means that a state in which a is inevitable can be reached, because both processes can evolve to a situation in which at least on of them can offer the possibility of doing b.

Example:

$$B_0 \triangleq a$$
. $\sum_{i \geq 0} B_i + \sum_{i \geq 0} B_i$ with $B_{i+1} \triangleq b.B_i$

Process $(B_k \mid B_k)$, for k > 0, fails both properties but verifies

$$\mu X \cdot \langle a \rangle$$
 true $\vee (\langle - \rangle$ true $\wedge [-]X)$

a liveness property stating that a state in which a is possible can be reached (which however is not inevitable!)

Conditional properties

$$\phi_1 =$$

After collecting a passenger (*icr*), the taxi drops him at destination (*fcr*) Second part of ϕ_1 is strong liveness:

$$\mu X$$
 . $[-\mathit{fcr}]X \wedge \langle - \rangle$ true

holding only after *icr*. Is it enough to write:

$$[\mathit{icr}](\mu X \cdot [-\mathit{fcr}]X \wedge \langle - \rangle \mathsf{true})$$

?

what we want does not depend on the initial state: it is liveness embedded into strong safety:

$$\nu Y \cdot [icr](\mu X \cdot [-fcr]X \wedge \langle - \rangle true) \wedge [-]Y$$

Conditional properties

$$\phi_1 =$$

After collecting a passenger (*icr*), the taxi drops him at destination (*fcr*) Second part of ϕ_1 is strong liveness:

$$\mu X$$
 . $[-\mathit{fcr}]X \wedge \langle - \rangle$ true

holding only after *icr*. Is it enough to write:

$$[icr](\mu X \cdot [-fcr]X \wedge \langle - \rangle true)$$

?

what we want does not depend on the initial state: it is liveness embedded into strong safety:

$$\nu Y \cdot [icr](\mu X \cdot [-fcr]X \wedge \langle - \rangle true) \wedge [-]Y$$

Conditional properties

The previous example is conditional liveness but one can also have

conditional safety:

$$\nu Y \cdot (\phi^{c} \vee (\phi \wedge \nu X \cdot \psi \wedge [-]X)) \wedge [-]Y$$

(whenever ϕ holds, ψ cannot cease to hold)

 $\phi = \text{every second action is } out$ is expressed by νX . $[-]([-out]false \wedge [-]X)$

$$\nu X$$
 . [out] false \wedge [in](μY . [in] false \wedge [out] $X \wedge$ [-out] Y) \wedge [-in] X

 $\phi = {\sf every \; second \; action \; is \; out}$ is expressed by

$$\nu X$$
 . $[-]([-out]$ false \wedge $[-]X)$

 $\phi = out$ follows in, but other actions can occur in between

$$u X$$
 . [out]false \wedge [in](μY . [in]false \wedge [out] $X \wedge$ [-out] Y) \wedge [-in] X

Note that the use of least fixed points imposes that the amount of computation between *in* and *out* is finite

 $\phi = a$ state in which in can occur, can be reached an infinite number of times

$$u X \cdot \mu Y \cdot (\langle in \rangle \mathsf{true} \lor \langle - \rangle Y) \land ([-]X \land \langle - \rangle \mathsf{true})$$

$$\nu X$$
 . μY . $[-in]Y \wedge [-]X \wedge \langle -\rangle$ true

$$\mu X \cdot \nu Y \cdot [-in] Y \wedge [in] X$$

 $\phi = {\sf a}$ state in which ${\it in}$ can occur, can be reached an infinite number of times

$$\nu X \cdot \mu Y \cdot (\langle in \rangle \mathsf{true} \vee \langle - \rangle Y) \wedge ([-]X \wedge \langle - \rangle \mathsf{true})$$

 $\phi = in$ occurs an infinite number of times

$$\nu X$$
 . μY . $[-\mathit{in}] \, Y \wedge [-] X \wedge \langle - \rangle \mathsf{true}$

 $\phi = in$ occurs an finite number of times

$$\mu X \cdot \nu Y \cdot [-in] Y \wedge [in] X$$

 $\phi = {\sf a}$ state in which ${\it in}$ can occur, can be reached an infinite number of times

$$u X \cdot \mu Y \cdot (\langle in \rangle \mathsf{true} \lor \langle - \rangle Y) \land ([-]X \land \langle - \rangle \mathsf{true})$$

 $\phi = in$ occurs an infinite number of times

$$\nu X$$
 . μY . $[-\mathit{in}]Y \wedge [-]X \wedge \langle -\rangle \mathsf{true}$

 $\phi = in$ occurs an finite number of times

$$\mu X \cdot \nu Y \cdot [-in] Y \wedge [in] X$$