Logics for processes (I)

Luís S. Barbosa

DI-CCTC Universidade do Minho Braga, Portugal

April, 2010

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Motivation

System's correctness wrt a specification

- equivalence checking (between two designs), through \sim and =
- unsuitable to check properties such as

can the system perform action α followed by β ?

which are best answered by exploring the process state space

Motivation

The taxi network example

- $\phi_0 = \ln a \text{ taxi network, } a \text{ car can collect a passenger or be allocated by the Central to a pending service}$
- $\phi_1 =$ This applies only to cars already on service
- φ₂ = If a car is allocated to a service, it must first collect the passenger and then plan the route
- $\phi_3 = On$ detecting an emergence the taxi becomes inactive
- $\phi_4 = A$ car on service is not inactive

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Motivation

The taxi network example

- $\phi_0 = \langle rec, alo \rangle$ true
- $\phi_1 = [onservice]\langle rec, alo \rangle$ true or $\phi_1 = [onservice]\phi_0$
- $\phi_2 = [alo]\langle rec \rangle \langle plan \rangle$ true
- $\phi_3 = [sos][-]false$
- $\phi_4 = [onservice]\langle \rangle$ true

Notes

- Modalities: $\langle K \rangle \phi$, $[L] \psi$ for $K, L \subset Act$
- Valuations in non modal logics are based on valuations
 V : 2 ← Variables: propositions are true or false depending on the unique referential provided by V
- Valuations in a modal logic also depends on the current state of computation: V : 2 ← Variables × P or, equivalently, ,
 V : PP ← Variables: each variable is associated to the set of processes in which its value is fixed as true
- ... but the topic modal logics has a longer story and a broad spectrum of applications ...

Notes

- Modalities: $\langle K \rangle \phi$, $[L] \psi$ for $K, L \subset Act$
- Valuations in non modal logics are based on valuations
 V : 2 ← Variables: propositions are true or false depending on the unique referential provided by V
- Valuations in a modal logic also depends on the current state of computation: V : 2 ← Variables × P or, equivalently, ,
 V : PP ← Variables: each variable is associated to the set of processes in which its value is fixed as true
- ... but the topic modal logics has a longer story and a broad spectrum of applications ...

A modal language

Modal equivalence and bisimulation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The language

Syntax

ϕ ::= true | false | $\phi_1 \land \phi_2$ | $\phi_1 \lor \phi_2$ | $\langle K \rangle \phi$ | $[K]\phi$

A modal language

Modal equivalence and bisimulation

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The language

Semantics: $E \models \phi$

Example

$$Sem \triangleq get.put.Sem$$
$$P_i \triangleq \overline{get.c_i}.\overline{put}.P_i$$
$$S \triangleq new \{get, put\} (Sem \mid (|_{i \in I} P_i))$$

Sem ⊨ ⟨get⟩true holds because

$$\exists_{F \in \{Sem' | Sem' \xleftarrow{get} Sem\}} . F \models true$$

with F = put.Sem.

- However, $Sem \models [put]$ false also holds, because $T = \{Sem' \mid Sem' \xleftarrow{put} Sem\} = \emptyset.$ Hence $\forall_{F \in T} . F \models$ false becomes trivially true.
- The only action initially permitted to S is τ : $\models [-\tau]$ false.

Example

$$Sem \triangleq get.put.Sem$$
$$P_i \triangleq \overline{get.c_i}.\overline{put}.P_i$$
$$S \triangleq new \{get, put\} (Sem \mid (|_{i \in I} P_i))$$

- Afterwards, S can engage in any of the critical events $c_1, c_2, ..., c_i$: $[\tau]\langle c_1, c_2, ..., c_i \rangle$ true
- After the semaphore initial synchronization and the occurrence of c_j in P_j, a new synchronization becomes inevitable:
 S ⊨ [τ][c_j](⟨−⟩true ∧ [−τ]false)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Notes

• inevitability of *a*: $\langle - \rangle$ true $\wedge [-a]$ false

- progress: $\langle \rangle$ true
- deadlock or termination: [-]false
- what about

 $\langle - \rangle false$ and [-]true ?

 satisfaction decided by unfolding the definition of =: no need to compute the transition graph

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Notes

- inevitability of *a*: $\langle \rangle$ true $\wedge [-a]$ false
- progress: $\langle \rangle$ true
- deadlock or termination: [-]false
- what about

 $\langle - \rangle$ false and [-]true ?

 satisfaction decided by unfolding the definition of =: no need to compute the transition graph

Notes

- inevitability of *a*: $\langle \rangle$ true $\wedge [-a]$ false
- progress: $\langle \rangle$ true
- deadlock or termination: [-]false
- what about

$\langle -\rangle {\sf false}$ and $[-]{\sf true}$?

 satisfaction decided by unfolding the definition of ⊨: no need to compute the transition graph

Notes

- inevitability of *a*: $\langle \rangle$ true $\wedge [-a]$ false
- progress: $\langle \rangle$ true
- deadlock or termination: [-]false
- what about

$$\langle - \rangle$$
 false and [-]true ?

 satisfaction decided by unfolding the definition of ⊨: no need to compute the transition graph

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

A denotational semantics

Idea: associate to each formula ϕ the set of processes that make it true

```
\phi \text{ vs } \|\phi\| = \{E \in \mathbb{P} \mid E \models \phi\}
```

```
\|\mathsf{true}\| = \mathbb{P}\|\mathsf{false}\| = \emptyset\|\phi_1 \land \phi_2\| = \|\phi_1\| \cap \|\phi_2\|\|\phi_1 \lor \phi_2\| = \|\phi_1\| \cup \|\phi_2\|
```

 $\|[K]\phi\| = \|[K]\|(\|\phi\|)$ $\|\langle K\rangle\phi\| = \|\langle K\rangle\|(\|\phi\|)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A denotational semantics

Idea: associate to each formula ϕ the set of processes that make it true

```
\phi \text{ vs } \|\phi\| = \{E \in \mathbb{P} \mid E \models \phi\}
```

```
\|\mathsf{true}\| = \mathbb{P}\|\mathsf{false}\| = \emptyset\|\phi_1 \land \phi_2\| = \|\phi_1\| \cap \|\phi_2\|\|\phi_1 \lor \phi_2\| = \|\phi_1\| \cup \|\phi_2\|
```

 $\|[K]\phi\| = \|[K]\|(\|\phi\|)$ $\|\langle K\rangle\phi\| = \|\langle K\rangle\|(\|\phi\|)$

$\|[K]\|$ and $\|\langle K \rangle\|$

Just as \land corresponds to \cap and \lor to \cup , modal logic combinators correspond to unary functions on sets of processes:

$$\llbracket [K] \rrbracket = \lambda_{X \subseteq \mathbb{P}} . \{ F \in \mathbb{P} \mid \text{if } F' \xleftarrow{a} F \land a \in K \text{ then } F' \in X \}$$

$$\|\langle K \rangle\| = \lambda_{X \subseteq \mathbb{P}} \cdot \{F \in \mathbb{P} \mid \exists_{F' \in X, a \in K} \cdot F' \xleftarrow{a} F\}$$

Note

These combinators perform a reduction to the previous state indexed by actions in ${\it K}$

Modal properties

A modal language

Modal equivalence and bisimulation

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

$\|[K]\|$ and $\|\langle K \rangle\|$

Example

$$\|\langle a \rangle \| \{q_2, n\} = \{q_1, m\} \\ \|[a]\| \{q_2, n\} = \{q_2, q_3, m, n\}$$

Modal equivalence and bisimulation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A denotational semantics

$$E \models \phi$$
 iif $E \in \|\phi\|$

Example:
$$\mathbf{0} \models [-]$$
false

because

$$\begin{split} \|[-]\mathsf{false}\| &= \|[-]\|(\|\mathsf{false}\|) \\ &= \|[-]\|(\emptyset) \\ &= \{F \in \mathbb{P} \mid \mathsf{if} \ F' \xleftarrow{x} F \land x \in \mathsf{Act} \ \mathsf{then} \ F' \in \emptyset\} \\ &= \{\mathbf{0}\} \end{split}$$

Modal equivalence and bisimulation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A denotational semantics

$$E \models \phi$$
 iif $E \in \|\phi\|$

Example:
$$?? \models \langle - \rangle$$
true

because

$$\begin{split} \|\langle -\rangle \mathsf{true}\| &= \|\langle -\rangle \|(\|\mathsf{true}\|) \\ &= \|\langle -\rangle \|(\mathbb{P}) \\ &= \{F \in \mathbb{P} \mid \exists_{F' \in \mathbb{P}, a \in K} . F' \xleftarrow{a} F\} \\ &= \mathbb{P} \setminus \{\mathbf{0}\} \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A denotational semantics

Complement

Any property ϕ divides $\mathbb P$ into two disjoint sets:

```
\|\phi\| and \mathbb{P}-\|\phi\|
```

The characteristic formula of the complement of $\|\phi\|$ is ϕ^{c} :

 $\|\phi^{\mathsf{c}}\|\ =\ \mathbb{P}-\|\phi\|$

where ϕ^{c} is defined inductively on the formulae structure:

$$\begin{aligned} \mathsf{true}^\mathsf{c} &= \mathsf{false} \quad \mathsf{false}^\mathsf{c} = \mathsf{true} \\ (\phi_1 \wedge \phi_2)^\mathsf{c} &= \phi_1^\mathsf{c} \vee \phi_2^\mathsf{c} \\ (\phi_1 \vee \phi_2)^\mathsf{c} &= \phi_1^\mathsf{c} \wedge \phi_2^\mathsf{c} \\ (\langle \mathbf{a} \rangle \phi)^\mathsf{c} &= [\mathbf{a}] \phi^\mathsf{c} \end{aligned}$$

... but negation is not explicitly introduced in the logic.

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

$$E \simeq_{\Gamma} F \quad \Leftrightarrow \quad \forall_{\phi \in \Gamma} \; . \; E \models \phi \Leftrightarrow F \models \phi$$

Examples

 $a.b.\mathbf{0} + a.c.\mathbf{0} \simeq_{\Gamma} a.(b.\mathbf{0} + c.\mathbf{0})$ for $\Gamma = \{\langle x_1 \rangle \langle x_2 \rangle ... \langle x_n \rangle$ true $| x_i \in Act \}$

(what about \simeq_{Γ} for $\Gamma = \{ \langle x_1 \rangle \langle x_2 \rangle \langle x_3 \rangle ... \langle x_n \rangle [-] \text{false} \mid x_i \in Act \}$?)

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

$$E \simeq_{\Gamma} F \quad \Leftrightarrow \quad \forall_{\phi \in \Gamma} \ . \ E \models \phi \Leftrightarrow F \models \phi$$

Examples

 $a.b.\mathbf{0} + a.c.\mathbf{0} \simeq_{\Gamma} a.(b.\mathbf{0} + c.\mathbf{0})$ for $\Gamma = \{\langle x_1 \rangle \langle x_2 \rangle ... \langle x_n \rangle$ true $| x_i \in Act \}$

(what about \simeq_{Γ} for $\Gamma = \{ \langle x_1 \rangle \langle x_2 \rangle \langle x_3 \rangle ... \langle x_n \rangle [-] \text{false} \mid x_i \in Act \}$?)

A modal language

Modal equivalence and bisimulation

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

$$E \simeq_{\Gamma} F \quad \Leftrightarrow \quad \forall_{\phi \in \Gamma} \; . \; E \models \phi \Leftrightarrow F \models \phi$$

Examples

 $a.b.\mathbf{0} + a.c.\mathbf{0} \simeq_{\Gamma} a.(b.\mathbf{0} + c.\mathbf{0})$ for $\Gamma = \{\langle x_1 \rangle \langle x_2 \rangle ... \langle x_n \rangle$ true $| x_i \in Act \}$

(what about \simeq_{Γ} for $\Gamma = \{\langle x_1 \rangle \langle x_2 \rangle \langle x_3 \rangle ... \langle x_n \rangle [-] \text{false} \mid x_i \in Act\}$?)

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

 $E \simeq F \quad \Leftrightarrow \quad E \simeq_{\Gamma} F$ for every set Γ of well-formed formulae

Lemma

 $E \sim F \Rightarrow E \simeq F$

Note

the converse of this lemma does not hold, e.g. let

• $A \triangleq \sum_{i>0} A_i$, where $A_0 \triangleq \mathbf{0}$ and $A_{i+1} \triangleq a.A_i$

•
$$A' \triangleq A + \underline{fix} (X = a.X)$$

$$A \sim A'$$
 but $A \simeq A'$

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

 $E \simeq F \quad \Leftrightarrow \quad E \simeq_{\Gamma} F$ for every set Γ of well-formed formulae

Lemma

 $E \sim F \Rightarrow E \simeq F$

Note

the converse of this lemma does not hold, e.g. let

• $A \triangleq \sum_{i>0} A_i$, where $A_0 \triangleq \mathbf{0}$ and $A_{i+1} \triangleq a.A_i$

•
$$A' \triangleq A + \underline{fix} (X = a.X)$$

$$A \sim A'$$
 but $A \simeq A'$

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

 $E \simeq F \iff E \simeq_{\Gamma} F$ for every set Γ of well-formed formulae

Lemma

 $E \sim F \Rightarrow E \simeq F$

Note

the converse of this lemma does not hold, e.g. let

• $A \triangleq \sum_{i \ge 0} A_i$, where $A_0 \triangleq \mathbf{0}$ and $A_{i+1} \triangleq a.A_i$

•
$$A' \triangleq A + \underline{fix} (X = a.X)$$

$$A \not\sim A'$$
 but $A \simeq A'$

Modal properties

A modal language

Modal equivalence and bisimulation

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

$E \sim F \Leftrightarrow E \simeq F$

for image-finite processes.

Image-finite processes *E* is image-finite iff $\{F \mid F \xleftarrow{a} E\}$ is finite for every action $a \in Act$ A modal language

Modal equivalence and bisimulation

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

$E \sim F \Leftrightarrow E \simeq F$

for image-finite processes.

Image-finite processes *E* is image-finite iff $\{F \mid F \xleftarrow{a} E\}$ is finite for every action $a \in Act$ A modal language

Modal equivalence and bisimulation

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

 $E \sim F \Leftrightarrow E \simeq F$

for image-finite processes.

proof

- \Rightarrow : by induction of the formula structure
- \Leftarrow : show that \simeq is itself a bisimulation, by contradiction