
Introduction to process algebra

Lúıs S. Barbosa

DI-CCTC
Universidade do Minho

Braga, Portugal

March, 2010

Actions & processes

Action
is a latency for interaction

Act ::= a | a | τ

for a ∈ L, L denoting a set of names

Process
is a description of how the interaction capacities of a system evolve, i.e.,
its behaviour
for example,

E , a.b.0 + a.E

• analogy: regular expressions vs finite automata

Actions & processes

Action
is a latency for interaction

Act ::= a | a | τ

for a ∈ L, L denoting a set of names

Process
is a description of how the interaction capacities of a system evolve, i.e.,
its behaviour
for example,

E , a.b.0 + a.E

• analogy: regular expressions vs finite automata

Examples

Buffers

1-position buffer: A(in, out) , in.out.0

... non terminating: B(in, out) , in.out.B

... with two output ports: C (in, o1, o2) , in.(o1.C + o2.C)

... non deterministic: D(in, o1, o2) , in.o1.D + in.o2.D

... with parameters: B(in, out) , in(x).out〈x〉.B

Parallel composition

n-position buffers

1-position buffer:
S , new {m} (B〈in,m〉 | B〈m, out〉)

n-position buffer:

Bn , new {mi |i < n} (B〈in,m1〉 | B〈m1,m2〉 | · · · | B〈mn−1, out〉)

Parallel composition

mutual exclusion

Sem , get.put.Sem

Pi , get.ci .put.Pi

S , new {get, put} (Sem | (|i∈I Pi))

A language for processes

Questions

• Which syntax to use to describe processes?

• What’s the meaning of such descriptions?

• Why some of our favourite programming languages’ constructions
are not considered?

• ...

Syntax

The set P of processes is the set of all terms generated by the following
BNF:

E ::= A(x1, ..., xn) | a.E |
∑
i∈I

Ei | E0 | E1 | new K E

for a ∈ Act and K ⊆ L

Abbreviatures

E0 + E1
abv
=

∑
i∈{0,1}

Ei

0
abv
=

∑
i∈∅

Ei

Syntax

The set P of processes is the set of all terms generated by the following
BNF:

E ::= A(x1, ..., xn) | a.E |
∑
i∈I

Ei | E0 | E1 | new K E

for a ∈ Act and K ⊆ L

Abbreviatures

E0 + E1
abv
=

∑
i∈{0,1}

Ei

0
abv
=

∑
i∈∅

Ei

Syntax

Process declaration

A(x̃) , EA

with fn(EA) ⊆ x̃ (where fn(P) is the set of free variables of P).

• used as, e.g., A(a, b, c) , a.b.0 + c .A〈d , e, f 〉

Process declaration: fixed point expression

fix (X = EX)

• syntactic substitution over P, cf.,

• {c/b} a.b.0
• (internal variables renaming)
{x/y} new {x} y .x .0 = new {x ′} x .x ′.0

Syntax

Process declaration

A(x̃) , EA

with fn(EA) ⊆ x̃ (where fn(P) is the set of free variables of P).

• used as, e.g., A(a, b, c) , a.b.0 + c .A〈d , e, f 〉

Process declaration: fixed point expression

fix (X = EX)

• syntactic substitution over P, cf.,

• {c/b} a.b.0
• (internal variables renaming)
{x/y} new {x} y .x .0 = new {x ′} x .x ′.0

Sort

The sort of a process P is its interface, i.e., its iteraction possibilities

• minimal sort:
⋂
{K ⊆ L | P : K}

• syntactic sort, i.e., the set of free variables:

fn(a.P) = {a} ∪ fn(P)

fn(τ.P) = fn(P)

fn(
∑
i∈I

Pi) =
⋃
i∈I

fn(Pi)

fn(P | Q) = fn(P) ∪ fn(Q)

fn(new K P) = fn(P)− (K ∪ K)

and, for each P(x̃) , E , fn(E) ⊆ fn(P(x̃)) = x̃ .

Sort

Warning

• new {a} (a.b.c .0) has no transitions, so its sort is ∅

• however: fn((new {a} a.b.c .0)) = {b, c}

Semantics

Two-level semantics

• arquitectural, expresses a notion of similar assembly configurations
and is expressed through a structural congruence relation;

• comportamental given by transition rules which express how
system’s components interact

Semantics

Structural congruence
≡ over P is given by the closure of the following conditions:

• for all A(x̃) , EA, A(ỹ) ≡ {x̃/ỹ}EA,
(i.e., folding/unfolding preserve ≡)

• α-conversion (i.e., replacement of bounded variables).

• both | and + originate, with 0, abelian monoids

• forall a /∈ fn(P) new {a} (P | Q) ≡ P | new {a} Q

• new {a} 0 ≡ 0

Semantics

(prefix)
E

a←− a.E

E ′
a←− {k̃/x̃}EA

(ident) (if A(x̃) , EA)
E ′

a←− A(k̃)

E ′
a←− E

(sum − l)
E ′

a←− E + F

F ′
a←− F

(sum − r)
F ′

a←− E + F

Semantics

E ′
a←− E

(par − l)
E ′ | F

a←− E | F

F ′
a←− F

(par − r)
E | F ′

a←− E | F

E ′
a←− E F ′

a←− F
(react)

E ′ | F ′
τ←− E | F

E ′
a←− E

(res) (if a /∈ {k, k})
new {k} E ′

a←− new {k} E

Compatibility

Lemma

Structural congruence preserves transitions:

if E ′
a←− E and E ≡ F there exists a process F ′ such that F ′

a←− F and
E ′ ≡ F ′.

Semantics

These rules define a LTS

{ a←− ⊆ P× P | a ∈ Act}

Relation
a←− is defined inductively over process structure entailing a

semantic description which is

Structural i.e., each process shape (defined by the most external
combinator) has a type of transitions

Modular i.e., a process trasition is defined from transitions in its
sup-processes

Complete i.e., all possible transitions are infered from these rules

static vs dynamic combinators

Semantics

These rules define a LTS

{ a←− ⊆ P× P | a ∈ Act}

Relation
a←− is defined inductively over process structure entailing a

semantic description which is

Structural i.e., each process shape (defined by the most external
combinator) has a type of transitions

Modular i.e., a process trasition is defined from transitions in its
sup-processes

Complete i.e., all possible transitions are infered from these rules

static vs dynamic combinators

Graphical representations

Synchronization diagram

• represent interfaces of processes

• static combinators are an algebra of synchronization diagrams

Transition graph

• derivative, n-derivative, transition tree

• folds into a transition graph

Graphical representations

Synchronization diagram

• represent interfaces of processes

• static combinators are an algebra of synchronization diagrams

Transition graph

• derivative, n-derivative, transition tree

• folds into a transition graph

Transition tree

B , in.o1.B + in.o2.B

in.o1.B + in.o2.B

in
uullllllllllllll

in
))RRRRRRRRRRRRRR

o1.B

o1

��

o2.B

o2

��
in.o1.B + in.o2.B

inwwppppppppppp
in

��

in.o1.B + in.o2.B

in
uullllllllllllll

in

��
o1.B

o1

��

o2.B

o2

��

o1.B

o1

��

o2.B

o2

��...

Transition graph

B , in.o1.B + in.o2.B

in.o1.B + in.o2.B

inwwooooooooooo

in ''OOOOOOOOOOO

o1.B

o1
''

o2.B

o2
ww

compare with B ′ , in.(o1.B ′ + o2.B ′)

in.(o1.B ′ + o2.B ′)

in

��
o1.B ′ + o2.B ′

o1

77

o2

gg

Transition graph

B , in.o1.B + in.o2.B

in.o1.B + in.o2.B

inwwooooooooooo

in ''OOOOOOOOOOO

o1.B

o1
''

o2.B

o2
ww

compare with B ′ , in.(o1.B ′ + o2.B ′)

in.(o1.B ′ + o2.B ′)

in

��
o1.B ′ + o2.B ′

o1

77

o2

gg

Data parameters

Language P is extended to PV over a data universe V , a set Ve of
expressions over V and a evaluation Val : V ←− Ve

Example
B , in(x).B ′x

B ′v , out〈v〉.B

• Two prefix forms: a(x).E and a〈e〉.E (actions as ports)

• Data parameters: AS(x1, ..., xn) , EA, with S ∈ V and each xi ∈ L

• Conditional combinator: if b then P, if b then P1 else P2

Clearly

if b then P1 else P2
abv
= (if b then P1) + (if¬b then P2)

Data parameters

Language P is extended to PV over a data universe V , a set Ve of
expressions over V and a evaluation Val : V ←− Ve

Example
B , in(x).B ′x

B ′v , out〈v〉.B

• Two prefix forms: a(x).E and a〈e〉.E (actions as ports)

• Data parameters: AS(x1, ..., xn) , EA, with S ∈ V and each xi ∈ L

• Conditional combinator: if b then P, if b then P1 else P2

Clearly

if b then P1 else P2
abv
= (if b then P1) + (if¬b then P2)

Data parameters

Additional semantic rules

(prefixi)

{v/x}E a(v)←− a(x).E
for v ∈ V

(prefixo)

E
a〈v〉←− a〈e〉.E

for Val(e) = v

E ′
a←− E1

(if1)
E ′

a←− if b then E1 else E2

for Val(b) = true

E ′
a←− E2

(if2)
E ′

a←− if b then E1 else E2

for Val(b) = false

Back to PP

Encoding in the basic language: T () : P←− PV

T (a(x).E) =
∑
v∈V

av .T ({v/x}E)

T (a〈e〉.E) = ae .T (E)

T (
∑
i∈I

Ei) =
∑
i∈I

T (Ei)

T (E | F) = T (E) | T (F)

T (new K E) = new {av | a ∈ K , v ∈ V } T (E)

and

T (if b then E) =

{
T (E) if Val(b) = true

0 if Val(b) = false

EX1: Canonical concurrent form

P , new K (E1 | E2 | ... | En)

The chance machine

IO , m.bank.(lost.loss.IO + rel(x).win〈x〉.IO)

Bn , bank.max〈n + 1〉.left(x).Bx

Dc , max(z).(lost.left〈z〉.Dc +
∑

1≤x≤z

rel〈x〉.left〈z − x〉.Dc)

Mn , new {bank,max , left, rel} (IO | Bn | Dc)

EX2: Sequential patterns

1. List all states (configurations of variable assignments)

2. Define an order to capture systems’s evolution

3. Specify an expression in P to define it

A 3-bit converter

A ,rq.B

B ,out0.C + out1.odd .A

C ,out0.D + out1.even.A

D ,out0.zero.A + out1.even.A

EX3: The alternating-bit protocol

• protocol: set of rules orchestrating interaction between two entities
to achieve a common goal

• ABP: exchange data over a unreliable medium: message loss and
replication

EX3: ABP sender

• accepts message to deliver

• delivers message with bit b and sets a timer

• when a time-out in fired, re-sends b

• whenever a confirmation b is received, goes on with anew message
and 1− b

• ignores any confirmation with 1− b

Acceptb , accept · Sendb

Sendb , sendb · time · Sendingb

Sendingb , timeout · Sendb + ackb · timeout · Accept1−b

+ ack1−b · Sendingb

EX3: ABP sender

• accepts message to deliver

• delivers message with bit b and sets a timer

• when a time-out in fired, re-sends b

• whenever a confirmation b is received, goes on with anew message
and 1− b

• ignores any confirmation with 1− b

Acceptb , accept · Sendb

Sendb , sendb · time · Sendingb

Sendingb , timeout · Sendb + ackb · timeout · Accept1−b

+ ack1−b · Sendingb

EX3: ABP receiver

• receives a message and delivers it its client

• sends confirmation with bit b and sets a timer

• when a time-out in fired, re-sends b

• whenever receives a new message with 1− b, delivers it its client,
and continues with 1− b

• ignores any message with b

Deliverb , deliver · Replyb

Replyb , replyb · time · Replyingb

Replyingb , timeout · Replyb + trans1−b · timeout · Deliver1−b

+ transb · Replyingb

EX3: ABP receiver

• receives a message and delivers it its client

• sends confirmation with bit b and sets a timer

• when a time-out in fired, re-sends b

• whenever receives a new message with 1− b, delivers it its client,
and continues with 1− b

• ignores any message with b

Deliverb , deliver · Replyb

Replyb , replyb · time · Replyingb

Replyingb , timeout · Replyb + trans1−b · timeout · Deliver1−b

+ transb · Replyingb

EX3: ABP composing with timers

Timer , time · timeout · Timer

Senderb , accept.new {time, timeout} (Sendb | Timer)

Receiverb , new {time, timeout} (Replyb | Timer)

EX3: ABP communication medium

Transsb , transb · Transs

Transs , sendb · Transbs

Transtbs , τ · Transts

Transtbs , τ · Transtbbs

and

Ackbs , ackb · Acks

Acks , replyb · Acksb

Acksbt , τ · Ackst

Acksbt , τ · Acksbbt

EX3: ABP - the protocol

AB , new K (Sender1−b | Transε | Ackε | Receiverb)

where K = {sendb, ackb, replyb, transb | b ∈ {0, 1}}.

Processes are ’prototypical’ transition systems

... hence all definitions apply:

E ∼ F

• Processes E , F are bisimilar if there exist a bisimulation S st
{〈E ,F 〉} ∈ S .

• A binary relation S in P is a (strict) bisimulation iff, whenever
(E ,F) ∈ S and a ∈ Act,

i) E ′
a←− E ⇒ F ′

a←− F ∧ (E ′,F ′) ∈ S

ii) F ′
a←− F ⇒ E ′

a←− E ∧ (E ′,F ′) ∈ S

I.e.,

∼ =
⋃
{S ⊆ P× P | S is a (strict) bisimulation}

Processes are ’prototipycal’ transition systems

Example: S ∼M

T , i .k .T

R , k .j .R

S , new {k} (T | R)

M , i .τ.N

N , j .i .τ.N + i .j .τ.N

through bisimulation

R ={〈S ,M)〉, 〈new {k} (k .T | R), τ.N〉, 〈new {k} (T | j .R),N〉,
〈new {k} (k .T | j .R), j .τ.N〉}

Example: Semaphores

A semaphore

Sem , get.put.Sem

n-semaphores

Semn , Semn,0

Semn,0 , get.Semn,1

Semn,i , get.Semn,i+1 + put.Semn,i−1

(for 0 < i < n)

Semn,n , put.Semn,n−1

Semn can also be implemented by the parallel composition of n Sem
processes:

Semn , Sem | Sem | ... | Sem

Example: Semaphores

A semaphore

Sem , get.put.Sem

n-semaphores

Semn , Semn,0

Semn,0 , get.Semn,1

Semn,i , get.Semn,i+1 + put.Semn,i−1

(for 0 < i < n)

Semn,n , put.Semn,n−1

Semn can also be implemented by the parallel composition of n Sem
processes:

Semn , Sem | Sem | ... | Sem

Example: Semaphores

Is Semn ∼ Semn?

For n = 2:

{〈Sem2,0,Sem | Sem〉, 〈Sem2,1,Sem | put.Sem〉,
〈Sem2,1, put.Sem | Sem〉〈Sem2,2, put.Sem | put.Sem〉}

is a bisimulation.

• but can we get rid of structurally congruent pairs?

Example: Semaphores

Is Semn ∼ Semn?

For n = 2:

{〈Sem2,0,Sem | Sem〉, 〈Sem2,1,Sem | put.Sem〉,
〈Sem2,1, put.Sem | Sem〉〈Sem2,2, put.Sem | put.Sem〉}

is a bisimulation.

• but can we get rid of structurally congruent pairs?

Bisimulation up to ≡

Definition
A binary relation S in P is a (strict) bisimulation up to ≡ iff, whenever
(E ,F) ∈ S and a ∈ Act,

i) E ′
a←− E ⇒ F ′

a←− F ∧ (E ′,F ′) ∈ ≡ ·S · ≡

ii) F ′
a←− F ⇒ E ′

a←− E ∧ (E ′,F ′) ∈ ≡ ·S · ≡

Lemma
If S is a (strict) bisimulation up to ≡, then S ⊆ ∼

• To prove Semn ∼ Semn a bisimulation will contain 2n pairs, while a
bisimulation up to ≡ only requires n + 1 pairs.

Bisimulation up to ≡

Definition
A binary relation S in P is a (strict) bisimulation up to ≡ iff, whenever
(E ,F) ∈ S and a ∈ Act,

i) E ′
a←− E ⇒ F ′

a←− F ∧ (E ′,F ′) ∈ ≡ ·S · ≡

ii) F ′
a←− F ⇒ E ′

a←− E ∧ (E ′,F ′) ∈ ≡ ·S · ≡

Lemma
If S is a (strict) bisimulation up to ≡, then S ⊆ ∼

• To prove Semn ∼ Semn a bisimulation will contain 2n pairs, while a
bisimulation up to ≡ only requires n + 1 pairs.

Bisimulation up to ≡

Definition
A binary relation S in P is a (strict) bisimulation up to ≡ iff, whenever
(E ,F) ∈ S and a ∈ Act,

i) E ′
a←− E ⇒ F ′

a←− F ∧ (E ′,F ′) ∈ ≡ ·S · ≡

ii) F ′
a←− F ⇒ E ′

a←− E ∧ (E ′,F ′) ∈ ≡ ·S · ≡

Lemma
If S is a (strict) bisimulation up to ≡, then S ⊆ ∼

• To prove Semn ∼ Semn a bisimulation will contain 2n pairs, while a
bisimulation up to ≡ only requires n + 1 pairs.

A ∼-calculus

Lemma E ≡ F ⇒ E ∼ F

• proof idea: show that {(E + E ,E) | E ∈ P} ∪ IdP is a bisimulation

Lemma
new K ′ (new K E)∼ new (K ∪ K ′) E

new K E ∼ E if L(E) ∩ (K ∪ K) = ∅

new K (E | F)∼ new K E | new K F if L(E) ∩ L(F) ∩ (K ∪ K) = ∅

• proof idea: discuss whether S is a bisimulation:

S = {(new K E ,E) | E ∈ P ∧ L(E) ∩ (K ∪ K) = ∅}

A ∼-calculus

Lemma E ≡ F ⇒ E ∼ F

• proof idea: show that {(E + E ,E) | E ∈ P} ∪ IdP is a bisimulation

Lemma
new K ′ (new K E)∼ new (K ∪ K ′) E

new K E ∼ E if L(E) ∩ (K ∪ K) = ∅

new K (E | F)∼ new K E | new K F if L(E) ∩ L(F) ∩ (K ∪ K) = ∅

• proof idea: discuss whether S is a bisimulation:

S = {(new K E ,E) | E ∈ P ∧ L(E) ∩ (K ∪ K) = ∅}

∼ is a congruence

congruence is the name of modularity in Mathematics

• process combinators preserve ∼

Lemma

a.E ∼ a.F

E + P ∼ F + P

E | P ∼ F | P

new K E ∼ new K F

• recursive definition preserves ∼

∼ is a congruence

congruence is the name of modularity in Mathematics

• process combinators preserve ∼

Lemma

a.E ∼ a.F

E + P ∼ F + P

E | P ∼ F | P

new K E ∼ new K F

• recursive definition preserves ∼

∼ is a congruence

• First ∼ is extended to processes with variables:

E ∼ F ⇔ ∀P̃ . {P̃/X̃}E ∼ {P̃/X̃}F

• Then prove:

Lemma

i) P̃ , Ẽ ⇒ P̃ ∼ Ẽ
where Ẽ is a family of process expressions and P̃ a family
of process identifiers.

ii) Let Ẽ ∼ F̃ , where Ẽ and F̃ are families of recursive
process expressions over a family of process variables X̃ ,
and define:

Ã , {Ã/X̃} Ẽ and B̃ , {B̃/X̃} F̃

Then
Ã ∼ B̃

The expansion theorem

Every process is equivalent to the sum of its derivatives

E ∼
∑
{a.E ′ | E ′ a←− E}

understood?

E ∼
∑
{a.E ′ | E ′ a←− E}

clear?

E ∼
∑
{a.E ′ | E ′ a←− E}

The expansion theorem

Every process is equivalent to the sum of its derivatives

E ∼
∑
{a.E ′ | E ′ a←− E}

understood?

E ∼
∑
{a.E ′ | E ′ a←− E}

clear?

E ∼
∑
{a.E ′ | E ′ a←− E}

The expansion theorem

Every process is equivalent to the sum of its derivatives

E ∼
∑
{a.E ′ | E ′ a←− E}

understood?

E ∼
∑
{a.E ′ | E ′ a←− E}

clear?

E ∼
∑
{a.E ′ | E ′ a←− E}

The expansion theorem

The usual definition (based on the concurrent canonical form):

E ∼
∑
{ fi (a).new K ({f1}E1 | ... | {fi}E ′i | ... | {fn}En) |

E ′i
a←− Ei ∧ fi (a) /∈ K ∪ K }

+∑
{ τ.new K ({f1}E1 | ... | {fi}E ′i | ... | {fj}E ′j | ... | {fn}En) |

E ′i
a←− Ei ∧ E ′j

b←− Ej ∧ fi (a) = fj(b) }

for E , new K ({f1}E1 | ... | {fn}En), with n ≥ 1

The expansion theorem

Corollary (for n = 1 and f1 = id)

new K (E + F)∼ new K E + new K F

new K (a.E)∼

{
0 if a ∈ (K ∪ K)

a.(new K E) otherwise

Example

S ∼M
S ∼ new {k} (T | R)

∼ i .new {k} (k .T | R)

∼ i .τ.new {k} (T | j .R)

∼ i .τ.(i .new {k} (k .T | j .R) + j .new {k} (T | R))

∼ i .τ.(i .j .new {k} (k .T | R) + j .i .new {k} (k .T | R))

∼ i .τ.(i .j .τ.new {k} (T | j .R) + j .i .τ.new {k} (T | j .R))

Let N ′ = new {k} (T | j .R).
This expands into N ′ ∼ i .j .τ.new {k} (T | j .R) + j .i .τ.new {k} (T | j .R),
Therefore N ′ ∼ N and S ∼ i .τ.N ∼M

• requires result on unique solutions for recursive process equations

Observable transitions

a⇐= ⊆ P× P

• L ∪ {ε}

• A
ε⇐=-transition corresponds to zero or more non observable

transitions

• inference rules for
a⇐=:

(O1)
E

ε⇐= E

E
τ←− E ′ E ′

ε⇐= F
(O2)

E
ε⇐= F

E
ε⇐= E ′ E ′

a←− F ′ F ′
ε⇐= F

(O3) for a ∈ L
E

a⇐= F

Example

T0 , j .T1 + i .T2

T1 , i .T3

T2 , j .T3

T3 , τ.T0

and

A , i .j .A + j .i .A

Example

From their graphs,

T0

j~~}}
}}

}}
}}

i A
AA

AA
AA

A

T1

i

 A
AA

AA
AA

A T2

j

~~}}
}}

}}
}}

T3

τ

jj

and

A

j~~~~
~~

~~
~~

i A
AA

AA
AA

A

i .A

i
((

j .A

j
vv

we conclude that T0 � A (why?).

Observational equivalence

E ≈ F

• Processes E , F are observationally equivalent if there exists a weak
bisimulation S st {〈E ,F 〉} ∈ S .

• A binary relation S in P is a weak bisimulation iff, whenever
(E ,F) ∈ S and a ∈ L ∪ {ε},

i) E ′
a⇐= E ⇒ F ′

a⇐= F ∧ (E ′,F ′) ∈ S

ii) F ′
a⇐= F ⇒ E ′

a⇐= E ∧ (E ′,F ′) ∈ S

I.e.,
≈ =

⋃
{S ⊆ P× P | S is a weak bisimulation}

Observational equivalence

Properties

• as expected: ≈ is an equivalence relation

• basic property: for any E ∈ P,

E ≈ τ.E

(proof idea: idP ∪ {(E , τ.E) | E ∈ P} is a weak bisimulation

• weak vs. strict:
∼ ⊆ ≈

Is ≈ a congruence?

Lemma
Let E ≈ F . Then, for any P ∈ P and K ⊆ L,

a.E ≈ a.F

E | P ≈ F | P

new K E ≈ new K F

but
E + P ≈ F + P

does not hold, in general.

Is ≈ a congruence?

Lemma
Let E ≈ F . Then, for any P ∈ P and K ⊆ L,

a.E ≈ a.F

E | P ≈ F | P

new K E ≈ new K F

but
E + P ≈ F + P

does not hold, in general.

Is ≈ a congruence?

Example (initial τ restricts options ’menu’)

i .0 ≈ τ.i .0

However
j .0 + i .0 6≈ j .0 + τ.i .0

Actually,

j .0 + i .0

j
{{wwwwwwwww

i
##G

GGGGGGGG

0 0

j .0 + τ.i .0

j
zzuuuuuuuuuu

τ
$$J

JJJJJJJJ

0 i .0

i

��
0

Is ≈ a congruence?

Example (initial τ restricts options ’menu’)

i .0 ≈ τ.i .0

However
j .0 + i .0 6≈ j .0 + τ.i .0

Actually,

j .0 + i .0

j
{{wwwwwwwww

i
##G

GGGGGGGG

0 0

j .0 + τ.i .0

j
zzuuuuuuuuuu

τ
$$J

JJJJJJJJ

0 i .0

i

��
0

Forcing a congruence: E = F

Solution: force any initial τ to be matched by another τ

Process equality
Two processes E and F are equal (or observationally congruent) iff

i) E ≈ F

ii) E ′
τ←− E ⇒ F ′

ε⇐= F ′′
τ←− F and E ′ ≈ F ′

iii) F ′
τ←− F ⇒ E ′

ε⇐= E ′′
τ←− E and E ′ ≈ F ′

• note that E 6= τ.E , but τ.E = τ.τ.E

Forcing a congruence: E = F

Solution: force any initial τ to be matched by another τ

Process equality
Two processes E and F are equal (or observationally congruent) iff

i) E ≈ F

ii) E ′
τ←− E ⇒ F ′

ε⇐= F ′′
τ←− F and E ′ ≈ F ′

iii) F ′
τ←− F ⇒ E ′

ε⇐= E ′′
τ←− E and E ′ ≈ F ′

• note that E 6= τ.E , but τ.E = τ.τ.E

Forcing a congruence: E = F

= can be regarded as a restriction of ≈ to all pairs of processes
which preserve it in additive contexts

Lemma
Let E and F be processes such that the union of their sorts is distinct of
L.

E = F ⇔ ∀G∈P . (E + G ≈ F + G)

• note that E 6= τ.E , but τ.E = τ.τ.E

Forcing a congruence: E = F

= can be regarded as a restriction of ≈ to all pairs of processes
which preserve it in additive contexts

Lemma
Let E and F be processes such that the union of their sorts is distinct of
L.

E = F ⇔ ∀G∈P . (E + G ≈ F + G)

• note that E 6= τ.E , but τ.E = τ.τ.E

Properties of =

Lemma

E = F ⇒ ∀G∈P . (E + G ≈ F + G)

Lemma

E = F ⇔ (E = F) ∨ (E = τ.F) ∨ (τ.E = F)

Properties of =

Lemma

∼ ⊆ = ⊆ ≈

So,

the whole ∼ theory remains valid

Additionally,

Lemma (additional laws)

a.τ.E = a.E

E + τ.E = τ.E

a.(E + τ.F) = a.(E + τ.F) + a.F

Properties of =

Lemma

∼ ⊆ = ⊆ ≈

So,

the whole ∼ theory remains valid

Additionally,

Lemma (additional laws)

a.τ.E = a.E

E + τ.E = τ.E

a.(E + τ.F) = a.(E + τ.F) + a.F

Solving equations

Have equations over (P,∼) or (P,=) (unique) solutions?

Lemma
Recursive equations X̃ = Ẽ (X̃) or X̃ ∼ Ẽ (X̃), over P, have unique
solutions (up to = or ∼, respectively). Formally,

i) Let Ẽ = {Ei | i ∈ I} be a family of expressions with a
maximum of I free variables ({Xi | i ∈ I}) such that any
variable free in Ei is weakly guarded. Then

P̃ ∼ {P̃/X̃}Ẽ ∧ Q̃ ∼ {Q̃/X̃}Ẽ ⇒ P̃ ∼ Q̃

ii) Let Ẽ = {Ei | i ∈ I} be a family of expressions with a
maximum of I free variables ({Xi | i ∈ I}) such that any
variable free in Ei is guarded and sequential. Then

P̃ = {P̃/X̃}Ẽ ∧ Q̃ = {Q̃/X̃}Ẽ ⇒ P̃ = Q̃

Solving equations

Have equations over (P,∼) or (P,=) (unique) solutions?

Lemma
Recursive equations X̃ = Ẽ (X̃) or X̃ ∼ Ẽ (X̃), over P, have unique
solutions (up to = or ∼, respectively). Formally,

i) Let Ẽ = {Ei | i ∈ I} be a family of expressions with a
maximum of I free variables ({Xi | i ∈ I}) such that any
variable free in Ei is weakly guarded. Then

P̃ ∼ {P̃/X̃}Ẽ ∧ Q̃ ∼ {Q̃/X̃}Ẽ ⇒ P̃ ∼ Q̃

ii) Let Ẽ = {Ei | i ∈ I} be a family of expressions with a
maximum of I free variables ({Xi | i ∈ I}) such that any
variable free in Ei is guarded and sequential. Then

P̃ = {P̃/X̃}Ẽ ∧ Q̃ = {Q̃/X̃}Ẽ ⇒ P̃ = Q̃

Solving equations

Have equations over (P,∼) or (P,=) (unique) solutions?

Lemma
Recursive equations X̃ = Ẽ (X̃) or X̃ ∼ Ẽ (X̃), over P, have unique
solutions (up to = or ∼, respectively). Formally,

i) Let Ẽ = {Ei | i ∈ I} be a family of expressions with a
maximum of I free variables ({Xi | i ∈ I}) such that any
variable free in Ei is weakly guarded. Then

P̃ ∼ {P̃/X̃}Ẽ ∧ Q̃ ∼ {Q̃/X̃}Ẽ ⇒ P̃ ∼ Q̃

ii) Let Ẽ = {Ei | i ∈ I} be a family of expressions with a
maximum of I free variables ({Xi | i ∈ I}) such that any
variable free in Ei is guarded and sequential. Then

P̃ = {P̃/X̃}Ẽ ∧ Q̃ = {Q̃/X̃}Ẽ ⇒ P̃ = Q̃

Conditions on variables

guarded :
X occurs in a sub-expression of type a.E ′ for
a ∈ Act − {τ}

weakly guarded :
X occurs in a sub-expression of type a.E ′ for a ∈ Act

in both cases assures that, until a guard is reached, behaviour does
not depends on the process that instantiates the variable

example: X is weakly guarded in both τ.X and τ.0 + a.X + b.a.X but

guarded only in the second

Conditions on variables

guarded :
X occurs in a sub-expression of type a.E ′ for
a ∈ Act − {τ}

weakly guarded :
X occurs in a sub-expression of type a.E ′ for a ∈ Act

in both cases assures that, until a guard is reached, behaviour does
not depends on the process that instantiates the variable

example: X is weakly guarded in both τ.X and τ.0 + a.X + b.a.X but

guarded only in the second

Conditions on variables

sequential :
X is sequential in E if every strict sub-expression in which
X occurs is either a.E ′, for a ∈ Act, or ΣẼ .

avoids X to become guarded by a τ as a result of an interaction

in both cases assures that, until a guard is reached, behaviour does not
depends on the process that

example: X is not sequential in X = new {a} (a.X | a.0)

Conditions on variables

sequential :
X is sequential in E if every strict sub-expression in which
X occurs is either a.E ′, for a ∈ Act, or ΣẼ .

avoids X to become guarded by a τ as a result of an interaction

in both cases assures that, until a guard is reached, behaviour does not
depends on the process that

example: X is not sequential in X = new {a} (a.X | a.0)

Example (1)

Consider

Sem , get.put.Sem

P1 , get.c1.put.P1

P2 , get.c2.put.P2

S , new {get, put} (Sem | P1 | P2)

and
S ′ , τ.c1.S

′ + τ.c2.S
′

to prove S ∼ S ′, show both are solutions of

X = τ.c1.X + τ.c2.X

Example (1)

Consider

Sem , get.put.Sem

P1 , get.c1.put.P1

P2 , get.c2.put.P2

S , new {get, put} (Sem | P1 | P2)

and
S ′ , τ.c1.S

′ + τ.c2.S
′

to prove S ∼ S ′, show both are solutions of

X = τ.c1.X + τ.c2.X

Example (1)

proof

S = τ.new K (c1.put.P1 | P2 | put.Sem) + τ.new K (P1 | c2.put.P2 | put.Sem)

= τ.c1.new K (put.P1 | P2 | put.Sem) + τ.c2.new K (P1 | put.P2 | put.Sem)

= τ.c1.τ.new K (P1 | P2 | Sem) + τ.c2.τ.new K (P1 | P2 | Sem)

= τ.c1.τ.S + τ.c2.τ.S

= τ.c1.S + τ.c2.S

= {S/X}E

for S ′ is immediate

Example (2)

Consider,

B , in.B1 B ′ , new m (C1 | C2)

B1 , in.B2 + out.B C1 , in.m.C1

C2 , m.out.C2

B ′ is a solution of

X = E (X ,Y ,Z) = in.Y

Y = E1(X ,Y ,Z) = in.Z + out.X

Z = E3(X ,Y ,Z) = out.Y

through σ = {B/X ,B1/Y ,B2/Z}

Example (2)

To prove B =B’

B ′ = new m (C1 | C2)

= in.new m (m.C1 | C2)

= in.τ.new m (C1 | out.C2)

= in.new m (C1 | out.C2)

Let S1 = new m (C1 | out.C2) to proceed:

S1 = new m (C1 | out.C2)

= in.new m (m.C1 | out.C2) + out.new m (C1 | C2)

= in.new m (m.C1 | out.C2) + out.B ′

Example (2)

Finally, let, S2 = new m (m.C1 | out.C2). Then,

S2 = new m (m.C1 | out.C2)

= out.new m (m.C1 | C2)

= out.τ.new m (C1 | out.C2)

= out.τ.S1

= out.S1

Example (2)

Note the same problem can be solved with a system of 2 equations:

X = E (X ,Y) = in.Y

Y = E ′(X ,Y) = in.out.Y + out.in.Y

Clearly, by substitution,

B = in.B1

B1 = in.out.B1 + out.in.B1

Example (2)

On the other hand, it’s already proved that B ′ = ... = in.S1.
so,

S1 = new m (C1 | out.C2)

= in.new m (m.C1 | out.C2) + out.B ′

= in.out.new m (m.C1 | C2) + out.B ′

= in.out.τ.new m (C1 | out.C2) + out.B ′

= in.out.τ.S1 + out.B ′

= in.out.S1 + out.B ′

= in.out.S1 + out.in.S1

Hence, B ′ = {B ′/X ,S1/Y }E and S1 = {B ′/X ,S1/Y }E ′

