Introduction to process algebra

Luis S. Barbosa

DI-CCTC
Universidade do Minho
Braga, Portugal

March, 2010



Actions & processes

Action
is a latency for interaction

Act == a | 3|

for a € L, L denoting a set of names



Actions & processes

Action
is a latency for interaction

Act == a | 3|
for a € L, L denoting a set of names

Process

is a description of how the interaction capacities of a system evolve, i.e.,
its behaviour

for example,

E 2 ab0+aE

e analogy: regular expressions vs finite automata



Examples

Buffers

1-position buffer: A(in, out) £ in.out.0
. non terminating: B(in, out) = in.out.B
. with two output ports: C(in, 01, 02) £ in.(01.C + 6;.C)
. non deterministic: D(in, 01,02) = in.01.D + in.;.D

. with parameters: B(in, out) £ in(x).out(x).B



Parallel composition

n-position buffers

1-position buffer:
S 2 new{m} (B{in,m) | B{m,out))

n-position buffer:

Bn £ new {m;|i < n} (B{in,m1) | B{m1,my) | -+ | B{m,_1,out))



Parallel composition

mutual exclusion
Sem £ get.put.Sem
P,' £ a.c;.ﬁ.ﬂ

S £ new {get, put} (Sem | (|ies Pi))



A language for processes

Questions

Which syntax to use to describe processes?

What's the meaning of such descriptions?

Why some of our favourite programming languages’ constructions
are not considered?



Syntax

The set IP of processes is the set of all terms generated by the following
BNF:

E = A(x1,....x) | a.E | ZE,- | Eo | E1 | newK E
icl
forac Actand K C L



Syntax

The set IP of processes is the set of all terms generated by the following
BNF:

E = A(x1,....x) | a.E | ZE,- | Eo | E1 | newK E
icl
forac Actand K C L

Abbreviatures

Ey+ E; agv Z E;
ie{0,1}

0 agv Z E;

i€d



Syntax
Process declaration
A(X) 2 Eq

with fn(Ea) C X (where fn(P) is the set of free variables of P).

e used as, eg., |A(a,b,c) = a.b.0+c.Ald, e, f)

Process declaration: fixed point expression

fix (X = Ex)



Syntax
Process declaration
A(X) 2 Eq

with fn(Ea) C X (where fn(P) is the set of free variables of P).

e used as, eg., |A(a,b,c) = a.b.0+c.Ald, e, f)

Process declaration: fixed point expression

fix (X = Ex)

e syntactic substitution over P, cf.,

e {c/b}a.b.0
e (internal variables renaming)
{x/y}new{x} y.x.0 = new{x'} x.x".0



Sort

The sort of a process P is its interface, i.e., its iteraction possibilities

e minimal sort: ([{K C L|P: K}

e syntactic sort, i.e., the set of free variables:

fn(a.P) = {a} Ufn(P)
fn(7.P) = fn(P)
(> P) = Jf(P)
icl iel
fn(P| Q) =fn(P)Ufn(Q)
fn(new K P) = fn(P) — (K U K)

and, for each P(X) £ E, fn(E) C fn(P(X)) = X.



Sort

Warning

e new {a} (a.b.c.0) has no transitions, so its sort is ()

e however: fn((new {a} a.b.c.0)) = {b, ¢}



Semantics

Two-level semantics

e arquitectural, expresses a notion of similar assembly configurations
and is expressed through a structural congruence relation;

e comportamental given by transition rules which express how
system's components interact



Semantics

Structural congruence
= over PP is given by the closure of the following conditions:

e forall A(X) £ Ea, A(Y) = {X/7}Ea,
(i.e., folding/unfolding preserve =)

e a-conversion (i.e., replacement of bounded variables).

both | and + originate, with 0, abelian monoids
forall a ¢ fn(P) new {a} (P | Q) = P | new{a} Q
new{a} 0=0



Semantics

(prefix)
E+—akE

E' < {k/X} Ea

~ (ident) (if A(X) £ Ea)
E <2 A(k)

E'+-E F'<~F
—(sum—1) — (sum —r)
E' <+~ E+F F+~E+F



Semantics

E & F T
EIrrarar el —— - (par = 1)
E'|F< E|F EIF < E|F

a

E/<iE F,<_F

T (react)
E'|FF+—E|F

E A& F

new {k} E’ <>~ new {k} E (res) (ifa ¢ {k k})



Compatibility

Lemma
Structural congruence preserves transitions:

if E/ <2~ E and E = F there exists a process F’ such that F’ <>— F and
E'=F.



Semantics
These rules define a LTS
{+Z-C PxP|ac Act}

Relation < is defined inductively over process structure entailing a
semantic description which is

Structural i.e., each process shape (defined by the most external
combinator) has a type of transitions

Modular i.e., a process trasition is defined from transitions in its
Sup-processes

Complete i.e., all possible transitions are infered from these rules



Semantics
These rules define a LTS
{+Z-C PxP|ac Act}

Relation < is defined inductively over process structure entailing a
semantic description which is

Structural i.e., each process shape (defined by the most external
combinator) has a type of transitions

Modular i.e., a process trasition is defined from transitions in its
Sup-processes

Complete i.e., all possible transitions are infered from these rules

static vs dynamic combinators




Graphical representations

Synchronization diagram

e represent interfaces of processes

e static combinators are an algebra of synchronization diagrams



Graphical representations

Synchronization diagram

e represent interfaces of processes

e static combinators are an algebra of synchronization diagrams

Transition graph

e derivative, n-derivative, transition tree

e folds into a transition graph



Transition tree
B £ in.ol.B+ in.02.B

in.ol.B + in.02.B

ol.B 02.B
ol 02
in.ol.B 4 in.02.B in.ol.B + in.02.B
/ in / in
ol.B 02.B ol.B 02.B
oll 02 oll 02




Transition graph

B £ in.ol.B + in.02.B

/ molB—l—lnoQB \

olB 02.B



Transition graph

B £ in.ol.B + in.02.B

/ molB—l—lnoQB

/

olB

compare with B’ £ in.(0o1.B' + 02.B')

in.(o1.B' + 02.B')

=)

02.B



Data parameters

Language P is extended to P\, over a data universe V, a set V, of
expressions over V' and a evaluation Val: V «— V,

Example
P B £ in(x).B.



Data parameters

Language P is extended to P\, over a data universe V, a set V, of
expressions over V' and a evaluation Val: V «— V,

Example
P B £ in(x).B.

e Two prefix forms: a(x).E and 3(e).E (actions as ports)

o Data parameters: As(xy, ..., x,) = Ea, with S € V and each x; € L

e Conditional combinator: if bthen P, if bthen P; else P,

Clearly

if bthen Py else P, 2" (if bthen Py) + (if ~bthen P,)



Data parameters

Additional semantic rules

) (prefix;)
{v/x}E < a(x).E

(prefix,)
(e).E

12
Y]]

g v

E' & F

__ (if)
E’ +~— if bthen E; else E;

E'+F _
(if2)

E' <2 if bthen E; else E»

forveV

for Val(e) = v

for Val(b) = true

for Val(b) = false



Back to PP

Encoding in the basic language: 7( ) : P +— Py

Z a,. T({v/x}E)

veV
T(3(e).E) = 3..T(E)
TQ_E)=) T(E)
iel icl
T(E|F)=T(E)| T(F)
T(newK E) =new{a, |ae K,ve V} T(E)

and
T(E) if Val(b) = true

T(if bthen E) = {0 if Val(b) = false



EX1: Canonical concurrent form

PénewK(El ‘ E> ‘ | En)
The chance machine
10 £ m.bank.(lost.loss.IO + rel(x).win(x).I0)

B, £ bank.max(n + 1).left(x).Bx
Dc £ max(z).(lost.left(z).Dc + > rel(x).left(z — x).Dc)

1<x<z

M, £ new {bank, max, left, rel} (10 | B, | Dc)



EX2: Sequential patterns

1. List all states (configurations of variable assignments)
2. Define an order to capture systems's evolution

3. Specify an expression in IP to define it

A 3-bit converter

A£rq.B
B £0ut0.C + outl.odd.A
C 20ut0.D + outl.even.A

D £out0.7er6.A + outl.éven.A



EX3: The alternating-bit protocol

e protocol: set of rules orchestrating interaction between two entities
to achieve a common goal

e ABP: exchange data over a unreliable medium: message loss and
replication



EX3: ABP sender

accepts message to deliver
delivers message with bit b and sets a timer
when a time-out in fired, re-sends b

whenever a confirmation b is received, goes on with anew message
and 1 —b

ignores any confirmation with 1 — b



EX3: ABP sender

accepts message to deliver
delivers message with bit b and sets a timer
when a time-out in fired, re-sends b

whenever a confirmation b is received, goes on with anew message
and 1 —b

ignores any confirmation with 1 — b

Accept, = accept - Send,

Send, £ send,, - time - Sending,

[I>

Sendingy, timeout - Sendy, + acky, - timeout - Accepty_p,

+ acky_p - Sendingy,




EX3: ABP receiver

receives a message and delivers it its client
sends confirmation with bit b and sets a timer
when a time-out in fired, re-sends b

whenever receives a new message with 1 — b, delivers it its client,
and continues with 1 — b

ignores any message with b



EX3: ABP receiver

receives a message and delivers it its client
sends confirmation with bit b and sets a timer
when a time-out in fired, re-sends b

whenever receives a new message with 1 — b, delivers it its client,
and continues with 1 — b

ignores any message with b

Deliver, £ deliver - Reply,

Reply, = reply, - time - Replyingy,

(1>

Replying, = timeout - Replyy, + trans;_p, - timeout - Deliver; _,

+ transy, - Replyingp,




EX3: ABP composing with timers

Timer

Sendery,

Receivery,

time - timeout - Timer

accept.new {time, timeout} (Sendp, | Timer)

new {time, timeout} (Replyy | Timer)




EX3: ABP communication medium

Transs, £ transy, - Transs
A
Transs = sendp - Transps
A
Transyy,s = 7 - Transs

Transgs 2 7 - Transpps
and
ACkbs £ Hh . Acks
Acks = replyy, - Acksp,
ACksbt £ T - ACkst

Ackspr = T - Acksppr




EX3: ABP - the protocol

AB £ new K (Sender,_p, | Trans, | Ack. | Receivers)

where K = {send,, ackp, replyy, transy, | b € {0,1}}.



Processes are 'prototypical’ transition systems

... hence all definitions apply:

E~F

e Processes E, F are bisimilar if there exist a bisimulation S st

{{E,F)} €S.

e A binary relation S in P is a (strict) bisimulation iff, whenever
(E,F) € S and a € Act,

a

) EE«E = F < FA(E,F)eS
i) FF¢~F = E'<-EA(E,F)€S

~ = |J{SCPxP|S isa (strict) bisimulation}



Processes are 'prototipycal’ transition systems

Example: S ~ M

T=ikT
R2 kj.R
S 2 new{k} (T |R)

M2 TN
N2jirN+ijr.N

through bisimulation

R ={(S, M)), (new {k} (k.T | R),7.N), (new {k} (T | j.R), N),
(new [k} (k.T | j.R),j.m.N)}



Example: Semaphores

A semaphore

Sem & get.put.Sem



Example: Semaphores

A semaphore

Sem & get.put.Sem

n-semaphores

Sem, £ Semn o
Sem,o = get.Sem, 1
Sem, £ get.Semy, i1 + put.Semp i1
(for 0 < i< n)
Semp. £ put.Semy, n_1
Sem,, can also be implemented by the parallel composition of n Sem

processes:
Sem” & Sem | Sem | ... | Sem



Example: Semaphores

Is Sem, ~ Sem"?

For n = 2:

{(Semy,0, Sem | Sem), (Sem; 1, Sem | put.Sem),
(Semy 1, put.Sem | Sem)(Semy o, put.Sem | put.Sem)}

is a bisimulation.



Example: Semaphores

Is Sem, ~ Sem"?

For n = 2:

{(Semy,0, Sem | Sem), (Sem; 1, Sem | put.Sem),
(Semy 1, put.Sem | Sem)(Semy o, put.Sem | put.Sem)}

is a bisimulation.

e but can we get rid of structurally congruent pairs?



Bisimulation up to =

Definition
A binary relation S in P is a (strict) bisimulation up to = iff, whenever
(E,F) € S and a € Act,

) B+ E = F +~F A (E,F)e=

S
i) FFe e -F = EEE-EN(E F)e=-S.



Bisimulation up to =

Definition
A binary relation S in P is a (strict) bisimulation up to = iff, whenever
(E,F) € S and a € Act,

) E<E = F <& F A (ELF)

S
i) FF< - F = E'<-E A (E,F)e=-S

Lemma
If S is a (strict) bisimulation up to =, then S C ~



Bisimulation up to =

Definition
A binary relation S in P is a (strict) bisimulation up to = iff, whenever
(E,F) € S and a € Act,

) E<E = F <& F A (ELF)

S
i) FFePF = E'<>E N (E,F)e=-S

Lemma
If S is a (strict) bisimulation up to =, then S C ~

e To prove Sem, ~ Sem" a bisimulation will contain 2" pairs, while a
bisimulation up to = only requires n + 1 pairs.



A ~-calculus

Lemma E=F = E~F

e proof idea: show that {(E + E,E) | E € P} U Idp is a bisimulation



A ~-calculus
Lemma E=F = E~F

e proof idea: show that {(E + E,E) | E € P} U Idp is a bisimulation

Lemma
new K’ (new K E) ~ new (K U K') E
newK E~E if LE)N(KUK) =10
newK (E|F)~newK E | newK F if L(E)NL(F)Nn(KUK) =0

e proof idea: discuss whether S is a bisimulation:

S = {(newK E,E)| E€ PAL(E)N (K UK)

Il
=
-



~ IS a congruence

congruence is the name of modularity in Mathematics

e process combinators preserve ~

Lemma

a.E~aF
E+P~F+P
E|P~F|P
new K E ~newK F



~ IS a congruence

congruence is the name of modularity in Mathematics

e process combinators preserve ~

Lemma

a.E~aF
E+P~F+P
E|P~F|P
new K E ~newK F

e recursive definition preserves ~



~ IS a congruence
e First ~ is extended to processes with variables:
E~F & V5. {P/X}E~{P/X}F
e Then prove:

Lemma
) PAE = P~E )
where E is a family of process expressions and P a family
of process identifiers.

i) Let E ~ F, where E and F are families of recursive
process expressions over a family of process variables X,
and define:

A2 (A/XYE and B2 [B/X}E

Then



The expansion theorem

Every process is equivalent to the sum of its derivatives

E~ > {aE'|E <~ E}

understood?



The expansion theorem

Every process is equivalent to the sum of its derivatives

E~ > {aE'|E <~ E}

understood?
E~ > {aE|E < E}

clear?



The expansion theorem

Every process is equivalent to the sum of its derivatives

E~ > {aE'|E <~ E}

understood?
E~ > {aE|E < E}

clear?

E~ ) {aE'|E <~ E}



The expansion theorem

The usual definition (based on the concurrent canonical form):

En~ Y {fi(a)newK ({A}E | .. [{f}E | .. [{f}E,) |
El <> E A fi(a) ¢ KUK }
n
> {rnewK ({A}Ex | [{6YE/ | [{EYE] | . [ {fa} En) |
E/ < E A E/ <>~ E A fi(a) = £(b) }

for E2newK ({Ai} E1 | ... | {fa} En), with n>1



The expansion theorem

Corollary (for n =1 and f; = id)

newK (E+ F)~newK E +newK F

0 if ae(KUK)
a.(new K E) otherwise

new K (a.E) ~ {



Example

S~M
S~new{k} (T |R)
~inew{k} (k.T | R)
~iT.new{k} (T | j.R)
~ir.(i.new {k} (k.T | j.R) + j.new {k} (T | R))
~i.r.(ij.new{k} (k.T | R) +j.inew {k} (k.T | R))
~ir.(ijrnew{k} (T |j.R)+j.im.new{k} (T | j.R))
Let N =new {k} (T | j.R).

This expands into N’ ~ i.j.r.new{k} (T | j.R) +j.i.r.new {k} (T | j.R),
Therefore N' ~ N and S ~i.7.N ~ M

e requires result on unique solutions for recursive process equations



Observable transitions

L CPxP

o LU{e}
€ .- .
e A <-transition corresponds to zero or more non observable
transitions

. a
e inference rules for <—:

E<—E E <F

(02)

E<&F

E<=E E < F F<«<F
(03) forael

E<E=F



and

Example

To2jTi+iT,
T1 20T
T, 2)Ts
T3éT.T0

ALijA+]iA



Example

From their graphs,

and

i.A J-

we conclude that Ty = A (why?).



Observational equivalence

E~F
e Processes E, F are observationally equivalent if there exists a weak
bisimulation S st {(E,F)} € S.
e A binary relation S in P is a weak bisimulation iff, whenever
(E,F) e S and ae LU({e},
) E<E&E = F<&F A (E,F)eS

a

iy FF<=F = E £=E A (E,F)<€S

le.,
~ = | J{SCPxP|S isa weak bisimulation}



Observational equivalence

Properties
e as expected: = is an equivalence relation
e basic property: for any E € P,
E ~ 1.E

(proof idea: idp U {(E,T.E) | E € P} is a weak bisimulation

e \weak vs. strict:

~ C=



Is ~ a congruence?

Lemma
Let E~ F. Then, for any P Pand K C L,

a.E~aF
E|P=F|P
new K E ~new K F



Is ~ a congruence?

Lemma
Let E~ F. Then, for any P Pand K C L,

a.E~aF
E|P=F|P
new K E ~new K F

but
E+P~F+P

does not hold, in general.



Is ~ a congruence?
Example (initial 7 restricts options 'menu’)

i0 ~ 1.0



Is ~ a congruence?
Example (initial 7 restricts options 'menu’)

i0 ~ 1.0

However

jO+i0%.0+7.i0

Actually,

j0+i.0 jO+7.i0

AN AN
]

0



Forcing a congruence: E = F

‘Solution: force any initial 7 to be matched by another 7"

Process equality

Two processes E and F are equal (or observationally congruent) iff
i) Ex~F
i) E'+—E = F <=F'+—Fand E'~F

€ T

i) FF« '~ F = E' <=E'"<—~Eand E'~F'



Forcing a congruence: E = F

‘Solution: force any initial 7 to be matched by another 7"

Process equality

Two processes E and F are equal (or observationally congruent) iff
i) Ex~F
i) E'+—E = F <=F'+—Fand E'~F

€ T

i) FF« '~ F = E' <=E'"<—~Eand E'~F'

e note that E # 7.E, but 7.E = 7.7.E



Forcing a congruence: E = F

= can be regarded as a restriction of = to all pairs of processes
which preserve it in additive contexts

Lemma

Let E and F be processes such that the union of their sorts is distinct of
L.

E=F & VYeep. (E+G ~ F+0G)



Forcing a congruence: E = F

= can be regarded as a restriction of = to all pairs of processes
which preserve it in additive contexts

Lemma
Let E and F be processes such that the union of their sorts is distinct of
L.

E=F & VYeep. (E+G ~ F+0G)

e note that £ # 7.E, but 7.E = 7.7.E



Properties of =

Lemma

E=F = VGE]}D.(E+GNF+G)

Lemma

E=F & (E=F)V (E=7.F) V (LE=F)



Lemma

So,

Properties of =

the whole ~ theory remains valid




Properties of =

Lemma
~C=C =
So,
‘the whole ~ theory remains valid
Additionally,

Lemma (additional laws)

arT.E=aE
E+7E=71E
a(E+7.F)=a(E+1.F)+aF



Solving equations

Have equations over (P, ~) or (P,=) (unique) solutions?‘




Solving equations

‘ Have equations over (P, ~) or (P,=) (unique) solutions?‘

Lemma o o
Recursive equations X = E(X) or X ~ E(X), over P, have unique
solutions (up to = or ~, respectively). Formally,

i) Let E={E; | i€ I} be a family of expressions with a
maximum of / free variables ({X; | i € I}) such that any
variable free in E; is weakly guarded. Then

P~{P/XYE N Q~{Q/X}E = P~Q



Solving equations

‘ Have equations over (P, ~) or (P,=) (unique) solutions?‘

Lemma o o
Recursive equations X = E(X) or X ~ E(X), over P, have unique
solutions (up to = or ~, respectively). Formally,

i) Let E={E; | i€ I} be a family of expressions with a
maximum of / free variables ({X; | i € I}) such that any
variable free in E; is weakly guarded. Then

P~{P/XYE N Q~{Q/X}E = P~Q

i) Let E = {E; | i € I} be a family of expressions with a
maximum of / free variables ({X; | i € I}) such that any
variable free in E; is guarded and sequential. Then

P={P/X}E A Q={Q/X}E = P=0Q



Conditions on variables

guarded :
X occurs in a sub-expression of type a.E’ for
ae€Act—{r}

weakly guarded :
X occurs in a sub-expression of type a.E’ for a € Act

in both cases assures that, until a guard is reached, behaviour does
not depends on the process that instantiates the variable




Conditions on variables

guarded :
X occurs in a sub-expression of type a.E’ for
ae€Act—{r}

weakly guarded :
X occurs in a sub-expression of type a.E’ for a € Act

in both cases assures that, until a guard is reached, behaviour does
not depends on the process that instantiates the variable

example: X is weakly guarded in both 7.X and 7.0 + a.X + b.a.X but
guarded only in the second



Conditions on variables

sequential :
X is sequential in E if every strict sub-expression in which
X occurs is either a.E’, for a € Act, or LE.

avoids X to become guarded by a 7 as a result of an interaction

in both cases assures that, until a guard is reached, behaviour does not
depends on the process that



Conditions on variables

sequential :
X is sequential in E if every strict sub-expression in which
X occurs is either a.E’, for a € Act, or LE.

avoids X to become guarded by a 7 as a result of an interaction

in both cases assures that, until a guard is reached, behaviour does not
depends on the process that

example: X is not sequential in X = new {a} (a.X | a.0)



Example (1)

Consider
Sem £ get.put.Sem
'Dl S a.cl.ﬁ.Pl
P2 £ E.CQ.W. P2
S £ new {get, put} (Sem | Py | Py)
and

S22 7.0.5+71.0.5



Example (1)

Consider
Sem £ get.put.Sem
'Dl S a.cl.ﬁ.Pl
P2 £ E.CQ.W. P2
S £ new {get, put} (Sem | Py | Py)
and

S22 7.0.5+71.0.5

to prove S ~ S, show both are solutions of

X = 1. X+T1.6X



Example (1)

proof

S = 7newK (¢1.put.Py | Py | put.Sem) + T.new K (Py | cp.put.Py | put.Sem)
= T.ci.new K (put.Py | Py | put.Sem) + 1.co.new K (Py | put.P, | put.Sem)
= 1.cp.7new K (Py | Py | Sem) + T.cp.7.new K (Py | P2 | Sem)

7.c1.7.S +7.6,.7.S

7.c1.S +17.6.5

= {S/X}E

for S’ is immediate



Example (2)

Consider,

<

B2 inB B' 2 newm (G | G)
B £ in.By + out.B G £ inm.Cq

Cz e m.out. C2
B’ is a solution of
X =E(X,Y,Z)=inY

Y = E(X,Y,Z) = inZ + out.X
Z=E(X,Y,Z)=out.Y

through o = {B/X,By/Y,Bx/Z}



Example (2)
To prove B =B’

B'= newm (G | G3)
= innewm (M.C; | G3)
= in.t.newm (Cy | out.C3)

= in.newm (C; | out.Gy)

Let S; = newm (G | out.(C,) to proceed:
51 = newm (C1 |WC2)

= in.new m (M.Cy | out.Gy) + out.newm (C; | G3)

= in.newm (m.C; | out.G;) + out.B’



Example (2)

Finally, let, S, = newm (.G | out.G,). Then,

S; = newm (m.C; | out.Gy)

= outnewm (m.C; | &)

out.T.new m (Cy | out.G,)
out.7.5;
= out.5;



Example (2)

Note the same problem can be solved with a system of 2 equations:

X= E(X,Y)=inY
Y = E/(X,Y) = inout.Y + out.in.Y

Clearly, by substitution,

B = in.81
By = in.out.B; + out.in.B;



Example (2)

On the other hand, it's already proved that B’ = ... = in.5;.
S0,

S1 = newm (G | out. ()
= in.newm (m.C; | out.C;) + out.B’
= in.out.newm (m.Cy | G;) + out.B’
= in.out.T.new m (C; | out.G,) + out.B’
= in.out.7.5; + out.B’
= in.out.S; + out.B’

= in.out.S; + out.in.5;

Hence, B = {B'/X,S1/Y}E and S; = {B'/X, S,/ Y }E'



