
Labelled Transition Systems (I)

Lúıs S. Barbosa

DI-CCTC
Universidade do Minho

Braga, Portugal

March, 2010

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Reactive systems

Reactive system

system that computes by reacting to stimuli from its environment
along its overall computation

• in contrast to sequential systems whose meaning is defined by the
results of finite computations, the behaviour of reactive systems is
mainly determined by interaction and mobility of non-terminating
processes, evolving concurrently.

• observation ⇔ interaction

• behaviour ⇔ a structured record of interactions

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Reactive systems

Concurrency vs interaction

x := 0;

x := x + 1 | x := x + 2

• both statements in parallel could read x before it is written

• which values can x take?

• which is the program outcome if exclusive access to memory and
atomic execution of assignments is guaranteed?

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Models of computation for continuous interaction

two reactive systems you are already familiar with

Functions f : O ←− I

• one-step, input-output behaviour

• but what about functions manipulating infinite data structures?

merge : Aω ←− Aω × Aω

Automata

• multi-step behaviour: accepted language

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Models of computation for continuous interaction

two reactive systems you are already familiar with

Functions f : O ←− I

• one-step, input-output behaviour

• but what about functions manipulating infinite data structures?

merge : Aω ←− Aω × Aω

Automata

• multi-step behaviour: accepted language

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Ex: Functions over streams

Streams are coalgebraic structures: specified by observers

〈hd, tl〉 : A× Aω ←− Aω

• Function 〈hd, tl〉 is the observation structure of Aω.

• The shape of such an observation is given by functor
T : A× X ←− X for which 〈hd, tl〉 is a coalgebra.

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Coalgebra

a lens: ©_©

a tool box:
eee

an observation structure: ©_© universe
α←− universe

an assembly process: artifact
d←−

eee
artifact

α : FU ←− U

• coalgebras describe transition systems

• and abstract behaviour types as (final) coalgebras

• compare with (initial) algebras and (finite) data structures

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Coalgebra

a lens: ©_©

a tool box:
eee

an observation structure: ©_© universe
α←− universe

an assembly process: artifact
d←−

eee
artifact

α : FU ←− U

• coalgebras describe transition systems

• and abstract behaviour types as (final) coalgebras

• compare with (initial) algebras and (finite) data structures

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Ex: Functions over streams

• Coalgebras
p = 〈at,m〉 : A× U ←− U

for the same functor, relate through morphisms:
structure-preserving functions,

U
〈at,m〉 //

h

��

A× U

id×h
��

V
〈at′,m′〉// A× V

at = at′ · h and h ·m = m′ · h

• The behaviour of 〈at,m〉, from an initial value u, is given by
successive observations:

[(p)] u = [at u, at (m u), at (m (m u)), ...]

originating a stream of A values.

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Ex: Functions over streams

〈hd, tl〉 : A× Aω ←− Aω

is final, i.e. characterised by the following universal property: from any
other coalgebra p there is a unique morphism [(p)] st

Aω
〈hd,tl〉 // A× Aω νT

ωT // TνT

U
p //

[(p)]

OO

A× U

id×[(p)]

OO

U
p //

[(p)]

OO

TU

T[(p)]

OO

k = [(p)] ⇔ ωT · k = T k · p

from where one derives the usual toolkit:

cancelation ωT · [(p)] = T [(p)] · p
reflection [(ωT)] = idνT

fusion [(p)] · h = [(q)] if p · h = T h · q

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Ex: Functions over streams

〈hd, tl〉 : A× Aω ←− Aω

is final, i.e. characterised by the following universal property: from any
other coalgebra p there is a unique morphism [(p)] st

Aω
〈hd,tl〉 // A× Aω νT

ωT // TνT

U
p //

[(p)]

OO

A× U

id×[(p)]

OO

U
p //

[(p)]

OO

TU

T[(p)]

OO

k = [(p)] ⇔ ωT · k = T k · p

from where one derives the usual toolkit:

cancelation ωT · [(p)] = T [(p)] · p
reflection [(ωT)] = idνT

fusion [(p)] · h = [(q)] if p · h = T h · q

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Ex: Functions over streams

Behaviour is specified under all observers

Example:

Aω
〈hd,tl〉 // A× Aω

A

rep

OO

M // A× A

id×rep

OO

rep , [(M)]

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Definition by coinduction

(id× rep)· M = 〈hd, tl〉 · rep

⇔ { M definition }
(id× rep) · 〈id, id〉 = 〈hd, tl〉 · rep

⇔ { × abs and fusion }
〈id, rep〉 = 〈hd · rep, tl · rep〉

⇔ { structural equality }
hd · rep = id ∧ tl · rep = rep

⇔ { going pointwise }
hd (rep a) = a ∧ tl (rep a) = rep a

Exercise: define merge and twist.

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Proof by coinduction: merge (aω, bω) = (ab)ω

merge · (rep× rep) = twist

= { merge definition }
[(〈hd · π1, s · (tl× id)〉)] · (rep× rep) = [(〈π1, s〉)]

⇐ { fusion }
〈hd · π1, s · (tl× id)〉 · (rep× rep) = id× (rep× rep) · 〈π1, s〉

= { × abs and reflection }
〈hd · rep · π1, s · ((tl · rep)× rep)〉 = id× (rep× rep) · 〈π1, s〉

= { tl · rep = rep e hd · rep = id }
〈π1, s · (rep× rep)〉 = id× (rep× rep) · 〈π1, s〉

= { × abs }
〈π1, s · (rep× rep)〉 = 〈π1, (rep× rep) · s〉

= { s natural: (f × g) · s = s · (g × f) }
〈π1, s · (rep× rep)〉 = 〈π1, s · (rep× rep)〉

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Ex: Automata
Definition
A = 〈Σ,S , so ,F ,T 〉
where

• Σ is an alphabet

• S = {s0, s1, s2, ...} is a set of states

• s0 ∈ S is the initial state

• F ⊆ S is the set of final states

• T ⊆ S × Σ× S is the transition relation usually given as a
Σ-indexed family of realtions over S :

s
a−→ s ′ ⇔ 〈s ′, a, s〉 ∈ T

• deterministic

• finite

• image finite

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Ex: Automata
Definition
A = 〈Σ,S , so ,F ,T 〉
where

• Σ is an alphabet

• S = {s0, s1, s2, ...} is a set of states

• s0 ∈ S is the initial state

• F ⊆ S is the set of final states

• T ⊆ S × Σ× S is the transition relation usually given as a
Σ-indexed family of realtions over S :

s
a−→ s ′ ⇔ 〈s ′, a, s〉 ∈ T

• deterministic

• finite

• image finite

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Ex: Automata

automaton behaviour ⇔ accepted language

Recall that finite automata recognize regular languages, i.e. generated by

• L1 + L2 , L1 ∪ L2 (union)

• L1 · L2 , {st | s ∈ L1, t ∈ L2} (concatenation)

• L∗ , {ε} ∪ L ∪ (L · L) ∪ (L · L · L) ∪ ... (iteration)

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Ex: Automata

There is a syntax to specify such languages:

E ::= ε | a | E + E | E E | E∗

where a ∈ Σ.

• which regular expression specifies {a, bc}?

• and {ca, cb}?

and an algebra of regular expressions:

(E1 + E2) + E3 = E1 + (E2 + E3)

(E1 + E2)E3 = E1 E3 + E2 E3

E1 (E2 E1)∗ = (E1 E2)∗ E1

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Ex: Automata

There is a syntax to specify such languages:

E ::= ε | a | E + E | E E | E∗

where a ∈ Σ.

• which regular expression specifies {a, bc}?

• and {ca, cb}?

and an algebra of regular expressions:

(E1 + E2) + E3 = E1 + (E2 + E3)

(E1 + E2)E3 = E1 E3 + E2 E3

E1 (E2 E1)∗ = (E1 E2)∗ E1

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

After thoughts

(from the two examples of reactive systems discussed)

• characterise notions of observation and interaction

• syntax (support for modeling) and semantics (basis for calculation)

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

After thoughts

... need more general models and theories:

• Several interaction points (6= functions)

• Non termination (no final states as in automata)

• Need to distinguish normal from anomolous termination (eg
deadlock)

• Non determinisim should be taken seriously: the notion of
equivalence based on accepted language is blind wrt non
determinism

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Labelled Transition System

Relational characterization
A LTS over a set A of names is a pair

〈U, α←− : A× U ←− U〉

where

• U = {u0, u1, u2, ...} is a set of states

• α←− : A× U ←− U is an arrow in Rel, capturing the transition
relation,
often given as an A-indexed family of binary relations

u′ α
a←− u ⇔ 〈a, u′〉 α←− u

or simply,
u′

a←− u ⇔ 〈a, u′〉 α←− u

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Labelled Transition System

Relational characterization
A LTS over a set A of names is a pair

〈U, α←− : A× U ←− U〉

where

• U = {u0, u1, u2, ...} is a set of states

• α←− : A× U ←− U is an arrow in Rel, capturing the transition
relation,
often given as an A-indexed family of binary relations

u′ α
a←− u ⇔ 〈a, u′〉 α←− u

or simply,
u′

a←− u ⇔ 〈a, u′〉 α←− u

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Labelled Transition System

Relational characterization
A LTS over a set A of names is a pair

〈U, α←− : A× U ←− U〉

where

• U = {u0, u1, u2, ...} is a set of states

• α←− : A× U ←− U is an arrow in Rel, capturing the transition
relation,
often given as an A-indexed family of binary relations

u′ α
a←− u ⇔ 〈a, u′〉 α←− u

or simply,
u′

a←− u ⇔ 〈a, u′〉 α←− u

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Transposition

The power-transpose

Binary relations and powerset valued functions are equivalent: each other
determines the other uniquely.
The existence and uniqueness of such a transformation leads to the
identification of a transpose operator Λ characterized by the following
universal property:

f = ΛR ⇔ (yRx ⇔ y ∈ f x)

for relation R : Y ←− X and function f : PY ←− X or, in a completely
pointfree formulation

f = ΛR ⇔ R = ∈ ·f

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Transposition

The power-transpose

Binary relations and powerset valued functions are equivalent: each other
determines the other uniquely.
The existence and uniqueness of such a transformation leads to the
identification of a transpose operator Λ characterized by the following
universal property:

f = ΛR ⇔ (yRx ⇔ y ∈ f x)

for relation R : Y ←− X and function f : PY ←− X or, in a completely
pointfree formulation

f = ΛR ⇔ R = ∈ ·f

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Transposition

f = ΛR ⇔ R = ∈ ·f

Properties

Cancellation ∈ ·ΛR = R

Reflexivity Λ ∈ = ∈

Fusion - a Λ(f · R) = Pf · ΛR

Fusion - b Λ(R · f) = ΛR · f

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Labelled Transition System

Transposing α←−

through
α = Λ α←− ⇔ α←−=∈ ·α

gives rise to a coalgebra

α : P(A× U)←− U

in Set for functor TX = P(A× X).

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Labelled Transition System

Transposing α←−

through
α = Λ α←− ⇔ α←−=∈ ·α

gives rise to a coalgebra

α : P(A× U)←− U

in Set for functor TX = P(A× X).

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Labelled Transition System

Transposition also applies to morphisms
A morphism h : β ←− α is a function h : V ←− U st the following
diagram commutes

U

h

��

α // P(A× U)

P(id×h)
��

V
β // P(A× V)

i.e.,
P(id× h) · α = β · h

or, going pointwise,

{〈a, h x〉 | 〈a, x〉 ∈ α u} = β (h u)

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Labelled Transition System

but P(id× h) · α = β · h

has the following relational counterpart:

(id× h) · α←− = β←− · h

because

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Labelled Transition System

(id× h) · α←− = β←− · h
⇔ { transpose is a isomorphism }

Λ((id× h) · α←−) = Λ(β←− · h)

⇔ { Λ(f · R) = Pf · ΛR e Λ(R · f) = ΛR · f }
P(id× h) · Λ(α←−) = Λ(β←−) · h

⇔ { definition α←− }
P(id× h) · Λ(∈ ·α) = Λ(∈ ·β) · h

⇔ { Λ(R · f) = ΛR · f }
P(id× h) · Λ(∈) · α = Λ(∈) · β · h

⇔ { Λ(∈) = id }
P(id× h) · α = β · h

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Labelled Transition System

Equality
(id× h) · α←− = β←− · h

can be re-written in terms of an A-indexed family of binary relations:

h · α
a←− = β

a←− · h

which can be decomposed in

h · α
a←− ⊆ β

a←− · h (1)

β
a←− · h ⊆ h · α

a←− (2)

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Labelled Transition System

Equality
(id× h) · α←− = β←− · h

can be re-written in terms of an A-indexed family of binary relations:

h · α
a←− = β

a←− · h

which can be decomposed in

h · α
a←− ⊆ β

a←− · h (1)

β
a←− · h ⊆ h · α

a←− (2)

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Going pointwise ...

Transition preservation

h · α
a←− ⊆ β

a←− · h
⇔ { shunting }

α
a←− ⊆ h◦ · β

a←− · h
⇔ { introducing variables }

〈∀ u, u′ : u, u′ ∈ U : u′ α
a←− u ⇒ u′ (h◦ · β

a←− · h) u〉
⇔ { relating-functional-images rule }

〈∀ u, u′ : u, u′ ∈ U : u′ α
a←− u ⇒ h u′ β

a←− h u〉

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Going pointwise ...

Transition reflection

β
a←− · h ⊆ h · α

a←−
⇔ { introducing variables }

〈∀ u, v ′ : u ∈ U, v ′ ∈ V : v ′ (β
a←− · h) u ⇒ v ′ (h · α

a←−) u〉
⇔ { relating-functional-images rule and relational composition }

〈∀ u, v ′ : u ∈ U, v ′ ∈ V : v ′ β
a←− h u ⇒

〈∃ u′ : u′ ∈ U : u′ α
a←− u ∧ v ′ = h u′)〉〉

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Simulation

Intuition

A state v simulates another state u (in the same or in a different
LTS) if every transition from v is corresponded by a transition from
u and this capacity is kept along the whole life of the system to
which state space v belongs to.

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Simulation

Definition
Given α←− : U × A←− U and β←− : V × A←− V both over A, a
simulation of α←− in β←− is a relation S : V ←− U such that

∀a∈A∀u∈U,v∈V . vSu ⇒

(∀u′∈U . u
′
α

a←− u ⇒ (∃v ′∈V . v
′
β

a←− v ∧ v ′Su′))

v

a

��

⇐ v S u

a

��
v ′ S u′ u′

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Simulation

Definition
Given α←− : U × A←− U and β←− : V × A←− V both over A, a
simulation of α←− in β←− is a relation S : V ←− U such that

∀a∈A∀u∈U,v∈V . vSu ⇒

(∀u′∈U . u
′
α

a←− u ⇒ (∃v ′∈V . v
′
β

a←− v ∧ v ′Su′))

v

a

��

⇐ v S u

a

��
v ′ S u′ u′

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Example

q1
d // q2 p2

q0

a

>>}}}}}}}}

a
 A

AA
AA

AA
A p0

a // p1

d

>>}}}}}}}}

e
 A

AA
AA

AA
A

q4 e
// q3 p3

q0 . p0 cf. {〈q0, p0〉, 〈q1, p1〉, 〈q4, p1〉, 〈q2, p2〉, 〈q3, p3〉}

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Simulation

Lemma
A relation S : V ←− U is a simulation of α←− in β←− iff, for all
a ∈ A

S · a−→α ⊆
a−→β ·S

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Properties

because

∀a∈A,u∈U,v∈V . vSu ⇒
(∀u′∈U . u

′
α

a←− u ⇒ (∃v ′∈V . v
′
β

a←− v ∧ v ′Su′))

⇔ { composition }

∀a∈A,u∈U,v∈V . vSu ⇒ (∀u′∈U . u
a−→α u′ ⇒ v (

a−→β ·S) u′

⇔ { left relational division }

∀a∈A,u∈U,v∈V . vSu ⇒ v ((
a−→β ·S)/

a−→α) u

⇔ { going pointfree }

S ⊆ (
a−→β ·S)/

a−→α

⇔ { Galois connection: (·R) a (/R) }

S · a−→α ⊆
a−→β ·S

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Properties

Lemma

1. The identity relation id and the empty relation is a simulation

2. The composition S · R of two simulations is a simulation

3. The union S ∪ R of two simulations is a simulation

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Properties
because

1.

⊥· a−→α ⊆
a−→β ·⊥ ∧ id · a−→α ⊆

a−→α · id
⇔ { ⊥ and id are absorving and identity for composition }

true

2.

(S · R) · a−→α ⊆
a−→β · (S · R)

⇐ { S · a−→γ ⊆
a−→β ·S , ·-assoc, monotony }

(S · R) · a−→α ⊆ S · a−→γ ·R
⇐ { R· a−→α⊆

a−→γ ·R, ·-assoc, monotony }

(S · R) · a−→α ⊆ (S · R) · a−→α

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Properties
because

1.

⊥· a−→α ⊆
a−→β ·⊥ ∧ id · a−→α ⊆

a−→α · id
⇔ { ⊥ and id are absorving and identity for composition }

true

2.

(S · R) · a−→α ⊆
a−→β · (S · R)

⇐ { S · a−→γ ⊆
a−→β ·S , ·-assoc, monotony }

(S · R) · a−→α ⊆ S · a−→γ ·R
⇐ { R· a−→α⊆

a−→γ ·R, ·-assoc, monotony }

(S · R) · a−→α ⊆ (S · R) · a−→α

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Properties

3.

(S ∪ R) · a−→α ⊆
a−→β · (S ∪ R)

⇔ { (R·) and (·R) preserve ∪ as lower adjoints }

(S · a−→α ∪R ·
a−→α) ⊆ (

a−→β ·S ∪
a−→β ·R)

⇐ { ∪ definition }

S · a−→α ⊆
a−→β ·S ∧ R · a−→α ⊆

a−→β ·R
⇔ { hipotheses }

true

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Similarity

Definition

p . q ⇔ 〈∃ R :: R is a simulation and 〈p, q〉 ∈ R〉

Lemma
The similarity relation is a preorder
(ie, reflexive and transitive)

because
By definition . is the greatest simulation. Then (why?), . · . ⊆ . and
id ⊆ ..

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Bisimulation

Definition
A relation S : V ←− U over the state spaces of α←− : U ×A←− U and

β←− : V × A←− V is a bisimulation iff both S and S◦ are simulations

i.e.

S · a−→α ⊆
a−→β ·S ∧ β

a←− ·S ⊆ S · α
a←−

for all a ∈ A.

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Bisimulation

Definition
A relation S : V ←− U over the state spaces of α←− : U ×A←− U and

β←− : V × A←− V is a bisimulation iff both S and S◦ are simulations

i.e.

S · a−→α ⊆
a−→β ·S ∧ β

a←− ·S ⊆ S · α
a←−

for all a ∈ A.

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Bisimulation

because
The first conjunct defines S as a simulation.
The second one is derived as follows:

S◦ is a simulation

⇔ { definition of simulation }

S◦· a−→β ⊆
a−→α ·S◦

⇔ { (
a−→γ)◦ = γ

a←− }

S◦ · (β
a←−)◦ ⊆ (α

a←−)◦ · S◦

⇔ { (R · S)◦ = S◦ · R◦ }

(β
a←− ·S)◦ ⊆ (S · α

a←−)◦

⇔ { monotonicity: R ⊆ S ⇔ R◦ ⊆ S◦ }

β
a←− ·S ⊆ S · α

a←−

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Bisimulation

going pointwise

β
a←− ·S ⊆ S · α

a←−
⇔ { Galois: (R·) a (R\) }

S ⊆ β
a←− \(S · α

a←−)

⇔ { introducing variables }

∀v∈V ,u∈U . vSu ⇒ v (β
a←− \(S · α

a←−)) u

⇔ { definition of left division \ }

∀v∈V ,u∈U . vSu ⇒ (∀v ′∈V . v
′
α

a←− v ⇒ v ′ (β
a←− ·S) u′)

⇔ { definition of · }

∀v∈V ,u∈U . vSu ⇒ (∀v ′∈V . v
′
β

a←− v ⇒ (∃u′∈U . u
′
α

a←− u ∧ v ′Su′))

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Bisimulation

The Game characterization
Two players R and I discuss whether the transition structures are
mutually corresponding

• R starts by chosing a transition

• I replies trying to match it

• if I succeeds, R plays again

• R wins if I fails to find a corresponding match

• I wins if it replies to all moves from R and the game is in a
configuration where all states have been visited or R can’t move
further. In this case is said that I has a wining strategy

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Examples

q1
a

~~}}
}}

}}
}} a

 A
AA

AA
AA

A m

a

��
q2

c // q3 cgg n cdd

q1
a // q2

a // q3
a // · · · h add

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Examples

q1
a

~~}}
}}

}}
}} a

 A
AA

AA
AA

A m

a

��
q2

c // q3 cgg n cdd

q1
a // q2

a // q3
a // · · · h add

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Properties

Lemma
The graph of a coalgebra morphism h : β ←− α, i.e., h itself regarded as
a binary relation, is a bisimulation.

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Properties

because (partially ...)

h · α
a←− ⊆ β

a←− · h
⇔ { shunting }

α
a←− ⊆ h◦ · β

a←− · h
⇔ { monotonicity }

(α
a←−)◦ ⊆ (h◦ · β

a←− · h)◦

⇔ { converse }
a−→α ⊆ h◦· a−→β · h

⇔ { function-relation law }

h · a−→α ⊆
a−→β · h

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Properties

Lemma
The converse of a bisimulation S : V ←− U is still a bissimulation.

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Properties

because

S◦ is bisimulation

⇔ { definition of bisimulation }

S◦· a−→α ⊆
a−→β ·S◦ ∧ β

a←− ·S◦ ⊆ S◦ · α
a←−

⇔ { (
a−→γ)◦ = γ

a←− }

S◦ · (α
a←−)◦ ⊆ (β

a←−)◦ · S◦ ∧ (
a−→β)◦ · S◦ ⊆ S◦ · (a−→α)◦

⇔ { converse of composition }

(α
a←− ·S)◦ ⊆ (S · β

a←−)◦ ∧ (S · a−→β)◦ ⊆ (
a−→α ·S)◦

⇔ { monotonicity }

α
a←− ·S ⊆ S · β

a←− ∧ S · a−→β ⊆
a−→α ·S

⇔ { hipothesis }
true

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Bisimilarity

Definition

p ∼ q ⇔ 〈∃ R :: R is a bisimulation and 〈p, q〉 ∈ R〉

Lemma

1. The identity relation id is a bisimulation

2. The empty relation ⊥ is a bisimulation

3. The converse R◦ of a bisimulation is a bisimulation

4. The composition S · R of two bisimulations S and R is a
bisimulation

5. The
⋃

i∈I Ri of a family of bisimulations {Ri | i ∈ I} is a bisimulation

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Bisimilarity

Lemma
The bisimilarity relation is an equivalence relation
(ie, reflexive, symmetric and transitive)

Lemma
The class of all bisimulations between two LTS has the structure of a
complete lattice, ordered by set inclusion, whose top is the bisimilarity
relation ∼.

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Bisimilarity

Lemma
The bisimilarity relation is an equivalence relation
(ie, reflexive, symmetric and transitive)

Lemma
The class of all bisimulations between two LTS has the structure of a
complete lattice, ordered by set inclusion, whose top is the bisimilarity
relation ∼.

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Bisimilarity

Warning
The bisimilarity relation ∼ is not the symmetric closure of .

Example

q0 . p0, p0 . q0 but p0 6∼ q0

q1

q0

a

>>}}}}}}}}

a

 A
AA

AA
AA

A p0
a // p1

b // p3

q2
b // q3

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

After thoughts

Similarity as the greatest simulation

. ,
⋃
{S | S is a simulation}

Bisimilarity as the greatest bisimulation

∼ ,
⋃
{S | S is a bisimulation}

cf relational translation of definitions
. and ∼ as greatest fix points (Tarski’s theorem)

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

After thoughts

Similarity as the greatest simulation

. ,
⋃
{S | S is a simulation}

Bisimilarity as the greatest bisimulation

∼ ,
⋃
{S | S is a bisimulation}

cf relational translation of definitions
. and ∼ as greatest fix points (Tarski’s theorem)

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

After thoughts

Similarity as the greatest simulation

. ,
⋃
{S | S is a simulation}

Bisimilarity as the greatest bisimulation

∼ ,
⋃
{S | S is a bisimulation}

cf relational translation of definitions
. and ∼ as greatest fix points (Tarski’s theorem)

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

The questions to follow ...

• We already have a semantic model for reactive systems. With which
language shall we describe them?

• How to compare and transform such systems?

• How to express and prove their proprieties?

 process languages and calculi
cf. Ccs (Milner, 80), Csp (Hoare, 85),

Acp (Bergstra & Klop, 82),
π-calculus (Milner, 89), among many others

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

The questions to follow ...

• We already have a semantic model for reactive systems. With which
language shall we describe them?

• How to compare and transform such systems?

• How to express and prove their proprieties?

 process languages and calculi
cf. Ccs (Milner, 80), Csp (Hoare, 85),

Acp (Bergstra & Klop, 82),
π-calculus (Milner, 89), among many others

	Reactive Systems
	M1: Functions over streams
	M2: Finite Automata
	Transition Systems
	Simulation
	Bisimulation
	Concluding

