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Reactive systems

Reactive system

system that computes by reacting to stimuli from its environment
along its overall computation

• in contrast to sequential systems whose meaning is defined by the
results of finite computations, the behaviour of reactive systems is
mainly determined by interaction and mobility of non-terminating
processes, evolving concurrently.

• observation ⇔ interaction

• behaviour ⇔ a structured record of interactions
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Reactive systems

Concurrency vs interaction

x := 0;

x := x + 1 | x := x + 2

• both statements in parallel could read x before it is written

• which values can x take?

• which is the program outcome if exclusive access to memory and
atomic execution of assignments is guaranteed?
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Models of computation for continuous interaction

two reactive systems you are already familiar with

Functions f : O ←− I

• one-step, input-output behaviour

• but what about functions manipulating infinite data structures?

merge : Aω ←− Aω × Aω

Automata

• multi-step behaviour: accepted language
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Ex: Functions over streams

Streams are coalgebraic structures: specified by observers

〈hd, tl〉 : A× Aω ←− Aω

• Function 〈hd, tl〉 is the observation structure of Aω.

• The shape of such an observation is given by functor
T : A× X ←− X for which 〈hd, tl〉 is a coalgebra.
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Coalgebra

a lens: ©_©

a tool box:
eee

an observation structure: ©_© universe
α←− universe

an assembly process: artifact
d←−

eee
artifact

α : FU ←− U

• coalgebras describe transition systems

• and abstract behaviour types as (final) coalgebras

• compare with (initial) algebras and (finite) data structures
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Ex: Functions over streams

• Coalgebras
p = 〈at,m〉 : A× U ←− U

for the same functor, relate through morphisms:
structure-preserving functions,

U
〈at,m〉 //

h

��

A× U

id×h
��

V
〈at′,m′〉// A× V

at = at′ · h and h ·m = m′ · h

• The behaviour of 〈at,m〉, from an initial value u, is given by
successive observations:

[(p)] u = [at u, at (m u), at (m (m u)), ...]

originating a stream of A values.



Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems Simulation Bisimulation Concluding

Ex: Functions over streams

〈hd, tl〉 : A× Aω ←− Aω

is final, i.e. characterised by the following universal property: from any
other coalgebra p there is a unique morphism [(p)] st

Aω
〈hd,tl〉 // A× Aω νT

ωT // TνT

U
p //

[(p)]

OO

A× U

id×[(p)]

OO

U
p //

[(p)]

OO

TU

T[(p)]

OO

k = [(p)] ⇔ ωT · k = T k · p

from where one derives the usual toolkit:

cancelation ωT · [(p)] = T [(p)] · p
reflection [(ωT)] = idνT

fusion [(p)] · h = [(q)] if p · h = T h · q
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Ex: Functions over streams

Behaviour is specified under all observers

Example:

Aω
〈hd,tl〉 // A× Aω

A

rep

OO

M // A× A

id×rep

OO

rep , [(M)]
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Definition by coinduction

(id× rep)· M = 〈hd, tl〉 · rep

⇔ { M definition }
(id× rep) · 〈id, id〉 = 〈hd, tl〉 · rep

⇔ { × abs and fusion }
〈id, rep〉 = 〈hd · rep, tl · rep〉

⇔ { structural equality }
hd · rep = id ∧ tl · rep = rep

⇔ { going pointwise }
hd (rep a) = a ∧ tl (rep a) = rep a

Exercise: define merge and twist.
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Proof by coinduction: merge (aω, bω) = (ab)ω

merge · (rep× rep) = twist

= { merge definition }
[(〈hd · π1, s · (tl× id)〉)] · (rep× rep) = [(〈π1, s〉)]

⇐ { fusion }
〈hd · π1, s · (tl× id)〉 · (rep× rep) = id× (rep× rep) · 〈π1, s〉

= { × abs and reflection }
〈hd · rep · π1, s · ((tl · rep)× rep)〉 = id× (rep× rep) · 〈π1, s〉

= { tl · rep = rep e hd · rep = id }
〈π1, s · (rep× rep)〉 = id× (rep× rep) · 〈π1, s〉

= { × abs }
〈π1, s · (rep× rep)〉 = 〈π1, (rep× rep) · s〉

= { s natural: (f × g) · s = s · (g × f ) }
〈π1, s · (rep× rep)〉 = 〈π1, s · (rep× rep)〉
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Ex: Automata
Definition
A = 〈Σ,S , so ,F ,T 〉
where

• Σ is an alphabet

• S = {s0, s1, s2, ...} is a set of states

• s0 ∈ S is the initial state

• F ⊆ S is the set of final states

• T ⊆ S × Σ× S is the transition relation usually given as a
Σ-indexed family of realtions over S :

s
a−→ s ′ ⇔ 〈s ′, a, s〉 ∈ T

• deterministic

• finite

• image finite
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Ex: Automata

automaton behaviour ⇔ accepted language

Recall that finite automata recognize regular languages, i.e. generated by

• L1 + L2 , L1 ∪ L2 (union)

• L1 · L2 , {st | s ∈ L1, t ∈ L2} (concatenation)

• L∗ , {ε} ∪ L ∪ (L · L) ∪ (L · L · L) ∪ ... (iteration)
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Ex: Automata

There is a syntax to specify such languages:

E ::= ε | a | E + E | E E | E∗

where a ∈ Σ.

• which regular expression specifies {a, bc}?

• and {ca, cb}?

and an algebra of regular expressions:

(E1 + E2) + E3 = E1 + (E2 + E3)

(E1 + E2)E3 = E1 E3 + E2 E3

E1 (E2 E1)∗ = (E1 E2)∗ E1
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After thoughts

(from the two examples of reactive systems discussed)

• characterise notions of observation and interaction

• syntax (support for modeling) and semantics (basis for calculation)
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After thoughts

... need more general models and theories:

• Several interaction points (6= functions)

• Non termination (no final states as in automata)

• Need to distinguish normal from anomolous termination (eg
deadlock)

• Non determinisim should be taken seriously: the notion of
equivalence based on accepted language is blind wrt non
determinism
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Labelled Transition System

Relational characterization
A LTS over a set A of names is a pair

〈U, α←− : A× U ←− U〉

where

• U = {u0, u1, u2, ...} is a set of states

• α←− : A× U ←− U is an arrow in Rel, capturing the transition
relation,
often given as an A-indexed family of binary relations

u′ α
a←− u ⇔ 〈a, u′〉 α←− u

or simply,
u′

a←− u ⇔ 〈a, u′〉 α←− u
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Transposition

The power-transpose

Binary relations and powerset valued functions are equivalent: each other
determines the other uniquely.
The existence and uniqueness of such a transformation leads to the
identification of a transpose operator Λ characterized by the following
universal property:

f = ΛR ⇔ (yRx ⇔ y ∈ f x)

for relation R : Y ←− X and function f : PY ←− X or, in a completely
pointfree formulation

f = ΛR ⇔ R = ∈ ·f
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Transposition

f = ΛR ⇔ R = ∈ ·f

Properties

Cancellation ∈ ·ΛR = R

Reflexivity Λ ∈ = ∈

Fusion - a Λ(f · R) = Pf · ΛR

Fusion - b Λ(R · f ) = ΛR · f
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Labelled Transition System

Transposing α←−

through
α = Λ α←− ⇔ α←−=∈ ·α

gives rise to a coalgebra

α : P(A× U)←− U

in Set for functor TX = P(A× X ).
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Labelled Transition System

Transposition also applies to morphisms
A morphism h : β ←− α is a function h : V ←− U st the following
diagram commutes

U

h

��

α // P(A× U)

P(id×h)
��

V
β // P(A× V )

i.e.,
P(id× h) · α = β · h

or, going pointwise,

{〈a, h x〉 | 〈a, x〉 ∈ α u} = β (h u)
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Labelled Transition System

but P(id× h) · α = β · h

has the following relational counterpart:

(id× h) · α←− = β←− · h

because
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Labelled Transition System

(id× h) · α←− = β←− · h
⇔ { transpose is a isomorphism }

Λ((id× h) · α←− ) = Λ( β←− · h)

⇔ { Λ(f · R) = Pf · ΛR e Λ(R · f ) = ΛR · f }
P(id× h) · Λ( α←− ) = Λ( β←− ) · h

⇔ { definition α←− }
P(id× h) · Λ(∈ ·α) = Λ(∈ ·β) · h

⇔ { Λ(R · f ) = ΛR · f }
P(id× h) · Λ(∈) · α = Λ(∈) · β · h

⇔ { Λ(∈) = id }
P(id× h) · α = β · h
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Labelled Transition System

Equality
(id× h) · α←− = β←− · h

can be re-written in terms of an A-indexed family of binary relations:

h · α
a←− = β

a←− · h

which can be decomposed in

h · α
a←− ⊆ β

a←− · h (1)

β
a←− · h ⊆ h · α

a←− (2)
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Going pointwise ...

Transition preservation

h · α
a←− ⊆ β

a←− · h
⇔ { shunting }

α
a←− ⊆ h◦ · β

a←− · h
⇔ { introducing variables }

〈∀ u, u′ : u, u′ ∈ U : u′ α
a←− u ⇒ u′ (h◦ · β

a←− · h) u〉
⇔ { relating-functional-images rule }

〈∀ u, u′ : u, u′ ∈ U : u′ α
a←− u ⇒ h u′ β

a←− h u〉
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Going pointwise ...

Transition reflection

β
a←− · h ⊆ h · α

a←−
⇔ { introducing variables }

〈∀ u, v ′ : u ∈ U, v ′ ∈ V : v ′ ( β
a←− · h) u ⇒ v ′ (h · α

a←− ) u〉
⇔ { relating-functional-images rule and relational composition }

〈∀ u, v ′ : u ∈ U, v ′ ∈ V : v ′ β
a←− h u ⇒

〈∃ u′ : u′ ∈ U : u′ α
a←− u ∧ v ′ = h u′)〉〉
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Simulation

Intuition

A state v simulates another state u (in the same or in a different
LTS) if every transition from v is corresponded by a transition from
u and this capacity is kept along the whole life of the system to
which state space v belongs to.
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Simulation

Definition
Given α←− : U × A←− U and β←− : V × A←− V both over A, a
simulation of α←− in β←− is a relation S : V ←− U such that

∀a∈A∀u∈U,v∈V . vSu ⇒

(∀u′∈U . u
′
α

a←− u ⇒ (∃v ′∈V . v
′
β

a←− v ∧ v ′Su′))

v

a

��

⇐ v S u

a

��
v ′ S u′ u′
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Example

q1
d // q2 p2

q0

a

>>}}}}}}}}

a
  A

AA
AA

AA
A p0

a // p1

d

>>}}}}}}}}

e
  A

AA
AA

AA
A

q4 e
// q3 p3

q0 . p0 cf. {〈q0, p0〉, 〈q1, p1〉, 〈q4, p1〉, 〈q2, p2〉, 〈q3, p3〉}
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Simulation

Lemma
A relation S : V ←− U is a simulation of α←− in β←− iff, for all
a ∈ A

S · a−→α ⊆
a−→β ·S
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Properties

because

∀a∈A,u∈U,v∈V . vSu ⇒
(∀u′∈U . u

′
α

a←− u ⇒ (∃v ′∈V . v
′
β

a←− v ∧ v ′Su′))

⇔ { composition }

∀a∈A,u∈U,v∈V . vSu ⇒ (∀u′∈U . u
a−→α u′ ⇒ v (

a−→β ·S) u′

⇔ { left relational division }

∀a∈A,u∈U,v∈V . vSu ⇒ v ((
a−→β ·S)/

a−→α ) u

⇔ { going pointfree }

S ⊆ (
a−→β ·S)/

a−→α

⇔ { Galois connection: (·R) a (/R) }

S · a−→α ⊆
a−→β ·S
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Properties

Lemma

1. The identity relation id and the empty relation is a simulation

2. The composition S · R of two simulations is a simulation

3. The union S ∪ R of two simulations is a simulation
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Properties
because

1.

⊥· a−→α ⊆
a−→β ·⊥ ∧ id · a−→α ⊆

a−→α · id
⇔ { ⊥ and id are absorving and identity for composition }

true

2.

(S · R) · a−→α ⊆
a−→β · (S · R)

⇐ { S · a−→γ ⊆
a−→β ·S , ·-assoc, monotony }

(S · R) · a−→α ⊆ S · a−→γ ·R
⇐ { R· a−→α⊆

a−→γ ·R, ·-assoc, monotony }

(S · R) · a−→α ⊆ (S · R) · a−→α
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Properties

3.

(S ∪ R) · a−→α ⊆
a−→β · (S ∪ R)

⇔ { (R·) and (·R) preserve ∪ as lower adjoints }

(S · a−→α ∪R ·
a−→α ) ⊆ (

a−→β ·S ∪
a−→β ·R)

⇐ { ∪ definition }

S · a−→α ⊆
a−→β ·S ∧ R · a−→α ⊆

a−→β ·R
⇔ { hipotheses }

true
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Similarity

Definition

p . q ⇔ 〈∃ R :: R is a simulation and 〈p, q〉 ∈ R〉

Lemma
The similarity relation is a preorder
(ie, reflexive and transitive)

because
By definition . is the greatest simulation. Then (why?), . · . ⊆ . and
id ⊆ ..
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Bisimulation

Definition
A relation S : V ←− U over the state spaces of α←− : U ×A←− U and

β←− : V × A←− V is a bisimulation iff both S and S◦ are simulations

i.e.

S · a−→α ⊆
a−→β ·S ∧ β

a←− ·S ⊆ S · α
a←−

for all a ∈ A.
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Bisimulation

because
The first conjunct defines S as a simulation.
The second one is derived as follows:

S◦ is a simulation

⇔ { definition of simulation }

S◦· a−→β ⊆
a−→α ·S◦

⇔ { (
a−→γ )◦ = γ

a←− }

S◦ · ( β
a←− )◦ ⊆ ( α

a←− )◦ · S◦

⇔ { (R · S)◦ = S◦ · R◦ }

( β
a←− ·S)◦ ⊆ (S · α

a←− )◦

⇔ { monotonicity: R ⊆ S ⇔ R◦ ⊆ S◦ }

β
a←− ·S ⊆ S · α

a←−
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Bisimulation

going pointwise

β
a←− ·S ⊆ S · α

a←−
⇔ { Galois: (R·) a (R\) }

S ⊆ β
a←− \(S · α

a←− )

⇔ { introducing variables }

∀v∈V ,u∈U . vSu ⇒ v ( β
a←− \(S · α

a←− )) u

⇔ { definition of left division \ }

∀v∈V ,u∈U . vSu ⇒ (∀v ′∈V . v
′
α

a←− v ⇒ v ′ ( β
a←− ·S) u′)

⇔ { definition of · }

∀v∈V ,u∈U . vSu ⇒ (∀v ′∈V . v
′
β

a←− v ⇒ (∃u′∈U . u
′
α

a←− u ∧ v ′Su′))
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Bisimulation

The Game characterization
Two players R and I discuss whether the transition structures are
mutually corresponding

• R starts by chosing a transition

• I replies trying to match it

• if I succeeds, R plays again

• R wins if I fails to find a corresponding match

• I wins if it replies to all moves from R and the game is in a
configuration where all states have been visited or R can’t move
further. In this case is said that I has a wining strategy
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Examples

q1
a

~~}}
}}

}}
}} a

  A
AA

AA
AA

A m

a

��
q2

c // q3 cgg n cdd

q1
a // q2

a // q3
a // · · · h add
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Properties

Lemma
The graph of a coalgebra morphism h : β ←− α, i.e., h itself regarded as
a binary relation, is a bisimulation.
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Properties

because (partially ...)

h · α
a←− ⊆ β

a←− · h
⇔ { shunting }

α
a←− ⊆ h◦ · β

a←− · h
⇔ { monotonicity }

( α
a←− )◦ ⊆ (h◦ · β

a←− · h)◦

⇔ { converse }
a−→α ⊆ h◦· a−→β · h

⇔ { function-relation law }

h · a−→α ⊆
a−→β · h
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Properties

Lemma
The converse of a bisimulation S : V ←− U is still a bissimulation.
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Properties

because

S◦ is bisimulation

⇔ { definition of bisimulation }

S◦· a−→α ⊆
a−→β ·S◦ ∧ β

a←− ·S◦ ⊆ S◦ · α
a←−

⇔ { (
a−→γ )◦ = γ

a←− }

S◦ · ( α
a←− )◦ ⊆ ( β

a←− )◦ · S◦ ∧ (
a−→β )◦ · S◦ ⊆ S◦ · ( a−→α )◦

⇔ { converse of composition }

( α
a←− ·S)◦ ⊆ (S · β

a←− )◦ ∧ (S · a−→β )◦ ⊆ (
a−→α ·S)◦

⇔ { monotonicity }

α
a←− ·S ⊆ S · β

a←− ∧ S · a−→β ⊆
a−→α ·S

⇔ { hipothesis }
true
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Bisimilarity

Definition

p ∼ q ⇔ 〈∃ R :: R is a bisimulation and 〈p, q〉 ∈ R〉

Lemma

1. The identity relation id is a bisimulation

2. The empty relation ⊥ is a bisimulation

3. The converse R◦ of a bisimulation is a bisimulation

4. The composition S · R of two bisimulations S and R is a
bisimulation

5. The
⋃

i∈I Ri of a family of bisimulations {Ri | i ∈ I} is a bisimulation
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Bisimilarity

Lemma
The bisimilarity relation is an equivalence relation
(ie, reflexive, symmetric and transitive)

Lemma
The class of all bisimulations between two LTS has the structure of a
complete lattice, ordered by set inclusion, whose top is the bisimilarity
relation ∼.
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Bisimilarity

Warning
The bisimilarity relation ∼ is not the symmetric closure of .

Example

q0 . p0, p0 . q0 but p0 6∼ q0

q1

q0

a

>>}}}}}}}}

a

  A
AA

AA
AA

A p0
a // p1

b // p3

q2
b // q3
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After thoughts

Similarity as the greatest simulation

. ,
⋃
{S | S is a simulation}

Bisimilarity as the greatest bisimulation

∼ ,
⋃
{S | S is a bisimulation}

cf relational translation of definitions
. and ∼ as greatest fix points (Tarski’s theorem)
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The questions to follow ...

• We already have a semantic model for reactive systems. With which
language shall we describe them?

• How to compare and transform such systems?

• How to express and prove their proprieties?

 process languages and calculi
cf. Ccs (Milner, 80), Csp (Hoare, 85),

Acp (Bergstra & Klop, 82),
π-calculus (Milner, 89), among many others
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