
Software architecture for reactive systems

Lúıs S. Barbosa

DI-CCTC
Universidade do Minho

Braga, Portugal

March, 2010

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

• Introduction

• What is Software Architecture?

• Architectural Styles

• Evolution & Challenges

• Course perspective: Architecture for Reactive Systems

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

What is software architecture?

[Garlan & Shaw, 1993]

the systematic study of the overall structure of software systems

[Perry & Wolf, 1992]

SA = { Elements (what), Form (how), Rationale (why) }

[Kruchten, 1995]

deals with the design and implementation of the high-level
structure of software

[Britton, 2000]

a discipline of generic design

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

What is software architecture?

[Garlan & Shaw, 1993]

the systematic study of the overall structure of software systems

[Perry & Wolf, 1992]

SA = { Elements (what), Form (how), Rationale (why) }

[Kruchten, 1995]

deals with the design and implementation of the high-level
structure of software

[Britton, 2000]

a discipline of generic design

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

What is software architecture?

[Garlan & Shaw, 1993]

the systematic study of the overall structure of software systems

[Perry & Wolf, 1992]

SA = { Elements (what), Form (how), Rationale (why) }

[Kruchten, 1995]

deals with the design and implementation of the high-level
structure of software

[Britton, 2000]

a discipline of generic design

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

What is software architecture?

[Garlan & Shaw, 1993]

the systematic study of the overall structure of software systems

[Perry & Wolf, 1992]

SA = { Elements (what), Form (how), Rationale (why) }

[Kruchten, 1995]

deals with the design and implementation of the high-level
structure of software

[Britton, 2000]

a discipline of generic design

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

What is software architecture?

[Garlan & Perry, 1995]

the structure of the components of a program/system, their
interrelationships, and principles and guidelines governing their
design and evolution over time

[ANSI/IEEE Std 1471-2000]

the fundamental organisation of a system, embodied in its
components, their relationships to each other and the environment,
and the principles governing its design and evolution.

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

What is software architecture?

[Garlan & Perry, 1995]

the structure of the components of a program/system, their
interrelationships, and principles and guidelines governing their
design and evolution over time

[ANSI/IEEE Std 1471-2000]

the fundamental organisation of a system, embodied in its
components, their relationships to each other and the environment,
and the principles governing its design and evolution.

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

What is software architecture?

The architecture of a system describes its gross structure which
illuminates the top level design decisions, namely

• how is it composed and of which interacting parts?

• where are the pathways of interaction?

• which are the key properties of the parts the architecture rely
and/or enforce?

Note:
architectural design vs non functional properties

• performance, reliability, dependability, portability, scalability,
interoperability ...

• not covered in this course

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

What is software architecture?

The architecture of a system describes its gross structure which
illuminates the top level design decisions, namely

• how is it composed and of which interacting parts?

• where are the pathways of interaction?

• which are the key properties of the parts the architecture rely
and/or enforce?

Note:
architectural design vs non functional properties

• performance, reliability, dependability, portability, scalability,
interoperability ...

• not covered in this course

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

What is software architecture?

But what kind of structure have we in mind in this course?

• code-based structures: such as modules, classes, packages and
relationships like uses, inherits from or depends on.

• run-time structures: such as object instances, clients, servers,
databases, browsers, channels, broadcasters, software buses, ...

• allocation structures: intended to map code-based and
run-time structures to external items, such as network
locations, physical devices, managerial structures ...

• entails the need for

Architectural views

• a main issue in Software Architecture research

• this course focus on run-time structures entails a particular
view

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

What is software architecture?

But what kind of structure have we in mind in this course?

• code-based structures: such as modules, classes, packages and
relationships like uses, inherits from or depends on.

• run-time structures: such as object instances, clients, servers,
databases, browsers, channels, broadcasters, software buses, ...

• allocation structures: intended to map code-based and
run-time structures to external items, such as network
locations, physical devices, managerial structures ...

• entails the need for

Architectural views

• a main issue in Software Architecture research

• this course focus on run-time structures entails a particular
view

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

What is software architecture?

Components:

Loci of computation and data stores, encapsulating
subsets of the system’s functionality and/or data;
Equipped with run-time interfaces defining their in-
teraction points and restricting access to those sub-
sets;
May explicitly define dependencies on their required
execution contexts;
Typically provide application-specific services

Connectors:

Pathways of interaction between components;
Ensure the flow of data and regulates interaction;
Typically provide application-independent interac-
tion facilities;
Examples: procedure calls, pipes, wrappers, shared
data structures, synchronisation barriers, etc.

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

What is software architecture?

Components:

Loci of computation and data stores, encapsulating
subsets of the system’s functionality and/or data;
Equipped with run-time interfaces defining their in-
teraction points and restricting access to those sub-
sets;
May explicitly define dependencies on their required
execution contexts;
Typically provide application-specific services

Connectors:

Pathways of interaction between components;
Ensure the flow of data and regulates interaction;
Typically provide application-independent interac-
tion facilities;
Examples: procedure calls, pipes, wrappers, shared
data structures, synchronisation barriers, etc.

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

What is software architecture?

Configurations:

Specifications of how components and connectors
are associated;
Examples: relations associating component ports
to connector roles, mapping diagrams, etc.

Properties:

Set of non functional properties associated to any
architectural element;
Examples (for components): availability, location,
priority, CPU usage, ...
Examples (for connectors): reliability, latency,
throughput, ...

a metaphor: soccer vs water polo

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

What is software architecture?

Configurations:

Specifications of how components and connectors
are associated;
Examples: relations associating component ports
to connector roles, mapping diagrams, etc.

Properties:

Set of non functional properties associated to any
architectural element;
Examples (for components): availability, location,
priority, CPU usage, ...
Examples (for connectors): reliability, latency,
throughput, ...

a metaphor: soccer vs water polo

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

What is software architecture?

Configurations:

Specifications of how components and connectors
are associated;
Examples: relations associating component ports
to connector roles, mapping diagrams, etc.

Properties:

Set of non functional properties associated to any
architectural element;
Examples (for components): availability, location,
priority, CPU usage, ...
Examples (for connectors): reliability, latency,
throughput, ...

a metaphor: soccer vs water polo

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

A mix of examples

from the micro level (a Unix shell script)

cat invoices | grep january | sort

• Application architecture can be understood based on very few
rules

• Applications can be composed by non-programmers

• ... a simple architectural concept that can be comprehended
and applied by a broad audience

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

A mix of examples

to the macro level (the WWW architecture)

• The Web is a collection of resources, each of which has a
unique name (URL)

• URIs used to determine the identity of a machine on the web

• Communication is initiated by clients (e.g. a web server) who
make requests to servers.

• Resources can be manipulated through their representations
(e.g. HTML)

• All communication between user agents and origin servers
must be performed by a simple, generic protocol (HTTP),
which offers the command methods GET, POST, etc.

• All communication between user agents and servers is fully
self-contained

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

A mix of examples

to the macro level (the WWW architecture)

• Architecture is totally separated from the code

• There is no single piece of code that implements the
architecture

• There are multiple pieces of code that implement the various
components of the architecture (e.g., different browsers)

• One of the most successful applications is only understood
adequately from an architectural point of view

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

A mix of examples

components & ports (the Stack diagram in a component calculus)


pop : 1 −→ E

top : 1 −→ E

push : E −→ 1 •

��	�

��
Stack

E + E + 1 = O

1+ 1+ E = I

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

A mix of examples

new components from old (assembling the Game of Life)

•

��	�

��
2n

Cell � Cell � · · · � Cell

24
n

•

��	�

��
Bus

24
n

GameLife = ((Cell � Cell � · · · � Cell) • Bus) �

where

Bus = pwq

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

A mix of examples

a connector (synchronization barrier in Reo)

• // c

a •

22

,, •_
_
•

b •

22

++ • // d

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

A mix of examples

a configuration (client-server in Acme)

System CS = {
component client = { port call }
component server = { port request }

property max-clients-supported = 10;

connector rpc = { role plug-cl; role plug-sv}
}
attachments = {
{ call to plug-cl ; server to plug-sv }

}

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

• Introduction

• What is Software Architecture?

• Architectural Styles

• Evolution & Challenges

• Course perspective: Architecture for Reactive Systems

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Architectural style (or pattern)

• classify families of software architectures

• act as types for configurations

• provide
• domain-specific design vocabulary (eg, set of connector and

component types admissible)
• a set of constraints to single out which configurations are

well-formed. Eg, a pipeline architecture might constraint valid
configurations to be linear sequences of pipes and filters.

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Examples

• Layers

• Client & Server

• Master & Slave

• Publish & Subscribe

• Peer2Peer

• Pipes and Filters

• Event-bus

• Repositories
• triggering by transactions: databases
• triggering by current state: blackboard

• Table-driven (virtual machines)

• ...

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Pattern: Layers

• helps to structure applications that can be decomposed into
groups of subtasks at different levels of abstraction

• Layer n provides services to layer n + 1 implementing them
through services of the lyer n + 1

• Typically, service requests resort to synchronous procedure
calls

Examples:

virtual machines (eg, JVM)
APIs (eg, C standard library on top of Unix system calls)
operating systems (eg, Windows NT microkernel)
networking protocols (eg, ISO OSI 7-layer model; TCP/IP)

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Pattern: Client-Server

• permanently active servers supporting multiple clients

• requests typically handled in separate threads

• stateless (session state maintained by the client) vs stateful
servers

• interaction by some inter-process communication mechanism

Examples:

remote DB access
web-based applications
interactive shells

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Pattern: Peer-2-Peer

• symmetric Client-Service pattern

• peers may change roles dynamically

• services can be implicit (eg, through the use of a data stream)

Examples:

multi-user applications
P2P file sharing

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Pattern: Publish-Subscribe

• used to structure distributed systems whose components
interact through remote service invocations

• servers publish their capabilities (services + characteristics) to
a broker component, which accepts client requests and
coordinate communication

• allows dynamic reconfiguration

• requires standardisation of service descriptions through IDL
(eg CORBA IDL, .Net, WSDL) or a binary standard (eg,
Microsoft OLE — methods are called indirectly using pointers)

Examples:

web services
CORBA (for cooperation among heterogeneous OO systems)

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Pattern: Master-Slave

• a master component distributes work load to similar slave
components and computes a final result from the results these
slaves return

• isolated slaves; no sharing of data

• supports fault-tolerance and parallel computation

Examples:

dependable systems

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Pattern: Event-Bus

• event sources publish messages to particular channels on an
event bus

• event listeners subscribe to particular channels and are
notified of message availability

• asynchronous interaction

• channels can be implicit (eg, using event patterns)

• allows dynamic reconfiguration

• variant of so-called event-driven architectures

Examples:

process monitoring
trading systems

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Pattern: Pipe & Filter

• suitable for data stream processing

• each processing step is encapsulated into a filter component

• uniform data format

• no shared state

• concurrent processing is natural

Examples:

compilers
Unix shell commands

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Pattern: Blackboard

• suitable for problems with non deterministic solution strategy
known

• all components have access to a shared data store

• components feed the blackboard and inspect it for new partial
data

• extending the data space is easy, but changing its structure
may be hard

Examples:

complex IA problems (eg, planning, machine learning)
complex applications in computing science (eg, speech recognition;
computational chemistry)

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

• Introduction

• What is Software Architecture?

• Architectural Styles

• Evolution & Challenges

• Course perspective: Architecture for Reactive Systems

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Origins

• Until the 90’s, SA was largely an ad hoc affair (but see
[Dijkstra,69], [Parnas79], ...)

• Descriptions relied on informal box-and-line diagrams, rarely
maintained once the system was built

Challenges

• recognition of a shared repertoire of methods, techniques and
patterns for structuring complex systems

• quest for reusable frameworks for the development of product
families

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Origins

• Until the 90’s, SA was largely an ad hoc affair (but see
[Dijkstra,69], [Parnas79], ...)

• Descriptions relied on informal box-and-line diagrams, rarely
maintained once the system was built

Challenges

• recognition of a shared repertoire of methods, techniques and
patterns for structuring complex systems

• quest for reusable frameworks for the development of product
families

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

The last 15 years

• Formal notations for representing and analysing SA: ADL

• Examples: Wright, Rapide, SADL, Darwin, C2, Aesop, Piccola
...

ADLs provide:

• conceptual framework + concrete syntax

• tools for parsing, displaying, analysing or
simulating architectural descriptions

• Acme [Garlan et al, 97] as an architectural interchange
language (a sort of XML for architectural description)

• Use of model-based prototyping tools (eg Z, VDM) or
model-checkers (eg Alloy) to analyse architectural descriptions

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

The last 15 years

• Classification of architectural styles characterising families of
SA and acting as types for configurations

• Standardisation efforts: ANSI/IEEE Std 1471-2000, but also
’local’ standards (eg, Sun’s Enterprise JavaBeans architecture)

• Impact of the emergence of a general purpose
(object-oriented) design notation — UML — closer to
practitioners and with a direct link to OO implementations

• SA becomes a mature discipline in Software Engineering; new
fields include documentation and architectural recovery from
legacy code

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Current trends

Not only the world of software development, but
also the contexts in which software is being used
are changing quickly and in significant ways ...
... whose impact on Software Engineering, in gen-
eral, is still emerging

• Software sub-contracting: many companies look at themselves
more as system integrators than as software developers:

the code they write is glue code ...
which entails the need for common frameworks to
reduce architectural mismatchs

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Current trends

Not only the world of software development, but
also the contexts in which software is being used
are changing quickly and in significant ways ...
... whose impact on Software Engineering, in gen-
eral, is still emerging

• Software sub-contracting: many companies look at themselves
more as system integrators than as software developers:

the code they write is glue code ...
which entails the need for common frameworks to
reduce architectural mismatchs

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Current trends

• From object-oriented to component-based development:

• In OO the architecture is implicit: source
code exposes class hierarchies but not the
run-time interaction and configuration

• Objects are wired at a very low level and the
description of the wiring patterns is
distributed among them

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Current trends

• CBD retains the basic encapsulation of data
and code principle to increase modularity

• ... but shifts the emphasis from class
inheritance to object composition

• to avoid interference between inheritance and
encapsulation and pave the way to a
development methodology based on
third-party assembly of components

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Current trends
• Software as a service (and not essentially a product) : open

and dynamic systems (able to move, to reconfigure
themselves, ...) and often asynchronous (cf the
publish-subscribe style)

• From programming-in-the-large to programming-in-the-world:

’not only the complexity of building a large application
that one needs to deliver, in time and budget, to a client,
but of managing an open-ended structure of autonomous
components, possibly distributed and highly heteroge-
neous.
This means developing software components that are au-
tonomous and can be interconnected with other compo-
nents, software or otherwise, and managing the intercon-
nections themselves as new components may be required
to join in and others to be removed.’
(Fiadeiro, 05)

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Current trends
• Software as a service (and not essentially a product) : open

and dynamic systems (able to move, to reconfigure
themselves, ...) and often asynchronous (cf the
publish-subscribe style)

• From programming-in-the-large to programming-in-the-world:

’not only the complexity of building a large application
that one needs to deliver, in time and budget, to a client,
but of managing an open-ended structure of autonomous
components, possibly distributed and highly heteroge-
neous.
This means developing software components that are au-
tonomous and can be interconnected with other compo-
nents, software or otherwise, and managing the intercon-
nections themselves as new components may be required
to join in and others to be removed.’
(Fiadeiro, 05)

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Challenges

Such trends entails a number of challenges to the way we think
about SA

• new target: need for an architectural discipline for reactive
systems
(often complex, time critical, mobile, etc ...)

• from composition to coordination (orchestration)

• interaction as a first-class citizen and the main form of
software composition

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Challenges

Such trends entails a number of challenges to the way we think
about SA

• new target: need for an architectural discipline for reactive
systems
(often complex, time critical, mobile, etc ...)

• from composition to coordination (orchestration)

• interaction as a first-class citizen and the main form of
software composition

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

• Introduction

• What is Software Architecture?

• Architectural Styles

• Evolution & Challenges

• Course perspective: Architecture for Reactive Systems

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Starting point

SA as studied at MFES (until now):

the architecture of functional designs

Interfaces: f :: · · · −→ · · ·
Components: f = · · ·
Connectors: ·, 〈 , 〉, ×, +, ...
Configurations: functions assembled by composition
Properties: invariants (pre-, post-conditions)
Behavioural effects: monads and Kleisli compostion
Underlying maths: universal algebra and relational calculus

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

To be extended to reactive systems

Software Architecture is challenged by the continuous evolution
towards very large, heterogeneous, highly dynamic computing
systems, whose behaviour cannot be characterized in terms of a
io-relation In most cases, such a behaviour

• is potentially non-terminating,

• expresses a continued interaction with the system´s
environment and sub-systems which execute concurrently in
distributed, often loosely coupled configurations.

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Our approach

No general-purpose, universally tailored, approach
to the architectural design of reactive systems

• concentrate in two particular classes of reactive systems

• addressed from both a foundational and methodological
perspective

• with suitable computer-based support for modelling and
analysis

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Our approach

No general-purpose, universally tailored, approach
to the architectural design of reactive systems

• concentrate in two particular classes of reactive systems

• addressed from both a foundational and methodological
perspective

• with suitable computer-based support for modelling and
analysis

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Our approach

• Time-critical systems, i.e., systems whose design correctness is
assessed not only in terms of the logical result of computation
but also depends on the time at which such results are
produced.

• Service-oriented applications. Services are dynamic entities,
running on different platforms often owned by different
organisations, interacting through public interfaces, and
typically remaining loosely coupled, if not utterly unaware of
each other. Open, dynamic reconfigurable and evolutive
structure.

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Our approach

• Time-critical systems, i.e., systems whose design correctness is
assessed not only in terms of the logical result of computation
but also depends on the time at which such results are
produced.

• Service-oriented applications. Services are dynamic entities,
running on different platforms often owned by different
organisations, interacting through public interfaces, and
typically remaining loosely coupled, if not utterly unaware of
each other. Open, dynamic reconfigurable and evolutive
structure.

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Our approach

+ a module on performance and dependability
analysis in software architecture

• to model unreliable behaviour

• to forecast system performance and dependability

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Syllabus

• Introduction to software architecture

• (Background) Transition systems as a basic architectural
design structure

• (modelling) State, transition, interaction, bisimulation
• (foundations) Algebraic structure vs coalgebraic behaviour
• (composition) Process algebra
• (logic) Expressing and verifying behavioural properties

• (Case-study 1) Time-critical architectures
• (characterisation) Problems and examples
• (semantics) Timed automata and their calculus
• (logic) Behavioural properties with time-constraints
• (tool support) Uppaal

Software Architecture Architectural Styles Evolution & Challenges Architecture for Reactive Systems

Syllabus

• (Case-study 2) Service-oriented architectures
• (characterisation) Problems and examples
• (semantics) Exogenous coordination models
• (method & tool support) Orc (asynchronous, dynamic

coordination language)
• (method & tool support) Reo (connector-based coordination

language)

• Performance and dependability in software architecture
• (modelling) Stochastic behaviour, dependability and

performance evaluation
• (foundations) Markov chains and markovean decision processes
• (tool support) Prism

	Software Architecture
	Architectural Styles
	Evolution & Challenges
	Architecture for Reactive Systems

