Jr

Structure of the lecture

Analysis

911112

Static Dynamic
Analysis Analysis

metrics fpatterns @ models testing

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

2l

REVERSE ENGINEERING

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

921112

Terminology < .
- ol

931112

Models / Specifications

UML, ER, VDM, ...
Re-engineering
abstract
concrete
Reverse v
engineering Programs

Java, SQL, Perl, ...

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Reverse engineering Qi
a

o

Dependencies and graphs 941112
e Extraction, manipulation, presentation
e Graph metrics
« Slicing

Advanced
* Type reconstruction
e Concept analysis
* Programmatic join extraction

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Reverse engineering trinity <
au

o

951112

Extraction

From program sources, extract basic information into an initial
source model.

Manipulation

Combine, condense, aggregate, or otherwise process the basic
information to obtain a derived source model.

Presentation

Visualize or otherwise present source models to a user.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

": |
Example - o3

961112

Green oval = module
Blue oval = table

g A Purple arrow = select operation
~ " Sy “ Yellow arrow = insert/update operation

Yrae _

e W S Brown arrow = delete operation

R — G = 4
—_—— g R

\
ang” I \ O\ N
qghmmﬂygptl ‘==r'

e

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Example -
g Jr

971112

Tables used by multiple modules. Tables used by a single module.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Relations and graphs < .
- ol

981112
Relation
type Rel a b = Set (a,b) set of pairs
Graph
type Gph a = Rel a a endo-relation

Labeled relation

type LRel a b 1 = Map (a,b) 1 map from pairs

Note

Rel a b = Set(a,b)= Map(a,b) ()= LRel a b ()

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Slicing (forward) < | ;

991112

® o

O
/
O O

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Slicing (backward) C ;
[|

1001112

O \./.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Chop
= Forward N Backward

JIr

Software Analysrs and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

1011112

Generic slicing < ;
au

1021112
Graph slice
(control flow, (interactive)
data flow,
structure, ...)
abstract A A \
concrete
extract
Java _ new program
program = | transform /spregdsheet
spreadsheet System / architecture

architecture

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Further reading < | ;
a

1031112

See

Arun Lakhotia.

Graph theoretic foundations of program slicing and integration.

The Center for Advanced Computer Studies, University of Southwestern Louisiana.
Technical Report CACS TR-91-5-5, 1991.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Type reconstruction < ;
(from type-less legacy code) [

1041112
See

. Arie van Deursen and Leon Moonen. An empirical Study Into Cobol Type
Inferencing. Science of Computer Programming 40(2-3):189-211, July 2001

Basic idea

1. Extract basic relations (entities are variables)

- assign: ex.a := Db
- expression: ex.a <= b
- arraylndex: ex.Ali]

2. Compute derived relations
- typeEquiv: variables belong to the same type
- subtypeOf: variables belong to super/subtype
- extensional notion of type: set of variables

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Type reconstruction < ;
(from type-less legacy code) [

1051112

Pseudo code from paper

arraylndexEquiv := arraylndex™' o arraylndex
typeEquiv := arraylndexEquiv U expression
subtypeOf := assign
repeat
subtypeEquiv := equiv(subtypeOf + N (subtypeOf+)~1)
typeEquiv := equiv(typeEquiv U subtypeEquiv)
subtypeOf := subtypeOf \ typeEquiv
subtypeOf := subtypeOf U subtypeOf o typeEquiv U typeEquiv o subtypeOf
until fixpoint of (typeEquiv, subtypeOf)

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Type reconstruction < ;
(from type-less legacy code) [

106 1 112
Data
type VariableGraph v array

= (Rel v v, Rel v array, Rel v v)
type TypeGraph x

= (Rel x x, Rel x x) -- subtypes and type equiv
Operation
typeInference

(Ord v, Ord array) =>
VariableGraph v array -> TypeGraph v

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Formal concept analysis <
au

o

107 1112

See

Christian Lindig. Fast Concept Analysis. In Gerhard Stumme, editors, Working
with Conceptual Structures - Contributions to ICCS 2000, Shaker Verlag,
Aachen, Germany, 2000.

Basic idea

1. Given formal context
- matrix of objects vs. properties

2. Compute concept lattice
- a concept = (extent,intent)
- ordering is by sub/super set relation on intent/extent

Used in many fields, including program understanding.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Formal concept analysis < ;
pseudo-code (1/2) -

NEIGHBORS ((G, M), (G, M,T)) 1081112
min «— G\ G’
neighbors « ()
foreach g € G\ G do
M; — (GU {g})'
G1 — Mj
if (minN(G1\ G\ {g})) =0) then
neighbors < neighors U {(G1, M)}
else
min < min \ {g}
return neighbors

O O 00~ O U = Wk =

(-

Note that " operation denotes computation of intent from extent, or
vice versa, implicitly given a context.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Formal concept analysis < ;
pseudo-code (2/2) -

LATTICE (G, M,T) 109112
1 ¢ — (@”, 0/)

2 insert (¢, L)

3 loop

4 foreach = in NEIGHBORS (¢, (G, M,Z))
5 try x < lookup (z, L)

6 with NotFound — insert (z, L)

7 Ty — x4 U{c}

8 ¢ — c*U{zx}

9 try ¢ < next (¢, L)

0 with NotFound — exit

1 return L

1
1

Transposition to Haskell?

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Formal concept analysis

JIr

Representation

type Context gm = Rel gm

type Concept g m = (Set g,

type ConceptLattice g m
= Rel (Concept g m)

Algorithm

neighbors (Ord g, Ord m)
=> Set g - =
-> Context g m - -
-> [Concept g m] - -

lattice (Ord g, Ord m)

=> Context g m - -
-> ConceptLattice gm --

1101112

Set m)

(Concept g m)

extent of concept
formal context
list of neighbors

formal context
concept lattice

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Ongoing projects at SIG < .
- ol

Repository mining 111112
* Analyze relationships between code/commits/issues through time
e Clustering and decision trees
» Popularity index for programming languages, frameworks, ...

Quality and metrics
e Generalized method for derivation of quality profiles
e Metrics for architectural quality and evolution
* Quality models for BPEL, SAP, Sharepoint, ...

Large-scale source code analysis
» Detection of “events” in data streams
e Using the Amazon cloud
» Metrics warehouse

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Possible MFES projects at SIG < .
- ol

Massively parallel source code analysis 1121112

e Use Hadoop framework for Map-Reduce
e Put algebraic API on top
e Construct example analyses

Java library binary relational algebra
e Extend to “labeled” relations (matrix algebra)
e Extend with advanced algorithms (e.g. concept analysis)

Randomized testing for Java
e Study existing approaches
 Build / extend tool

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

More info? Feel free to contact. .. -l

1131112

Dr. ir. Joost Visser

E: j.visser@sig.nl
W: www.sig.nl
T. +31 20 3140950

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

