
91 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Structure of the lecture

Analysis

Static
Analysis

Dynamic
Analysis

testingmetrics modelspatterns

92 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

REVERSE ENGINEERING

93 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

abstract
concrete

Models / Specifications
UML, ER, VDM, …

Programs
Java, SQL, Perl, …

Reverse
engineering

Re-engineering

Terminology

94 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Reverse engineering

Dependencies and graphs
• Extraction, manipulation, presentation
• Graph metrics
• Slicing

Advanced
• Type reconstruction
• Concept analysis
• Programmatic join extraction

95 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Extraction

From program sources, extract basic information into an initial
source model.

Manipulation

Combine, condense, aggregate, or otherwise process the basic
information to obtain a derived source model.

Presentation

Visualize or otherwise present source models to a user.

Reverse engineering trinity

96 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Green oval = module
Blue oval = table

Purple arrow = select operation
Yellow arrow = insert/update operation
Brown arrow = delete operation

Example

97 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Example

Tables used by multiple modules. Tables used by a single module.

98 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Relation

type Rel a b = Set (a,b) set of pairs

Graph

type Gph a = Rel a a endo-relation

Labeled relation

type LRel a b l = Map (a,b) l map from pairs

Note

Rel a b = Set(a,b)= Map(a,b)()= LRel a b ()

Relations and graphs

99 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Slicing (forward)

100 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Slicing (backward)

101 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Chop
 = Forward ∩ Backward

102 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

abstract
concrete

Java
program Excel

spreadsheet System
architecture

slice
(interactive)

Graph
(control flow,

data flow,
structure, …)

extract

new program
/ spreadsheet
/ architecture

transform

Generic slicing

103 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

See
Arun Lakhotia.
Graph theoretic foundations of program slicing and integration.
The Center for Advanced Computer Studies, University of Southwestern Louisiana.
Technical Report CACS TR-91-5-5, 1991.

Further reading

104 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

See
• Arie van Deursen and Leon Moonen. An empirical Study Into Cobol Type

Inferencing. Science of Computer Programming 40(2-3):189-211, July 2001

Basic idea

1. Extract basic relations (entities are variables)
- assign: ex. a := b
- expression: ex. a <= b
- arrayIndex: ex. A[i]

2. Compute derived relations
- typeEquiv: variables belong to the same type
- subtypeOf: variables belong to super/subtype
- extensional notion of type: set of variables

Type reconstruction
(from type-less legacy code)

105 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Pseudo code from paper

Type reconstruction
(from type-less legacy code)

106 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Type reconstruction
(from type-less legacy code)

Data
type VariableGraph v array
 = (Rel v v, Rel v array, Rel v v)

type TypeGraph x
 = (Rel x x, Rel x x) -- subtypes and type equiv

Operation
typeInference
 :: (Ord v, Ord array) =>
 VariableGraph v array -> TypeGraph v

107 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

See
• Christian Lindig. Fast Concept Analysis. In Gerhard Stumme, editors, Working

with Conceptual Structures - Contributions to ICCS 2000, Shaker Verlag,
Aachen, Germany, 2000.

Basic idea

1. Given formal context
 - matrix of objects vs. properties

2. Compute concept lattice
 - a concept = (extent,intent)
 - ordering is by sub/super set relation on intent/extent

Used in many fields, including program understanding.

Formal concept analysis

108 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Note that _’ operation denotes computation of intent from extent, or
vice versa, implicitly given a context.

Formal concept analysis
pseudo-code (1/2)

109 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Transposition to Haskell?

Formal concept analysis
pseudo-code (2/2)

110 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Representation

type Context g m = Rel g m
type Concept g m = (Set g, Set m)
type ConceptLattice g m

= Rel (Concept g m) (Concept g m)

Algorithm
neighbors :: (Ord g, Ord m)
 => Set g -- extent of concept
 -> Context g m -- formal context
 -> [Concept g m] -- list of neighbors

lattice :: (Ord g, Ord m)
 => Context g m -- formal context
 -> ConceptLattice g m -- concept lattice

Formal concept analysis

111 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Ongoing projects at SIG

Repository mining
• Analyze relationships between code/commits/issues through time
• Clustering and decision trees
• Popularity index for programming languages, frameworks, …

Quality and metrics
• Generalized method for derivation of quality profiles
• Metrics for architectural quality and evolution
• Quality models for BPEL, SAP, Sharepoint, …

Large-scale source code analysis
• Detection of “events” in data streams
• Using the Amazon cloud
• Metrics warehouse

112 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Possible MFES projects at SIG

Massively parallel source code analysis
• Use Hadoop framework for Map-Reduce
• Put algebraic API on top
• Construct example analyses

Java library binary relational algebra
• Extend to “labeled” relations (matrix algebra)
• Extend with advanced algorithms (e.g. concept analysis)

Randomized testing for Java
• Study existing approaches
• Build / extend tool

113 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

More info? Feel free to contact…

Dr. ir. Joost Visser
 E: j.visser@sig.nl
 W: www.sig.nl
 T: +31 20 3140950

