
38 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Structure of the lecture

Analysis

Static
Analysis

Dynamic
Analysis

testingmetrics modelspatterns

39 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

PATTERNS

40 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Patterns

Coding style and coding standards
• E.g. layout, identifiers, method length, …

Secure coding guidelines

• E.g. SQL injection, stack trace visibility

Bug patterns

• E.g. null pointer dereferencing, bounds checking

Code smells

• E.g. “god class”, “greedy class”, ..

41 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Patterns
Style and standards

Checking coding style and coding standards
• Layout rules (boring)

• Identifier conventions

• Length of methods

• Depth of conditionals

Aim

• Consistency across different developers

• Ensure maintainability

Tools

• E.g. CheckStyle, PMD, …

• Integrated into IDE, into nightly build

• Can be customized

42 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Patterns
Secure coding

Checking secure coding guidelines
• SQL injection attack

• Storing and sending passwords

• Stack-trace leaking

• Cross-site scripting

Aim

• Ensure security

• Security = Confidentiality + Integrity + Availability

Tools

• E.g. Fortify, Coverity

43 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Patterns
Bugs

Detecting bug patterns

• Null-dereferencing

• Lack of array bounds checking

• Buffer overflow

Aim

• Correctness

• Compensate for weak type checks

Tools:

• e.g. FindBugs

• Esp. for C, C++

44 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Patterns
Exercises

Run PMD / Checkstyle / FindBugs

• E.g. on a project of your own

• E.g. on some (easy-to-compile) open source project

Inspect results

• False or true positives?

45 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Structure of the lecture

Analysis

Static
Analysis

Dynamic
Analysis

testingmetrics modelspatterns

46 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

METRICS & QUALITY

47 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Software analysis
What?

performance

complexity

defects

reliability

security
correctness

size

adaptability

usability

Quality

48 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

The bermuda triangle of software quality

Process
(organizational)

Project
(individual)

People
(individual)

Product

CMMI
(Scampi)

Prince2

Siebel
(Oracle)

ITIL

SAS70

J2EE
(IBM)

MCP
(Microsoft)

COBIT Security
ISO17799
ISO27001
BS7799

Six Sigma

ISO 20000

DSDM

TickIT
ISO9001:2000

TMap
ISTQB RUP

(IBM)

PMI

49 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Software Quality
Process

Capability Maturity Model® Integration (CMMI®)
• “… is a process improvement approach that provides organizations with the

essential elements of effective processes..” (SEI)
• CMMI for Development (CMMI-DEV), Version 1.2, August 2006.
• consists of 22 process areas with capability or maturity levels.
• CMMI was created and is maintained by a team consisting of members from

industry, government, and the Software Engineering Institute (SEI)
• http://www.sei.cmu.edu/cmmi

The Standard CMMI Appraisal Method
for Process Improvement (SCAMPI)
• “… is the official SEI method to provide

benchmark-quality ratings relative to CMMI models.”

50 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Software Quality
Process

http://sas.sei.cm
u.edu/pars/

51 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Software Quality
Process

Levels
• L1: Initial
• L2: Managed
• L3: Defined
• L4: Quantitatively Managed
• L5: Optimizing

http://www.cmmi.de
(browser)

Process Areas
• Causal Analysis and Resolution
• Configuration Management
• Decision Analysis and Resolution
• Integrated Project Management
• Measurement and Analysis
• Organizational Innovation and Deployment
• Organizational Process Definition
• Organizational Process Focus
• Organizational Process Performance
• Organizational Training
• Product Integration
• Project Monitoring and Control
• CMMI Project Planning
• Process and Product Quality Assurance
• Quantitative Project Management
• Requirements Development
• Requirements Management
• Risk Management
• Supplier Agreement Management
• Technical Solution
• Validation
• Verification

52 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

The bermuda triangle of software quality

Process
(organizational)

Project
(individual)

People
(individual)

Product

CMMI
(Scampi)

Prince2

Siebel
(Oracle)

ITIL

SAS70

J2EE
(IBM)

MCP
(Microsoft)

COBIT Security
ISO17799
ISO27001
BS7799

Six Sigma

ISO 20000

DSDM

TickIT
ISO9001:2000

TMap
ISTQB RUP

(IBM)

PMI

ISO 9126
ISO 14598

53 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

But …

What is software quality?

What are the technical and functional aspects of quality?

How can technical and functional quality be measured?

54 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Software product quality standards

ISO/IEC 9126
Software engineering -- Product quality

1. Quality model
2. External metrics
3. Internal metrics
4. Quality in use metrics

ISO/IEC 14598
Information technology -- Software product evaluation

1. General overview
2. Planning and management
3. Process for developers
4. Process for acquirers
5. Process for evaluators
6. Documentation of evaluation modules

55 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

ISO/IEC 9126, Part 1
Quality perspectives

external quality

internal quality

quality in use
effect of
software
product

software
product

build

test

deploy

9126, Part 3

9126, Part 2

9126, Part 4

metricsphase

56 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

ISO/IEC 9126, Part 1
Product quality model: internal and external

ISO/IEC 9126
Internal/External Quality

reliability
usability

efficiency
portability

maintainability

analysability
changeability
stability
testability

functionality

suitability
accuracy
interoperability
security

maturity
fault-tolerance
recoverability

understandability
learnability
operability
attractiveness

time behavior

resource
 utilisation

adaptability
installability
co-existence
replaceability

57 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

ISO 9126, Part 1
Maintainability (= evolvability)

Maintain

Analyze Change Stabilize Test

Maintainability =
• Analyzability: easy to understand where and how to modify?
• Changeability: easy to perform modification?
• Stability: easy to keep coherent when modifying?
• Testability: easy to test after modification?

58 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

ISO 9126, Part 1
Reliability

Degree of failure

Prevent Tolerate Recover

Reliability =
• Maturity: how much has been done to prevent failures?
• Fault tolerance: when failure occurs, is it fatal?
• Recoverability: when fatal failure occurs, how much effort to restart?

59 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

ISO/IEC 9126, Part 1
Product quality model: quality-in-use

ISO/IEC 9126
Quality in Use

effectiveness
productivity

satisfaction
safety

60 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

ISO 9126
Part 2,3: metrics

External metrics, e.g.:
• Changeability: “change implementation elapse time”,

time between diagnosis and correction

• Testability: “re-test efficiency”, time between correction and conclusion of test

Internal metrics, e.g.:
• Analysability: “activity recording”,

ratio between actual and required number of logged data items
• Changeability: “change impact”,

number of modifications and problems introduced by them

Critique

• Not pure product measures, rather product in its environment

• Measure after the fact

• No clear distinction between functional and technical quality

61 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

The issue

• Companies innovate and change

• Software systems need to adapt in the same pace as the business changes

• Software systems that do not adapt lose their value

• The technical quality of software systems is a key element

Clients

Business

IT

62 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Functional vs technical quality

Functional quality

Technical
quality

low cost & risk

high cost & risk

Software with high technical quality can evolve with low cost and
risk to keep meeting functional and non-functional requirements.

63 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

ISO/IEC 9126, Part 1
Product quality model: technical quality

ISO/IEC 9126
Software Product Quality

reliability
usability

efficiency
portability

maintainability

analysability
changeability
stability
testability

functionality

suitability
accuracy
interoperability
security

maturity
fault-tolerance
recoverability

understandability
learnability
operability
attractiveness

time behavior

resource
 utilisation

adaptability
installability
co-existence
replaceability

64 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

So …

What is software quality?

What are the functional and technical aspects of quality?

How can technical quality be measured?

65 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

A Challenge

Use source code metrics to measure technical quality?

Plenty of metrics defined in literature
• LOC, cyclomatic complexity, fan in/out, coupling,

cohesion, …
• Halstead, Chidamber-Kemener, Shepperd, …

Plenty of tools available
• Variations on Lint, PMD, FindBugs, …
• Coverity, FxCop, Fortify, QA-C, Understand, …
• Integrated into IDEs

But:
• Do they measure technical quality of a system?

66 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Source code metrics
Lines of code (LOC)

• Easy! Or …

• SLOC = Source Lines of Code
• Physical (≈ newlines)
• Logical (≈ statements)

• Blank lines, comment lines, lines with only “}”
• Generated versus manually written

• Measure effort / productivity: specific to programming language

67 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Source code metrics
Function Point Analysis (FPA)

• A.J. Albrecht - IBM - 1979
• Objective measure of functional size

• Counted manually
• IFPUG, Nesma, Cocomo
• Large error margins

• Backfiring
• Per language correlated with LOC
• SPR, QSM

• Problematic, but popular for estimation

68 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Source code metrics
Cyclomatic complexity

• T. McCabe, IEEE Trans. on Sw Engineering, 1976
• Accepted in the software community
• Number of independent, non-circular paths per method
• Intuitive: number of decisions made in a method
• 1 + the number of if statements (and while, for, ...)

if

if

while

69 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Code duplication
Definition

Code duplication measurement

0: abc
1: def
2: ghi
3: jkl
4: mno
5: pqr
6: stu
7: vwx
8: yz

34: xxxxx
35: def
36: ghi
37: jkl
38: mno
39: pqr
40: stu
41: vwx
42: xxxxxx

Number of
duplicated lines:
14

70 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Code duplication

A B C D

71 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Source code metrics
Coupling

• Efferent Coupling (Ce)
• How many classes do I depend on?

• Afferent Coupling (Ca)
• How many classes depend on me?

• Instability = Ce/(Ca+Ce) ∈ [0,1]
• Ratio of efferent versus total coupling
• 0 = very stable = hard to change
• 1 = very instable = easy to change

72 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Software metrics crisis
How does measurement data lead to information?

Plethora of software metrics
• Ample definitions in literature
• Ample tools that calculate

Measurement yields data, not information
• How to aggregate individual measurement values?
• How to map aggregated values onto quality attributes?
• How to set thresholds?
• How to act on results?

SIG quality model handles these issues in a pragmatic way

73 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

The statistical nature of software metrics
Averaging is fundamentally flawed

Average
• Is measure for central tendency
• For “symmetric” distributions, such as normal. But:

74 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

The statistical nature of software metrics
Emphasize area of risk

Exploit a-symmetry
• High-risk code is on the right
• Weighing with LOC

75 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

The statistical nature of software metrics
Go where the variation is

Observe for all:
• Systems are similar in low percentiles. Systems differ in higher percentiles.
• Interesting differences occur mostly above the 70% percentile

76 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

The statistical nature of software metrics
Go where the variation is

Similar for most source code metrics

77 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

SIG Quality Model
Quality profiles

1. Measure source code metrics
per method / file / module

2. Summarize distribution of measurement
values in “Quality Profiles”

Very high> 50

High21 - 50

Moderate11 - 20

Low1 - 10

Risk
category

Cyclomatic
complexity

Sum lines of code
per category Lines of code per risk category

13 %

High

5 %

Very high

12 %70 %

ModerateLow

78 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Quality profiles
Comparing systems

Aggregation by averaging is fundamentally flawed

79 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Quality profiles, in general

Input
• type Input metric = Map item (metric,LOC)

Risk groups
• type Risk = Low | Moderate | High | Very High
• risk :: metric → Risk

Output
• type ProfileAbs = Map Risk LOC
• type Profile = Map Risk Percentage

Aggregation
• profile :: Input metric → Profile

80 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

SIG Quality Model
How do measurements lead to ratings?

A practical model for measuring maintainability
Heitlager, Kuipers, Visser in QUATIC 2007, IEEE Press

a. Aggregate measurements into “Quality Profiles”
b. Map measurements and quality profiles to ratings for system properties
c. Map ratings for system properties to ratings for ISO/IEC 9126 quality characteristics
d. Map to overall rating of technical quality

Quality
Profiles

HHHHI

HHHHH

HHHHI

HHHII

HIIII

HHIII

Property
Ratings

HHHHI

HHHII

HHIII

HHIII

Quality
Ratings

HHHII

Overall
Rating

Measure-
ments

a. b. c. d.

81 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Certification client
receives certificate and obtains

right to use quality mark

Certification body
confirms evaluation report

and issues certificate

System producer
submits source code and

high-level description

system source code
+ high-level description

Evaluation body
performs evaluation and
delivers evaluation report

certificate

evaluation
report

System producer and
certification client can
be the same
organization

1.

2.

3.

Software product certification
by SIG and TÜViT

82 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Evaluation results

Evaluation report
• Defines scope of the evaluation
• Summarizes measurement results
• Provides ratings (properties, quality, and overall)
• May provide hints for the producer to improve ratings

Certificate
• States conformance to

SIG/TÜViT Evaluation Criteria
• Confers right to use quality mark

“TÜViT Trusted Product Maintainability”

83 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

A pragmatic model for measuring maintainability.
Heitlager, T. Kuipers, J. Visser. QUATIC 2007.

Certification of Technical Quality of Software.
J.P. Correia, J.Visser. OpenCert 2008.

Mapping System Properties to ISO/IEC 9126 Maintainability Characteristics
J.P. Correia, Y. Kanellopoulos, J.Visser. SQM 2009.

Further reading

84 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Software Risk Assessment service

Assignment
• “Can we scale from 100 to 100,000 customers?”
• “Should we accept delay and cost overrun, or cancel the project?”

Analysis
• Source code: understanding (reverse engineering) + evaluation (quality)
• Interviews: technical + strategic

Reporting
• Quality judgment using star ratings

• Risk analysis putting quality findings in business perspective

• Recommendations to mitigate risks

85 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Software Risk Assessment

D
ocum

entation

Interview
s

Facts

Interpretation, reconciliation, evaluation

Presentation

Facts

Automated
analysis

Report

“Facts”

Benchmark Source code

86 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Software Risk Assessment
Example: stagnation before go-live

DB

170 MY

GUI

23 MY13 MY

15 MY

7 MY

5 MY

7 MY
5 MYDB

Rule
engine

DB

Core

 templates

21 MY

Internal architecture
• Technology risks
• Rebuild value
• Quality

Results
• Insurmountable stability issues, untestable, excessive maintenance burden
• Now: reduce technical complexity, partially automate deployment
• Start planning replacement

87 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Software Monitoring service

Quality roadmap
• “complexity from 2 to 4 stars by 3rd month” in maintenance project

• “final product shall be 4 stars” in development project

Dashboard
• Regular analysis of source code typically once per week

• Shown on dashboard with overviews and drill down possibilities

Consultancy
• Regular reports (presentation and/or written)
• Guard quality agreements, meet quality targets.
• Identify risks and opportunities

88 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Software Monitor
Dashboard

89 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Software Monitor
Example: vendor management and roadmap

Duplication

Complexity

From client testimonial:
• “Technical quality: as it improves adding functionality is made easier”
• “As quality was increasing, productivity was going up”

90 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

What should you remember (so far)
from this lecture?

Testing
• Automated unit testing!

Patterns
• Run tools!

Quality and metrics
• Technical quality matters in the long run
• A few simple metrics are sufficient
• If aggregated in well-chosen, meaningful ways
• The simultaneous use of distinct metrics allows zooming in on root

causes

