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e Technical University of Delft, Computer Science, MSc 1997

e University of Leiden, Philosophy, MA 1997

o CWI (Center for Mathematics and Informatics), PhD 2003

o Software Improvement Group, developer, consultant, etc, 2002-2003

» Universidade do Minho, Post-doc, 2004-2007

» Software Improvement Group, Head of Research, 2007-...
Research

o Grammars, traversal, transformation, generation

e Functional programming, rewriting strategies

» Software quality, metrics, reverse engineering
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Software Improvement Group - .

Company 31112
o Spin-off from CWI in 2000, self-owned, independent

* Management consultancy grounded in source code analysis

 Innovative, strong academic background, award-winning, profitable
Services

» Software Risk Assessments (snapshot) and Software Monitoring (continuous)
» Toolset enables to analyze source code in an automated manner

e Experienced staff transforms analysis data into recommendations

* We analyze over 50 systems annually

e Focus on technical quality, primarily maintainability / evolvability
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Services

JIr

41112
DocGen

» Automated generation of technical documentation
* Reduce learning time, assist impact analysis, support migration, ...

Software Risk Assessment

 In-depth investigation of software quality and risks
* Answers specific research questions

Software Monitoring

» Continuous measurement, feedback, and decision support
e Guard quality from start to finish

Software Product Certification

» Five levels of technical quality
« Evaluation by SIG, certification by TUV Informationstechnik
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Who is using our services?
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Structure of the lecture

 Introduction SIG

» General overview of software analysis and testing
e Testing

e Patterns

e Quality & metrics

* Reverse engineering
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Software Engineering <
au

requirements analysis refactor, fix, patch understand, assess
design, code, compile maintain, renovate evaluate, test
configure, install evolve, update, improve measure, audit

—
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Software Analysis < ;
(and Testing) -

81112

Analysis

Static Dynamic
Analysis Analysis

syntax checking testing
type checkina aepbugyiny
code metrics program spectra
style checkiiiy instrumentation
verification profiling
reverse engineering benchmarking
decompilation |og analysis
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Is testing un-cool?

Edsger Wybe Dijkstra (1930 - 2002)

* “Program testing can be used to show the presence of bugs,
but never to show their absence!”
Notes On Structured Programming, 1970

* “Program testing can be a very effective way to show the presence of bugs,
but is hopelessly inadequate for showing their absence.”
The Humble Programmer, ACM Turing Award Lecture, 1972

Does not mean: “Don’t test!!”
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Is testing un-cool? - -

Industry 101112
e Testers earn less then developers
e Testing is “mechanical’, developing is “creative”

e Testing is done with what remains of the budget in what remains of the time

Academia
e Testing is not part of the curriculum, or very minor part
* Verification is superior to testing

 Verification is more challenging than testing
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Software Analysis. How much? < -
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In a typical commercial development organization, the cost of
providing [the assurance that the program will perform
satisfactorily in terms of its functional and nonfunctional
specifications within the expected deployment environments]
via appropriate debugging, testing, and verification activities
can easily range from 50 to /5 percent of the total

development cost. (Hailpern and Santhanam, 2002)




Software Analysis. Enough? < .
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Table ES-4. Costs of Inadequate Software Testing Infrastructure on the National Economy

The Cost of Inadequate Software Potential Cost Reduction from Feasible
Testing Infrastructure Infrastructure Improvements
(billions) (billions)
Software developers $21.2 $10.6
Software users $38.3 $11.7
Total $59.5 $22.2

of total impacts, and software users accounted for the about
60 percent.
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Software Analysis. More? (
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Table 1-4. Recent Aerospace Losses due to Software Failures
Ariane 5 Galileo Lewis
Poseidon Pathfinder Zenit 2 Delta 3 DS-1 Orion 3
Airbus A320 Flight 965 USAF Step Near Galileo Titan 4B
(1993) (1996) (1997) (1998) {(1999)
Aggregate cost § 640 million $116.8 million §255 million §1.6 billion
Loss of life 3 160

Loss of data Yes Yes Yes Yes




Software Analysis <
Room for improvement? -
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1994 2004

Succeeded
16%

Succeeded

0
Failed 29%

Challenged
53% Challenged

53%

Standish Group, “The CHAOS Report”
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So

e Testing C Dynamic analysis C Analysis C S.E.
* Analysis is a major and essential part of software engineering

* Inadequate analysis costs billions

=

» More effective and more efficient methods are needed

* Interest will keep growing in both industry and research
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Structure of the lectures

Analysis

161112

Static Dynamic
Analysis Analysis

metrics fpatterns @ models testing
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TESTING
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Testing

2l

Kinds
e Conformance
e Interoperability
* Performance
e Functional
* White-box
» Black-box
e Acceptance
e Integration
e Unit
e Component
e System
e Smoke
e Stress
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Ways
 Manual
e Automated
e Randomized
* Independent
e User
e Developer

With
* Plans
e Harness
e Data
* Method
* Frameworks

@,
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£ Acceptance 191112
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Testing < | ;
Eliminate waste -

Waste 201112
e Coding and debugging go hand-in-hand
e Coding effort materializes in the delivered program

e Debugging effort? Evaporates!

Automated tests
e Small programs that capture debugging effort.
* Invested effort is consolidated ...

e ... and can be re-used without effort ad-infinitum

Unit testing
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What is unit testing?

2l

A unit test is ...
o fully automated and repeatable
e easy to write and maintain
* non-intrusive
e documenting
» applies to the simplest piece of software

211112

TestCase

A

Tool support
e JUnit and friends

X X

Y yy =
assert

J

public void testMyMethod ({

L]
LEX N 4

myMethod (x) ;

L]
LEX N 4

Equals ("WRONG”, vy, V)
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Testing goals < =
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Unit testing has the following goals: 22112
e Improve quality
e Test as specification
e Test as bug repellent
e Test as defect localization
e Help to understand
e Test as documentation
* Reduce risk
e Test as a safety net
 Remove fear of change
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Observing unit-testing maturity in the wild < ;
(characterization of the population) -

Organization 231112
e public, financial, logistics
e under contract, in house, product software
e with test departments, without test departments
Architecture & Process
e under architecture, using software factories
e model driven, handwritten
e open source frameworks, other frameworks
 using use-cases/requirements
e with blackbox tools, t-map
Technology
 information systems, embedded
e webbased, desktop apps
e java, c#, 4GL’s, legacy
e |atest trend: in-code asserts (java.spring)
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Stage 1 < | ;
No unit testing -

Observations: 241112
* Very few organizations use unit testing
e Also brand new OO systems without any unit tests
« Small software shops and internal IT departments

* In legacy environments: programmers describe in words what tests they have
done.

Symptoms:

e Code is instable and error-prone
e Lots of effort in post-development testing phases
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Stage 1 < ;
No unit testing -

Excuses: 251112
 “It is just additional code to maintain”
e “The code is changing too much”
* “We have a testing department”
» “Testing can never prove the absence of errors”
» “Testing is too expensive, the customer does not want to pay for it”
* “We have black-box testing”

Junit Report
Action Test S:‘“‘y ) _ .
* Provide standardized framework to lower Cluss Summany - '
threshold _— _ _
 Pay for unit tests as deliverable, not as effort T :

Back to Top

Test Detail for:example.WidgetTestCase

testwidget

testFailure junit.framework.AssertionFailedError LLIECE NS
junitframework
example. Widge
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Stage 2 < ;
Unit test but no coverage measurement -

Observations 261112
e Contract requires unit testing, not enforced
e Revealed during conflicts
e Unit testing receives low priority
» Developers relapse into debugging practices without unit testing
e Good initial intentions, bad execution
 Large service providers

Symptoms:
e Some unit tests available
e Excluded from daily build
e No indication when unit testing is sufficient
e Producing unit test is an option, not a requirement
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Stage 2 < ;
Unit test but no coverage measurement -

Excuses:
e “There is no time, we are under pressure”
» “We are constantly stopped to fix bugs”

Actions
e Start measuring coverage
* Include coverage measurement into nightly build
* Include coverage result reports into process

€3 GLOVER

The industry standard in code
coverage just got seriously better
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Stage 3 Qi ;
Coverage, not approaching 100% -

Observations 281112
e Coverage is measured but gets stuck at 20%-50%
* Ambitious teams, lacking experience
e Code is not structured to be easily unit-testable

Symptoms:
e Complex code in GUI layer
e Libraries in daily build, custom code not in daily build
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Stage 3 < ;
Coverage, not approaching 100% -

Excuses 291112
» “we test our libraries thoroughly, that affects more customers”

Actions:
e Refactor code to make it more easily testable
e Teach advance unit testing patterns
e [nvest in set-up and mock-up

XUNIT TEST
PATTERNS

<=

O'REILLY"

Software Analysis and Tes:




Stage 4 < | ;
Approaching 100%, but no test quality -

Observations 301112
e Formal compliance with contract
e Gaming the metrics
o Off-shored, certified, bureaucratic software factories

Symptoms:
e Empty tests
e Tests without asserts.

e Tests on high-level methods, rather than basic units

* Need unit tests to test unit tests
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Stage 4 < | ;
Approaching 100%, but no test quality -

Anecdotes: 311112

e Tell me how you measure me, and | tell you how | behave
* We have generated our unit tests (at first this seems a stupid idea)

Action:
* Measure test quality
 Number of asserts per unit test
 Number of statements tested per unit test
» Ratio of number of execution paths versus number of tests
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Stage 5 < | ;
Measuring test quality -

Enlightenment: 321112
e Only one organization: a Swiss company
e Measure:
e Production code incorporated in tests
e number of assert and fail statements
e low complexity (not too many ifs)
e The process
e part of daily build
 “stop the line process”, fix bugs first by adding more tests
e happy path and exceptions
 code first, test first, either way
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Testing < | ;
Intermediate conclusion -

Enormous potential for improvement:
* Do unit testing
 Measure coverage
* Measure test quality

 May not help Ariane 5
e Does increase success ratio for “normal” projects

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.
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Randomized Testing < :
(quickcheck) -

Randomized testing: 341112
» QuickCheck: initially developed for Haskell
e Parameterize tests in the test data
» Property = parameterized test
e Generate test data randomly
e Test each property in 100 different ways each time

Test generation

--— | Range of inverse is domain.
prop RngInvDom r

= rng (inv r) == dom r
Fault-injection where

Model-driven testing

types = r::Rel Int Integer
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s testing un-cool? - d

351112
Edsger Wybe Dijkstra (1930 - 2002)

* “Program testing can be used to show the presence of bugs,
but never to show their absence!”

Martin Fowler

* “Don’t let the fear that testing can’t catch all bugs stop you
from writing the tests that will catch most bugs.”
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Simple test metrics - d

Line coverage 361112
e Nr of test lines / nr of tested lines

Decision coverage
e Nr of test methods / Sum of McCabe complexity index

Test granularity
e Nr of test lines / nr of tests

Test efficiency
e Decision coverage / line coverage
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Testing < ;
Exercises -

Write unit tests 371112
e Using JUnit

e E.g. for one of your own projects

Measure coverage
e E.g. using Emma plug-in for Eclipse

Randomize one of your unit tests
e Turn test into property with extract method refactoring
» Write generator for test data
e Instantiate property 100 times with random test data
 Solution to j.visser@sig.eu
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