
Arent Janszoon Ernststraat 595-H
NL-1082 LD Amsterdam
info@sig.nl
www.sig.nl

January 2010
Joost Visser

Software Analysis and Testing
Métodos Formais em Engenharia de Software

2 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Me

CV
• Technical University of Delft, Computer Science, MSc 1997

• University of Leiden, Philosophy, MA 1997

• CWI (Center for Mathematics and Informatics), PhD 2003

• Software Improvement Group, developer, consultant, etc, 2002-2003

• Universidade do Minho, Post-doc, 2004-2007

• Software Improvement Group, Head of Research, 2007-…

Research

• Grammars, traversal, transformation, generation

• Functional programming, rewriting strategies

• Software quality, metrics, reverse engineering

3 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Software Improvement Group

Company
• Spin-off from CWI in 2000, self-owned, independent

• Management consultancy grounded in source code analysis

• Innovative, strong academic background, award-winning, profitable

Services

• Software Risk Assessments (snapshot) and Software Monitoring (continuous)

• Toolset enables to analyze source code in an automated manner

• Experienced staff transforms analysis data into recommendations

• We analyze over 50 systems annually

• Focus on technical quality, primarily maintainability / evolvability

4 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Services

DocGen

Software Monitoring

• Automated generation of technical documentation
• Reduce learning time, assist impact analysis, support migration, …

Software Risk Assessment

• Continuous measurement, feedback, and decision support
• Guard quality from start to finish

• In-depth investigation of software quality and risks
• Answers specific research questions

Software Product Certification
• Five levels of technical quality
• Evaluation by SIG, certification by TÜV Informationstechnik

5 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Who is using our services?

Financial ITLogistics OtherPublic

6 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Structure of the lecture

• Introduction SIG

• General overview of software analysis and testing

• Testing

• Patterns

• Quality & metrics

• Reverse engineering

7 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Software Engineering

requirements analysis
design, code, compile

configure, install

Create Change Analyze

refactor, fix, patch
maintain, renovate

evolve, update, improve

understand, assess
evaluate, test

measure, audit

8 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Software Analysis
(and Testing)

Analysis

Static
Analysis

Dynamic
Analysis

syntax checking
type checking
code metrics

style checking
verification

reverse engineering
decompilation

testing
debugging

program spectra
instrumentation

profiling
benchmarking
log analysis

9 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Is testing un-cool?

Edsger Wybe Dijkstra (1930 - 2002)

• “Program testing can be used to show the presence of bugs,
 but never to show their absence!”
Notes On Structured Programming, 1970

• “Program testing can be a very effective way to show the presence of bugs,
 but is hopelessly inadequate for showing their absence.”
The Humble Programmer, ACM Turing Award Lecture, 1972

Does not mean: “Don’t test!!”

10 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Is testing un-cool?

Industry
• Testers earn less then developers

• Testing is “mechanical”, developing is “creative”

• Testing is done with what remains of the budget in what remains of the time

Academia

• Testing is not part of the curriculum, or very minor part

• Verification is superior to testing

• Verification is more challenging than testing

11 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Software Analysis. How much?

50 - 75%

12 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Software Analysis. Enough?

 $60 × 109

13 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Software Analysis. More?

high profile
low frequency

14 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Software Analysis
Room for improvement?

Standish Group, “The CHAOS Report”

1994

Succeeded

16%

Challenged

53%

Failed

31%

2004

Succeeded

29%

Challenged

53%

Failed

18%

15 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

So

• Testing ⊂ Dynamic analysis ⊂ Analysis ⊂ S.E.

• Analysis is a major and essential part of software engineering

• Inadequate analysis costs billions

⇒
• More effective and more efficient methods are needed

• Interest will keep growing in both industry and research

16 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Structure of the lectures

Analysis

Static
Analysis

Dynamic
Analysis

testingmetrics modelspatterns

17 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

TESTING

18 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Testing

Kinds
• Conformance
• Interoperability
• Performance
• Functional
• White-box
• Black-box
• Acceptance
• Integration
• Unit
• Component
• System
• Smoke
• Stress

Ways
• Manual
• Automated
• Randomized
• Independent
• User
• Developer

With
• Plans
• Harness
• Data
• Method
• Frameworks

19 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Testing
V-model

V-model =
 waterfall-1 • waterfall

No testing while
programming!

20 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Testing
Eliminate waste

Waste
• Coding and debugging go hand-in-hand

• Coding effort materializes in the delivered program

• Debugging effort? Evaporates!

Automated tests

• Small programs that capture debugging effort.

• Invested effort is consolidated …

• … and can be re-used without effort ad-infinitum

Unit testing

21 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

What is unit testing?

A unit test is …
• fully automated and repeatable
• easy to write and maintain
• non-intrusive
• documenting
• applies to the simplest piece of software

Tool support
• JUnit and friends

TestCase

public void testMyMethod {
 X x = …;
 Y y = myMethod(x);
 Y yy = …;
 assertEquals(“WRONG”,yy,y)
}

22 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Testing goals

Unit testing has the following goals:
• Improve quality
• Test as specification
• Test as bug repellent
• Test as defect localization

• Help to understand
• Test as documentation

• Reduce risk
• Test as a safety net
• Remove fear of change

23 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Observing unit-testing maturity in the wild
(characterization of the population)

Organization
• public, financial, logistics
• under contract, in house, product software
• with test departments, without test departments

Architecture & Process
• under architecture, using software factories
• model driven, handwritten
• open source frameworks, other frameworks
• using use-cases/requirements
• with blackbox tools, t-map

Technology
• information systems, embedded
• webbased, desktop apps
• java, c#, 4GL’s, legacy
• latest trend: in-code asserts (java.spring)

24 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Stage 1
No unit testing

Observations:
• Very few organizations use unit testing
• Also brand new OO systems without any unit tests
• Small software shops and internal IT departments
• In legacy environments: programmers describe in words what tests they have

done.

Symptoms:
• Code is instable and error-prone
• Lots of effort in post-development testing phases

25 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Stage 1
No unit testing

Excuses:
• “It is just additional code to maintain”
• “The code is changing too much”
• “We have a testing department”
• “Testing can never prove the absence of errors”
• “Testing is too expensive, the customer does not want to pay for it”
• “We have black-box testing”

Action
• Provide standardized framework to lower

threshold
• Pay for unit tests as deliverable, not as effort

26 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Stage 2
Unit test but no coverage measurement

Observations
• Contract requires unit testing, not enforced
• Revealed during conflicts
• Unit testing receives low priority
• Developers relapse into debugging practices without unit testing
• Good initial intentions, bad execution
• Large service providers

Symptoms:
• Some unit tests available
• Excluded from daily build
• No indication when unit testing is sufficient
• Producing unit test is an option, not a requirement

27 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Stage 2
Unit test but no coverage measurement

Excuses:
• “There is no time, we are under pressure”
• “We are constantly stopped to fix bugs”

Actions
• Start measuring coverage
• Include coverage measurement into nightly build
• Include coverage result reports into process

28 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Stage 3
Coverage, not approaching 100%

Observations
• Coverage is measured but gets stuck at 20%-50%
• Ambitious teams, lacking experience
• Code is not structured to be easily unit-testable

Symptoms:
• Complex code in GUI layer
• Libraries in daily build, custom code not in daily build

29 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Stage 3
Coverage, not approaching 100%

Excuses
• “we test our libraries thoroughly, that affects more customers”

Actions:
• Refactor code to make it more easily testable
• Teach advance unit testing patterns
• Invest in set-up and mock-up

30 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Stage 4
Approaching 100%, but no test quality

Observations
• Formal compliance with contract
• Gaming the metrics
• Off-shored, certified, bureaucratic software factories

Symptoms:
• Empty tests
• Tests without asserts.
• Tests on high-level methods, rather than basic units

• Need unit tests to test unit tests

31 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Stage 4
Approaching 100%, but no test quality

Anecdotes:
• Tell me how you measure me, and I tell you how I behave
• We have generated our unit tests (at first this seems a stupid idea)

Action:
• Measure test quality
• Number of asserts per unit test
• Number of statements tested per unit test
• Ratio of number of execution paths versus number of tests

32 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Stage 5
Measuring test quality

Enlightenment:
• Only one organization: a Swiss company
• Measure:
• Production code incorporated in tests
• number of assert and fail statements
• low complexity (not too many ifs)

• The process
• part of daily build
• “stop the line process”, fix bugs first by adding more tests
• happy path and exceptions
• code first, test first, either way

33 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Testing
Intermediate conclusion

Enormous potential for improvement:
• Do unit testing
• Measure coverage
• Measure test quality

• May not help Ariane 5
• Does increase success ratio for “normal” projects

34 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Randomized Testing
(quickcheck)

Randomized testing:
• QuickCheck: initially developed for Haskell
• Parameterize tests in the test data
• Property = parameterized test
• Generate test data randomly
• Test each property in 100 different ways each time

Test generation

Model-driven testing

Fault-injection

-- | Range of inverse is domain.
prop_RngInvDom r
 = rng (inv r) == dom r
 where
 types = r::Rel Int Integer

35 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Is testing un-cool?

Edsger Wybe Dijkstra (1930 - 2002)

• “Program testing can be used to show the presence of bugs,
 but never to show their absence!”

Martin Fowler
• “Don’t let the fear that testing can’t catch all bugs stop you

from writing the tests that will catch most bugs.”

36 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Simple test metrics

Line coverage
• Nr of test lines / nr of tested lines

Decision coverage
• Nr of test methods / Sum of McCabe complexity index

Test granularity
• Nr of test lines / nr of tests

Test efficiency
• Decision coverage / line coverage

37 I 112

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Testing
Exercises

Write unit tests
• Using JUnit
• E.g. for one of your own projects

Measure coverage
• E.g. using Emma plug-in for Eclipse

Randomize one of your unit tests
• Turn test into property with extract method refactoring
• Write generator for test data
• Instantiate property 100 times with random test data
• Solution to j.visser@sig.eu

