)

=)

Software Analysis and Testing

Métodos Formais em Engenharia de Software

January 2010 Arent Janszoon Ernststraat 595-H
Joost Visser NL-1082 LD Amsterdam
info@sig.nl
www.sig.nl

Q15
Me - =

CVv

e Technical University of Delft, Computer Science, MSc 1997

e University of Leiden, Philosophy, MA 1997

o CWI (Center for Mathematics and Informatics), PhD 2003

o Software Improvement Group, developer, consultant, etc, 2002-2003

» Universidade do Minho, Post-doc, 2004-2007

» Software Improvement Group, Head of Research, 2007-...
Research

o Grammars, traversal, transformation, generation

e Functional programming, rewriting strategies

» Software quality, metrics, reverse engineering

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

21112

< 4« TN
Software Improvement Group - .

Company 31112
o Spin-off from CWI in 2000, self-owned, independent

* Management consultancy grounded in source code analysis

 Innovative, strong academic background, award-winning, profitable
Services

» Software Risk Assessments (snapshot) and Software Monitoring (continuous)
» Toolset enables to analyze source code in an automated manner

e Experienced staff transforms analysis data into recommendations

* We analyze over 50 systems annually

e Focus on technical quality, primarily maintainability / evolvability

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Services

JIr

41112
DocGen

» Automated generation of technical documentation
* Reduce learning time, assist impact analysis, support migration, ...

Software Risk Assessment

 In-depth investigation of software quality and risks
* Answers specific research questions

Software Monitoring

» Continuous measurement, feedback, and decision support
e Guard quality from start to finish

Software Product Certification

» Five levels of technical quality
« Evaluation by SIG, certification by TUV Informationstechnik

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Who is using our services?

)

o

51112

Other

-~

ENECO
znergle
PRICEWATERHOUSE(COPERS

KPME'

Gasunie

g
'_Ij.I.O

Financial Public Logistics IT
i » - 5 < £ < _E
F ABN-AMRO f&cm Raad voor Rechtsbijstand K.I.__.I.VI Gelt’g::::ccade
N VROM [CENTRIC
ING i) @org enekerheia I m e ©
O 7 @ Capgemini e |
‘Rabobank ™M InterBank m crmmmmmmm— -essent”
KREDIET WAAR JE LANGER MEE GENIET p% L I T I E z
-’ gxac T
: = EUROMAX software
achmea n ZwitserLeven . Aty
cwi —— — —
= Friesland Bank delta lloyd A2 norfolkiine SEa T
/2
A Rl o
Legsepion Allianz @) == DProRagil CH
soterpolis QJ - oglcacmia
-4 kadaster

Belastingdienst

Alcatel-Lucent @

JIr

Structure of the lecture

 Introduction SIG

» General overview of software analysis and testing
e Testing

e Patterns

e Quality & metrics

* Reverse engineering

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

61112

Software Engineering <
au

requirements analysis refactor, fix, patch understand, assess
design, code, compile maintain, renovate evaluate, test
configure, install evolve, update, improve measure, audit

—

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Software Analysis < ;
(and Testing) -

81112

Analysis

Static Dynamic
Analysis Analysis

syntax checking testing
type checkina aepbugyiny
code metrics program spectra
style checkiiiy instrumentation
verification profiling
reverse engineering benchmarking
decompilation |og analysis

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Is testing un-cool?

Edsger Wybe Dijkstra (1930 - 2002)

* “Program testing can be used to show the presence of bugs,
but never to show their absence!”
Notes On Structured Programming, 1970

* “Program testing can be a very effective way to show the presence of bugs,
but is hopelessly inadequate for showing their absence.”
The Humble Programmer, ACM Turing Award Lecture, 1972

Does not mean: “Don’t test!!”

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

< 4« TN
Is testing un-cool? - -

Industry 101112
e Testers earn less then developers
e Testing is “mechanical’, developing is “creative”

e Testing is done with what remains of the budget in what remains of the time

Academia
e Testing is not part of the curriculum, or very minor part
* Verification is superior to testing

 Verification is more challenging than testing

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Software Analysis. How much? < -
- ol
D

C"
I — T

o d& \ 111112

\QQQ\ N '\ QO
R QG@Q@\‘\

& &
g 50 - 75%
c,o
In a typical commercial development organization, the cost of
providing [the assurance that the program will perform
satisfactorily in terms of its functional and nonfunctional
specifications within the expected deployment environments]
via appropriate debugging, testing, and verification activities
can easily range from 50 to /5 percent of the total

development cost. (Hailpern and Santhanam, 2002)

Software Analysis. Enough? < .
-l

D
m’
& g®
& o S |
'«&% é‘g‘a&s
0@‘ °°\\Q°\° 121112
¥ S

&7 ® e
e $60 x 10°

Table ES-4. Costs of Inadequate Software Testing Infrastructure on the National Economy

The Cost of Inadequate Software Potential Cost Reduction from Feasible
Testing Infrastructure Infrastructure Improvements
(billions) (billions)
Software developers $21.2 $10.6
Software users $38.3 $11.7
Total $59.5 $22.2

of total impacts, and software users accounted for the about
60 percent.

: |
Software Analysis. More? (
- ol
D
v
& @
& o S I
.@?’ & s
N W ® 131112
N PN PG
) <. \@ o
S
0]]
e high profile
° |
F low frequency .
o v N AN
& T v " L ROAN
¢ e 0 A LR AR
R\ & : RAVA |
Table 1-4. Recent Aerospace Losses due to Software Failures
Ariane 5 Galileo Lewis
Poseidon Pathfinder Zenit 2 Delta 3 DS-1 Orion 3
Airbus A320 Flight 965 USAF Step Near Galileo Titan 4B
(1993) (1996) (1997) (1998) {(1999)
Aggregate cost § 640 million $116.8 million §255 million §1.6 billion
Loss of life 3 160

Loss of data Yes Yes Yes Yes

Software Analysis <
Room for improvement? -

P T
P BT R et
A R A
e S e B
" : . l:‘,"_ KGR
L N Y AR et e

141112

1994 2004

Succeeded
16%

Succeeded

0
Failed 29%

Challenged
53% Challenged

53%

Standish Group, “The CHAOS Report”

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

JIr

151112

So

e Testing C Dynamic analysis C Analysis C S.E.
* Analysis is a major and essential part of software engineering

* Inadequate analysis costs billions

=

» More effective and more efficient methods are needed

* Interest will keep growing in both industry and research

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Jr

Structure of the lectures

Analysis

161112

Static Dynamic
Analysis Analysis

metrics fpatterns @ models testing

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

TESTING

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

171112

Testing

2l

Kinds
e Conformance
e Interoperability
* Performance
e Functional
* White-box
» Black-box
e Acceptance
e Integration
e Unit
e Component
e System
e Smoke
e Stress

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Ways
 Manual
e Automated
e Randomized
* Independent
e User
e Developer

With
* Plans
e Harness
e Data
* Method
* Frameworks

@,

181112

Testing
V-model

£ Acceptance 191112

~

Requlrementsi Acceptance) /
N N . Testng
> i & &
— — s
\ /
\ ’
y— — —
/ / N\ N
/ System \ _ System | A System \
\ Design L ------ ',”\ L =P Testing
/ 7 . /
7 ~ J L
— e e
\ I
\ !
. o /
) e . . ~%
/' Architecture '\ J " Integration __ _____ " Integration
' Design \ TestDesign | | Testing ’
>,_‘*A - . — ——
\ ’
\ ’
\ ’
\ ’
y — —F
Module Unit
Design Testing
<= —
\ ’
\ ’
/

No testing while
e programming!

, A ur' Coding n— -r

Testing < | ;
Eliminate waste -

Waste 201112
e Coding and debugging go hand-in-hand
e Coding effort materializes in the delivered program

e Debugging effort? Evaporates!

Automated tests
e Small programs that capture debugging effort.
* Invested effort is consolidated ...

e ... and can be re-used without effort ad-infinitum

Unit testing

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

What is unit testing?

2l

A unit test is ...
o fully automated and repeatable
e easy to write and maintain
* non-intrusive
e documenting
» applies to the simplest piece of software

211112

TestCase

A

Tool support
e JUnit and friends

X X

Y yy =
assert

J

public void testMyMethod ({

L]
LEX N 4

myMethod (x) ;

L]
LEX N 4

Equals ("WRONG”, vy, V)

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Testing goals < =
- ol

Unit testing has the following goals: 22112
e Improve quality
e Test as specification
e Test as bug repellent
e Test as defect localization
e Help to understand
e Test as documentation
* Reduce risk
e Test as a safety net
 Remove fear of change

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Observing unit-testing maturity in the wild < ;
(characterization of the population) -

Organization 231112
e public, financial, logistics
e under contract, in house, product software
e with test departments, without test departments
Architecture & Process
e under architecture, using software factories
e model driven, handwritten
e open source frameworks, other frameworks
 using use-cases/requirements
e with blackbox tools, t-map
Technology
 information systems, embedded
e webbased, desktop apps
e java, c#, 4GL’s, legacy
e |atest trend: in-code asserts (java.spring)

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Stage 1 < | ;
No unit testing -

Observations: 241112
* Very few organizations use unit testing
e Also brand new OO systems without any unit tests
« Small software shops and internal IT departments

* In legacy environments: programmers describe in words what tests they have
done.

Symptoms:

e Code is instable and error-prone
e Lots of effort in post-development testing phases

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Stage 1 < ;
No unit testing -

Excuses: 251112
 “It is just additional code to maintain”
e “The code is changing too much”
* “We have a testing department”
» “Testing can never prove the absence of errors”
» “Testing is too expensive, the customer does not want to pay for it”
* “We have black-box testing”

Junit Report
Action Test S:‘“‘y) _ .
* Provide standardized framework to lower Cluss Summany - '
threshold _— _ _
 Pay for unit tests as deliverable, not as effort T :

Back to Top

Test Detail for:example.WidgetTestCase

testwidget

testFailure junit.framework.AssertionFailedError LLIECE NS
junitframework
example. Widge

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Soar—r

Stage 2 < ;
Unit test but no coverage measurement -

Observations 261112
e Contract requires unit testing, not enforced
e Revealed during conflicts
e Unit testing receives low priority
» Developers relapse into debugging practices without unit testing
e Good initial intentions, bad execution
 Large service providers

Symptoms:
e Some unit tests available
e Excluded from daily build
e No indication when unit testing is sufficient
e Producing unit test is an option, not a requirement

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Stage 2 < ;
Unit test but no coverage measurement -

Excuses:
e “There is no time, we are under pressure”
» “We are constantly stopped to fix bugs”

Actions
e Start measuring coverage
* Include coverage measurement into nightly build
* Include coverage result reports into process

€3 GLOVER

The industry standard in code
coverage just got seriously better

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

271112

Stage 3 Qi ;
Coverage, not approaching 100% -

Observations 281112
e Coverage is measured but gets stuck at 20%-50%
* Ambitious teams, lacking experience
e Code is not structured to be easily unit-testable

Symptoms:
e Complex code in GUI layer
e Libraries in daily build, custom code not in daily build

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Stage 3 < ;
Coverage, not approaching 100% -

Excuses 291112
» “we test our libraries thoroughly, that affects more customers”

Actions:
e Refactor code to make it more easily testable
e Teach advance unit testing patterns
e [nvest in set-up and mock-up

XUNIT TEST
PATTERNS

<=

O'REILLY"

Software Analysis and Tes:

Stage 4 < | ;
Approaching 100%, but no test quality -

Observations 301112
e Formal compliance with contract
e Gaming the metrics
o Off-shored, certified, bureaucratic software factories

Symptoms:
e Empty tests
e Tests without asserts.

e Tests on high-level methods, rather than basic units

* Need unit tests to test unit tests

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Stage 4 < | ;
Approaching 100%, but no test quality -

Anecdotes: 311112

e Tell me how you measure me, and | tell you how | behave
* We have generated our unit tests (at first this seems a stupid idea)

Action:
* Measure test quality
 Number of asserts per unit test
 Number of statements tested per unit test
» Ratio of number of execution paths versus number of tests

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Stage 5 < | ;
Measuring test quality -

Enlightenment: 321112
e Only one organization: a Swiss company
e Measure:
e Production code incorporated in tests
e number of assert and fail statements
e low complexity (not too many ifs)
e The process
e part of daily build
 “stop the line process”, fix bugs first by adding more tests
e happy path and exceptions
 code first, test first, either way

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Testing < | ;
Intermediate conclusion -

Enormous potential for improvement:
* Do unit testing
 Measure coverage
* Measure test quality

 May not help Ariane 5
e Does increase success ratio for “normal” projects

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

331112

Randomized Testing < :
(quickcheck) -

Randomized testing: 341112
» QuickCheck: initially developed for Haskell
e Parameterize tests in the test data
» Property = parameterized test
e Generate test data randomly
e Test each property in 100 different ways each time

Test generation

--— | Range of inverse is domain.
prop RngInvDom r

= rng (inv r) == dom r
Fault-injection where

Model-driven testing

types = r::Rel Int Integer

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

< .y
s testing un-cool? - d

351112
Edsger Wybe Dijkstra (1930 - 2002)

* “Program testing can be used to show the presence of bugs,
but never to show their absence!”

Martin Fowler

* “Don’t let the fear that testing can’t catch all bugs stop you
from writing the tests that will catch most bugs.”

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Jir
Simple test metrics - d

Line coverage 361112
e Nr of test lines / nr of tested lines

Decision coverage
e Nr of test methods / Sum of McCabe complexity index

Test granularity
e Nr of test lines / nr of tests

Test efficiency
e Decision coverage / line coverage

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

Testing < ;
Exercises -

Write unit tests 371112
e Using JUnit

e E.g. for one of your own projects

Measure coverage
e E.g. using Emma plug-in for Eclipse

Randomize one of your unit tests
e Turn test into property with extract method refactoring
» Write generator for test data
e Instantiate property 100 times with random test data
 Solution to j.visser@sig.eu

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2010.

