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this course in a nutshell

Languages and tools for (formal) so�ware design:
I Languages to model the system being designed
I Languages to specify the expected properties
I Techniques and tools to analyse the design
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formal software design

The design is a high-level abstraction of the desired system
A programming language is not adequate for so�ware design
The language of mathematics, logic, is a much better alternative
It enables a formal approach to so�ware design

Leslie Lamport

“If you’re not writing a program, don’t use a programming language”
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typical analyses

Simulate the design to validate and elicit requirements
Check consistency of requirements
Verify expected properties
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target applications

Sequential algorithms
Reactive systems
Distributed protocols
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sequential algorithms

Specification with pre- and post-conditions
Deductive verification with Hoare logic
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reactive systems

Typically non terminating systems reacting to environment
Cannot be specified with pre- and post-conditions
Non-determinism due to environment action
Specifications can be very complex temporal properties
Not amenable for deductive verification
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distributed protocols

Several processes running concurrently in independent processors
Communicating with message passing
Local computation with simple algorithms
Non-determinism due to interleaving
Specifications are mostly invariants and simple progress properties
Deductive verification possible but not easy
I Most invariants are non inductive
I Must specify variants to verify progress
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model checking

Fully automatic verification technique for temporal properties
Either the specification is true or a counter-example is returned
No need to guess inductive invariants or variants
But unlike deductive verification it requires a finite state space
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leader election in a ring

Verify the correctness of the protocol:

One leader will be elected
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chord distributed hash-table

Explore variants of the protocol and verify correctness:

If joins and failures cease, the network will eventually become a ring
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alloy4fun

Explore design alternatives and elicit data invariants:

Non-shared stored models can have at most one derivation
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same origin policy

Understand and verify the policy:

Resources can only access resources from the same origin
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hybrid ertms/etcs level 3

Verify the design of a railway tra�ic management system:

Assigned movement authorities are safe
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logics

First-order logic

The fundamental logic to specify properties about states

Relational logic

A variant of FOL better suited for so�ware design, where the state is typically
described by relationships between concepts or objects

Temporal logic

A logic to specify properties about behaviours
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analysis techniques

Model-checking

Automatic verification of temporal properties

Model-finding

Automatic generation of structures satisfying a set of constraints
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main languages and tools

Alloy

Native support for sets and relations, relational logic, and model-finding
Good for the design of complex (graph-like) structures

Electrum (soon Alloy 6)

Extends Alloy with temporal logic and model-checking
Good for the design of systems with complex structures and many configurations
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other languages and tools

SMV

The quintessential model-checker, with support to various temporal logics
Good for the design of simple reactive systems or as a back-end analysis tool

TLA+

Supports many data-types and (limited) temporal logic specifications
Good for the design of distributed and concurrent algorithms
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assessment

One individual test (60%, >= 8)
Several in-class individual assignments (20%)
One take-home group assignment (20%)
The exam replaces the test only
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