
Alcino Cunha

specification and modeling
introduction

Universidade do Minho & INESC TEC

2019/20



motivation



specification and modeling /motivation 3 / 22

this course in a nutshell

Languages and tools for (formal) so�ware design:
I Languages to model the system being designed
I Languages to specify the expected properties
I Techniques and tools to analyse the design



specification and modeling /motivation 4 / 22

formal software design

The design is a high-level abstraction of the desired system
A programming language is not adequate for so�ware design
The language of mathematics, logic, is a much better alternative
It enables a formal approach to so�ware design

Leslie Lamport

“If you’re not writing a program, don’t use a programming language”



specification and modeling /motivation 5 / 22

typical analyses

Simulate the design to validate and elicit requirements
Check consistency of requirements
Verify expected properties



specification and modeling /motivation 6 / 22

target applications

Sequential algorithms
Reactive systems
Distributed protocols



specification and modeling /motivation 7 / 22

sequential algorithms

Specification with pre- and post-conditions
Deductive verification with Hoare logic



specification and modeling /motivation 8 / 22

reactive systems

Typically non terminating systems reacting to environment
Cannot be specified with pre- and post-conditions
Non-determinism due to environment action
Specifications can be very complex temporal properties
Not amenable for deductive verification



specification and modeling /motivation 9 / 22

distributed protocols

Several processes running concurrently in independent processors
Communicating with message passing
Local computation with simple algorithms
Non-determinism due to interleaving
Specifications are mostly invariants and simple progress properties
Deductive verification possible but not easy
I Most invariants are non inductive
I Must specify variants to verify progress



specification and modeling /motivation 10 / 22

model checking

Fully automatic verification technique for temporal properties
Either the specification is true or a counter-example is returned
No need to guess inductive invariants or variants
But unlike deductive verification it requires a finite state space



examples



specification and modeling / examples 12 / 22

leader election in a ring

Verify the correctness of the protocol:

One leader will be elected



specification and modeling / examples 13 / 22

chord distributed hash-table

Explore variants of the protocol and verify correctness:

If joins and failures cease, the network will eventually become a ring



specification and modeling / examples 14 / 22

alloy4fun

Explore design alternatives and elicit data invariants:

Non-shared stored models can have at most one derivation



specification and modeling / examples 15 / 22

same origin policy

Understand and verify the policy:

Resources can only access resources from the same origin



specification and modeling / examples 16 / 22

hybrid ertms/etcs level 3

Verify the design of a railway tra�ic management system:

Assigned movement authorities are safe



syllabus and assessment



specification and modeling / syllabus and assessment 18 / 22

logics

First-order logic

The fundamental logic to specify properties about states

Relational logic

A variant of FOL better suited for so�ware design, where the state is typically
described by relationships between concepts or objects

Temporal logic

A logic to specify properties about behaviours



specification and modeling / syllabus and assessment 19 / 22

analysis techniques

Model-checking

Automatic verification of temporal properties

Model-finding

Automatic generation of structures satisfying a set of constraints



specification and modeling / syllabus and assessment 20 / 22

main languages and tools

Alloy

Native support for sets and relations, relational logic, and model-finding
Good for the design of complex (graph-like) structures

Electrum (soon Alloy 6)

Extends Alloy with temporal logic and model-checking
Good for the design of systems with complex structures and many configurations



specification and modeling / syllabus and assessment 21 / 22

other languages and tools

SMV

The quintessential model-checker, with support to various temporal logics
Good for the design of simple reactive systems or as a back-end analysis tool

TLA+

Supports many data-types and (limited) temporal logic specifications
Good for the design of distributed and concurrent algorithms



specification and modeling / syllabus and assessment 22 / 22

assessment

One individual test (60%, >= 8)
Several in-class individual assignments (20%)
One take-home group assignment (20%)
The exam replaces the test only


	Motivation
	Examples
	Syllabus and Assessment

