Alcino Cunha

SPECIFICATION AND MODELING

FIRST-ORDER LOGIC

Universidade do Minho \& INESC TEC
2019/20

FROM PROPOSITIONAL TO FIRST-ORDER LOGIC

- Introduces a domain or universe of discourse
- Generalize propositional symbols to predicates
- Allows quantifiers and variables ranging over the domain

Propositional logic

Worker1_Prepared \wedge Worker2_Prepared
Worker2_working_on_Task1

First-order logic
Prepared(Worker1) ^ Prepared(Worker2)
working_on(Worker2, Task1)
$\forall x$.Prepared(x)

PREDICATES (AKA SETS AND RELATIONS)

Prepared(Worker1)	$=\top$
Prepared(Worker2)	$=\top$
Prepared(_)	$=\perp$
working_on(Worker1, Task1)	$=\top$
working_on(Worker1, Task2)	$=\top$
working_on(Worker2, Task3)	$=\top$
working_on(_,_)	$=\perp$

$$
\begin{aligned}
\text { Prepared } & =\{(\text { Worker1 }),(\text { Worker } 2)\} \\
\text { working_on } & =\{(\text { Worker1, Task1),(Worker1, Task2),(Worker2, Task3) }
\end{aligned}
$$

Category	Identifier
Variables	x, y, z, \ldots
Constants	a, b, c, \ldots
Predicates	P, Q, R, \ldots
Terms	t, u, v, \ldots
Formulas	$\phi, \varphi, \psi, \ldots$

SYNTAX

$$
\begin{array}{ccl}
t & ::= & x \\
& & c \\
\phi & ::= & P\left(t_{1}, \ldots, t_{\operatorname{ar}(P)}\right) \\
& t=u \\
& T \\
& \perp \\
& \neg \phi \\
& \phi_{1} \wedge \phi_{2} \\
& \phi_{1} \vee \phi_{2} \\
& \phi_{1} \rightarrow \phi_{2} \\
& \forall x \cdot \phi \\
& \exists x \cdot \phi
\end{array}
$$

FIRST-ORDER STRUCTURES AND VARIABLE ASSIGNMENTS

- The semantics of a first-order formula is defined over a first-order structure \mathcal{U}, \mathcal{M} where:
- \mathcal{U} is a non-empty domain (or universe) of interpretation with equality
- \mathcal{M} is an interpretation (model) for constants, predicates, and variables:
- $\mathcal{M}(c) \in \mathcal{U}$
- $\mathcal{M}(x) \in \mathcal{U}$
- $\mathcal{M}(P) \subseteq \mathcal{U}^{\text {ar(}(P)}$
- The fact that a formula ϕ is valid in a model \mathcal{M} with universe \mathcal{U} is denoted by $\mathcal{U}, \mathcal{M} \mid=\phi$
- When \mathcal{U} is implicit or clear from context we write just $\mathcal{M} \vDash \phi$

EXAMPLE

- Assuming:
- $\mathcal{U}=\{$ Worker1, Worker2, Task1, Task2 $\}$
- $\mathcal{M}($ Worker $)=\{($ Worker 1$),($ Worker 2$)\}$
- $\mathcal{M}($ Task $)=\{($ Task1 $),($ Task 2$)\}$
- $\mathcal{M}($ Prepared $)=\{($ worker 1$),($ Worker 2$)\}$
- $\mathcal{M}($ working_on $)=\{($ Worker 2, Task1 $)\}$
- We have:

$$
\begin{aligned}
& \mathcal{M} \mid=\forall x \cdot \text { Worker }(x) \vee \operatorname{Task}(x) \\
& \mathcal{M} \vDash \forall x \cdot \operatorname{Worker}(x) \rightarrow \operatorname{Prepared}(x) \\
& \mathcal{M} \not \vDash \forall x \cdot \operatorname{Worker}(x) \rightarrow \exists y \cdot \operatorname{Task}(y) \wedge \text { working_on }(x, y)
\end{aligned}
$$

SEMANTICS

$$
\begin{array}{rll}
\mathcal{M} \mid=P\left(t_{1}, \ldots, t_{n}\right) & \text { iff } & \left(\mathcal{M}\left(t_{1}\right), \ldots, \mathcal{M}\left(t_{n}\right) \in \mathcal{M}(P)\right. \\
\mathcal{M} \mid=t=u & \text { iff } & \mathcal{M}(t)=\mathcal{M}(u) \\
\mathcal{M} \mid=\top & & \\
\mathcal{M} \not \vDash \perp & & \\
\mathcal{M} \mid=\neg \phi & \text { iff } & \mathcal{M} \not \equiv \phi \\
\mathcal{M} \mid=\phi_{1} \wedge \phi_{2} & \text { iff } & \mathcal{M} \mid=\phi_{1} \text { and } \mathcal{M} \mid=\phi_{2} \\
\mathcal{M} \mid=\phi_{1} \vee \phi_{2} & \text { iff } & \mathcal{M} \mid=\phi_{1} \text { or } \mathcal{M} \mid=\phi_{2} \\
\mathcal{M}=\phi_{1} \rightarrow \phi_{2} & \text { iff } & \mathcal{M} \mid \vDash \phi \text { or } \mathcal{M} \mid=\phi_{2} \\
\mathcal{M} \mid=\forall x \cdot \phi & \text { iff } & \mathcal{M}[x \mapsto a] \mid=\phi \text { for all } a \in \mathcal{U} \\
\mathcal{M} \mid=\exists x \cdot \phi & \text { iff } & \mathcal{M}[x \mapsto a] \mid=\phi \text { for some } a \in \mathcal{U}
\end{array}
$$

FIRST-ORDER LOGIC IN ALLOY

- The universe is a set of uninterpreted atoms
- No constants and no functions
- No false nor true
- Quantifications always range over a unary predicate

$$
\begin{aligned}
\phi & ::= \\
\mid & P\left(x_{1}, \ldots, x_{\operatorname{ar}(P)}\right) \\
\mid & \neg \phi \\
\mid & \phi_{1} \wedge \phi_{2} \\
\mid & \phi_{1} \vee \phi_{2} \\
\mid & \phi_{1} \rightarrow \phi_{2} \\
\mid & \forall x \cdot P(x) \rightarrow \phi \\
\mid & \exists x \cdot P(x) \wedge \phi
\end{aligned}
$$

FIRST-ORDER LOGIC SYNTAX IN ALLOY

Alloy	Math
$x_{1}->\ldots->x_{n}$ in P	$P\left(x_{1}, \ldots, x_{n}\right)$
$x_{1}->\ldots->x_{n}$ not in P	$\neg P\left(x_{1}, \ldots, x_{n}\right)$
$x=y$	$x=y$
$x!=y$	$\neg(x=y)$
not ϕ	$\neg \phi$
ϕ_{1} and ϕ_{2}	$\phi_{1} \wedge \phi_{2}$
ϕ_{1} or ϕ_{2}	$\phi_{1} \vee \phi_{2}$
ϕ_{1} implies ϕ_{2}	$\phi_{1} \rightarrow \phi_{2}$
all $x: P \mid \phi$	$\forall x \cdot P(x) \rightarrow \phi$
some $x: P \mid \phi$	$\exists x \cdot P(x) \wedge \phi$

PREDICATE DECLARATIONS IN ALLOY

- Unary predicates are known as signatures or sets
- Declared with the sig keyword
- Sub-set signatures are declared with the in keyword
- Predicates of higher arity are known as relations
- Declared inside signatures

```
sig Worker {
    working_on : set Task
}
sig Prepared in Worker {}
sig Committed in Prepared {}
sig Aborted in Worker {}
sig Task {}
```


PREDICATE DECLARATIONS IN ALLOY

- Declarations induce a set of implicit "typing" constraints
- Top-level (non sub-set) signatures are disjoint
- Sub-set signatures are indeed sub-sets of the parent signature
- Relations only contain tuples of the correct signatures
- Some special predicates are pre-defined
- univ is the union of all top-level signatures
- none is the empty set
- iden is the identity binary relation over univ

FORMULA EXAMPLES

-- There are no prepared workers
all w : Worker | w not in Prepared
-- Every worker is either committed or aborted
all w : Worker | w in Committed or w in Aborted
all w : Worker | w in Committed implies w not in Aborted
-- No worker is working on a task
all w : Worker | all t : Task | w->t not in working_on
-- Every worker is working on at least one task
all w : Worker | some t : Task | w->t in working_on
-- Every worker is working on at most one task
all w : Worker, t,u : Task | w->t in working_on and w->u in working_on implies $\mathrm{t}=\mathrm{u}$

WHAT ABOUT SET INCLUSION AND SET OPERATORS?

- Set inclusion can be defined in first-order logic

$$
A \subseteq B \equiv \forall x \cdot A(x) \rightarrow B(x)
$$

- Set operators act like combinators that build more complex (unary) predicates out of simpler ones

$$
(A \cup B)(x) \equiv A(x) \vee B(x)
$$

- These (and other) combinators simplify the specification of constraints
- They will be the subject of our next class about relational logic, the logic of Alloy!

