
Information Retrieval using the Boolean Model

Adapted by Alberto Simões
ambs@di.uminho.pt

Original slides by Hinrich Schütze, Universität Stuttgart

April 19, 2008

Alberto Simões Information Retrieval using the Boolean Model

ambs@di.uminho.pt

IR using the Boolean model

Queries are Boolean expressions, e.g., Caesar AND Brutus

The search engine returns all documents that satisfy the
Boolean expression

Does Google use the Boolean model?

Alberto Simões Information Retrieval using the Boolean Model

Unstructured data in 1650

Which plays of Shakespeare contain the words
Brutus AND Caesar BUT NOT Calpurnia?

One could grep all of Shakespeare’s play for Brutus and
Caesar, then strip out lines containing Calpurnia?

slow (for large corpora);
NOT Calpurnia is non-trivial;
Other operations (e.g., find the word Romans near
Countrymen) not feasible;
Ranked retrieval (best documents to return).

Alberto Simões Information Retrieval using the Boolean Model

Term-Document Incidence

Example

Brutus AND Caesar but NOT Calpurnia

Antony and Julius The Hamlet Othelo Macbeth
Cleopatra Caesar Tempest

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

1 if play contains word, 0 otherwise

Alberto Simões Information Retrieval using the Boolean Model

Incidence Vectors

So we have a 0/1 vector for each term.

To answer query: take the vector for Brutus, Caesar and
Calpurnia (complemented) and perform a bitwise AND.

110100 AND 110111 AND 101111 = 100100.

Alberto Simões Information Retrieval using the Boolean Model

Answers to query

Antony and Cleopatra, Act III, Scene ii

Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,
When Antony found Julius Caesar dead,
He cried almost to roaring; and he wept

When at Philippi he found Brutus slain.

Hamlet, Act III, Scene ii

Lord Polonius: I did enact Julius Caesar I was killed i’the

Capitol; Brutus killed me.

Alberto Simões Information Retrieval using the Boolean Model

Bigger corpora

Consider N = 1M documents, each with about 1K terms.

Average 6bytes/term including spaces and punctuation:

6GB of data in the documents.

Say there are m = 500K distinct terms among these.

Alberto Simões Information Retrieval using the Boolean Model

Can’t build the matrix

500K × 1M matrix has half-a-trillion 0’s and 1’s;

But it has no more than one billion 1’s.

matrix is extremely sparse. (but why?)

What’s a better representation?

We only record the 1 positions.

Alberto Simões Information Retrieval using the Boolean Model

Inverted Index

For each term T , we must store a list of all documents that
contain T .

Do we use an array or a list for this?

Brutus ⇒ 2 4 8 16 32 64 128

Calpurnia ⇒ 1 2 3 5 8 13 21 34

Caesar ⇒ 13 16

Updating...

What happens if the word Caesar is added to document 14?

Alberto Simões Information Retrieval using the Boolean Model

Inverted index construction

Friends, Romans, countrymen

Tokenizer

Linguistic
modules

Indexer

Friends Romans Countrymen

friend roman countryman

friend
roman

countryman 13 16 ...

21 ...

2 4 ...

Documents
to be indexes.

Token stream

Modified tokens

Inverted Index

Alberto Simões Information Retrieval using the Boolean Model

Indexer steps

Sequence of (modified token, document ID) pairs.

Doc1: I did enact
Julius Caesar. I was
Killed I’ the Capitol;
Brutus killed me.

+

Doc2: So let it be
with Caesar. The
noble Brutus hath
told you Caesar was
ambitious.

⇒

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
I’ 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2
.

Alberto Simões Information Retrieval using the Boolean Model

Indexer steps

Sort by terms (Core indexing step)

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
I’ 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2
.

⇒

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 2
I 1
I 1
I’ 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2
.

Alberto Simões Information Retrieval using the Boolean Model

Indexer steps

Multiple term entries in a single document are merged.
Frequency information id added (why frequency?)

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 2
I 1
I 1
I’ 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2
.

⇒

Term Doc # Term Freq
ambitious 2 1
be 2 1
brutus 1 1
brutus 2 1
capitol 1 1
caesar 1 1
caesar 2 2
did 1 1
enact 1 1
hath 2 1
I 1 2
I’ 1 1
it 2 1
julius 1 1
killed 1 2
let 2 1
me 1 1
noble 2 1
so 2 1
the 1 1
the 2 1
told 2 1
you 2 1
was 1 1
was 2 1
with 2 1
.Alberto Simões Information Retrieval using the Boolean Model

term docID freq
ambitious 2 1
be 2 1
brutus 1 1
brutus 2 1
capitol 1 1
caesar 1 1
caesar 2 2
did 1 1
enact 1 1
hath 2 1
I 1 2
i’ 1 1
it 2 1
julius 1 1
killed 1 2
let 2 1
me 1 1
noble 2 1
so 2 1
the 1 1
the 2 1
told 2 1
you 2 1
was 1 1
was 2 1
with 2 1

=⇒

term coll. freq. → postings lists

ambitious 1 → 2

be 1 → 2

brutus 2 → 1 → 2

capitol 1 → 1

caesar 3 → 1 → 2

did 1 → 1

enact 1 → 1

hath 1 → 2

I 2 → 1

i’ 1 → 1

it 1 → 2

julius 1 → 1

killed 2 → 1

let 1 → 2

me 1 → 1

noble 1 → 2

so 1 → 2

the 2 → 1 → 2

told 1 → 2

you 1 → 2

was 2 → 1 → 2

with 1 → 2

Indexer steps

The result is split into a Dictionary file and a Postings file.

Term Doc # TermF
ambitious 2 1
be 2 1
brutus 1 1
brutus 2 1
capitol 1 1
caesar 1 1
caesar 2 2
did 1 1
enact 1 1
hath 2 1
I 1 2
I’ 1 1
it 2 1
julius 1 1
killed 1 2
let 2 1
me 1 1
noble 2 1
so 2 1
the 1 1
the 2 1
told 2 1
you 2 1
was 1 1
was 2 1
with 2 1
.

⇒

Term #Docs Col.F
ambitious 1 1
be 1 1
brutus 2 2
capitol 1 1
caesar 2 3
did 1 1
enact 1 1
hath 1 1
I 1 2
I’ 1 1
it 1 1
julius 1 1
killed 1 2
let 1 1
me 1 1
noble 1 1
so 1 1
the 1 1
the 1 1
told 1 1
you 1 1
was 2 2
with 1 1
.

Doc # TermF
→ 2 1
→ 2 1
→ 1 1
→ 2 1
→ 1 1
→ 1 1
→ 2 2
→ 1 1
→ 1 1
→ 2 1
→ 1 2
→ 1 1
→ 2 1
→ 1 1
→ 1 2
→ 2 1
→ 1 1
→ 2 1
→ 2 1
→ 1 1
→ 2 1
→ 2 1
→ 2 1
→ 1 1
→ 2 1
→ 2 1

.

Alberto Simões Information Retrieval using the Boolean Model

Where do we pay in storage?

Store terms just once, using pointers between tables.

Term #Docs Col.F
ambitious 1 1
be 1 1
brutus 2 2
capitol 1 1
caesar 2 3
did 1 1
enact 1 1
hath 1 1
I 1 2
I’ 1 1
it 1 1
julius 1 1
killed 1 2
let 1 1
me 1 1
noble 1 1
so 1 1
the 1 1
the 1 1
told 1 1
you 1 1
was 2 2
with 1 1
.

Doc # TermF
→ 2 1
→ 2 1
→ 1 1
→ 2 1
→ 1 1
→ 1 1
→ 2 2
→ 1 1
→ 1 1
→ 2 1
→ 1 2
→ 1 1
→ 2 1
→ 1 1
→ 1 2
→ 2 1
→ 1 1
→ 2 1
→ 2 1
→ 1 1
→ 2 1
→ 2 1
→ 2 1
→ 1 1
→ 2 1
→ 2 1

.

Alberto Simões Information Retrieval using the Boolean Model

The index we just built

How do we process a query?

Alberto Simões Information Retrieval using the Boolean Model

Query processing: AND

Consider processing the query:
Brutus AND Caesar

Locate Brutus in the Dictionary;

Retrieve its postings.

Locate Caesar in the Dictionary;

Retrieve its postings.

“Merge” the two postings:

2 → 4 → 8 → 16 → 32 → 64 → 127 Brutus

1 → 2 → 3 → 5 → 8 → 13 → 21 → 34 Caesar

Alberto Simões Information Retrieval using the Boolean Model

The merge

Walt through the two postings simultaneously, in time linear
in the total number of posting entries

2 → 4 → 8 → 16 → 32 → 64 → 127 Brutus

1 → 2 → 3 → 5 → 8 → 13 → 21 → 34 Caesar

Results in

2 → 8

Notes:

If the list lengths are x and y , the merge takes O(x + y).

Crucial: postings sorted by document ID.

Alberto Simões Information Retrieval using the Boolean Model

Intersecting (“merging”) two postings lists

Merge(p, q)
1 answer ← 〈 〉
2 while p 6= nil and q 6= nil
3 do if docID[p] = docID[q]
4 then Add(answer , docID[p])
5 else if docID[p] < docID[q]
6 then p ← next[p]
7 else q ← next[q]
8 return answer

Alberto Simões Information Retrieval using the Boolean Model

Boolean queries: Exact match

The Boolean Retrieval model is being able to ask a query that
is a Boolean expression:

Boolean Queries are queries using AND, OR and NOT to join
query terms

Views each document as a set of words
Is precise: document matches condition or not

Primary commercial retrieval tool for 3 decades.

Professional searches (e.g. lawyers) still like Boolean queries:

You know exactly what you’re getting.

Alberto Simões Information Retrieval using the Boolean Model

Query optimization

What is the best order for query processing?

Consider a query that is an AND of t terms.

For each of the t terms, get its postings, then AND them
together.

Brutus ⇒ 2 4 8 16 32 64 128

Calpurnia ⇒ 1 2 3 5 8 13 21 34

Caesar ⇒ 13 16

Query:

Brutus AND Calpurnia AND Caesar

Alberto Simões Information Retrieval using the Boolean Model

Query optimization example

Process in order of increasing freq:

start with smallest set, then keep cutting further.
This is why we kept frequency in dictionary!!

Brutus ⇒ 2 4 8 16 32 64 128

Calpurnia ⇒ 1 2 3 5 8 13 21 34

Caesar ⇒ 13 16

Query:

Execute the query as:

(Caesar AND Brutus) AND Calpurnia

Alberto Simões Information Retrieval using the Boolean Model

Optimized intersection of a set of postings lists

Merge(〈ti 〉)
1 terms ← SortByFreq(〈ti 〉)
2 result ← postings[first[terms]]
3 terms ← rest[terms]
4 while terms 6= nil and result 6= nil
5 do list ← postings[first[terms]]
6 terms ← rest[terms]
7 MergeInPlace(result, list)
8 return result

Alberto Simões Information Retrieval using the Boolean Model

More general optimization

(madding OR crowd) AND (ignoble OR strife)

Get freq’s for all terms.

Estimate the size of each OR by the sum of its freq’s
(conservative).

Process in increasing order of OR sizes.

Alberto Simões Information Retrieval using the Boolean Model

What’s ahead in IR? Beyond term search

What about phrases?

Stanford University

Proximity: Find Gates NEAR Microsoft

Need index to capture position information in documents.

Zones in documents: Find document with
(author = Ullman) AND (text contains automata)

Alberto Simões Information Retrieval using the Boolean Model

Ranking search results

Boolean queries give inclusion or exclusion of documents;

Often we want to rank/group results:

Need to measure proximity from query to each document;
Need to decide whether documents presented to user are
singletons, or a group of documents covering various aspects of
the query.

Alberto Simões Information Retrieval using the Boolean Model

Resources about Boolean Models

Introduction to Information Retrieval, chapter 1;

Managing Gigabytes, Chapter 3.2;

Modern Information Retrieval, Chapter 8.2;

Alberto Simões Information Retrieval using the Boolean Model

