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Lecture 1: Factorisation and One-Way Functions

Intuition. Suppose that your lecturer writes the number 25927 on the board and asks everyone in
the class for its prime factorisation. Immediately Alice, who is incidentally a friend of the lecturer,
shouts 11 × 2357. What conclusion can be drawn from this? Can we conclude that Alice is very
good at factoring integers? It might haven been the case that Alice’s favourite primes are 11 and
2357 and hence she recognises 25927 as their product. To test Alice further we need to give her a
few more tests. Furthermore, these tests should be in some sense random so they are unpredictable
to Alice (hence she couldn’t have prepared for them beforehand). Moreover, we need to check that
alice does not take too long (i.e. she is “efficient”) as we give her larger and larger numbers and
that she does not make too many mistakes (i.e. her answer is incorrect “infrequently”).

Efficient Algorithms. One way to formalise an “efficient” algorithm is thorough the notion
of probabilistic polynomial-time (ppt) algorithms. A probabilistic algorithm is one which makes
random choices during its computation. An algorithm A runs in polynomial time if its running
time is bounded by a polynomial in the length of its input. Put differently, A(x) is poly-time if
Time(A(x)) ≤ poly(|x|) where |x| is the bit-length of x (here poly(k) is a fixed polynomial (such
as 10 · k2). A ppt algorithm is therefore one which makes random choices and always terminates
after a time which is at most poly(|x|).

Frequency of success. To formalise the frequency of success of an algorithm, we look at the
probability that it returns the correct answer. Here our sample space is over all possible inputs
to the algorithm as well as random choices that A makes. Often in cryptography we want to say
that frequency of success for some algorithm is “small”. We define this notion through negligible
functions. Informally, a function is negligible if it grows very slowly. More precisely, f : N → R
is negligible if for any integer c there is an N , which may depend on c, such that for all k > N
we have that |f(k)| < k−c. Therefore f is negligible if it goes to zero faster than inverse of of any
polynomial.

Examples. 1) f(k) = 2−k is negligible; 2) f(k) = 0 is negligible; 3) f(k) = −2−k is negligible; 4)
f(k) = 1/k100 is not negligible; 4) f(k) = 1/klog k is negligible; 5) Is f(k) = k−k negligible?

Formalising Hardness of Factorisation. Given the above two definitions (i.e. probabilistic
polynomial-time algorithms and negligible functions) we can formalise what we mean by “factorisa-
tion is hard” as follows. A (hypothetical) challenger will choose two primes p and q, each having k
bits, and sets N = p ·q. It then gives N to a potential factorisation algorithm A. This algorithm can
be probabilistic but should run in polynomial time. Algorithm A runs on N and finishes returning
a guess (p′, q′) for the factors. We now need to check if this guess is correct i.e. if p′ · q′ = N , p′ > 1,
and q′ > 1. If so we declare that the algorithm A has won. Otherwise we declare that it has lost.
The probability that A wins should be negligible as a function of k.



We refer to this type of interaction that we just described as an experiment. We write this
experiment more precisely as a pseudo-code as shown in Figure 1. We say factorisation is hard, if
the function (we will be defining the notation shortly):

Advfact
A (k) := Pr

[
ExpFACT

A (k)⇒ true
]

is negligible as a function of k for any probabilistic polynomial-time algorithm A.

Experiment ExpFACT
A (k):

1. p, q
$← {p : p prime ∧ |p| = k}

2. N ← p · q
3. (p′, q′)

$← A(N)
4. Return (p′ · q′ = N ∧ p′ > 1 ∧ q′ > 1)

Fig. 1. Experiment defining the factorisation assumption.

The Experiment Notation. Let us explain some of the notation the we introduced in Figure 1.
First look at the symbol ExpFACT

A (k). Here FACT is the name of the experiment, we write this so
we know which experiment we are talking about. We have A as a subscript which signifiers the fact
that the experiment will use A in its code. Finally we have k, which is the length of the input we
choose (this is also know as the security parameter: we expect things to get harder as we increase
k). We write this as a function if k as we want to say the probability that outcome of the experiment
is true (i.e. A has won) is negligible in k.

The symbol $← stands for the action of random sampling. Generally if S is a set, by s
$← S we

mean the action of sampling an element uniformly at random from S and assigning the result to
s. Note that this implicitly means that there is an algorithm which performs this sampling action.
Next we have the ← symbol which, as usual, stands for assignment. The experiment then runs the
algorithm A, which might be probabilistic (hence we use $← rather than←), and assigns its output
to (p′, q′). The experiment ends with a return statement which characterises when the algorithm A
should be considered successful.

Finally, we have defined the advantage Advfact
A of A when run in this experiment. This is

defined to be the probability that A is successful. Here by “⇒ true” we mean that the outcome
of the experiment is true (i.e. A was successful). The probability is taken over all the randomness
used inside the experiment (which include those of A). Note that we have used a lower-case name
in Advfact

A . This is to distinguish that Adv is not an experiment, but rather a function related to
factorisation.

One-way function. Informally a one-way function is a function which is easy to computer but
hard to invert. One way to look at the FACT experiment is that it is hard to invert the function
which takes two primes and multiplies them together. Let us generalise this to any function (rather
than just multiplication). We say a function f : {0, 1}∗ → {0, 1}∗ is one-way if: 1) There exists a
probabilistic polynomial-time algorithm F which on input x returns f(x) (This is similar to the
fact that multiplying two numbers can be performed efficiently. We also normally identify f with
F , i.e. we just user f for F .); and 2) The advantage of any probabilistic polynomial-time algorithm
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A in inverting f defined by

Advow
f,A(k) := Pr

[
ExpOW

f,A(k)⇒ true
]

is negligible as a function of the security parameter k. By Inverting f we mean the experiment
shown in Figure 2.

Experiment ExpOW
f,A(k):

1. x
$← {0, 1}k

2. y ← f(x)

3. x′
$← A(1k, y)

4. Return (f(x′) = y)

Fig. 2. Experiment defining one-way property of a function f .

A Few Words on the Above Experiment. Note that again we are generating a random x and
applying f to it. We give this to A and wait until it returns x′. Then we check if this is a correct
answer, i.e. a correct pre-image. This is done by checking if f(x′) = f(x) in the last step. Note
also the presence of the strange 1k in line 3. 1k in cryptography stands for 11· · · 1 where there are
k ones. Why is this needed? Look at the function which maps x to its bit-length. Is this function
one-way according to the above definition? What if we drop 1k from line 3? (Hint: A has to run in
polynomial time in the length of its input).

Lecture 2: One-Way Public-Key Encryption Schemes

Public-Key Encryption Schemes

Background. Let us look at the RSA public-key encryption. Here the user secret key is (p, q,N)
where N = p · q and its public key is (N, e) where e is such that gcd(e, (p − 1) · (q − 1)) = 1. To
encrypt a message m, one computes the ciphertext c = me (mod N). To decrypt, one first computes
a d such that ed = 1 (mod (p−1)(q−1)) and then returns m = cd (mod N). Note that this scheme
is correct in the sense that if you generate a key pair properly and then encrypt a message m to
get c, you will always recover m through decryption procedure if you pass c and the correct secret
key to it. The algorithms which make up RSA constitute a specific set of encryption algorithms. In
general, what we need are algorithms to generate keys, encrypt and decrypt. This is defined more
formally next.

Syntax of a Public-Key Encryption Scheme. A public-key encryption scheme1 Π := (Gen, Enc, Dec)
is a triple of (possibly probabilistic) polynomial-time algorithms as follows.

1. Algorithm Gen(1k): This is the probabilistic key generation algorithm. It takes a security param-
eter 1k and returns a tuple (SK, PK), where SK is the secret key and PK is the public key. We
assume that PK contains 1k so that later on when we pass PK to an algorithm we also implicitly
pass 1k.

1 A scheme since a number of algorithms behave in a related way.
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2. Algorithm Enc(m, PK): This is the possibly probabilistic encryption algorithm. It takes as input
a message m and a public key PK and returns a ciphertext c.

3. Algorithm Dec(c, SK): This is the deterministic decryption algorithm. It takes a ciphertext c
and a secret key SK and returns a message m or ⊥. Here ⊥ is a symbol which stands for “invalid
ciphertext”. It is special in the sense that it does not mean that the ciphertext decrypted to the
message invalid ciphertext.

Correctness. We want an encryption scheme to be useful in the sense that decryption undoes
encryption. More precisely, we require the advantage of the experiment in Figure 3 defined by

Advcorrect
Π (k) := Pr

[
ExpCorrect

Π (k)⇒ 1
]

to be 1. Check that this experiment does say that “decryption undoes encryption”

Experiment ExpCorrect
Π (k):

1. (SK, PK)
$← Gen(1k)

2. m
$← MsgSp(PK) // Sampling from message space

3. c
$← Enc(m, PK)

4. m′ ← Dec(c, SK)
5. Return (m = m′)

Fig. 3. Experiment defining the correctness of an encryption scheme.

To allow a negligible failure in decryption (for instance because the keys are not correctly
generated) we can let this advantage to be negligibly less than 1.

Message Space. For some encryption schemes the message space is simply {0, 1}∗ or {0, 1}` for
some ` (which might depend on k but not the public key). However this is not true in general and
the message space may depend on the public key. For instance in the RSA encryption scheme the
message space is ZN . To deal which such schemes we also require the existence of the following
algorithm.

- Algorithm MsgSp(m, PK): This the deterministic message space membership algorithm. On input
m ∈ {0, 1}∗ and a public key PK (returned by Gen) this algorithm returns either true or false.
These indicate if the message passed to the algorithm is valid or invalid. We write MsgSp(PK)
for the set of all m ∈ {0, 1}∗ which have MsgSp(m, PK) = true. As you see above we have also
(ab)used MsgSp(PK) to do uniform sampling from MsgSp(PK)2.

Security of Public-Key Encryption Schemes

Let us think about what we can mean when we say “an encryption scheme is secure”.

Intuition 1. One possible interpretation is that an encryption scheme is secure if “one cannot
recover the secret key from the public key”. However, this intuitive definition misses the point that
encryption schemes are designed to provided confidentiality of messages and not that of the secret
2 We assume that this space is finite so that the uniform distribution can be defined on it in a natural way.
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key (although this should also be the case!). As a counterexample, take the encryption scheme which
sets SK to be a long random string and sets the public key to be the empty sting. The encryption
algorithm on input m returns the message itself and decryption on input a ciphertext returns the
ciphertext itself. Check that this scheme is correct! It is easily to see that the advantage of any
adversary (by an adversary we mean an algorithm which is attacking a cryptosystem) in guessing
the secret key is 2−k, a negligible function, but the scheme provides no security whatsoever.

Intuition 2. Another possible definition is that no efficient algorithm can recover the message
encrypted under a ciphertext often. This definition does work to some extend (however as we shall
see it has shortcomings). It is refereed to as one-wayness which we will be defining next.

Formal Definition of a One-Way Encryption Scheme. In line with the definition of a one-
way function, we define the one-way property of a public-key encryption scheme Π = (Gen, Enc, Dec)
as follows. We say that scheme Π is one-way secure (under chosen-plaintext attacks; more on this
coming later), written OW-CPA, if the advantage of any probabilistic polynomial-time algorithm A
defined by

Advow-cpa
Π,A (k) := Pr

[
ExpOW-CPA

Π,A (k)⇒ true
]

is negligible as a function k, where ExpOW-CPA
Π,A (k) is the experiment shown in Figure 4.

Experiment ExpOW-CPA
Π,A (k):

1. (SK, PK)
$← Gen(1k)

2. m
$← MsgSp(PK)

3. c
$← Enc(m, PK)

4. m′
$← A(PK, c)

5. Return (m = m′)

Fig. 4. Experiment defining the one-wayness of a public-key encryption scheme.

Check that this experiment does capture the intuition that “given c it is hard to find m”.

Lecture 3: Indistinguishability and Attack Models

Intuition 3. Recall the OW-CPA security definition from the last time. Suppose that an encryption
leaks some information about the message but not necessarily all of it. For instance it can leak the
first bit of the message. Would you classify this scheme as secure? Is it safe to do so? For instance,
what happens if you encrypt your salary using this scheme? The adversary can check if it is above
or below a certain threshold. What we ideally would like to have is that no information about
the messaged should leaked from the ciphertext to any adversary. One way to formalise this is
that we encrypt one of two known messages (of equal lengths3) and gives them to an adversary.
The adversary should not be able to say which message was encrypted with probability better
than guessing (i.e. 1/2). To see that this does imply the “no information leakage” property, if the
encryption algorithm leaks information about messages then this leakage can be used to distinguish
3 No encryption scheme can hide the length of the message. An encrypted 1 GB file is easily distinguishable from an

encrypted 1 KB file, unless we pad the small file to 1GB in which case they become equal in length.
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which messages is encrypted under a ciphertext. Conversely, if we can distinguish which messaged
was encrypted, then in a sense the ciphertext is leaking some information (i.e. the information which
is computed by the adversary).

Formal Definition 1. We say that a public-key encryption scheme has indistinguishable cipher-
texts under chosen-plaintext attacks, written IND-CPA, if for any two messages message m0, m1 in
the message space, the advantage of any probabilistic polynomial-time algorithm A defined by

Advind-cpa
Π,A,m0,m1

(k) := 2 · Pr
[
ExpIND-CPA

Π,A,m0,m1
(k)⇒ true

]
− 1

is negligible, where ExpIND-CPA
Π,A,m0,m1

(k) is the experiment shown in Figure 5.

Experiment ExpOW-CPA
Π,A,m0,m1

(k):

1. (SK, PK)
$← Gen(1k)

2. b← {0, 1}
3. c

$← Enc(mb, PK)

4. b′
$← A(PK, c)

5. Return (b = b′)

Fig. 5. Experiment defining the indistinguishability of a public-key encryption scheme.

A Word About CPA. We name experiments in crypto using the template Goal-Model. By Goal
we mean the goal that adversary is trying to achieve. For instance this can be trying to recover
the whole plaintext (OW) or trying to distinguish which of two messages in encrypted under a
ciphertext (IND). By Model we mean the attack model the adversary is running in. For instance,
in the public-key scenario the adversary has access to public keys and can encrypt messages of
his choice (note this is not true for symmetric encryption as the key is hidden). This is known as
chosen-plaintext attack and is abbreviated to CPA. We will see another attack model, known as
chosen-ciphertext attack, shortly.

Formal Definition of IND-CPA. To deal with message spaces with depend on public keys, we
modify the above definition slightly, allowing the adversary to choose the two messages. We say
that a public-key encryption scheme Π = (Gen, Enc, Dec) has indistinguishable ciphertexts under
chosen-plaintext attacks, written IND-CPA, if the advantage of any probabilistic polynomial-time
algorithm A = (A1,A2) defined by

Advind-cpa
Π,A (k) := 2 · Pr

[
ExpIND-CPA

Π,A (k)⇒ true
]
− 1

is negligible, where ExpIND-CPA
Π,A (k) is the experiment shown in Figure 6.

In the above st denotes some state information. What we are saying here is that we have an
adversary A which runs in two stages. We start running the first stage of the adversary A1 on the
public key. It pauses and outputs two messages. It also outputs some state information st which will
be used to resume it. We then encrypt one of the messages at random and resume the adversary by
giving it the state information st and the challenge ciphertext c.

Exercise. Show that no deterministic encryption scheme can be IND-CPA secure.
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Experiment ExpIND-CPA
Π,A (k):

1. (SK, PK)
$← Gen(1k)

2. (m0, m1, st)
$← A1(PK)

3. b
$← {0, 1}

4. c
$← Enc(mb, PK)

5. b′
$← A2(c, st)

6. Return (b = b′)

Fig. 6. Experiment defining the indistinguishability of a public-key encryption scheme.

Chosen-Ciphertext Attacks. In practice, the adversary might have attack capabilities other
than just using the public key to encrypt various messages. For instance, it can submit ciphertexts
of his choice to the user holding the secret key, and analyse the decryption behaviour of these
ciphertexts. Let us give look at a more concrete example (taken from Katz’s lecture notes).

Consider the following system for verifying credit cards. A user has a credit card number
B1, B2, B3, . . . , B48 (where each Bi represents one bit) which is encrypted, bit-wise, with the mer-
chants public key PK and sent to the merchant as follows:

Enc(B1, PK), Enc(B2, PK), Enc(B3, PK), . . . , Enc(B48, PK).

The merchant then immediately responds ACCEPT or REJECT, indicating whether the credit card
is valid. Now, an adversary need not decrypt the message to recover the credit card: consider what
happens if the first element of the above ciphertext is replaced by Enc(0, PK) (which an attacker
can compute since the public key is available!) if the message is accepted by the merchant, the
first bit of the credit card must be zero; if rejected, it is one. Continuing in this way, the adversary
learns the entire credit card number after 48 such attempts.

Formal Definition. We say that a public-key encryption scheme has indistinguishable ciphertexts
under chosen-ciphertext attacks, written IND-CCA, if the advantage of any probabilistic polynomial-
time algorithm A = (A1,A2) defined by

Advind-cca
Π,A (k) := 2 · Pr

[
ExpIND-CCA

Π,A (k)⇒ true
]
− 1

is negligible, where ExpIND-CCA
Π,A (k) is the experiment shown in Figure 7.

Experiment ExpIND-CCA
Π,A (k):

1. (SK, PK)
$← Gen(1k)

2. (m0, m1, st)
$← ADecrypt(·)

1 (PK)

3. b
$← {0, 1}

4. c
$← Enc(mb, PK)

5. b′
$← ADecrypt(·)

2 (c, st)
6. Return (b = b′)

Oracle Decrypt(c):
1. m← Dec(c, SK)
2. Return m

Fig. 7. Experiment defining the IND-CCA security of a public-key encryption scheme. The adversary
A cannot query Decrypt on the ciphertext c given to it in the second stage (computed in line 4).
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Remarks on IND-CCA. The experiment above is similar to the IND-CPA experiment except that
the oracle Decrypt is introduced. An oracle can be thought of as a subroutine. It takes an input
and returns on output. Furthermore, it is black-box in the sense that the adversary does not have
access to its internal programme. The Decrypt oracle here takes a ciphertext c as input and returns
the result of running Dec(c, SK). The adversary has access to this oracle in both stages of its attack.
However, it cannot query it in the stage with c. If this is allowed, then the adversary can trivially
break any public-key encryption. What we are saying here is that adversary should not be able to
distinguish which message is encrypted under a ciphertext even with the help of an oracle which
decrypts any ciphertext of adversary’s choice except that which he is supposed to “crack”.

Remark on malleability. One implication of allowing access to the decryption oracle is that
ciphertexts outputted by an IND-CCA secure encryption scheme are non-malleable. In other words,
the adversary cannot take the ciphertext c given to him, somehow change it (malleate it) to a new
ciphertext c′ such that the message under c′ is related to that under c. To see this, suppose the
ciphertext is malleable. Then adversary can submit c′ to the decryption oracle and get the result
m′. Now if m′ is related to m0 the adversary will return 0 as its guess, otherwise it will return 1.

An Alternative Expression for the Advantage. The IND-CCA (and IND-CPA) advantage
can be expressed in the following alternative way. Hre b denotes the bit chosen in the experiment
in line 3 above.

Advind-cca
Π,A (k) = 2 Pr

[
ExpIND-CCA

Π,A (k)⇒ true
]
− 1

= 2 Pr
[
ExpIND-CCA

Π,A (k)⇒ true ∧ b = 1
]

+ 2 Pr
[
ExpIND-CCA

Π,A (k)⇒ true ∧ b = 0
]
− 1

= 2 Pr
[
ExpIND-CCA

Π,A (k)⇒ true|b = 1
]

Pr [b = 1] + 2 Pr
[
ExpIND-CCA

Π,A (k)⇒ true|b = 0
]

Pr [b = 0]− 1

= Pr
[
ExpIND-CCA

Π,A (k)⇒ true|b = 1
]

+ Pr
[
ExpIND-CCA

Π,A (k)⇒ true|b = 0
]
− 1

= Pr
[
ExpIND-CCA

Π,A (k)⇒ true|b = 1
]
−
(

1− Pr
[
ExpIND-CCA

Π,A (k)⇒ true|b = 0
])

= Pr
[
ExpIND-CCA

Π,A (k)⇒ true|b = 1
]
− Pr

[
ExpIND-CCA

Π,A (k)⇒ false|b = 0
]

= Pr
[
A returns b′ = 1|b = 1

]
− Pr

[
A returns b′ = 1|b = 0

]
Lets see what this is saying: we are measuring how the output behaviour of A changes when the
bit b is flipped from 1 to 0. The separation of different events happening in an experiment (b = 0
or b = 1 here) is often useful when proving security of a cryptosystem.

Lecture 4: Discrete Logarithms and the ElGamal Encryption Scheme

Background on Groups. Groups are sets where one can multiply two elements together in a
natural way. By multiply here we mean any general way of combining two elements together (e.g.
adding them!). The set also has an “identity element” which when multiplied with any element
leaves it unchanged (0 for addition). For any element in the set one can find its “inverse” which
when multiplied by it gives the identity element (this is the negation of a number for addition:
2+(−2) = 0). Furthermore the order of applying the rule to elements does not matter (2+3 = 3+2
and 2+(3+4) = (2+3)+4). The order of a group is the number of elements in the underlying set. A
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generator of a group is an element which if repeatedly multiplied with itself gives the whole group.
If you are not satisfied with these informal reminders, look up the formal definition on Wikipedia!

Group Schemes. A group scheme is a set of given algorithms to perform various computations with
the group elements. These algorithms are for: 1) Multiplying two elements; 2) Dividing two elements
(multiplying one by the inverse of the other); 3) Checking if a string encodes a group element; 4)
Computing a generator; and 5) Sampling random elements from the group. We do not need to know
more than this about group schemes. Just think of them as “groups which one can concretely work
with on a computer”. We will denote these by (G, g, p) with G denoting the descriptions of various
algorithms, g the generator, and p the order of the group (which will be prime). We will need to
generate groups of different sizes according to the value of the security parameter k. We denote by
GP an algorithm which takes 1k and returns (G, g, p) with p a k-bit prime. In a group of prime
order p every non-identity element is a generator.

The Discrete Logarithm Assumption. Informally this assumption says that in a group G with
generator g, given gx, it is hard to find x. More precisely, we say a group scheme GP satisfies the
discrete-logarithm assumption if the advantage of any probabilistic polynomial-time algorithm A
defined by

Advdl
GP,A(k) := Pr

[
ExpDL

GP,A(k)⇒ true
]

is negligible as function of k, where ExpDL
GP,A(k) is the experiment shown in Figure 8.

Experiment ExpDL
GP,A(k):

1. (G, g, p)
$← GP(1k)

2. x
$← Zp; h← gx

3. x′
$← A((G, g, p), h)

4. Return (x = x′)

Fig. 8. Experiment defining the discrete logarithm assumption.

Non-Example. Take the group of integers modulo p a prime under addition with generator 1.
What is the discrete logarithm problem? Is it hard?

The Computational Diffie-Hellman Assumption. Informally this assumption says that in a
group G with generator g, given (gx, gy), it is hard to find gxy. More precisely, we say a group scheme
GP satisfies the discrete-logarithm assumption if the advantage of any probabilistic polynomial-time
algorithm A defined by

Advcdh
GP,A(k) := Pr

[
ExpCDH

GP,A(k)⇒ true
]

is negligible as function of k, where ExpCDH
GP,A(k) is the experiment shown in Figure 9.

The Decisional Diffie-Hellman Assumption. Informally this assumption says that in a group
G with generator g, given a tuple of the form (gx, gy, gz) or one of the form (gx, gy, gxy), it is hard
to decide which was given. More precisely, we say a group scheme GP satisfies the decisional Diffie-
Hellman assumption if the advantage of any probabilistic polynomial-time algorithm A defined
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Experiment ExpCDH
GP,A(k):

1. (G, g, p)
$← GP(1k)

2. x
$← Zp; y

$← Zp

3. g1 ← gx; g2 ← gy

4. h
$← A((G, g, p), g1, g2)

5. Return (h = gxy)

Fig. 9. Experiment defining the computational Diffie-Hellman assumption.

by

Advddh
GP,A(k) := 2 · Pr

[
ExpDDH

GP,A(k)⇒ true
]
− 1

is negligible as function of k, where ExpDDH
GP,A(k) is the experiment shown in Figure 10.

Experiment ExpDDH
GP,A(k):

1. (G, g, p)
$← GP(1k)

2. x
$← Zp; y

$← Zp; z
$← Zp

3. g1 ← gx; g2 ← gy

4. b
$← {0, 1}

5. If b = 0 Then g3 ← gz Else g3 ← gxy

6. b′
$← A((G, g, p), g1, g2, g3)

7. Return (b = b′)

Fig. 10. Experiment defining the decisional Diffie-Hellman assumption.

The Relation Between DL and CDH. Note that if the CDH assumption holds with respect
to GP, then so does the DL assumption. To see this, note that if there exists an algorithm A
which solves the DL problem, then there is an algorithm B which solves the CDH problem. How?
Algorithm B on input ((G, g, p), g1, g2) first computes the discrete logarithm of g1 using A (i.e. runs
A on ((G, g, p), g1) and gets a value x). Then it raises g2 to power x to get h and outputs it. If x
is the correct value of the discrete logarithm, then h will also be the correct answer to the CDH
problem. We have therefore shown that for any algorithm A solving DL there is an algorithm B
solving CDH such that:

Advcdh
GP,B(k) = Advdl

GP,A(k)

Put differently, if the CDH holds, then the left hand side of the above equality is negligible and
therefore so is the right hand side. Since A was arbitrary we conclude that the DL assumption also
holds (advantage of any A is negligible in solving DL).

The Relation Between CDH and DDH. Now we show that if the DDH assumption holds with
respect to GP, then so does the CDH assumption. To see this, note that if there exists an algorithm
A which solves the DDH problem, then there is an algorithm B which solves the CDH problem as
follows. Algorithm B on input ((G, g, p), g1, g2, g3) first computes the “CDH of g1 and g2” by running
A on ((G, g, p), g1, g2) and gets a value h. Then it checks if h = g3. If this holds it returns 1, and
otherwise it returns 0.

10



If h is computed correctly by A then B’s answer will also be correct expect if the bit chosen in
the DDH game was 0 and the random element gz happened to be gxy. The probability of this event
will be small. More formally,

Advddh
GP,B(k) = 2 · Pr

[
ExpDDH

GP,B(k)⇒ true
]
− 1

= 2 · Pr
[
ExpDDH

GP,B(k)⇒ true|b = 1
]
· (1/2) + 2 · Pr

[
ExpDDH

GP,B(k)⇒ true|b = 0
]
· (1/2)− 1

= Pr
[
ExpDDH

GP,B(k)⇒ true|b = 1
]
− Pr

[
ExpDDH

GP,B(k)⇒ false|b = 0
]

= Pr [B returns 1|b = 1]− Pr [B returns 1|b = 0]

= Pr [A returns CDH]− Pr [A returns h| g3
$← G]

= Pr
[
ExpCDH

GP,A(k)⇒ true
]
− 1/p

= Advcdh
GP,A(k)− 1/p.

The fifth equality follows from the fact that for any (even unbounded) A, the probability of guessing
a completely random g3 which is independent of A’s view is 1/p. Rearranging, we have shown that
for any algorithm A solving CDH there is an algorithm B solving DDH such that:

Advddh
GP,B(k) +

1
p

= Advcdh
GP,A(k)

Put differently, if the DDH holds and p is large, then the left hand side of the above equality is
negligible and therefore so is the right hand side. Since A was arbitrary we conclude that the CDH
assumption also holds (advantage of any A is negligible in solving CDH).

This is the general approach when proving theorems in cryptography. We take an arbitrary ppt
algorithm attacking a cryptosystem. We then use A as a subroutine to solve another problem which
we have assumed to be hard. This is a contraction, and hence the algorithm A could not have
existed originally, i.e. the cryptosystem is secure.

The ElGamal Encryption Scheme. Given a computational group scheme GP, the ElGamal
public-key encryption is as shown in Figure 11.

Algorithm Gen(1k):

1. (G, g, p)
$← GP(1k)

2. x
$← Zp;h← gx

3. SK← ((G, g, p), x)
4. PK← ((G, g, p), h)
5. Return (SK, PK)

Algorithm Enc(m, PK):
1. Parse (G, g, p, h)← PK

2. r
$← Zp; c1 ← gr

3. c2 ← m · hr

4. c← (c1, c2)
5. Return c

Algorithm Dec(c, SK):
1. Parse (G, g, p, x)← SK
2. Parse (c1, c2)← c
3. m← c2/(c1)x

4. Return m

Fig. 11. The ElGamal public-key encryption scheme.

Exercise. Check that this scheme is correct.
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Lecture 5: Security of the ElGamal Encryption Scheme

One-wayness under the CDH Assumption. We now prove that if the CDH assumption holds
with respect to GP, then the ElGamal encryption scheme is one-way. This will be our first security
proof. More precisely:

Theorem 1. Let A be a probabilistic polynomial-time algorithm against the ElGamal encryption
scheme in the OW-CPA sense. Then there is a probabilistic polynomial-time algorithm B against GP
solving the CDH problem such that:

Advcdh
GP,B(k) = Advow-cpa

Π,A (k).

In particular, if the CDH assumption holds with respect to GP, then the left hand side of the above
equality is a negligible function, and consequently so is the right hand side. This means ElGamal is
one-way as A was an arbitrary probabilistic polynomial-time algorithm.

Proof. The algorithm B operates as shown in Figure 12 below.

Algorithm B((G, g, p), g1, g2):
1. PK← ((G, g, p), g1) // here implicitly g1 = gx

2. c1 ← g2 // here implicitly g2 = gy

3. t
$← Zp; c2 ← gt // here implicitly m = c2/gxy

4. c← (c1, c2)
5. Run A(PK, c)
6. A finishes returning a message m′

7. h← c2/m′

8. Return h

Fig. 12. CDH adversary B against GP based on an OW-CPA adversary A against ElGamal.

Note that if A is ppt, then so is B. Let us analyse the success probability of B based on the
success probability of A.

Advcdh
GP,B(k) = Pr

[
ExpCDH

GP,B(k)⇒ true
]

(1)

= Pr [h = gxy] (2)
= Pr

[
c2/m′ = gxy

]
= Pr

[
m′ = c2/gxy

]
= Pr

[
m′ = m

]
(3)

= Pr
[
ExpOW-CPA

Π,A (k)⇒ true
]

(4)

= Advow-cpa
Π,A (k). (5)

Let us explain why each of the above equalities hold.

– Equality (1): By definition of advantage.
– Equality (2): By definition of algorithm B.
– Equalities in (3): By implicit values (i.e. B does not need access to the explicit values) of x, y

and m (See Figure 12). Note that we know there are values x and y such that g1 = gx, g2 = gy.
We have also implicitly defined m to be gt/gxy for a random t.
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– Equality (6): This is the conceptually important step. We are saying here that the probability
that m′ = m when run on the public key and ciphertext as constructed by B above is same as
running A in the OW-CPA experiment. Let us check this.
• In the OW-CPA experiment (G, g, p) is a generated by GP(1k). So is the value passed by B

to A above as (G, g, p) is generated by GP(1k) in the CDH experiment.
• In the OW-CPA experiment the public key is a random element of G (together with (G, g, p)).

So is the value passed by B to A above as the public key since g1 is generated randomly in
the CDH experiment.
• In the OW-CPA experiment the c1 is a random element of G. So is the value passed by B to
A above as c1 since g2 is generated randomly in the CDH experiment.
• In the OW-CPA experiment the c2 is a random element of G (a message m) multiplied by

PKr. This is itself a uniform element on G generated. So is the value passed by B to A above
as c2 since gt is generated randomly. Note that the implicit message here is m = gt/gxy.

– Equality (7): By definition of advantage.

�

Indistinguishability under the DDH Assumption. We now prove that if the DDH assumption
holds with respect to GP, then the ElGamal encryption scheme is indistinguishable under chosen-
plaintext attacks, i.e. it is IND-CPA secure.

Theorem 2. Let A be a probabilistic polynomial-time against the ElGamal encryption scheme in
the IND-CPA sense. Then there is a probabilistic polynomial-time algorithm B against GP solving
the DDH problem such that:

Advddh
GP,B(k) = 1/2 ·Advind-cpa

Π,A (k).

In particular, if the DDH assumption holds with respect to GP, then the left hand side of the above
equality is a negligible function, and consequently so is the right hand side. This means ElGamal
ciphertexts are indistinguishable since A was an arbitrary probabilistic polynomial-time algorithm.

The intuition behind the proof is this: suppose (gx, gy, h) is given where either h = gz or h = gxy.
The idea is that depending on h we can generate a ciphertext which bears no information about the
underlying message (when h = gz) or is a correctly formed ciphertext (when h = gxy). No adversary
can guess which message is encrypted in the first case, but a successful IND-CPA adversary A will
have a noticeable advantage in the second case. We can thus use this difference in behaviour of A
to detect if h = gz or h = gxy.

Proof. The algorithm B operates as shown in Figure 12.
Note that if A is ppt, then so is B. Let us analyse the success probability of B based on the

success probability of A. In the following b denotes the bit chosen in the DDH experiment.

Advddh
GP,B(k) = 2 · Pr

[
ExpDDH

GP,B(k)⇒ true
]
− 1 (6)

= Pr
[
A returns d′ = d|b = 1

]
+ Pr

[
A returns d′ = d|b = 0

]
− 1 (7)

= Pr
[
ExpIND-CPA

Π,A (k)⇒ true
]

+ 1/2− 1 (8)

= 1/2 ·Advind-cpa
Π,A (k). (9)

Let us explain why each of the above equalities hold.
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Algorithm B((G, g, p), g1, g2, g3):
1. PK← ((G, g, p), g1)
2. Run A1(PK)
3. A1 finishes returning (m0, m1, st)

4. d
$← {0, 1}

5. c1 ← g2; c3 ← md · g3

6. c← (c1, c2)
7. Run A2(c, st)
8. A2 finishes returning a bit d′

9. Return (d = d′)

Fig. 13. Algorithm B solving DDH problem based on A attacking ElGamal indistinguishability.

– Equality (6): By definition of advantage.
– Equality (7): Using the fact that experiment returns true if and only if d = d′ and conditioning

on the value of b. This was derived at the end of Lecture 3.
– Equality (8): This is the main step of the proof. There are two equalities here to be shown,

namely:

Pr
[
A returns d′ = d|b = 1

]
= Pr

[
ExpIND-CPA

Π,A (k)⇒ true
]

and

Pr
[
A returns d′ = d|b = 0

]
= 1/2.

Lets first look at the second of these. Note that the public key passed by B to A is distributed
correctly. Suppose the bit chosen in the DDH experiment is b = 0. Then g3 is a random element
of the G. In this case the view of A is independent of the bit d chosen by B as the ciphertext
given to A is simply a randomly distributed element in G×G and hence bears no information
on d. The probability that any (even unbounded) A outputs d′ with d′ = d is therefore 1/24.
Let us now look at the first equality. Note that the public key passed by B to A is distributed
correctly. Suppose the bit chosen in the DDH experiment is b = 1. Then g3 = gxy, where x
and y are such that g1 = gx and g2 = gy. Now be examining the code of B and that of the
DDH experiment (when b = 1) we see that A is run in exactly the same way as it would be
run in the IND-CPA experiment. More precisely, when g3 = gxy then c2 = md · gxy

3 , c1 = gy,
and PK = (G, g, p, gx). Bit d maps to the bit chosen in the IND-CPA experiment. Hence when B
runs A, algorithm A first gets a correctly distributed public key. It then outputs two messages,
and gets a correctly formed and distributed ciphertext encrypting one at random according to
d. Furthermore, d = d′ is the same condition as that which makes the IND-CPA experiment to
have outcome true.

– Equality (9): By definition of advantage.

�

A Chosen-Ciphertext Attack on ElGamal. Try and show that ElGamal is insecure under
chosen-ciphertext attacks. To this end, construct an algorithm A which on input a ciphertext c and
a public key PK, modifies it to get a new ciphertext c′ 6= c such that the decryption oracle when

4 Note that although the ciphertext passed to A is not valid, algorithm A still has to run on it an return a bit. Its
behaviour will not be affected by d as it is completely hidden from its view
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queried on c′ helps him to distinguish which message was encrypted under c (i.e. malleate c to c′).
This algorithm is shown in Figure 14. Show that as long as the message space has at least two
elements, A is successful with probability 1. In particular you need to show that in step 4 a valid
ciphertext is constructed.

Algorithm A1(PK):
1. m0 ← MsgSp(PK)
2. m1 ← MsgSp(PK) such that m1 6= m0

3. st← PK
4. Return (m0, m1, st)

Algorithm A2(c, st):
1. Parse PK← st
2. Parse (c1, c2)← c

3. r
$← Zp − {0}

4. c′1 ← c1 · gr; c′2 ← c2 · (PK)r; c′ ← (c′1, c
′
2)

5. Query Decrypt(c). Receive m.
6. If m = m0 Return 1, Else Return 0

Fig. 14. Algorithm A = (A1,A2) lunching an IND-CCA attack against ElGamal.

Construction of IND-CCA schemes. These are quite a bit harder to construct. The first practical
and IND-CCA-secure encryption scheme was given by Cramer and Shoup. The authors show that
their scheme is IND-CCA-secure if the DDH assumption holds.
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