
Chapter 4

Why Monads Matter

In this chapter we present a powerful device in state-of-the-art functional program-
ming, that of a monad. The monad concept is nowadays of primary importance
in computing science because it makes it possible to describe computational ef-
fects as disparate as input/output, comprehension notation, state variable updating,
probabilistic behaviour, context dependence, partial behaviour etc. in an elegant
and uniform way.

Our motivation to this concept will start from a well-known problem in func-
tional programming (and computing as a whole) — that of coping with undefined
computations.

4.1 Partial functions
Recall the function head that yields the first element of a finite list. Clearly, head x
is undefined for x = [] because the empty list has no elements at all. As expected,
the HASKELL output for head [] is just “panic”:

*Main> head []

*** Exception: Prelude.head: empty list

*Main>

Functions such as head are called partial functions because they cannot be
applied to all of their (well-typed) inputs, i.e., they diverge for some of such inputs.
Partial functions are very common in mathematics or programming — for other
examples think of e.g. tail, and so on.

Panic is very dangerous in programming. In order to avoid this kind of be-
haviour one has two alternatives, either (a) ensuring that every call to head x

125

126 CHAPTER 4. WHY MONADS MATTER

is protected — i.e., the contexts which wrap up such calls ensure pre-condition
x 6= [], or (b) raising exceptions, i.e. explicit error values, as above. In the former
case, mathematical proofs need to be carried out in order to ensure safety (that is,
pre-condition compliance). The overall effect is that of restricting the domain of
the partial function. In the latter case one goes the other way round, by extending
the co-domain (vulg. range) of the function so that it accommodates exceptional
outputs. In this way one might define, in HASKELL:

data ExtVal a = Ok a | Error

and then define the “extended” version of head:

exthead :: [a]→ ExtVal a
exthead [] = Error
exthead x = Ok (head x)

Note that ExtVal is a parametric type which extends an arbitrary data type a
with its (polymorphic) exception (or error value). It turns out that, in HASKELL,
ExtVal is redundant because such a parametric type already exists and is called
Maybe:

data Maybe a = Nothing | Just a

Clearly, the isomorphisms hold:

ExtValA ∼= MaybeA ∼= 1 + A

So, we might have written the more standard code

exthead :: [a]→ Maybe a
exthead [] = Nothing
exthead x = Just (head x)

In abstract terms, both alternatives coincide, since one may regard as partial every
function of type

1 + A B
goo

for some A and B 1.
1In conventional programming, every function delivering a pointer as result — as in e.g. the C

programming language — can be regarded as one of these functions.

4.2. PUTTING PARTIAL FUNCTIONS TOGETHER 127

4.2 Putting partial functions together
Do partial functions compose? Their types won’t match in general:

1 +B A
goo

1 + C B
foo

Clearly, we have to extend f — which is itself a partial function — to some f ′

able to accept arguments from 1 +B:

1

...

��

i1
��

1 +B

f ′yy

A
goo

1 + C B

i2

OO

f
oo

The most “obvious” instance of the ellipsis (. . .) in the diagram above is i1 and
this corresponds to what is called strict composition: an exception produced by
the producer function g is propagated to the output of the consumer function f .
We define:

f • g def
= [i1 , f] · g (4.1)

Expressed in terms of Maybe, composite function f • g works as follows:

(f • g)a = f ′(g a)

where

f ′ Nothing = Nothing
f ′ (Just b) = f b

Altogether, we have the following Haskell pointwise expression for f • g:

λa → f ′ (g a) where
f ′ Nothing = Nothing
f ′ (Just b) = f b

128 CHAPTER 4. WHY MONADS MATTER

Note that the adopted extension of f can be decomposed — by reverse +-
absorption (2.43) — into

f ′ = [i1 , id] · (id+ f)

as displayed in diagram

1 + (1 + C)

[i1 ,id]
��

1 +B
id+foo A

goo

1 + C B
foo

All in all, we have the following version of (4.1):

f • g def
= [i1 , id] · (id+ f) · g

Does this functional composition scheme have a unit, that is, is there a function
u such that

f • u = f = u • f (4.2)

holds? Clearly, if it exists, it must bear type 1 + A Auoo . 1 + A A
i2oo has

the same type, so u = i2 is a very likely solution. Let us check it:

f • u = f = u • f
≡ { substitutions }

[i1 , f] · i2 = f = [i1 , i2] · f
≡ { by +-cancellation (2.40) and +-reflection (2.41) }

f = f = id · f
≡ { trivial }

true

So f • u = f = u • f for u = i2.

Exercise 4.1. Prove that property

f • (g • h) = (f • g) • h

holds, for f • g defined by (4.1).
2

4.3. LISTS 129

4.3 Lists
In contrast to partial functions, which may produce no output, let us now consider
functions which may deliver too many outputs, for instance, lists of output values:

B? A
goo

C? B
foo

Functions f and g do not compose but, once again, one can think of extending the
consumer function (f) by mapping it along the output of the producer function
(g):

(C?)? B?f?oo

C? B
foo

To complete the process, one has to flatten the nested-sequence output in (C?)? via
the obvious list-catamorphism C? (C?)?concatoo , recall concat = (|[[] , conc]|)
where conc (x , y) = x ++ y . In summary:

f • g def
= concat · f ? · g (4.3)

as captured in the following diagram:

(C?)?

concat
��

B?f?oo A
goo

C? B
foo

Exercise 4.2. Show that singl (recall exercise 3.14) is the unit u of • as defined by (4.3)
above.
2

Exercise 4.3. Encode in HASKELL a pointwise version of (4.3). Hint: start by applying
(list) cata-absorption (3.77).
2

130 CHAPTER 4. WHY MONADS MATTER

4.4 Monads
Both function composition schemes (4.1) and (4.3) above share the same polytypic
pattern: the output of the producer function g is “T-times” more elaborate than
the input of the consumer function f , where T is some parametric datatype: TX =
1+X in case of (4.1), and TX = X? in case of (4.3). Then a composition scheme
is devised for such functions, which is displayed in

T(TC)

µ

��

TB
T foo A

goo

f •g
ggTC B

foo
(4.4)

and is given by

f • g def
= µ · T f · g (4.5)

where TA T2A
µoo is a suitable polymorphic function. (We have already seen

µ = [i1 , id] in case (4.1), and µ = concat in case (4.3).)
Together with a unit function TA Auoo and µ, that is

A u // T A T2 A
µoo

datatype T will form a so-called monad type, of which (1+) and ()? are the two
examples seen above. Arrow µ·T f is called the extension of f . Functions µ and u
are referred to as the monad’s multiplication and unit, respectively. The monadic
composition scheme (4.5) is referred to as Kleisli composition.

A monadic arrow TB A
foo conveys the idea of a function which produces

an output of “type” B “wrapped by T”, where datatype T describes some kind of
(computational) “effect”. The monad’s unit TB B

uoo is a primitive monadic
arrow which injects (i.e. promotes, wraps) data inside such an effect.

The monad concept is nowadays of primary importance in computing science
because it makes it possible to describe computational effects as disparate as in-
put/output, state variable updating, context dependence, partial behaviour (seen
above) etc. in an elegant, generic and uniform way. Moreover, the monad’s op-
erators exhibit notable properties which make it possible to reason about such
computational effects.

4.4. MONADS 131

The remainder of this section is devoted to such properties. First of all, the
properties implicit in the following diagrams will be required for T to be regarded
as a monad:

Multiplication :

T2A

µ

��

T3A

Tµ
��

µoo

TA T2Aµ
oo

µ · µ = µ · Tµ (4.6)

Unit :

T2A

µ

��

TAuoo

Tu
��id{{

TA T2Aµ
oo

µ · u = µ · Tu = id (4.7)

The simple and beautiful symmetries apparent in these diagrams will make it easy
to memorize their laws and check them for particular cases. For instance, for the
(1+) monad, law (4.7) will read as follows:

[i1 , id] · i2 = [i1 , id] · (id+ i2) = id

These equalities are easy to check.
In laws (4.6) and (4.7), the different instances of µ and u are differently typed,

as these are polymorphic and exhibit natural properties:

µ-natural :

A

f
��

TA

T f
��

T2A
µoo

T2 f
��

B TB T2Bµ
oo

T f · µ = µ · T2 f (4.8)

u-natural :

A

f
��

TA

T f
��

A
uoo

f
��

B TB Bu
oo

T f · u = u · f (4.9)

132 CHAPTER 4. WHY MONADS MATTER

The simplest of all monads is the identity monad TX
def
= X , which is such

that µ = id, u = id and f • g = f · g. So — in a sense — the whole functional
discipline studied thus far was already monadic, living inside the simplest of all
monads: the identity one. Put in other words, such functional discipline can be
framed into a wider discipline in which an arbitrary monad is present. Describing
this is the main aim of the current chapter.

4.4.1 Properties involving (Kleisli) composition
The following properties arise from the definitions and monadic properties pre-
sented above:

f • (g • h) = (f • g) • h (4.10)
u • f = f = f • u (4.11)

(f • g) · h = f • (g · h) (4.12)
(f · g) • h = f • (T g · h) (4.13)

id • id = µ (4.14)

Properties (4.10) and (4.11) are the monadic counterparts of, respectively, (2.8)
and (2.10), meaning that monadic composition preserves the properties of normal
functional composition. In fact, for the identity monad, these properties coincide
with each other.

Above we have shown that property (4.11) holds for the list monad, recall
(4.2). A general proof can be produced similarly. We select property (4.10) as an
illustration of the rôle of the monadic properties:

f • (g • h)

= { definition (4.5) twice }
µ · T f · (µ · T g · h)

= { µ is natural (4.8) }
µ · µ · T2 f · T g · h

= { monad property (4.6) }
µ · T µ · T2 f · T g · h

= { functor T (3.56) }
µ · T (µ · T f · g) · h

4.5. MONADIC APPLICATION (BINDING) 133

= { definition (4.5) twice }
(f • g) • h

Clearly, this calculation generalizes that of exercise 4.1 to any monad T .

Exercise 4.4. Prove the other laws above and also the following one,

(T f) · (h • k) = (T f · h) • k (4.15)

where Kleilsi composition again trades with normal composition.
2

4.5 Monadic application (binding)

We have seen above that, given a monad A u // T A T2 A
µoo , u is the unit

of Kleisli composition, f • u = f , recall (4.11). Now, what does happen in case
we Kleisli compose f with the identity id of standard composition? Looking at
diagram (4.4) for this case,

T(TC)

µ

��

TB
T foo T Bidoo

TC B
foo

we realize that f • id accepts a value of type T B that is passed to T C B
foo ,

yielding an output of type T C . This construction is called binding and denoted
by >>=f :

(>>=f) = f • id (4.16)

Expressed pointwise, we get:2

x >>= f
def
= (µ · T f)x (4.17)

2In the case of the identity monad one has: x >>= f = f x . So, >>= can be regarded as denoting
monadic function application.

134 CHAPTER 4. WHY MONADS MATTER

This operator exhibits properties that arise from its definition and the basic
monadic properties, e.g.

x >>= u

≡ { definition (4.17) }
(µ · Tu)x

≡ { law (4.7) }
(id)x

≡ { identity function }
x

At pointwise level, one may chain monadic compositions from left to right, e.g.

(((x >>= f1)>>= f2)>>= . . . fn−1)>>= fn

for functions A
f1 // TB1 , B1

f2 // TB2 , . . . Bn−1
fn // TBn .

4.6 Sequencing and the do-notation
Recall from above that x >>= f is the monadic generalization of function applica-
tion f x , since both coincide for the identity monad. Also recall that, for f = y
(the “everywhere”-y constant function) one gets y x = y .

What does the corresponding monadic generalization, x >>= y mean? In the
standard notation, this leads to another monadic operator,

x >> y
def
= x >>= y (4.18)

of type

(>>) : T A→ T B → T B

called “sequencing”. For instance, within the finite-list monad, one has

[1, 2]>> [3, 4] = (concat · [3, 4]?)[1, 2] = concat[[3, 4], [3, 4]] = [3, 4, 3, 4]

Because this operator is associative (prove this as an exercise), one may iterate it
to more than two arguments and write, for instance,

x1 >> x2 >> . . . >> xn

4.7. GENERATORS AND COMPREHENSIONS 135

This leads to the popular “do-notation”, which is another piece of (pointwise)
notation which makes sense in a monadic context:

do {x1;x2; . . . ;xn} def
= x1 >> do {x2; . . . ;xn}

for n > 1. For n = 1 one trivially has

do x1
def
= x1

4.7 Generators and comprehensions
The monadic do-notation paves the way to a device that is very useful in (point-
wise) monadic programming. As before, we consider its (non-monadic) counter-
part first. Consider for instance the expression x + sum y , where sum is some
operator in some context, e.g. adding up all elements of a list. Nothing impedes
us from “structuring” expression x + sum y in the following way:

let a = sum y
in x + a

It turns out that the above is the same as the following monadic expression,

do {
a ← sum y ;
u (x + a)}

provided the underlying monad is the identity monad. Now, what does the notation
a ← . . . mean for an arbitrary monad Aa−u // T A T2 A

µoo ?
The do-notation accepts a variant in which the arguments of the >> operator

are “generators” of the form

a← x (4.19)

where, for a of type A, x is an inhabitant of monadic type TA. One may regard
a ← x as meaning “let a be taken from x”. Then the do-notation unfolds as
follows:

do a ← x1;x2; . . . ;xn
def
= x1 >>= λa · (do x2; . . . ;xn) (4.20)

136 CHAPTER 4. WHY MONADS MATTER

Of course, we should now allow for the xi to range over terms involving variable
a. For instance, by writing (again in the list-monad)

do a ← [1, 2, 3]; [a2] (4.21)

we mean

[1, 2, 3]>>= λa.[a2]

= concat((λa.[a2])
?
[1, 2, 3])

= concat[[1], [4], [9]]

= [1, 4, 9]

The analogy with classical set-theoretic ZF-notation, whereby one might write
{a2 | a ∈ {1, 2, 3}} to describe the set of the first three perfect squares, calls for
the following notation,

[a2 | a← [1, 2, 3]] (4.22)

as a “shorthand” of (4.21). This is an instance of the so-called comprehension
notation, which can be defined in general as follows:

[e | a1← x1, . . . , an← xn] = do {a1 ← x1; . . . ; an ← xn; u e } (4.23)

where u is the monad’s unit (4.7,4.9).
Alternatively, comprehensions can be defined as follows, where p, q stand for

arbitrary generators:

[t] = u t (4.24)
[f x | x← l] = (T f)l (4.25)

[t | p, q] = µ[[t | q] | p] (4.26)

Note, however, that comprehensions are not restricted to lists or sets — they can
be defined for any monad T thanks to the do-notation.

Exercise 4.5. Show that

(f • g) a = do {b ← g a; f b} (4.27)

T f x = do {a ← x ; u (f x)} (4.28)

Note that the second do expression is equivalent to x >>= (u · f).
2

4.8. MONADS IN HASKELL 137

Exercise 4.6. Show that x >>= f = do {a ← x ; f a } and then that (x >>= g)>>= f is the
same as x >>= f • g .
2

Fact (4.28) is illustrated in the cartoon3

for the computation of T (+3) x , where x = u 2 is the T-monadic object con-
taining number 2.

4.8 Monads in HASKELL

In the Standard Prelude for HASKELL, one finds the following minimal definition
of the Monad class,

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b

where return refers to the unit of m, on top of which the “sequence” operator

(>>) :: m a → m b → m b
fail :: String → m a

is defined by

3Credits: see this and other helpful, artistic illustrations in
http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html.

138 CHAPTER 4. WHY MONADS MATTER

p >> q = p >>= λ → q

as expected. This class is instantiated for finite sequences ([]), Maybe and IO,
among others.

The µ multiplication operator is function join in module Monad.hs:

join :: (Monad m)⇒ m (m a)→ m a
join x = x >>= id

This is easily justified:

join x = x >>= id (4.29)

= { definition (4.17) }
(µ · T id)x

= { functors commute with identity (3.55) }
(µ · id)x

= { law (2.10) }
µx

The following infix notation for (Kleisli) monadic composition in HASKELL

uses the binding operator:

(•) :: Monad t ⇒ (b → t c)→ (d → t b)→ d → t c
(f • g) a = (g a)>>= f

Exercise 4.7. Consider the HASKELL function

discollect :: [(a, [b])]→ [(a, b)]
discollect [] = []
discollect ((a, x) : y) = [(a, b) | b ← x] ++ discollect y

Knowing that finite lists form a monad where µ = concat = (|[nil , conc]|) and conc (x , y) =
x ++ y , derive the above pointfree code from the definition

discollect = lstr • id (4.30)

where lstr (a, x) = [(a, b) | b ← x].
2

4.8. MONADS IN HASKELL 139

4.8.1 Monadic I/O

IO, a parametric datatype whose inhabitants are special values called actions or
commands, is a most relevant monad. Actions perform the interconnection be-
tween HASKELL and the environment (file system, operating system). For in-
stance,

getLine :: IO String

is a particular such action. Parameter String refers to the fact that this action
“delivers” — or extracts — a string from the environent. This meaning is clearly
conveyed by the type String assigned to symbol l in

do l ← getLine; . . . l . . .

which is consistent with typing rule for generators (4.19). Sequencing corresponds
to the “;” syntax in most programming languages (e.g. C) and the do-notation is
particulary intuitive in the IO-context.

Examples of functions delivering actions are

FilePath readFile // IO String

and

Char
putChar // IO ()

— both produce I/O commands as result.
As is to be expected, the implementation of the IO monad in HASKELL —

available from the Standard Prelude — is not totally visible, for it is bound to
deal with the intrincacies of the underlying machine:

instance Monad IO where
(>>=) = primbindIO
return = primretIO

Rather interesting is the way IO is regarded as a functor:

fmap f x = x >>= (return · f)

140 CHAPTER 4. WHY MONADS MATTER

This goes the other way round, the monadic structure “helping” in defining the
functor structure, everything consistent with the underlying theory:

x >>= (u · f) = (µ · IO(u · f))x

= { functors commute with composition }
(µ · IOu · IO f)x

= { law (4.7) for T = IO }
(IO f)x

= { definition of fmap }
(fmap f) x

For enjoyable reading on monadic input/output in HASKELL see [18], chapter 18.

Exercise 4.8. Extend the Maybe monad to the following “error message” exception
handling datatype:

data Error a = Err String | Ok a deriving Show

In case of several error messages issued in a do sequence, how many turn up on the
screen? Which ones?
2

Exercise 4.9. Recalling section 3.13, show that any inductive type with base functor

B (f , g) = f + F g

where F is an arbitrary functor, forms a monad for

µ = (|[id, in · i2]|)
u = in · i1.

Identify F for known monads such as eg. Maybe, LTree and (non-empty) lists.
2

4.9. THE STATE MONAD 141

4.9 The state monad

The so-called state monad is a monad whose inhabitants are state-transitions en-
coding a particular brand of state-based automata known as Mealy machines.
Given a set A (input alphabet), a set B (output alphabet) and a set of states S,
a deterministic Mealy machine (DMM) is specified by a transition function of
type

A× S δ // B × S (4.31)

Wherever (b, s′) = δ(a, s), we say that the machine has transition

s
a|b // s′

and refer to s as the before state, and to s′ as the after state. Many programs
that one writes in conventional programming languages such as C or Java can be
regarded as DMMs.

It is clear from (4.31) that δ can be expressed as the split of two functions f
and g — δ = 〈f, g〉— as depicted in the following drawing:

q - --
a

f b = f(a, s)

-
-q- -g s′ = g(a, s)s

Note, however, that the information recorded in the state of a DMM is either
meaningless to the user of the machine (as in eg. the case of states represented
by numbers) or too complex to be perceived and handled explicitly (as is the case
of eg. the data kept in a large database). So, it is convenient to abstract from it,
via the “encapsulation” suggested by the following, transformed, version of the

142 CHAPTER 4. WHY MONADS MATTER

previous drawing,

g

f
a

s

b = f(a, s)

s′ = g(a, s)

-

-

�
�
�
�
�S

-p
-p -

(4.32)

in which the state is no longer accessible from the outside.
Such an abstraction is nicely captured by the so-called state monad, in the

following way: taking (4.31) and recalling (2.91), we simply transpose (ie. curry)
δ and obtain

A
δ // (B × S)S︸ ︷︷ ︸

(St S) B

(4.33)

thus “shifting” the input state to the output. In this way, δ a is a function capturing
all state-transitions (and corresponding outputs) for input a. For instance, the
function that appends a new element at the rear of a queue,

enq(a, s)
def
= s++ [a]

can be converted into a DMM by adding to it a dummy output of type 1 and then
transposing:

enqueue : A→ (1× S)S

enqueue a
def
= 〈!, (++[a])〉 (4.34)

Action enqueue performs enq on the state while acknowledging it by issuing an
output of type 1.4

4A kind of “done!” message.

4.9. THE STATE MONAD 143

Unit and multiplication. Let us now show that

(St S) A ∼= (A× S)S (4.35)

forms a monad. As we shall see, the fact that the values of this monad are func-
tions brings the theory of exponentiation to the forefront. Thus, a review of section
2.15 is recommended at this point.

Notation f̂ will be used to abbreviate uncurry f , enabling the following vari-
ant of universal law (2.83),

k̂ = f ⇔ f = ap · (k × id) (4.36)

whose cancellation

k̂ = ap · (k × id) (4.37)

is written pointwise as follows:

k̂(c, a) = (k c)a (4.38)

First of all, what is the functor behind (4.35)? Fixing the state space S, we
obtain

TX
def
= (X × S)S (4.39)

on objects and

Tf
def
= (f × id)S (4.40)

on functions, where ()S is the exponential functor (2.87).
The unit of this monad is the transpose of the simplest of all Mealy machines

— the identity:

u : A→ (A× S)S

u = id
(4.41)

Let us see what this means:

u = id

≡ { (2.83) }
ap · (u× id) = id

≡ { introducing variables }
ap(u a, s) = (a, s)

≡ { definition of ap }
(u a)s = (a, s)

144 CHAPTER 4. WHY MONADS MATTER

So, action u a performed on state s keeps s unchanged and outputs a.
From the type of µ, for this monad,

((A× S)S × S)
S µ // (A× S)S

one figures out µ = xS (recalling the exponential functor as defined by (2.87))
for some ((A× S)S × S) x // (A× S) . This, on its turn, is easily recognized

as an instance of the ap polymorphic function (2.83), which is such that ap = îd,
recall (2.85). Altogether, we define

µ = apS (4.42)

Let us inspect the behaviour of µ by checking the meaning of applying it to an
action expressed as in diagram (2.91):

µ〈f, g〉 = apS〈f, g〉
≡ { (2.87) }

µ〈f, g〉 = ap · 〈f, g〉
≡ { extensional equality (2.5) }

µ〈f, g〉s = ap(f s, g s)

≡ { definition of ap }
µ〈f, g〉s = (f s)(g s)

We find out that µ “unnests” the action inside f by applying it to the state delivered
by g.

Checking the monadic laws. The calculation of (4.7) is made in two parts,
checking µ · u = id first,

µ · u
= { definitions }

apS · id
= { exponentials absorption (2.88) }

ap · id

4.9. THE STATE MONAD 145

= { reflection (2.85) }
id

2

and then checking µ · (Tu) = id:

µ · (Tu)

= { (4.42,4.40) }
apS · (id× id)S

= { functor }
(ap · (id× id))S

= { cancellation (2.84) }
idS

= { functor }
id

2

The proof of (4.6) is also not difficult once supported by the laws of exponentials.

Kleisli composition. Let us calculate f • g for this monad:

f • g
= { (4.5) }

µ · T f · g
= { (4.42) ; (4.40) }

apS · (f × id)S · g
= { ()S is a functor }

(ap · (f × id))S · g
= { (4.36) }

f̂S · g
= { cancellation }

146 CHAPTER 4. WHY MONADS MATTER

f̂S · ĝ
= { absorption (2.88) }

f̂ · ĝ
In summary, we have:

f • g = f̂ · ĝ (4.43)

which can be written alternatively as

f̂ • g = f̂ · ĝ
Let us use this in calculating law

pop • push = u (4.44)

where push and pop are such that

push : A→ (1× S)S

p̂ush
def
= 〈!, (̂:)〉 (4.45)

pop : 1→ (A× S)S

p̂op
def
= 〈head, tail〉 · π2

(4.46)

for S the datatype of finite lists. We reason:

pop • push
= { (4.43) }

p̂op · p̂ush
= { (4.45, 4.46) }

〈head, tail〉 · π2 · 〈!, (̂:)〉
= { (2.22, 2.26) }

〈head, tail〉 · (̂:)
= { out · in = id (lists) }

id

= { (4.41) }
u

2

4.9. THE STATE MONAD 147

Bind. The effect of binding a state transition x to a state-monadic function h is
calculated in a similar way:

x >>= h

= { (4.17) }
(µ · Th)x

= { (4.42) and (4.40) }
(apS · (h× id)S)x

= { ()S is a functor }
(ap · (h× id))Sx

= { cancellation (4.37) }

ĥSx

= { exponential functor (2.87) }

ĥ · x
Let us unfold ĥ · x by splitting x into its components two components f and g:

〈f, g〉>>= h = ĥ · 〈f, g〉
≡ { go pointwise }

(〈f, g〉>>= h)s = ĥ(〈f, g〉s)
≡ { (2.20) }

(〈f, g〉>>= h)s = ĥ(f s, g s)

≡ { (4.38) }
(〈f, g〉>>= h)s = h(f s)(g s)

In summary, for a given “before state” s, g s is the intermediate state upon which
f s runs and yields the output and (final) “after state”.

Two prototypical inhabitants of the state monad: get and put. These generic
actions are defined as follows, in the PF-style:

get
def
= 〈id, id〉 (4.47)

148 CHAPTER 4. WHY MONADS MATTER

put
def
= 〈!, π1〉 (4.48)

Action g retrieves the data stored in the state without changing it, while put stores
a particular value in the state. Note that put can also be written

put s = 〈!, s〉 (4.49)

or even as

put s = update s (4.50)

where

update f
def
= 〈!, f 〉 (4.51)

updates the state via state-to-state function f .
The following is an example, written in Haskell, of the standard use of get/put

in managing context data, in this case a counter. Function decBTree decorates
each node of a BTree (recall this datatype from page 108) with its position in the
tree:

decBTree Empty = return Empty
decBTree (Node (a, (t1 , t2))) = do {

n ← get ;
put (n + 1);
x ← decBTree t1 ;
y ← decBTree t2 ;
return (Node ((a, n), (x , y)))
}

To close the chapter, we will present a strategy for deriving this kind of monadic
functions.

4.10 ‘Monadification’ of Haskell code made easy
There is an easy roadmap for “monadification” of Haskell code. What do we mean
by monadification? Well, in a sense — as we shall soon see — every piece of code
is monadic: we don’t notice this because the underlying monad is invisible (the
identity monad). We are going to see how to make it visible taking advantage of
monadic do notation and leaving it open for instantiation. This will bridge the

4.10. ‘MONADIFICATION’ OF HASKELL CODE MADE EASY 149

gap between monads’ theory and its application to handling particular effects in
concrete programming situations.

Let us take as starting point the pointwise version of sum, the list catamor-
phism that adds all numbers found in its input:

sum [] = 0
sum (h : t) = h + sum t

Notice that this code could have been written as follows

sum [] = id 0
sum (h : t) = let x = sum t in id (h + x)

using let notation and two instances of the identity function. Question: what is
the point of such a “baroque” version of the starting, so simple piece of code?
Answer:

• The let ... in ... notation stresses the fact that recursive call happens earlier
than the delivery of the result.

• The id functions signal the exit points of the algorithm, that is, the points
where it returns something to the caller.

Next, let us

• re-write id into return—;

• re-write let x = ... in ...— into do { x <- ... ; ... }

One will obtain the following version of sum:

msum [] = return 0
msum (h : t) = do {x ← msum t ; return (h + x)}

Typewise, while sum has type (Num a)⇒ [a]→ a, msum has type

(Monad m,Num a)⇒ [a]→ m a

That is, msum is monadic — parametric on monad m — while sum is not.
There is a particular monad for which sum and msum coincide: the identity

monad Id X = X . It is very easy to show that inside this monad return is the
identity and do x ← . . . means the same as let x = . . ., as already mentioned —

150 CHAPTER 4. WHY MONADS MATTER

enough for the pointwise versions of the two functions to be the same. Thus the
“invisible” monad mentioned earlier is the identity monad.

In summary, the monadic version is generic in the sense that it runs on what-
ever monad you like, enabling you to perform side effects while the code runs.
If you don’t need any effects then you get the “non-monadic” version as special
case, as seen above. Otherwise, Haskell will automatically switch to the effects
you want, depending on the monad you choose (often determined by context).

For each particular monad we may decide to add specific monadic code like
get and put in the decBTree example, where we want to take advantage of
the state monad. As another example, check the following enrichment of msum
with state-monadic code helping you to trace the execution of your program:

msum ′ [] = return 0
msum ′ (h : t) =
do {x ← msum ′ t ;

print ("x= " ++ show x);
return (h + x)}

Thus one obtains traces of the code in the way prescribed by the particular usage
of the print (state monadic) function:

*Main> msum’ [3,5,1,3,4]
"x= 0"
"x= 4"
"x= 7"
"x= 8"
"x= 13"

*Main>

In the reverse direction, one may try and see what happens to monadic code
upon removing all monad-specific functions and going into the identity monad
once it gets monad generic. In the case of decBTree, for instance, we will get

decBTree Empty = return Empty
decBTree (Node (a, (t1 , t2))) =
do

x ← decBTree t1 ;
y ← decBTree t2 ;
return (Node (a, (x , y)))

4.10. ‘MONADIFICATION’ OF HASKELL CODE MADE EASY 151

once get and put are removed (and therefore all instances of n), and then

decBTree Empty = Empty
decBTree (Node (a, (t1 , t2))) =

let
x = decBTree t1
y = decBTree t2

in Node (a, (x , y))

This is the identity function on type BTree, recall the cata-reflection law (3.68).
So, the archetype of (inspiration for) much monadic code is the most basic of all
tree traversal functions — the identity 5. The same could be said about imperative
code of a particular class — the recursive descent one — much used in compiler
construction, for instance.

Playing with effects

As it may seem from the previous examples, adding effects to produce monadic
code is far from arbitrary. This can be further appreciated by defining the function
that yields the smallest element of a list,

getmin [a] = a
getmin (h : t) = min h (getmin t)

which is incomplete in the sense that it does not specify the meaning of getmin [].
As this is mathematically undefined, it should be expressed “outside the maths”,
that is, as an effect. Thus, to complete the defintion we first go monadic, as we
did before,

mgetmin [a] = return a
mgetmin (h : t) = do {x ← mgetmin t ; return (min h x)}

and then chose a monad in which to express the meaning of getmin [], for instance
the Maybe monad

mgetmin [] = Nothing
mgetmin [a] = return a
mgetmin (h : t) = do {x ← mgetmin t ; return (min h x)}

5We have seen the same kind of “inspiration” before in building type functors (3.76) which,
for f = id, boil down to the identity.

152 CHAPTER 4. WHY MONADS MATTER

Alternatively, we might have written

mgetmin [] = Error "Empty input"

going into the Error monad, or even the simpler (yet interesting) mgetmin [] =
[], which shifts the code into the list monad, yielding singleton lists in the success
case, otherwise the empty list.

Function getmin above is an example of a partial function, that is, a function
which is undefined for some of its inputs.6 These functions cause much interfer-
ence in functional programming, which monads help us to keep under control.

Let us see how such interference is coped with in the case of higher order
functions, taking map as example

map f [] = []
map f (h : t) = (f h) : map f t

and supposing f is not a total function. How do we cope with erring evaluations
of f h? As before, we first “letify” the code,

map f [] = []
map f (h : t) = let

b = f h
x = map f t in b : x

we go monadic in the usual way,

mmap f [] = return []
mmap f (h : t) = do {b ← f h; x ← mmap f t ; return (b : x)}

and everything goes smoothly — as can be checked, the function thus built is of
the expected (monadic) type:

mmap :: (Monad T)⇒ (a → T b)→ [a]→ T [b] (4.52)

Run mmap Just [1, 2, 3, 4], for instance: you will obtain Just [1, 2, 3, 4]. Now
run mmap print [1, 2, 3, 4]. You will see the items in the sequence printed se-
quentially.

6Recall that function partiality was our motivation for studying monads right from the begin-
ning of this chapter.

4.11. MONADIC RECURSION 153

One may wonder about the behaviour of the mmap for f the identity function:
will we get an error? No, we get a well-typed function of type [m a] → m [a],
for m a monad. We thus obtain the well-known monadic function sequence which
evaluates each action in the input sequence, from left to right, collecting the re-
sults. For instance, applying this function to input sequence [Just 1,Nothing, Just 2]
the output will be Nothing.

Exercise 4.10. Use the monadification technique to encode monadic function

filterM :: Monad m ⇒ (a → m B)→ [a]→ m [a]

which generalizes the list-based filter function.
2

Exercise 4.11. “Reverse” the following monadic code into its non-monadic archetype:

f :: (Monad m)⇒ (a → m B)→ [a]→ m [a]
f p [] = return []
f p (h : t) = do {

b ← p h;
t ′ ← f p t ;
return (if b then h : t ′ else [])
}

Which function of the Haskell Prelude do you get by such reverse monadification?
2

4.11 Monadic recursion
There is much more one could say about monadic recursive programming. In
particular, one can express the code “monadification” strategies of the previous
section in terms of catamorphisms. As an example, recall (4.52):

A

f
��

A?

mmap f
��

1 + A× A∗
inA?oo

id+id×mmap f
��

T B T B∗ 1 + A× T B∗
goo

154 CHAPTER 4. WHY MONADS MATTER

How do we build g? Clearly, the recipe given by (3.76) needs to be adapted:

A

f
��

A?

mmap f
��

1 + A× A∗
inA?oo

id+id×mmap f
��

T B T B∗ 1 + A× T B∗
goo

id+f×id
��

1 + T B × T B∗
[return·nil ,bconsc]

ii

where

bf c (x , y) = do {a ← x ; b ← y ; return (f (a, b))}
By defining

(|g |)[= (|[return · f , bhc]|) where
f = (g · i1)
h = (g · i2)

we can write

mmap f = (|(in · (id+ f × id))|)[(4.53)

where (recall) in = [nil , cons].
Handling monadic recursion in full generality calls for technical ingredients

called commutative laws which fall outside the current scope of this chapter.

4.12 Where do monads come from?
In the current context, a good way to find an answer this question is to recall the
universal property of exponentials (2.83):

k = f ⇔ f = ap · (k × id)

BA BA × A ap // B

C

k=f

OO

C × A
k×id

OO

f

;;

Let us re-draw this diagram by unfolding BA × A into the composition of two
functors G (F B) where F X = X A and G X = X × A:

k = f ⇔ f = ap · G k︸ ︷︷ ︸
k̂

F B G (F B)
ap // B

C

k=f

OO

G C

G k

OO

f

;;

4.12. WHERE DO MONADS COME FROM? 155

As we already know, this establishes the (curry/uncurry) isomorphism

G C → B ∼= C → F B (4.54)

assuming F and G as defined above.
Note how (4.54) expresses a kind of “shunting rule” at type level: Gs on the

input side can be ”shunted” to the output if replaced by Fs. This is exactly what
curry and uncurry do typewise. The corollaries of the universal property can
also be expressed in terms of F and G:

• Reflection: ap = id, that is, ap = îd – recall (2.85)

• Cancellation: îd · G f = f – recall (2.84)

• Fusion: h · g = h · G g — recall (2.86)

• Absorption: (F g) · h = g · h — recall (2.88)

• Naturality: h · id = id · G (F h)

• Functor: F h = h · ap

• Closed definitions: k̂ = ap · (G k) and g = (F g) · id, the latter following
from absorption.

Now observe what happens if the functor composition G·F is swapped: F (G X) =
(X × A)A. We get the state monad out of this construction,

(G · F) X = (X × A)A = St A X

— recall (4.35). Interestingly, the same universal property can be expressed in
terms of such a monad structure, as the simple calculation shows:

k = f ⇔ ap · G k = f

≡ { see above }

k = (F f) · id ⇔ f = k̂

≡ { swapping variables k and f , to match the starting diagram }

f = (F k) · id ⇔ k = f̂

2

156 CHAPTER 4. WHY MONADS MATTER

That is,

k = f̂ ⇔ f = F k · η︸ ︷︷ ︸
k

G B

k=f̂
��

F (G B)

F k
��

B
ηoo

f{{
C F A

for η = id, the unit of the monad T = F · G. To complete the definition of the T
monad in this way, we recall (4.42)

µ = F îd (4.55)

with type (T · T) X
µ // T X , where id : T X → T X .

Adjunctions

The reasoning we have made above for exponentials and the state monad general-
izes for any other monad. In general, isomorphisms of shape (4.54) are called an
adjunction of the two functors F and G, which are said to be adjoint to each other.
One writes G a F and says that G is left adjoint and that F is right adjoint. Using
notation bkc and dke for the generic witnesses of the isomorphism we write

G C → B

d e
++∼= C → F B

b c
jj (4.56)

From this a monad T = F · G arises defined by η = dide and µ = Fbidc.
Let us see another example of a monad arising from one such adjunction

(4.56). Recall exercise 2.25, on page 49, where pair / unpair witness an isomor-
phism similar to that of curry/uncurry, for pair (f , g) = 〈f , g〉 and unpair k =
(π1 · k , π2 · k). This can be cast into an adjunction as follows

k = pair (f , g) ⇔ (π1 · k , π2 · k) = (f , g)

≡ { see below }
k = pair (f , g) ⇔ (π1, π2) · (G k) = (f , g)

where G k = (k , k). Note the abuse of notation, on the righthand side, of extend-
ing function composition notation to composition of pairs of functions, defined in
the expected way: (f , g) · (h, k) = (f · h, g · k). Note that, for f : A → B and

4.12. WHERE DO MONADS COME FROM? 157

g : C → D , the pair (f , g) has type (A → B) × (C → D). However, we shall
abuse of notation again and declare the type (f , g) : (A,C) → (B ,D).7 In the
opposite direction, F (f , g) = f × g :

B × A (B × A,B × A)
(π1,π2)// (B,A)

C

k=pair (f ,g)

OO

(C ,C)

(k ,k)

OO

(f ,g)

77

This is but another way of writing the universal property of products (2.63), since
(f , g) = (h, k) ⇔ f = h ∧ g = k and pair (f , g) = 〈f , g〉, recall exercise 2.25.

What is, then, the monad behind this pairing adjunction? It is the pairing
monad (F · G) X = F (G X) = F (X ,X) = X × X , where η = 〈id, id〉 and
µ = π1 × π2. This monad allows us to work with pairs regarded as 2-dimensional
vectors (y , x). For instance, the do-expression

do {x ← (2, 3); y ← (4, 5); return (x + y)}
yields (6, 8) as result in this monad — the vectorial sum of vectors (2, 3) and
(4, 5). A simple encoding of this monad in Haskell is:

data P a = P (a, a) deriving Show

instance Functor P where
fmap f (P (a, b)) = P (f a, f b)

instance Monad P where
x >>= f = (µ · fmap f) x
return a = P (a, a)

µ :: P (P a)→ P a
µ (P (P (a, b),P (c, d))) = P (a, d)

Exercise 4.12. What is the vectorial operation expressed by the definition

op k v = do {x ← v ; return (k × x)}
in the pairing monad?
2

7Strictly speaking, we are not abusing notation but rather working on a new category, that
is, another mathematical system where functions and objects always come in pairs. For more on
categories see the standard textbook [25].

158 CHAPTER 4. WHY MONADS MATTER

4.13 Bibliography notes
The use of monads in computer science started with Moggi [30], who had the
idea that monads should supply the extra semantic information needed to imple-
ment the lambda-calculus theory. Haskell [23] is among the computer languages
which make systematic use of monads for implementing effects and imperative
constructs in a purely functional style.

Category theorists invented monads in the 1960’s to concisely express certain
aspects of universal algebra. Functional programmers invented list comprehen-
sions in the 1970’s to concisely express certain programs involving lists. Philip
Wadler [41] made a great contribution to the field by showing that list comprehen-
sions could be generalised to arbitrary monads and unify with imperative “do”-
notation in case of the monad which explains imperative computations.

Monads are nowadays an essential feature of functional programming and are
used in fields as diverse as language parsing [19], component-oriented program-
ming [4], strategic programming [24], multimedia [18] and probabilistic program-
ming [8]. Adjunctions play a major role in [16].

