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Preamble

This textbook, which has arisen from the author’s research and teaching experi-
ence, has been in preparation for many years. Its main aim is to draw the attention
of software practitioners to a calculational approach to the design of software
artifacts ranging from simple algorithms and functions to the specification and
realization of information systems.

Put in other words, the book invites software designers to raise standards
and adopt mature development techniques found in other engineering disciplines,
which (as a rule) are rooted on a sound mathematical basis. Compositionality and
parametricity are central to the whole discipline, granting scalability from school
desk exercises to large problems in an industry setting.

It is interesting to note that while coining the phrase software engineering in
the 1960s, our colleagues of the time were already promising such high quality
standards. In March, 1967, ACM President Anthony Oettinger delivered an ad-
dress in which he said: ”(...) the scientific, rigorous component of computing,
is more like mathematics than it is like physics” (...) Whatever it is, on the one
hand it has components of the purest of mathematics and on the other hand of the
dirtiest of engineering [35].

As a discipline, software engineering was announced at the Garmisch NATO
conference in 1968, from whose report [34] the following excerpt is quoted:

In late 1967 the Study Group recommended the holding of a working con-
ference on Software Engineering. The phrase ‘software engineering’ was
deliberately chosen as being provocative, in implying the need for software
manufacture to be based on the types of theoretical foundations and practi-
cal disciplines, that are traditional in the established branches of engineer-
ing.

Provocative or not, the need for sound theoretical foundations has clearly been
under concern since the very beginning of the discipline — exactly fifty years

1



2 LIST OF EXERCISES

ago, at the time of writing. However, how “scientific” do such foundations turn
out to be, now that five decades have since elapsed?

Thirty years later (1997), Richard Bird and Oege de Moore published a text-
book [6] in whose preface C.A.R. Hoare writes:

Programming notation can be expressed by “formulæ and equations (...)
which share the elegance of those which underlie physics and chemistry or
any other branch of basic science”.

The formulæ and equations mentioned in this quotation are those of a discipline
known as the Algebra of Programming. Many others have contributed to this
body of knowledge, notably Roland Backhouse and his colleagues at Eindhoven
and Nottingham, see eg. [1, 2], Jeremy Gibbons and Ralf Hinze at Oxford see e.g.
[15], among many others. Unfortunately, references[1, 2] are still unpublished.

When the author of this draft textbook decided to teach Algebra of Program-
ming to 2nd year students of the Minho degrees in computer science, back to 1998,
he found textbook [6] too difficult for the students to follow, mainly because of its
too explicit categorial (allegorical) flavour. So he decided to start writing slides
and notes helping the students to read the book. Eventually, such notes became
chapters 2 to 4 of the current version of the monograph. The same procedure was
taken when teaching the relational approach of [6] to 4th and 5th year students
(today at master level).

This draft book is by and large incomplete, most chapters being still in slide
form1. Such half-finished chapters are omitted from the current print-out. Alto-
gether, the idea is to show that software engineering and, in particular, computer
programming can adopt the scientific method as other branches of engineering do.

University of Minho, Braga, February 2018

José N. Oliveira

1For the slides which eventually will lead to the second part of this book see technical report
[37]. The third part will address a linear algebra of programming intended for quantitative reason-
ing about software. This is even less stable, but a number of papers exist about the topic, starting
from [36].
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Part I

Calculating with Functions
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Chapter 2

An Introduction to Pointfree
Programming

Everybody is familiar with the concept of a function since the school desk. The
functional intuition traverses mathematics from end to end because it has a solid
semantics rooted on a well-known mathematical system — the class of “all” sets
and set-theoretical functions.

Functional programming literally means “programming with functions”. Pro-
gramming languages such as LISP or HASKELL allow us to program with func-
tions. However, the functional intuition is far more reaching than producing code
which runs on a computer. Since the pioneering work of John McCarthy — the
inventor of LISP — in the early 1960s, one knows that other branches of pro-
gramming can be structured, or expressed functionally. The idea of producing
programs by calculation, that is to say, that of calculating efficient programs out
of abstract, inefficient ones has a long tradition in functional programming.

This book is structured around the idea that functional programming can be
used as a basis for teaching programming as a whole, from the successor function
n 7→ n+ 1 to large information system design.1

This chapter provides a light-weight introduction to the theory of functional
programming. The main emphasis is on compositionality, one of the main ad-
vantages of “thinking functionally”, explaining how to construct new functions
out of other functions using a minimal set of predefined functional combinators.
This leads to a programming style which is point free in the sense that function

1This idea addresses programming in a broad sense, including for instance reversible and quan-
tum programming, where functional programming already plays leading roles [32, 31, 14].

7



8 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

descriptions dispense with variables (also known as points).
Many technical issues are deliberately ignored and deferred to later chapters.

Most programming examples will be provided in the HASKELL functional pro-
gramming language. Appendix A.1 includes the listings of some HASKELL mod-
ules which complement the HASKELL Standard Prelude and help to “animate”
the main concepts introduced in this chapter.

2.1 Introducing functions and types
The definition of a function

f : A→ B (2.1)

can be regarded as a kind of “process” abstraction: it is a “black box” which
produces an output once it is supplied with an input:

f- -x ∈ A (f x ) ∈ B

The box isn’t really necessary to convey the abstraction, a single labelled arrow
sufficing:

A
f // B

This simplified notation focusses on what is indeed relevant about f — that it can
be regarded as a kind of “contract”:

f commits itself to producing a B-value provided it is supplied with
an A-value.

How is such a value produced? In many situations one wishes to ignore it because
one is just using function f . In others, however, one may want to inspect the
internals of the “black box” in order to know the function’s computation rule. For
instance,

succ : N→ N
succ n

def
= n+ 1



2.2. FUNCTIONAL APPLICATION 9

expresses the computation rule of the successor function — the function succ
which finds “the next natural number” — in terms of natural number addition and
of natural number 1. What we above meant by a “contract” corresponds to the
signature of the function, which is expressed by arrow N→ N in the case of succ

and which, by the way, can be shared by other functions, e.g. sq n
def
= n2.

In programming terminology one says that succ and sq have the same “type”.
Types play a prominent rôle in functional programming (as they do in other pro-
gramming paradigms). Informally, they provide the “glue”, or interfacing mate-
rial, for putting functions together to obtain more complex functions. Formally, a
“type checking” discipline can be expressed in terms of compositional rules which
check for functional expression wellformedness.

It has become standard to use arrows to denote function signatures or function
types, recall (2.1). To denote the fact that function f accepts arguments of type
A and produces results of type B, we will use the following interchangeable no-

tations: f : B← A, f : A→ B, B A
foo or A

f // B . This corresponds to
writing f ::a → b in the HASKELL functional programming language, where type
variables are denoted by lowercase letters. A will be referred to as the domain of
f and B will be referred to as the codomain of f . Both A and B are symbols or
expressions which denote sets of values, most often called types.

2.2 Functional application

What do we want functions for? If we ask this question to a physician or engineer
the answer is very likely to be: one wants functions for modelling and reasoning
about the behaviour of real things.

For instance, function distance t = 60×t could be written by a school physics
student to model the distance (in, say, kilometers) a car will drive (per hour) at
average speed 60km/hour. When questioned about how far the car has gone in
2.5 hours, such a model provides an immediate answer: just evaluate distance 2.5
to obtain 150km.

So we get a naı̈ve purpose of functions: we want them to be applied to argu-
ments in order to obtain results. Functional application is denoted by juxtaposi-

tion, e.g. f a for B A
foo and a ∈ A, and associates to the left: f x y denotes

(f x) y rather than f (x y).
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2.3 Functional equality and composition
Application is not everything we want to do with functions. Very soon our physics
student will be able to talk about properties of the distance model, for instance
that property

distance (2× t) = 2× (distance t) (2.2)

holds. Later on, we could learn from her or him that the same property can
be restated as distance (twice t) = twice (distance t), by introducing function
twice x

def
= 2× x. Or even simply as

distance · twice = twice · distance (2.3)

where “·” denotes function-arrow chaining, as suggested by drawing

R
distance ��

Rtwiceoo

distance��
R R

twice
oo

(2.4)

where both space and time are modelled by real numbers in R.
This trivial example illustrates some relevant facets of the functional program-

ming paradigm. Which version of the property presented above is “better”? the
version explicitly mentioning variable t and requiring parentheses (2.2)? the ver-
sion hiding variable t but resorting to function twice (2.3)? or even diagram (2.4)
alone?

Expression (2.3) is clearly more compact than (2.2). The trend for notation
economy and compactness is well-known throughout the history of mathematics.
In the 16th century, for instance, algebrists would write 12.cu.p̃.18.ce.p̃.27.co.p̃.17
for what is nowadays written as 12x3 + 18x2 + 27x + 17. We may find such
syncopated notation odd, but we should not forget that at its time it was replacing
even more obscure and lengthy expression denotations.

Why do people look for compact notations? A compact notation leads to
shorter documents (less lines of code in programming) in which patterns are easier
to identify and to reason about. Properties can be stated in clear-cut, one-line long
equations which are easy to memorize. And diagrams such as (2.4) can be easily
drawn which enable us to visualize maths in a graphical format.

Some people will argue that such compact “pointfree” notation (that is, the
notation which hides variables, or function “definition points”) is too cryptic to
be useful as a practical programming medium. In fact, pointfree programming
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languages such as Iverson’s APL or Backus’ FP have been more respected than
loved by the programmers community. Virtually all commercial programming
languages require variables and so implement the more traditional “pointwise”
notation.

Throughout this book we will adopt both, depending upon the context. Our
chosen programming medium — HASKELL — blends the pointwise and pointfree
programming styles in a quite successful way. In order to switch from one to the
other, we need two “bridges”: one lifting equality to the functional level and the
other lifting function application.

Concerning equality, note that the “=” sign in (2.2) differs from that in (2.3):
while the former states that two real numbers are the same number, the latter states
that two R← R functions are the same function. Formally, we will say that two
functions f, g : B← A are equal if they agree at pointwise-level, that is2

f = g iff 〈∀ a : a ∈ A : f a =B g a〉 (2.5)

where =B denotes equality atB-level. Rule (2.5) is known as extensional equality.
Concerning application, the pointfree style replaces it by the more generic

concept of functional composition suggested by function-arrow chaining: wher-
ever two functions are such that the target type of one of them, say B A

goo

is the same as the source type of the other, say C B
foo , then another function

can be defined, C A
f ·goo — called the composition of f and g, or “f after g” —

which “glues” f and g together:

(f · g) a
def
= f (g a) (2.6)

This situation is pictured by the following arrow-diagram

B

f

��

A
goo

f ·g��
C

(2.7)

or by block-diagram

- ga -g a
f - f (g a)

2Quantified notation 〈∀ x : P : Q〉 means: “for all x in the range P , Q holds”, where P and
Q are logical expressions involving x . This notation will be used sporadically in this book.
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Therefore, the type-rule associated to functional composition can be expressed as
follows:3

C B
foo

B A
goo

C A
f ·goo

Composition is certainly the most basic of all functional combinators. It is the
first kind of “glue” which comes to mind when programmers need to combine, or
chain functions (or processes) to obtain more elaborate functions (or processes).4

This is because of one of its most relevant properties,

(f · g) · h = f · (g · h) (2.8)

depicted by diagram

D
g·h

uu
h��

B
f ��

A
goo

f ·guuC
which shares the pattern of, for instance

(a+ b) + c = a+ (b+ c)

and so is called the associative property of composition. This enables us to move
parentheses around in pointfree expressions involving functional compositions, or
even to omit them altogether, for instance by writing f · g · h · i as an abbreviation
of ((f ·g) ·h) · i, or of (f · (g ·h)) · i, or of f · ((g ·h) · i), etc. For a chain of n-many
function compositions the notation ©n

i=1fi will be acceptable as abbreviation of
f1 · · · · · fn.

2.4 Identity functions
How free are we to fulfill the “give me an A and I will give you a B” contract of
equation (2.1)? In general, the choice of f is not unique. Some fs will do as little
as possible while others will laboriously compute non-trivial outputs. At one of

3This and other type-rules to come adopt the usual “fractional” layout, reminiscent of that used
in school arithmetics for addition, subtraction, etc.

4 It even has a place in scripting languages such as UNIX’s shell, where f | g is the shell
counterpart of g · f , for appropriate “processes” f and g.
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the extremes, we find functions which “do nothing” for us, that is, the added-value
of their output when compared to their input amounts to nothing: f a = a. In this
case B = A, of course, and f is said to be the identity function on A:

idA : A← A

idA a
def
= a

(2.9)

Note that every type X “has” its identity idX . Subscripts will be omitted

wherever implicit in the context. For instance, the arrow notation N Nidoo

saves us from writing idN. So, we will often refer to “the” identity function rather
than to “an” identity function.

How useful are identity functions? At first sight, they look fairly uninteresting.
But the interplay between composition and identity, captured by the following
equation,

f · id = id · f = f (2.10)

will be appreciated later on. This property shares the pattern of, for instance,

a+ 0 = 0 + a = a

This is why we say that id is the unit (identity) of composition. In a diagram,
(2.10) looks like this:

A

f
��

Aidoo

f
��

B B
id
oo

(2.11)

Note the graphical analogy of diagrams (2.4) and (2.11). The latter is interesting
in the sense that it is generic, holding for every f . Diagrams of this kind are very
common and express important (and rather ’natural’) properties of functions, as
we shall see further on.

2.5 Constant functions
Opposite to the identity functions, which do not lose any information, we find
functions which lose all (or almost all) information. Regardless of their input, the
output of these functions is always the same value.
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Let C be a nonempty data domain and let and c ∈ C. Then we define the
everywhere c function as follows, for arbitrary A:

c : A→ C

c a
def
= c

(2.12)

The following property defines constant functions at pointfree level,

c · f = c (2.13)

and is depicted by a diagram similar to (2.11):

C

id
��

A
coo

f

��
C Bc
oo

(2.14)

Clearly, c · f = c · g , for any f , g , meaning that any difference that may exist in
behaviour between such functions is lost.

Note that, strictly speaking, symbol c denotes two different functions in dia-
gram (2.14): one, which we should have written cA, accepts inputs from A while
the other, which we should have written cB, accepts inputs from B:

cB · f = cA (2.15)

This property will be referred to as the constant-fusion property.
As with identity functions, subscripts will be omitted wherever implicit in the

context.

Exercise 2.1. Use (2.5) to show that f · h = h · f = f has the unique solution h = id, cf.
(2.10).
2

Exercise 2.2. The HASKELL Prelude provides for constant functions: you write const c

for c. Check that HASKELL assigns the same type to expressions f · (const c) and
const (f c), for every f and c. What else can you say about these functional expres-
sions? Justify.
2
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2.6 Monics and epics
Identity functions and constant functions are limit points of the functional spec-
trum with respect to information preservation. All the other functions are in be-
tween: they lose “some” information, which is regarded as uninteresting for some
reason. This remark supports the following aphorism about a facet of functional
programming: it is the art of transforming or losing information in a controlled
and precise way. That is to say, the art of constructing the exact observation of
data which fits in a particular context or requirement.

How do functions lose information? Basically in two different ways: they may
be “blind” enough to confuse different inputs, by mapping them onto the same
output, or they may ignore values of their codomain. For instance, c confuses all
inputs by mapping them all onto c. Moreover, it ignores all values of its codomain
apart from c.

Functions which do not confuse inputs are called monics (or injective func-

tions) and obey the following property: B A
foo is monic if, for every pair of

functions A C
h,koo , if f · h = f · k then h = k, cf. diagram

B A
foo C

hoo
k
oo

(we say that f is “post-cancellable”). It is easy to check that “the” identity function
is monic,

id · h = id · k⇒ h = k

≡ { by (2.10) }
h = k⇒ h = k

≡ { predicate logic }
TRUE

and that any constant function c is not monic:

c · h = c · k⇒ h = k

≡ { by (2.15) }
c = c⇒ h = k

≡ { function equality is reflexive }
TRUE⇒ h = k
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≡ { predicate logic }
h = k

So the implication does not hold in general (only if h = k).
Functions which do not ignore values of their codomain are called epics (or

surjective functions) and obey the following property: A B
foo is epic if, for

every pair of functions C A
h,koo , if h · f = k · f then h = k, cf. diagram

C A
h
oo
koo B

f
oo

(we say that f is “pre-cancellable”). As expected, identity functions are epic:

h · id = k · id⇒ h = k

≡ { by (2.10) }
h = k⇒ h = k

≡ { predicate logic }
TRUE

Exercise 2.3. Under what circumstances is a constant function epic? Justify.
2

2.7 Isos

A function B A
foo which is both monic and epic is said to be iso (an iso-

morphism, or a bijective function). In this situation, f always has a converse (or

inverse) B
f◦ // A , which is such that

f · f ◦ = idB ∧ f ◦ · f = idA (2.16)

(i.e. f is invertible).
Isomorphisms are very important functions because they convert data from

one “format”, say A, to another format, say B, without losing information. So f
and and f ◦ are faithful protocols between the two formats A and B. Of course,
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these formats contain the same “amount” of information, although the same data
adopts a different “shape” in each of them. In mathematics, one says that A is
isomorphic to B and one writes A ∼= B to express this fact.

Isomorphic data domains are regarded as “abstractly” the same. Note that, in
general, there is a wide range of isos between two isomorphic data domains. For
instance, let Weekday be the set of weekdays,

Weekday =

{Sunday ,Monday ,Tuesday ,Wednesday ,Thursday ,Friday , Saturday }

and let symbol 7 denote the set {1, 2, 3, 4, 5, 6, 7}, which is the initial segment of
N containing exactly seven elements. The following function f , which associates
each weekday with its “ordinal” number,

f : Weekday → 7
f Monday = 1
f Tuesday = 2
f Wednesday = 3
f Thursday = 4
f Friday = 5
f Saturday = 6
f Sunday = 7

is iso (guess f ◦). Clearly, f d = i means “d is the i-th day of the week”. But note
that function g d def

= rem(f d, 7) + 1 is also an iso between Weekday and 7. While
f regards Monday the first day of the week, g places Sunday in that position.
Both f and g are witnesses of isomorphism

Weekday ∼= 7 (2.17)

Isomorphisms are quite flexible in pointwise reasoning. If, for some reason,
f ◦ is found handier than isomorphism f in the reasoning, then the shunting rules

f · g = h ≡ g = f ◦ · h (2.18)
g · f = h ≡ g = h · f ◦ (2.19)

can be of help.
Finally, note that all classes of functions referred to so far — constants, iden-

tities, epics, monics and isos — are closed under composition, that is, the compo-
sition of two constants is a constant, the composition of two epics is epic, etc.
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2.8 Gluing functions which do not compose — prod-
ucts

Function composition has been presented above as a basis for gluing functions
together in order to build more complex functions. However, not every two func-
tions can be glued together by composition. For instance, functions f : A← C
and g : B← C do not compose with each other because the domain of one of
them is not the codomain of the other. However, both f and g share the same
domain C. So, something we can do about gluing f and g together is to draw a
diagram expressing this fact, something like

A B

C
f

__

g

??

Because f and g share the same domain, their outputs can be paired, that is,
we may write ordered pair (f c, g c) for each c ∈ C. Such pairs belong to the
Cartesian product of A and B, that is, to the set

A×B def
= {(a, b) | a ∈ A ∧ b ∈ B}

So we may think of the operation which pairs the outputs of f and g as a new
function combinator 〈f, g〉 defined as follows:

〈f, g〉 : C → A×B
〈f, g〉 c def

= (f c, g c)
(2.20)

Traditionally, the pairing combinator 〈f, g〉 is pronounced “f split g” (or “pair
f and g”) and can be depicted by the following “block”, or “data flow” diagram:

c

-

-

f

g

-

-

f c

g c
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Function 〈f, g〉 keeps the information of both f and g in the same way Cartesian
product A× B keeps the information of A and B. So, in the same way A data or
B data can be retrieved from A×B data via the implicit projections π1 or π2,

A A×Bπ1oo π2 // B (2.21)

defined by

π1(a, b) = a and π2(a, b) = b

f and g can be retrieved from 〈f, g〉 via the same projections:

π1 · 〈f, g〉 = f and π2 · 〈f, g〉 = g (2.22)

This fact (or pair of facts) will be referred to as the ×-cancellation property and
is illustrated in the following diagram which puts everything together:

A A×Bπ1oo π2 // B

C
f

cc

〈f,g〉
OO

g

;; (2.23)

In summary, the type-rule associated to the “split” combinator is expressed by

A C
foo

B C
goo

A×B C
〈f,g〉oo

A split arises wherever two functions do not compose but share the same do-
main. What about gluing two functions which fail such a requisite, e.g.

A C
foo

B D
goo

. . .?

The 〈f, g〉 split combination does not work any more. Nevertheless, a way to
“bridge” the domains of f and g, C and D respectively, is to regard them as
targets of the projections π1 and π2 of C ×D:

A A×Bπ1oo π2 // B

C

f

OO

C ×Dπ1oo π2 // D

g

OO
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From this diagram 〈f · π1, g · π2〉 arises

A A×Bπ1oo π2 // B

C ×D
f ·π1

ii

g·π2

55

〈f ·π1,g·π2〉
OO

mapping C ×D to A×B. It corresponds to the “parallel” application of f and g
which is suggested by the following data-flow diagram:

c

d

-

-

f

g

-

-

f c

g d

Functional combination 〈f · π1, g · π2〉 appears so often that it deserves special
notation — it will be expressed by f × g. So, by definition, we have

f × g def
= 〈f · π1, g · π2〉 (2.24)

which is pronounced “product of f and g” and has typing-rule

A C
foo

B D
goo

A×B C ×Df×goo

(2.25)

Note the overloading of symbol “×”, which is used to denote both Cartesian prod-
uct and functional product. This choice of notation will be fully justified later on.

What is the interplay among functional combinators f ·g (composition), 〈f, g〉
(split) and f × g (product) ? Composition and split relate to each other via the
following property, known as ×-fusion:5

A A×Bπ1oo π2 // B

C

g

cc

〈g,h〉
OO

h

;;

D

g·f

ZZ

f

OO h·f

DD 〈g, h〉 · f = 〈g · f, h · f〉 (2.26)

5Note how this law can be regarded as a pointfree rendering of (2.20).
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This shows that split is right-distributive with respect to composition. Left-distri-
butivity does not hold but there is something we can say about f · 〈g, h〉 in case
f = i× j:

(i× j) · 〈g, h〉
= { by (2.24) }
〈i · π1, j · π2〉 · 〈g, h〉

= { by ×-fusion (2.26) }
〈(i · π1) · 〈g, h〉, (j · π2) · 〈g, h〉〉

= { by (2.8) }
〈i · (π1 · 〈g, h〉), j · (π2 · 〈g, h〉)〉

= { by ×-cancellation (2.22) }
〈i · g, j · h〉

The law we have just derived is known as ×-absorption. (The intuition behind
this terminology is that “split absorbs ×”, as a special kind of fusion.) It is a
consequence of ×-fusion and ×-cancellation and is depicted as follows:

A A×Bπ1oo π2 // B

D

i

OO

D × Eπ1oo π2 //

i×j
OO

E

j

OO

C

g

cc

〈g,h〉
OO

h

;;

(i× j) · 〈g, h〉 = 〈i · g, j · h〉 (2.27)

This diagram provides us with two further results about products and projections
which can be easily justified:

i · π1 = π1 · (i× j) (2.28)
j · π2 = π2 · (i× j) (2.29)

Two special properties of f × g are presented next. The first one expresses a
kind of “bi-distribution” of × with respect to composition:

(g · h)× (i · j) = (g × i) · (h× j) (2.30)
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We will refer to this property as the×-functor property. The other property, which
we will refer to as the ×-functor-id property, has to do with identity functions:

idA × idB = idA×B (2.31)

These two properties will be identified as the functorial properties of product.
Once again, this choice of terminology will be explained later on.

Let us finally analyse the particular situation in which a split is built involv-
ing projections π1 and π2 only. These exhibit interesting properties, for instance
〈π1, π2〉 = id. This property is known as ×-reflexion and is depicted as follows:6

A A×Bπ1oo π2 // B

A×B
π1

cc

idA×B

OO

π2

;; 〈π1, π2〉 = idA×B (2.32)

What about 〈π2, π1〉? This corresponds to a diagram

B B × Aπ1oo π2 // A

A×B
π2

cc

〈π2,π1〉
OO

π1

;;

which looks very much the same if submitted to a 180o clockwise rotation (thus A
and B swap with each other). This suggests that swap — the name we adopt for
〈π2, π1〉— is its own inverse; this is checked easily as follows:

swap · swap
= { by definition swap

def
= 〈π2, π1〉 }

〈π2, π1〉 · swap
= { by ×-fusion (2.26) }
〈π2 · swap, π1 · swap〉

= { definition of swap twice }
〈π2 · 〈π2, π1〉, π1 · 〈π2, π1〉〉

= { by ×-cancellation (2.22) }

6For an explanation of the word “reflexion” in the name chosen for this law (and for others to
come) see section 2.13 later on.
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〈π1, π2〉
= { by ×-reflexion (2.32) }

id

Therefore, swap is iso and establishes the following isomorphism

A×B ∼= B × A (2.33)

which is known as the commutative property of product.
The “product datatype” A × B is essential to information processing and

is available in virtually every programming language. In HASKELL one writes
(A,B) to denote A × B, for A and B two predefined datatypes, fst to denote π1
and snd to denote π2. In the C programming language this datatype is called the
“struct datatype”,

struct {
A first;
B second;

};
while in PASCAL it is called the “record datatype”:

record
first: A;
second: B

end;

Isomorphism (2.33) can be re-interpreted in this context as a guarantee that one
does not lose (or gain) anything in swapping fields in record datatypes. C or
PASCAL programmers know also that record-field nesting has the same status,
that is to say that, for instance, datatype

record
F: A;
S: record

F: B;
S: C;

end
end;

is abstractly the same as

record
F: record

F: A;
S: B

end;
S: C;

end;

In fact, this is another well-known isomorphism, known as the associative
property of product:

A× (B × C) ∼= (A×B)× C (2.34)
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This is established by A× (B × C) (A×B)× Cassocroo , which is pronounced
“associate to the right” and is defined by

assocr
def
= 〈π1 · π1, π2 × id〉 (2.35)

Section A.1 in the appendix lists an extension to the HASKELL Standard Pre-
lude that makes isomorphisms such as swap and assocr available. In this module,
the concrete syntax chosen for 〈f, g〉 is split f g and the one chosen for
f × g is f >< g.

Exercise 2.4. Rely on (2.24) to prove properties (2.30) and (2.31).
2

2.9 Gluing functions which do not compose — co-
products

The split functional combinator arose in the previous section as a kind of glue for
combining two functions which do not compose but share the same domain. The
“dual” situation of two non-composable functions f : C← A and g : C←B
which however share the same codomain is depicted in

A

f ��

B

g��
C

It is clear that the kind of glue we need in this case should make it possible to
apply f in case we are on the “A-side” or to apply g in case we are on the “B-
side” of the diagram. Let us write [f , g] to denote the new kind of combinator. Its
codomain will be C. What about its domain?

We need to describe the datatype which is “either an A or a B”. Since A and
B are sets, we may think of A ∪ B as such a datatype. This works in case A
and B are disjoint sets, but wherever the intersection A ∩ B is non-empty it is
undecidable whether a value x ∈ A ∩ B is an “A-value” or a “B-value”. In the
limit, if A = B then A ∪ B = A = B, that is to say, we have not invented a
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new datatype at all. These difficulties can be circumvented by resorting to disjoint
union,

A + B
def
= {i1 a | a ∈ A} ∪ {i2 b | b ∈ B }

assuming the “tagging” functions

i1 a = (t1, a) , i2 b = (t2, b) (2.36)

with types7 A
i1 // A+B B

i2oo . Knowing the exact values of tags t1 and t2 is
not essential to understanding the concept of a disjoint union. It suffices to know
that i1 and i2 tag differently (t1 6= t2) and consistently.

The values of A+B can be thought of as “copies” of A or B values which are
“stamped” with different tags in order to guarantee that values which are simulta-
neously in A and B do not get mixed up. For instance, the following realizations
of A+B in the C programming language,

struct {
int tag; /* 1,2 */
union {

A ifA;
B ifB;

} data;
};

or in PASCAL,

record
case
tag: integer

of x =
1: (P:A);
2: (S:B)

end;

adopt integer tags. In the HASKELL Standard Prelude, the A + B datatype is
realized by

data Either a b = Left a | Right b

7 The tagging functions i1 and i2 are usually referred to as the injections of the disjoint union.
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So, Left and Right can be thought of as the injections i1 and i2 in this realiza-
tion.

At this level of abstraction, disjoint union A+ B is called the coproduct of A
and B, on top of which we define the new combinator [f , g] (pronounced “either
f or g”) as follows:

[f , g] : A+B // C

[f , g]x
def
=

{
x = i1 a ⇒ f a
x = i2 b ⇒ g b

(2.37)

As we did for products, we can express all this in a diagram:

A
i1 //

f ##

A+B

[f ,g]
��

B
i2oo

g
{{

C

(2.38)

It is interesting to note how similar this diagram is to the one drawn for prod-
ucts — one just has to reverse the arrows, replace projections by injections and the
split arrow by the either one. This expresses the fact that product and coproduct
are dual mathematical constructs (compare with sine and cosine in trigonome-
try). This duality is of great conceptual economy because everything we can say
about product A×B can be rephrased to coproduct A+B. For instance, we may
introduce the sum of two functions f + g as the notion dual to product f × g:

f + g
def
= [i1 · f , i2 · g] (2.39)

The following list of +-laws provides eloquent evidence of this duality:

+-cancellation :

A
i1 //

g
##

A+B

[g ,h]
��

B
i2oo

h{{
C

[g , h] · i1 = g , [g , h] · i2 = h (2.40)

+-reflexion :

A
i1 //

i1 ##

A+B

idA+B

��

B
i2oo

i2{{
A+B

[i1 , i2] = idA+B (2.41)
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+-fusion :

A
i1 //

g
##

f ·g

��

A+B

[g ,h]
��

B
i2oo

h{{
f ·h

��

C

f
��
D

f · [g , h] = [f · g , f · h] (2.42)

+-absorption :

A
i1 //

i
��

A+B

i+j
��

B
i2oo

j
��

D
i1 //

g
##

D + E

[g ,h]
��

E
i2
oo

h{{
C

[g , h] · (i+ j) = [g · i, h · j] (2.43)

+-functor :

(g · h) + (i · j) = (g + i) · (h+ j) (2.44)

+-functor-id :

idA + idB = idA+B (2.45)

In summary, the typing-rules of the either and sum combinators are as follows:

C A
foo

C B
goo

C A+B
[f ,g]oo

C A
foo

D B
goo

C +D A+B
f+goo

(2.46)

Exercise 2.5. By analogy (duality) with swap, show that [i2 , i1] is its own inverse and so
that fact

A+B ∼= B +A (2.47)
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holds.
2

Exercise 2.6. Dualize (2.35), that is, write the iso which witnesses fact

A+ (B + C) ∼= (A+B) + C (2.48)

from right to left. Use the either syntax available from the HASKELL Standard Prelude
to encode this iso in HASKELL.
2

2.10 Mixing products and coproducts
Datatype constructions A×B and A+B have been introduced above as devices
required for expressing the codomain of splits (A × B) or the domain of eithers
(A + B). Therefore, a function mapping values of a coproduct (say A + B) to
values of a product (say A′ ×B′) can be expressed alternatively as an either or as
a split. In the first case, both components of the either combinator are splits. In
the latter, both components of the split combinator are eithers.

This exchange of format in defining such functions is known as the exchange
law. It states the functional equality which follows:

[〈f, g〉 , 〈h, k〉] = 〈[f , h], [g , k]〉 (2.49)

It can be checked by type-inference that both the left-hand side and the right-

hand side expressions of this equality have typeB ×D← A+ C, for B A
foo ,

D A
goo , B C

hoo and D C
koo .

An example of a function which is in the exchange-law format is isomorphism

A× (B + C) (A×B) + (A× C)undistroo (2.50)

(pronounce undistr as “un-distribute-right”) which is defined by

undistr
def
= [id× i1 , id× i2] (2.51)
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and witnesses the fact that product distributes through coproduct:

A× (B + C) ∼= (A×B) + (A× C) (2.52)

In this context, suppose that we know of three functions D A
foo , E B

goo

and F C
hoo . By (2.46) we infer E + F B + C

g+hoo . Then, by (2.25) we in-
fer

D × (E + F ) A× (B + C)
f×(g+h)oo (2.53)

So, it makes sense to combine products and sums of functions and the expressions
which denote such combinations have the same “shape” (or symbolic pattern) as
the expressions which denote their domain and range — the . . . × (· · · + · · ·)
“shape” in this example. In fact, if we abstract such a pattern via some symbol,
say F — that is, if we define

F(α, β, γ)
def
= α× (β + γ)

— then we can write F(D,E, F ) F(A,B,C)
F(f,g,h)oo for (2.53).

This kind of abstraction works for every combination of products and coprod-
ucts. For instance, if we now abstract the right-hand side of (2.50) via pattern

G(α, β, γ)
def
= (α× β) + (α× γ)

we have G(f, g, h) = (f × g) + (f × h), a function which maps G(A,B,C) =
(A×B) + (A×C) onto G(D,E, F ) = (D×E) + (D× F ). All this can be put
in a diagram

F(A,B,C)

F(f,g,h)
��

G(A,B,C)undistroo

G(f,g,h)
��

F(D,E, F ) G(D,E, F )

which unfolds to

A× (B + C)

f×(g+h)
��

(A×B) + (A× C)undistroo

(f×g)+(f×h)
��

D × (E + F ) (D × E) + (D × F )

(2.54)



30 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

once the F and G patterns are instantiated. An interesting topic which stems from
(completing) this diagram will be discussed in the next section.

Exercise 2.7. Apply the exchange law to undistr.
2

Exercise 2.8. Complete the “?”s in diagram

?
[x,y]

��
id+id×f
��

? ?
[k ,g]
oo

and then solve the implicit equation for x and y.
2

Exercise 2.9. Repeat exercise 2.8 with respect to diagram

?
h+〈i,j〉//

x+y ��

?

id+id×f
��
?

2

Exercise 2.10. Show that 〈[f , h] · (π1+π1), [g , k] · (π2+π2)〉 reduces to [f ×g , h×k].
2

2.11 Elementary datatypes
So far we have talked mostly about arbitrary datatypes represented by capital let-
ters A, B, etc. (lowercase a, b, etc. in the HASKELL illustrations). We also men-
tioned R, Bool and N and, in particular, the fact that we can associate to each
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natural number n its initial segment n = {1, 2, . . . , n}. We extend this to N0 by
stating 0 = {} and, for n > 0, n + 1 = {n+ 1} ∪ n.

Initial segments can be identified with enumerated types and are regarded
as primitive datatypes in our notation. We adopt the convention that primitive
datatypes are written in the sans serif font and so, strictly speaking, n is distinct
from n: the latter denotes a natural number while the former denotes a datatype.

Datatype 0
Among such enumerated types, 0 is the smallest because it is empty. This is the
Void datatype in HASKELL, which has no constructor at all. Datatype 0 (which
we tend to write simply as 0) may not seem very “useful” in practice but it is of
theoretical interest. For instance, it is easy to check that the following “obvious”
properties hold,

A+ 0 ∼= A (2.55)
A× 0 ∼= 0 (2.56)

where the second is actually an equality: A× 0 = 0.

Datatype 1
Next in the sequence of initial segments we find 1, which is singleton set {1}.
How useful is this datatype? Note that every datatype A containing exactly one
element is isomorphic to {1}, e.g.A = {NIL},A = {0},A = {1},A = {FALSE},
etc.. We represent this class of singleton types by 1.

Recall that isomorphic datatypes have the same expressive power and so are
“abstractly identical”. So, the actual choice of inhabitant for datatype 1 is irrel-
evant, and we can replace any particular singleton set by another without losing
information. This is evident from the following, observing isomorphism,

A× 1 ∼= A (2.57)

which can be read informally as follows: if the second component of a record
(“struct”) cannot change, then it is useless and can be ignored. Selector π1 is, in
this context, an iso mapping the left-hand side of (2.57) to its right-hand side. Its
inverse is 〈id, c〉 where c is a particular choice of inhabitant for datatype 1.

In summary, when referring to datatype 1 we will mean an arbitrary singleton
type, and there is a unique iso (and its inverse) between two such singleton types.
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The HASKELL representative of 1 is datatype (), called the unit type, which con-
tains exactly constructor (). It may seem confusing to denote the type and its
unique inhabitant by the same symbol but it is not, since HASKELL keeps track of
types and constructors in separate symbol sets.

Note that any function of type A → 1 is bound to be a constant function.
This function, usually called the “bang”, or ”sink” function, is denoted by an
exclamation mark:

! :A→ 1 (2.58)

Clearly, it is the unique function of its type. (Can you write a diferent one, of the
same type?)

Finally, what can we say about 1+A? Every function B 1 + A
foo observ-

ing this type is bound to be an either [b0 , g] for b0 ∈ B and B A
goo . This is

very similar to the handling of a pointer in C or PASCAL: we “pull a rope” and
either we get nothing (1) or we get something useful of type B. In such a pro-
gramming context “nothing” above means a predefined value NIL. This analogy
supports our preference in the sequel for NIL as canonical inhabitant of datatype
1. In fact, we will refer to 1 + A (or A + 1) as the “pointer to A” datatype. This
corresponds to the Maybe type constructor of the HASKELL Standard Prelude.

Datatype 2
Let us inspect the 1 + 1 instance of the “pointer” construction just mentioned

above. Any observation B 1 + 1
foo can be decomposed in two constant func-

tions: f = [b1 , b2]. Now suppose that B = {b1, b2} (for b1 6= b2). Then 1 + 1 ∼= B
will hold, for whatever choice of inhabitants b1 and b2. So we are in a situation
similar to 1: we will use symbol 2 to represent the abstract class of all such Bs
containing exactly two elements. Therefore, we can write:

1 + 1 ∼= 2

Of course, Bool = {TRUE, FALSE} and initial segment 2 = {1, 2} are in this
abstract class. In the sequel we will show some preference for the particular choice
of inhabitants b1 = TRUE and b2 = FALSE, which enables us to use symbol 2 in
places where Bool is expected. Clearly,

2× A ∼= A+ A (2.59)
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Exercise 2.11. Derive the isomorphism

(B + C )×A (B ×A) + (C ×A)undistloo (2.60)

from undistr (2.50) and other isomorphisms studied thus far.
2

Exercise 2.12. Furthermore, show that (2.59) follows from (2.60) and, on the practical
side, relate HASKELL expression

either (split (const True) id) (split (const False) id)

to the same isomorphism (2.59).
2

2.12 Natural properties
Let us resume discussion about undistr and the two other functions in diagram
(2.54). What about using undistr itself to close this diagram, at the bottom? Note
that definition (2.51) works for D, E and F in the same way it does for A, B
and C. (Indeed, the particular choice of symbols A, B and C in (2.50) was rather
arbitrary.) Therefore, we get:

A× (B + C)

f×(g+h)
��

(A×B) + (A× C)undistroo

(f×g)+(f×h)
��

D × (E + F ) (D × E) + (D × F )
undistr
oo

which expresses a very important property of undistr:

(f × (g + h)) · undistr = undistr · ((f × g) + (f × h)) (2.61)

This is called the natural property of undistr. This kind of property (often
called “free” instead of “natural”) is not a privilege of undistr. As a matter of
fact, every function interfacing patterns such as F or G above will exhibit its own
natural property. Furthermore, we have already quoted natural properties without
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mentioning it. Recall (2.10), for instance. This property (establishing id as the
unit of composition) is, after all, the natural property of id. In this case we have
Fα = Gα = α, as can be easily observed in diagram (2.11).

In general, natural properties are described by diagrams in which two “copies”
of the operator of interest are drawn as horizontal arrows:

A

f

��

FA

F f
��

GA
φoo

G f
��

B FB GB
φ
oo

(F f) · φ = φ · (G f) (2.62)

Note that f is universally quantified, that is to say, the natural property holds for
every f : B← A.

Diagram (2.62) corresponds to unary patterns F and G. As we have seen with
undistr, other functions (g,h etc.) come into play for multiary patterns. A very
important rôle will be assigned throughout this book to these F,G, etc. “shapes” or
patterns which are shared by pointfree functional expressions and by their domain
and codomain expressions. From chapter 3 onwards we will refer to them by their
proper name — “functor” — which is standard in mathematics and computer
science. Then we will also explain the names assigned to properties such as, for
instance, (2.30) or (2.44).

Exercise 2.13. Show that (2.28) and (2.29) are natural properties. Dualize these proper-
ties. Hint: recall diagram (2.43).
2

Exercise 2.14. Establish the natural properties of the swap (2.33) and assocr (2.35) iso-
morphisms.
2

Exercise 2.15. Draw the natural property of function φ = swap·(id×swap) as a diagram,
that is, identify F and G in (2.62) for this case.

Do the same for φ = coswap · (swap+ swap) where coswap = [i2 , i1].
2
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2.13 Universal properties
Functional constructs 〈f, g〉 and [f , g] — and their derivatives f × g and f + g
— provide good illustration about what is meant by a program combinator in a
compositional approach to programming: the combinator is put forward equipped
with a concise set of properties which enable programmers to transform programs,
reason about them and perform useful calculations. This raises a programming
methodology which is scientific and stable.

Such properties bear standard names such as cancellation, reflexion, fusion,
absorption etc.. Where do these names come from? As a rule, for each combinator
to be defined one has to define suitable constructions at “interface”-level 8, e.g.
A × B and A + B. These are not chosen or invented at random: each is defined
in a way such that the associated combinator is uniquely defined. This is assured
by a so-called universal property from which the others can derived.

Take product A × B, for instance. Its universal property states that, for each

pair of arrows A C
foo and B C

goo , there exists an arrow A×B C
〈f,g〉oo

such that

k = 〈f, g〉 ⇔
{
π1 · k = f
π2 · k = g

(2.63)

holds — recall diagram (2.23) — for all A×B Ckoo .
Note that (2.63) is an equivalence, implicitly stating that 〈f, g〉 is the unique

arrow satisfying the property on the right. In fact, read (2.63) in the⇒ direction
and let k be 〈f, g〉. Then π1 · 〈f, g〉 = f and π2 · 〈f, g〉 = g will hold, meaning that
〈f, g〉 effectively obeys the property on the right. In other words, we have derived
×-cancellation (2.22). Reading (2.63) in the ⇐ direction we understand that, if
some k satisfies such properties, then it “has to be” the same arrow as 〈f, g〉.

The relevance of universal property (2.63) is that it offers a way of solving
equations of the form k = 〈f , g〉. Take for instance the following exercise: can
the identity can be expressed, or “reflected”, using this combinator? We just solve
the equiation id = 〈f , g〉 for f and g :

id = 〈f , g〉
≡ { universal property (2.63) }

8 In the current context, programs “are” functions and program-interfaces “are” the datatypes
involved in functional signatures.
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{
π1 · id = f
π2 · id = g

≡ { by (2.10) }
{
π1 = f
π2 = g

The equation has the unique solutions f = π1 and g = π2 which, once substituted
in the equation itself, yield

id = 〈π1, π2〉
i.e., nothing but the ×-reflexion law (2.32).

All other laws can be calculated from the universal property in a similar way.
For instance, the ×-fusion (2.26) law is obtained by solving the equation k =
〈i , j 〉 again for f and g , but this time fixing k = 〈i , j 〉 · h, assuming i , j and h
given:9:

〈i, j〉 · h = 〈f, g〉
≡ { universal property (2.63) }

{
π1 · (〈i, j〉 · h) = f
π2 · (〈i, j〉 · h) = g

≡ { composition is associative (2.8) }
{

(π1 · 〈i, j〉) · h = f
(π2 · 〈i, j〉) · h = g

≡ { by ×-cancellation (derived above) }
{
i · h = f
j · h = g

Substiting the solutions f = i ·h and g = j ·h in the equation, we get the×-fusion
law: 〈i, j〉 · h = 〈i · h, j · h〉.

It will take about the same effort to derive split structural equality

〈i, j〉 = 〈f, g〉 ⇔
{
i = f
j = g

(2.64)

9Solving equations of this kind is reminiscent of many similar calculations carried out in school
maths and physics courses. The spirit is the same. The difference is that this time one is not
calculating water pump debits, accelerations, velocities, or other physical entities: the solutions of
our equations are (just) functional programs.
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from universal property (2.63) — just let k = 〈i, j〉 and solve.
Similar arguments can be built around coproduct’s universal property,

k = [f , g] ⇔
{
k · i1 = f
k · i2 = g

(2.65)

from which structural equality of eithers can be inferred,

[i, j] = [f , g] ⇔
{
i = f
j = g

(2.66)

as well as the other properties we know about this combinator.

Exercise 2.16. Show that assocr (2.35) is iso by solving the equation assocr ·assocl = id

for assocl. Hint: don’t ignore the role of universal property (2.63) in the calculation.
2

Exercise 2.17. Prove the equality: [〈f , k〉 , 〈g , k〉] = 〈[f , g ], k〉
2

Exercise 2.18. Derive +-cancellation (2.40), +-reflexion (2.41) and +-fusion (2.42)
from universal property (2.65). Then derive the exchange law (2.49) from the universal
property of product (2.63) or coproduct (2.65).
2

Exercise 2.19. Function coassocr = [id + i1 , i2 · i2] is a witness of isomorphism
(A + B) + C ∼= A + (B + C), from left to right. Calculate its converse coassocl by
solving the equation

[x, [y , z]]︸ ︷︷ ︸
coassocl

· coassocr = id (2.67)

for x, y and z.
2
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Exercise 2.20. Let δ be a function of which you know that π1 · δ = id e π2 · δ = id hold.
Show that necessarily δ satisfies the natural property (f × f) · δ = δ · f .
2

2.14 Guards and McCarthy’s conditional
Most functional programming lan-

guages and notations cater for pointwise
conditional expressions of the form

if p x then g x else h x (2.68)

which evaluates to g x in case p x holds
and to h x otherwise, that is

{
p x ⇒ g x
¬(p x) ⇒ hx

given some predicate Bool A
poo ,

some “then”-function B A
goo and

some “else”-function B Ahoo .
Can (2.68) be written in the pointfree

style?

s

c

p

g h

T F

?

?

? ?

?

-

?

- �

x

x

x

p x

The drawing above is an attempt to express such a conditional expression as
a “block”-diagram. Firstly, the input x is copied, the left copy being passed to
predicate p yielding the Boolean p x . One can easily define this part using copy =
〈id, id〉.

The informal part of the diagram is the T -F “switch”: it should channel x to
g in case p x switches the T -output, or channel x to h otherwise.

At first sight, this T -F gate should be of type B × A → A × A. But the
output cannot be A × A, as f or g act in alternation, not in parallel — it should
rather be A + A, in which case the last step is achieved just by running [g , h].



2.14. GUARDS AND MCCARTHY’S CONDITIONAL 39

How does one switch from our starting product-based model of conditionals to a
coproduct-based one?

The key observation is that the type B × A market by the dashed line in the
block-diagram is isomorphic to A + A, recall (2.59). That is, the information
captured by the pair (p x , x ) ∈ B× A can be converted into a unique y ∈ A + A
with no loss of information. Let us define a new combinator for this, denoted p?:

(p?)a =

{
p a ⇒ i1 a
¬(p a) ⇒ i2 a

(2.69)

We call A+ A A
p?oo a guard, or better, the guard associated to a given pred-

icate Bool A
poo . In a sense, guard p? is more “informative” than p alone: it

provides information about the outcome of testing p on some input a, encoded in
terms of the coproduct injections (i1 for a true outcome and i2 for a false outcome,
respectively) without losing the input a itself.

Finally, the composition [g , h] · p?, depicted in the following diagram

A

p?
��

A

f ##

i1 // A+ A

[g , h]
��

A

g
{{

i2oo

B

has (2.68) as pointwise meaning. It is a well-known functional combinator termed
“McCarthy conditional”10 and usually denoted by the expression p→ g, h. Alto-
gether, we have the definition

p→ g, h
def
= [g , h] · p? (2.70)

which suggests that, to reason about conditionals, one may seek help in the algebra
of coproducts. Indeed, the following fact,

f · (p→ g, h) = p→ f · g, f · h (2.71)

which we shall refer to as the first McCarthy’s conditional fusion law11, is nothing
but an immediate consequence of +-fusion (2.42).

10 After John McCarthy, the computer scientist of first defined it.
11For the second one go to exercise 2.22.
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We shall introduce and define instances of predicate p as long as they are
needed. A particularly important assumption of our notation should, however,
be mentioned at this point: we assume that, for every datatype A, the equality
predicate Bool A× A=Aoo is defined in a way which guarantees three basic
properties: reflexivity (a =A a for every a), transitivity (a =A b and b =A c
implies a =A c) and symmetry (a =A b iff b =A a). Subscript A in =A will be
dropped wherever implicit in the context.

In HASKELL programming, the equality predicate for a type becomes avail-
able by declaring the type as an instance of class Eq, which exports equality pred-
icate (==). This does not, however, guarantee the reflexive, transitive and sym-
metry properties, which need to be proved by dedicated mathematical arguments.

We close this section with an illustration of how smart pointfree algebra can
be in reasoning about functions that one does not actually define explicitly. It also
shows how relevant the natural properties studied in section 2.12 are. The issue
is that our definition of a guard (2.69) is pointwise and most likely unsuitable to
prove facts such as, for instance,

p? · f = (f + f) · (p · f)? (2.72)

Thinking better, instead of “inventing” (2.69), we might (and perhaps should!)
have defined

A
〈p,id〉 //

p?

442× A α // A + A (2.73)

which actually expresses rather closely our strategy of switching from products
to coproducts in the definition of (p?). Isomorphism α (2.59) is the subject of
exercise 2.12. Do we need to define it explicitly? Perhaps not: from its type,
2× A→ A + A, we immediately infer its natural (or “free”) property:

α · (id× f ) = (f + f ) · α (2.74)

It turns out that this is the knowledge we need about α in order to prove (2.72), as
the following calculation shows:

p ? ·f
= { (2.73) ; 〈p, id〉 · f = 〈p · f , f 〉 }

α · 〈p · f , f 〉
= { ×-absorption (2.27) }
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α · (id× f ) · 〈p · f , id〉
= { free theorem of α (2.74) }

(f + f ) · α · 〈p · f , id〉
= { again (2.73) ; 〈p, id〉 · f = 〈p · f , f 〉 }

(f + f ) · (p · f )?

2

Other examples of this kind of reasoning, based on natural (free) properties of
isomorphisms — and often on “shunting” them around using laws (2.18,2.19) —
will be given later in this book.

The less one has to write to solve a problem, the better. One saves time and
one’s brain, adding to productivity. This is often called elegance when applying a
scientific method. (Unfortunately, be prepared for much lack of it in the software
engineering field!)

Exercise 2.21. Prove that the following equality between two conditional expressions

k (if p x then f x else h x , if p x then g x else i x )

= if p x then k (λap f x , λap g x ) else k (h x , i x )

holds by rewriting it in the pointfree style (using the McCarthy’s conditional combinator)
and applying the exchange law (2.49), among others.
2

Exercise 2.22. Prove the first McCarthy’s conditional fusion law (2.71). Then, from
(2.70) and property (2.72), infer the second such law:

(p→ f, g) · h = (p · h)→ (f · h), (g · h) (2.75)

2

Exercise 2.23. Prove that property

〈f, (p→ q, h)〉 = p→ 〈f, q〉, 〈f, h〉 (2.76)
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and its corollary

(p → g , h)× f = p · π1 → g × f , h × f (2.77)

hold, assuming the basic fact:

p→ f, f = f (2.78)

2

2.15 Gluing functions which do not compose — ex-
ponentials

Now that we have made the distinction between the pointfree and pointwise func-
tional notations reasonably clear, it is instructive to revisit section 2.2 and iden-
tify functional application as the “bridge” between the pointfree and pointwise
worlds. However, we should say “a bridge” rather than “the bridge”, for in this
section we enrich such an interface with another “bridge” which is very relevant
to programming.

Suppose we are given the task to combine two functions, one binary B C × Afoo

and the other unary: D A
goo . It is clear that none of the combinations f · g,

〈f, g〉 or [f , g] is well-typed. So, f and g cannot be put together directly — they
require some extra interfacing.

Note that 〈f, g〉 would be well-defined in case the C component of f ’s domain
could be somehow “ignored”. Suppose, in fact, that in some particular context the
first argument of f happens to be “irrelevant”, or to be frozen to some c ∈ C. It is
easy to derive a new function

fc : A→ B

fc a
def
= f(c, a)

from f which combines nicely with g via the split combinator: 〈fc, g〉 is well-
defined and bears type B ×D← A. For instance, suppose that C = A and f is
the equality predicate = on A. Then Bool A

=coo is the “equal to c” predicate
on A values:

=c a
def
= a = c (2.79)
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As another example, recall function twice (2.3) which could be defined as ×2

using the new notation.
However, we need to be more careful about what is meant by fc. Such as

functional application, expression fc interfaces the pointfree and the pointwise

levels — it involves a function (f ) and a value (c). But, for B C × Afoo , there
is a major distinction between f c and fc — while the former denotes a value of
type B, i.e. f c ∈ B, fc denotes a function of type B← A. We will say that
fc ∈ BA by introducing a new datatype construct which we will refer to as the
exponential:

BA def
= {g | g : B← A} (2.80)

There are strong reasons to adopt the BA notation to the detriment of the more
obvious B ← A or A→ B alternatives, as we shall see shortly.

The BA exponential datatype is therefore inhabited by functions from A to
B, that is to say, functional declaration g : B← A means the same as g ∈ BA.
And what do we want functions for? We want to apply them. So it is natural to
introduce the apply operator

ap : B BA × Aapoo

ap(f, a)
def
= f a

(2.81)

which applies a function f to an argument a.

Back to generic binary function B C × Afoo , let us now think of the op-
eration which, for every c ∈ C, produces fc ∈ BA. This can be regarded as a
function of signature BA← C which expresses f as a kind of C-indexed family
of functions of signature B← A. We will denote such a function by f (read f as
“f transposed”). Intuitively, we want f and f to be related to each other by the
following property:

f(c, a) = (f c)a (2.82)

Given c and a, both expressions denote the same value. But, in a sense, f is more
tolerant than f : while the latter is binary and requires both arguments (c, a) to
become available before application, the former is happy to be provided with c
first and with a later on, if actually required by the evaluation process.

Similarly to A×B and A+B, exponential BA involves a universal property,

k = f ⇔ f = ap · (k × id) (2.83)
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from which laws for cancellation, reflexion and fusion can be derived:

Exponentials cancellation :

BA BA × A ap // B

C

f

OO

C × A
f×id

OO

f

;; f = ap · (f × id) (2.84)

Exponentials reflexion :

BA BA × A ap // B

BA

id
BA

OO

BA × A
id

BA×idA

OO

ap

;; ap = idBA (2.85)

Exponentials fusion :

BA BA × A ap // B

C

g

OO

C × A
g×id

OO
g

;;

D

f

OO

D × A
f×id

OO g·(f×id)

DD g · (f × id) = g · f (2.86)

Note that the cancellation law is nothing but fact (2.82) written in the pointfree
style.

Is there an absorption law for exponentials? The answer is affirmative but first
we need to introduce a new functional combinator which arises as the transpose
of f · ap in the following diagram:

DA × A ap // D

BA × A
f ·ap×id

OO

ap // B

f

OO

We shall denote this by fA and its type-rule is as follows:

C B
foo

CA BAfAoo
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It can be shown that, once A and C B
foo are fixed, fA is the function which

accepts some input function B A
goo as argument and produces function f ·g as

result (see exercise 2.39). So fA is the “compose with f” functional combinator:

(fA)g
def
= f · g (2.87)

Now we are ready to understand the laws which follow:

Exponentials absorption :

DA DA × A ap // D

BA

fA

OO

BA × A
fA×id

OO

ap // B

f

OO

C

g

OO

C × A
g×id

OO
g

;;

f · g = fA · g (2.88)

(Note how, from this, we also get f A = f · ap.)

Exponentials-functor :

(g · h)A = gA · hA (2.89)

Exponentials-functor-id :

idA = id (2.90)

Why the exponential notation. To conclude this section we need to explain
why we have adopted the apparently esoteric BA notation for the “function from
A to B” data type. This is the opportunity to relate what we have seen above with
two (higher order) functions which are very familiar to functional programmers.
In the HASKELL Prelude they are defined thus:

curry :: ((a, b)→ c)→ (a → b → c)
curry f a b = f (a, b)

uncurry :: (a → b → c)→ (a, b)→ c
uncurry f (a, b) = f a b
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In our notation for types, curry maps functions in function space CA×B to func-
tions in (CB)A; and uncurry maps functions from the latter function space to the
former.

Let us calculate the meaning of curry by removing variables from its defini-
tion:

g︷ ︸︸ ︷
(curry f︸ ︷︷ ︸

f

a) b = f (a, b)

≡ { introduce g }
g b = f(a, b)

≡ { since g b = ap(g, b) (2.81) }
ap(g, b) = f(a, b)

≡ { g = f a ; natural-id }
ap(f a, id b) = f(a, b)

≡ { product of functions: (f × g)(x, y) = (f x, g y) }
ap((f × id)(a, b)) = f(a, b)

≡ { composition }
(ap · (f × id))(a, b) = f(a, b)

≡ { extensionality (2.5), i.e. removing points a and b }
ap · (f × id) = f

From the above we infer that the definition of curry is a re-statement of the can-
cellation law (2.84). That is,

curry f
def
= f (2.91)

and curry is transposition in HASKELL-speak.12

Next we do the same for the definition of uncurry :

uncurry f︸ ︷︷ ︸
k

(a, b) = f a b

12This terminology widely adopted in other functional languages.
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≡ { introduce k ; lefthand side as calculated above }
k (a, b) = (ap · (f × id)) (a, b)

≡ { extensionality (2.5) }
k = ap · (f × id)

≡ { universal property (2.83) }
f = k

≡ { expand k }
f = uncurry f

We conclude that uncurry is the inverse of transposition, that is, of curry . We
shall use the abbreviation f̂ for uncurry f , whereby the above equality is written
f = f̂ . It can also be checked that f = f̂ also holds, instantiating k above by f̂ :

f̂ = ap · (f × id)

≡ { cancellation (2.84) }

f̂ = f

2

So uncurry — i.e. (̂ ) — and curry — i.e. ( ) — are inverses of each other,

g = f ⇔ ĝ = f (2.92)

leading to isomorphism

A→ CB ∼= A×B → C

which can also be written as

(CB)A

uncurry
**∼= CA×B

curry

jj (2.93)

decorated with the corresponding witnesses.13

13Writing f (resp. f̂ ) or curry f (resp. uncurry f ) is a matter of taste: the latter are more in the
tradition of functional programming and help when the functions have to be named; the former
save ink in algebraic expressions and calculations.
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Isomorphism (2.93) is at the core of the theory and practice of functional pro-
gramming. It clearly resembles a well known equality concerning numeric expo-
nentials, bc×a = (ba)c. Moreover, other known facts about numeric exponentials,
e.g. ab+c = ab × ac or (b× c)a = ba × ca also find their counterpart in functional
exponentials. The counterpart of the former,

AB+C ∼= AB × AC (2.94)

arises from the uniqueness of the either combination: every pair of functions
(f, g) ∈ AB × AC leads to a unique function [f , g] ∈ AB+C and vice-versa,
every function in AB+C is the either of some function in AB and of another in
AC .

The function exponentials counterpart of the second fact about numeric expo-
nentials above is

(B × C)A ∼= BA × CA (2.95)

This can be justified by a similar argument concerning the uniqueness of the split
combinator 〈f, g〉.

What about other facts valid for numeric exponentials such as a0 = 1 and
1a = 1? The reader is invited to go back to section 2.11 and recall what 0 and
1 mean as datatypes: the empty (void) and singleton datatypes, respectively. Our
counterpart to a0 = 1 then is

A0 ∼= 1 (2.96)

where A0 denotes the set of all functions from the empty set to some A. What
does (2.96) mean? It simply tells us that there is only one function in such a set
— the empty function mapping “no” value at all. This fact confirms our choice of
notation once again (compare with a0 = 1 in a numeric context).

Next, we may wonder about facts

1A ∼= 1 (2.97)
A1 ∼= A (2.98)

which are the functional exponentiation counterparts of 1a = 1 and a1 = a.
Fact (2.97) is valid: it means that there is only one function mapping A to some
singleton set {c}— the constant function c. There is no room for another function
in 1A because only c is available as output value. Our standard denotation for such
a unique function is given by (2.58).
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Fact (2.98) is also valid: all functions in A1 are (single valued) constant func-
tions and there are as many constant functions in such a set as there are elements
in A. These functions are often called (abstract) “points” because of the 1-to-1
mapping between A1 and the elements (points) in A.

Exercise 2.24. Relate the isomorphism involving generic elementary type 2

A×A ∼= A2 (2.99)

to the expression \f->(f True, f False) written in HASKELL syntax.
2

Exercise 2.25. Consider the witnesses of isomorphism (2.95)

(B × C )A

unpair
++∼= BA × CA

pair

kk

defined by:

pair (f , g) = 〈f , g〉
unpair k = (π1 · k , π2 · k)

Show that pair · unpair = id and unpair · pair = id hold.
2

Exercise 2.26. Show that the following equality

f a = f · 〈a, id〉 (2.100)

holds.
2

Exercise 2.27. Considering α = [i1 , i2], (a) infer the principal (most general) type of α
and depict it in a diagram; (b) α̂ is a well-known isomorphism — tell which by inferring
its type.
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2

Exercise 2.28. Prove the equality g = g · π2 knowing that

π2 = id (2.101)

holds.
2

2.16 Finitary products and coproducts

In section 2.8 it was suggested that product could be regarded as the abstraction
behind data-structuring primitives such as struct in C or record in PASCAL.
Similarly, coproducts were suggested in section 2.9 as abstract counterparts of
C unions or PASCAL variant records. For a finite A, exponential BA could be
realized as an array in any of these languages. These analogies are captured in
table 2.1.

In the same way C structs and unions may contain finitely many entries,
as may PASCAL (variant) records, product A×B extends to finitary product A1×
. . .×An, for n ∈ N, also denoted by Πn

i=1Ai, to which as many projections πi are
associated as the number n of factors involved. Of course, splits become n-ary as
well

〈f1, . . . , fn〉 : A1 × . . .× An←B

for fi : Ai←B, i = 1, n.
Dually, coproduct A + B is extensible to the finitary sum A1 + · · · + An, for

n ∈ N, also denoted by
∑n

j=1Aj , to which as many injections ij are assigned as
the number n of terms involved. Similarly, eithers become n-ary

[ f1, . . . , fn ] : A1 + . . .+ An → B

for fi : B← Ai, i = 1, n.
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Abstract notation PASCAL C/C++ Description

A×B
record

P: A;
S: B

end;

struct {
A first;
B second;

};
Records

A+B

record
case
tag: integer

of x =
1: (P:A);
2: (S:B)

end;

struct {
int tag; /* 1,2 */
union {

A ifA;
B ifB;

} data;
};

Variant records

BA array[A] of B B ...[A] Arrays
1 +A ˆA A *... Pointers

Table 2.1: Abstract notation versus programming language data-structures.

Datatype n

Next after 2, we may think of 3 as representing the abstract class of all datatypes
containing exactly three elements. Generalizing, we may think of n as represent-
ing the abstract class of all datatypes containing exactly n elements. Of course,
initial segment n will be in this abstract class. (Recall (2.17), for instance: both
Weekday and 7 are abstractly represented by 7.) Therefore,

n ∼= 1 + · · ·+ 1︸ ︷︷ ︸
n

and

A× . . .× A︸ ︷︷ ︸
n

∼= An (2.102)

A+ . . .+ A︸ ︷︷ ︸
n

∼= n× A (2.103)

hold.

Exercise 2.29. On the basis of table 2.1, encode undistr (2.51) in C or PASCAL. Com-
pare your code with the HASKELL pointfree and pointwise equivalents.
2
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2.17 Initial and terminal datatypes
All properties studied for binary splits and binary eithers extend to the finitary
case. For the particular situation n = 1, we will have 〈f〉 = [ f ] = f and
π1 = i1 = id, of course. For the particular situation n = 0, finitary products
“degenerate” to 1 and finitary coproducts “degenerate” to 0. So diagrams (2.23)
and (2.38) are reduced to

1 0

[ ]
��

C

〈〉
OO

C

The standard notation for the empty split 〈〉 is !C , where subscriptC can be omitted
if implicit in the context. By the way, this is precisely the only function in 1C ,
recall (2.97) and (2.58). Dually, the standard notation for the empty either [ ] is
?C , where subscript C can also be omitted. By the way, this is precisely the only
function in C0, recall (2.96).

In summary, we may think of 0 and 1 as, in a sense, the “extremes” of the
whole datatype spectrum. For this reason they are called initial and terminal, re-
spectively. We conclude this subject with the presentation of their main properties
which, as we have said, are instances of properties we have stated for products
and coproducts.

Initial datatype reflexion :

0

?0=id0

��
?0 = id0 (2.104)

Initial datatype fusion :

0

?A
��

?B

��
A

f
// B

f ·?A =?B (2.105)
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Terminal datatype reflexion :

1

!1=id1

��
!1 = id1 (2.106)

Terminal datatype fusion :

1

A

!A

OO

B
f
oo

!B

__ !A · f =!B (2.107)

Exercise 2.30. Particularize the exchange law (2.49) to empty products and empty co-
products, i.e. 1 and 0.
2

2.18 Sums and products in HASKELL

We conclude this chapter with an analysis of the main primitive available in
HASKELL for creating datatypes: the data declaration. Suppose we declare

data CostumerId = P Int | CC Int

meaning to say that, for some company, a client is identified either by its pass-
port number or by its credit card number, if any. What does this piece of syntax
precisely mean?

If we enquire the HASKELL interpreter about what it knows about CostumerId,
the reply will contain the following information:

Main> :i CostumerId
-- type constructor
data CostumerId

-- constructors:
P :: Int -> CostumerId
CC :: Int -> CostumerId
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In general, let A and B be two known datatypes. Via declaration

data C = C1 A | C2 B (2.108)

one obtains from HASKELL a new datatypeC equipped with constructors C A
C1oo

and C BC2oo , in fact the only ones available for constructing values of C:

A

C1 ��

B

C2��
C

This diagram leads to an obvious instance of coproduct diagram (2.38),

A
i1 //

C1 ##

A+B

[C1 ,C2]
��

B
i2oo

C2{{
C

describing that a data declaration in HASKELL means the either of its construc-
tors.

Because there are no other means to build C data, it follows that C is iso-
morphic to A + B. So [C1 , C2] has an inverse, say inv, which is such that
inv · [C1 , C2] = id. How do we calculate inv? Let us first think of the generic

situation of a function D C
foo which observes datatype C:

A
i1 //

C1 ##

A+B

[C1 ,C2]
��

B
i2oo

C2{{
C

f
��
D

This is an opportunity for +-fusion (2.42), whereby we obtain

f · [C1 , C2] = [f · C1 , f · C2]

Therefore, the observation will be fully described provided we explain how f
behaves with respect to C1 — cf. f · C1 — and with respect to C2 — cf. f · C2.
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This is what is behind the typical inductive structure of pointwise f , which will
be made of two and only two clauses:

f : C → D

f(C1 a) = . . .

f(C2 b) = . . .

Let us use this in calculating the inverse inv of [C1 , C2]:

inv · [C1 , C2] = id

≡ { by +-fusion (2.42) }
[inv · C1 , inv · C2] = id

≡ { by +-reflexion (2.41) }
[inv · C1 , inv · C2] = [i1 , i2]

≡ { either structural equality (2.66) }
inv · C1 = i1 ∧ inv · C2 = i2

Therefore:

inv : C → A+B

inv(C1 a) = i1 a

inv(C2 b) = i2 b

In summary, C1 is a “renaming” of injection i1, C2 is a “renaming” of injection
i2 and C is “renamed” replica of A+B:

C A+B
[C1 ,C2]oo

[C1 , C2] is called the algebra of datatype C and its inverse inv is called the coal-
gebra of C. The algebra contains the constructors of C1 and C2 of type C, that
is, it is used to “build” C-values. In the opposite direction, co-algebra inv enables
us to “destroy” or observe values of C:

C

inv
**∼= A+B

[C1 ,C2]

hh
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Algebra/coalgebras also arise about product datatypes. For instance, suppose that
one wishes to describe datatype Point inhabited by pairs (x0, y0), (x1, y1) etc.
of Cartesian coordinates of a given type, say A. Although A × A equipped with
projections π1, π2 “is” such a datatype, one may be interested in a suitably named
replica of A × A in which points are built explicitly by some constructor (say
Point) and observed by dedicated selectors (say x and y):

A A× Aπ1oo π2 //

Point
��

A

Point

x

cc

y

;; (2.109)

This rises an algebra (Point) and a coalgebra (〈x, y〉) for datatype Point:

Point

〈x,y〉
**∼= A× A

Point

jj

In HASKELL one writes

data Point a = Point { x :: a, y :: a }

but be warned that HASKELL delivers Point in curried form:

Point :: a -> a -> Point a

Finally, what is the “pointer”-equivalent in HASKELL? This corresponds to
A = 1 in (2.108) and to the following HASKELL declaration:

data C = C1 () | C2 B

Note that HASKELL allows for a more programming-oriented alternative in this
case, in which the unit type () is eliminated:

data C = C1 | C2 B

The difference is that here C1 denotes an inhabitant ofC (and so a clause f(C1 a) =
. . . is rewritten to f C1 = . . .) while above C1 denotes a (constant) function
C 1C1oo . Isomorphism (2.98) helps in comparing these two alternative situa-

tions.
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2.19 Exercises

Exercise 2.31. Let A and B be two disjoint datatypes, that is, A ∩ B = ∅ holds. Show
that isomorphism

A ∪B ∼= A+B (2.110)

holds. Hint: define A ∪B A+B
ioo as i = [embA , embB] for embA a = a and

embB b = b, and find its inverse. By the way, why didn’t we define i as simply as
i
def
= [idA , idB]?

2

Exercise 2.32. Knowing that a given function xr satisfies property

xr · 〈〈f , g〉, h〉 = 〈〈f , h〉, g〉 (2.111)

for all f , g and h , derive from (2.111) the definition of xr:

xr = 〈π1 × id, π2 · π1〉 (2.112)

2

Exercise 2.33. Let distr (read: ‘distribute right’) be the bijection which witnesses iso-
morphism A× (B+C) ∼= A×B+A×C. Fill in the “. . . ”in the diagram which follows
so that it describes bijection distl (red: ‘distribute left’) which witnesses isomorphism
(B + C)×A ∼= B ×A+ C ×A:

(B + C)×A swap //

distl

22· · · distr // · · · ··· // B ×A+ C ×A

2

Exercise 2.34. In the context of exercise 2.33, prove

[g , h]× f = [g × f , h× f ] · distl (2.113)
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knowing that

f × [g , h] = [f × g , f × h] · distr (2.114)

holds.
2

Exercise 2.35. The arithmetic law (a+ b)(c+ d) = (ac+ ad) + (bc+ bd) corresponds
to the isomorphism

(A+B)× (C +D) ∼= (A× C +A×D) + (B × C +B ×D)

h=[[i1×i1 ,i1×i2] ,[i2×i1 ,i2×i2]]

kk

From universal property (2.65) infer the following definition of function h, written in
Haskell syntax:

h(Left(Left(a,c))) = (Left a,Left c)
h(Left(Right(a,d))) = (Left a,Right d)
h(Right(Left(b,c))) = (Right b,Left c)
h(Right(Right(b,d))) = (Right b,Right d)

2

Exercise 2.36. Every C programmer knows that a struct of pointers

(A+ 1)× (B + 1)

offers a data type which represents both product A×B (struct) and coproduct A+B
(union), alternatively. Express in pointfree notation the isomorphisms i1 to i5 of

(A+ 1)× (B + 1) ((A+ 1)×B) + ((A+ 1)× 1)
i1oo

(A×B + 1×B) + (A× 1 + 1× 1)

i2
OO

(A×B +B) + (A+ 1)

i3
OO

(A×B + (B +A)) + 1
i5

// A×B + (B + (A+ 1))

i4
OO
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which witness the observation above.
2

Exercise 2.37. Prove the following property of McCarthy conditionals:

p→ f · g, h · k = [f , h] · (p→ i1 · g, i2 · k) (2.115)

2

Exercise 2.38. Assuming the fact

(p? + p?) · p? = (i1 + i2) · p? (2.116)

show that nested conditionals can be simplified:

p→ (p→ f, g), (p→ h, k) = p→ f, k (2.117)

2

Exercise 2.39. Show that (f · ap) g = f · g holds, cf. (2.87).
2

Exercise 2.40. Consider the higher-order isomorphism flip defined as follows:

(CB)A ∼= CA×B ∼= CB×A ∼= (CA)B

f 7→ f̂ 7→ f̂ .swap 7→ f̂ · swap = flip f

Show that flip f x y = f y x.
2
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Exercise 2.41. Let C const // CA be the function of exercise 2.2, that is, const c = cA.
Which fact is expressed by the following diagram featuring const?

C
const //

f

��

CA

fA

��
B

const
// BA

(2.118)

Write it at point-level and describe it by your own words.
2

Exercise 2.42. Show that π2 · f = π2 holds for every f . Thus π2 is a constant function
— which one?
2

Exercise 2.43. Establish the difference between the following two declarations in
HASKELL,

data D = D1 A | D2 B C
data E = E1 A | E2 (B,C)

for A, B and C any three predefined types. AreD andE isomorphic? If so, can you specify
and encode the corresponding isomorphism?
2

2.20 Bibliography notes
A few decades ago John Backus read, in his Turing Award Lecture, a revolutionary
paper [3]. This paper proclaimed conventional command-oriented programming
languages obsolete because of their inefficiency arising from retaining, at a high-
level, the so-called “memory access bottleneck” of the underlying computation
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model — the well-known von Neumann architecture. Alternatively, the (at the
time already mature) functional programming style was put forward for two main
reasons. Firstly, because of its potential for concurrent and parallel computation.
Secondly — and Backus emphasis was really put on this —, because of its strong
algebraic basis.

Backus algebra of (functional) programs was providential in alerting com-
puter programmers that computer languages alone are insufficient, and that only
languages which exhibit an algebra for reasoning about the objects they purport
to describe will be useful in the long run.

The impact of Backus first argument in the computing science and computer
architecture communities was considerable, in particular if assessed in quality
rather than quantity and in addition to the almost contemporary structured pro-
gramming trend 14. By contrast, his second argument for changing computer
programming was by and large ignored, and only the so-called algebra of pro-
gramming research minorities pursued in this direction. However, the advances in
this area throughout the last two decades are impressive and can be fully appreci-
ated by reading a textbook written relatively recently by Bird and de Moor [6]. A
comprehensive review of the voluminous literature available in this area can also
be found in this book.

Although the need for a pointfree algebra of programming was first identified
by Backus, perhaps influenced by Iverson’s APL growing popularity in the USA
at that time, the idea of reasoning and using mathematics to transform programs is
much older and can be traced to the times of McCarthy’s work on the foundations
of computer programming [28], of Floyd’s work on program meaning [9] and
of Paterson and Hewitt’s comparative schematology [39]. Work of the so-called
program transformation school was already very expressive in the mid 1970s, see
for instance references [7].

The mathematics adequate for the effective integration of these related but
independent lines of thought was provided by the categorial approach of Manes
and Arbib compiled in a textbook [27] which has very strongly influenced the last
decade of 20th century theoretical computer science.

A so-called MPC (“Mathematics of Program Construction”) community has
been among the most active in producing an integrated body of knowledge on the
algebra of programming which has found in functional programming an eloquent
and paradigmatic medium. Functional programming has a tradition of absorb-

14Even the C programming language and the UNIX operating system, with their implicit func-
tional flavour, may be regarded as subtle outcomes of the “going functional” trend.
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ing fresh results from theoretical computer science, algebra and category theory.
Languages such as HASKELL [5] have been competing to integrate the most re-
cent developments and therefore are excellent prototyping vehicles in courses on
program calculation, as happens with this book.

For fairly recent work on this topic see e.g. [12, 16, 17, 11].


