J.N. OLIVEIRA
University of Minho

PROGRAM DESIGN BY CALCULATION

(DRAFT of textbook in preparation)

Last update: February 2018

Contents

Preamble 1
1 Introduction 3
I Calculating with Functions 5
2 An Introduction to Pointfree Programming 7
2.1 Introducing functions and types 8
2.2 Functional application 9
2.3 Functional equality and composition 10
2.4 Identity functions 12
2.5 Constant functions 13
2.6 Monics and epics 15
2.7 Isos 16
2.8 Gluing functions which do not compose - products 18
2.9 Gluing functions which do not compose - coproducts 24
2.10 Mixing products and coproducts 28
2.11 Elementary datatypes 30
2.12 Natural properties 33
2.13 Universal properties 35
2.14 Guards and McCarthy's conditional 38
2.15 Gluing functions which do not compose - exponentials 42
2.16 Finitary products and coproducts 50
2.17 Initial and terminal datatypes 52
2.18 Sums and products in Haskell 53
2.19 Exercises 57
2.20 Bibliography notes 60
3 Recursion in the Pointfree Style 63
3.1 Motivation 63
3.2 From natural numbers to finite sequences 69
3.3 Introducing inductive datatypes 75
3.4 Observing an inductive datatype 81
3.5 Synthesizing an inductive datatype 84
3.6 Introducing (list) catas, anas and hylos 86
3.7 Inductive types more generally 92
3.8 Functors 93
3.9 Polynomial functors 95
3.10 Polynomial inductive types 97
3.11 F-algebras and F-homomorphisms 98
3.12 F-catamorphisms 99
3.13 Parameterization and type functors 102
3.14 A catalogue of standard polynomial inductive types 107
3.15 Functors and type functors in HASKELL 110
3.16 The mutual-recursion law 111
3.17 "Banana-split": a corollary of the mutual-recursion law 120
3.18 Inductive datatype isomorphism 123
3.19 Bibliography notes 123
4 Why Monads Matter 125
4.1 Partial functions 125
4.2 Putting partial functions together 126
4.3 Lists 129
4.4 Monads 130
4.4.1 Properties involving (Kleisli) composition 132
4.5 Monadic application (binding) 133
4.6 Sequencing and the do-notation 134
4.7 Generators and comprehensions 134
4.8 Monads in Haskell 136
4.8.1 Monadic I/O 138
4.9 The state monad 140
4.10 'Monadification' of Haskell code made easy 147
4.11 Where do monads come from? 152
4.12 Bibliography notes 155
II Calculating with Relations 157
5 Specifying functional programs 159
6 When everything becomes a relation 161
7 Theorems for free: a calculational approach 163
8 Design by Contract - calculationally 165
9 Programs as Relational Hylomorphisms 167
10 Quasi-inductive datatypes 169
11 Calculational Program Refinement 171
12 Relational thinking 173
III Calculating with Matrices 175
13 Towards a Linear Algebra of Programming 177
A Appendix 179
A. 1 Haskell support library 179
A. 2 Alloy support library 184

List of Exercises

Exercise 2.1 14
Exercise 2.2 14
Exercise 2.3 16
Exercise 2.4 24
Exercise 2.5 27
Exercise 2.6 28
Exercise 2.7 30
Exercise 2.8 30
Exercise 2.9 30
Exercise 2.10 30
Exercise 2.11 33
Exercise 2.12 33
Exercise 2.13 34
Exercise 2.14 34
Exercise 2.15 34
Exercise 2.16 37
Exercise 2.17 37
Exercise 2.18 37
Exercise 2.19 37
Exercise 2.20 38
Exercise 2.21 41
Exercise 2.22 41
Exercise 2.23 41
Exercise 2.24 49
Exercise 2.25 49
Exercise 2.26 49
Exercise 2.27 49
Exercise 2.28 50
Exercise 2.29 51
Exercise 2.30 53
Exercise 2.31 57
Exercise 2.32 57
Exercise 2.33 57
Exercise 2.34 57
Exercise 2.35 58
Exercise 2.36 58
Exercise 2.37 59
Exercise 2.38 59
Exercise 2.39 59
Exercise 2.40 59
Exercise 2.41 60
Exercise 2.42 60
Exercise 2.43 60
Exercise 3.1 68
Exercise 3.2 68
Exercise 3.3 68
Exercise 3.4 68
Exercise 3.5 68
Exercise 3.6 80
Exercise 3.7 91
Exercise 3.8 91
Exercise 3.9 91
Exercise 3.10 97
Exercise 3.11 106
Exercise 3.12 107
Exercise 3.13 108
Exercise 3.14 108
Exercise 3.15 109
Exercise 3.16 109
Exercise 3.17 110
Exercise 3.18 111
Exercise 3.19 111
Exercise 3.20 116
Exercise 3.21 116
Exercise 3.22 117
Exercise 3.23 117
Exercise 3.24 118
Exercise 3.25 120
Exercise 3.26 122
Exercise 3.27 122
Exercise 3.28 122
Exercise 4.1 128
Exercise 4.2 129
Exercise 4.3 129
Exercise 4.4 133
Exercise 4.5 135
Exercise 4.6 136
Exercise 4.7 137
Exercise 4.8 139
Exercise 4.9 139
Exercise 4.10 151
Exercise 4.11 151
Exercise 4.12 155

Preamble

This textbook, which has arisen from the author's research and teaching experience, has been in preparation for many years. Its main aim is to draw the attention of software practitioners to a calculational approach to the design of software artifacts ranging from simple algorithms and functions to the specification and realization of information systems.

Put in other words, the book invites software designers to raise standards and adopt mature development techniques found in other engineering disciplines, which (as a rule) are rooted on a sound mathematical basis. Compositionality and parametricity are central to the whole discipline, granting scalability from school desk exercises to large problems in an industry setting.

It is interesting to note that while coining the phrase software engineering in the 1960s, our colleagues of the time were already promising such high quality standards. In March, 1967, ACM President Anthony Oettinger delivered an address in which he said: "(...) the scientific, rigorous component of computing, is more like mathematics than it is like physics" (...) Whatever it is, on the one hand it has components of the purest of mathematics and on the other hand of the dirtiest of engineering [35].

As a discipline, software engineering was announced at the Garmisch NATO conference in 1968, from whose report [34] the following excerpt is quoted:

In late 1967 the Study Group recommended the holding of a working conference on Software Engineering. The phrase 'software engineering' was deliberately chosen as being provocative, in implying the need for software manufacture to be based on the types of theoretical foundations and practical disciplines, that are traditional in the established branches of engineering.

Provocative or not, the need for sound theoretical foundations has clearly been under concern since the very beginning of the discipline - exactly fifty years
ago, at the time of writing. However, how "scientific" do such foundations turn out to be, now that five decades have since elapsed?

Thirty years later (1997), Richard Bird and Oege de Moore published a textbook [6] in whose preface C.A.R. Hoare writes:

Programming notation can be expressed by "formula and equations (...) which share the elegance of those which underlie physics and chemistry or any other branch of basic science".

The formulæ and equations mentioned in this quotation are those of a discipline known as the Algebra of Programming. Many others have contributed to this body of knowledge, notably Roland Backhouse and his colleagues at Eindhoven and Nottingham, see eg. [1, 2], Jeremy Gibbons and Ralf Hinze at Oxford see e.g. [15], among many others. Unfortunately, references[1, 2] are still unpublished.

When the author of this draft textbook decided to teach Algebra of Programming to 2nd year students of the Minho degrees in computer science, back to 1998, he found textbook [6] too difficult for the students to follow, mainly because of its too explicit categorial (allegorical) flavour. So he decided to start writing slides and notes helping the students to read the book. Eventually, such notes became chapters 2 to 4 of the current version of the monograph. The same procedure was taken when teaching the relational approach of [6] to 4th and 5th year students (today at master level).

This draft book is by and large incomplete, most chapters being still in slide form ${ }^{1}$. Such half-finished chapters are omitted from the current print-out. Altogether, the idea is to show that software engineering and, in particular, computer programming can adopt the scientific method as other branches of engineering do.

University of Minho, Braga, February 2018

José N. Oliveira

[^0]
Part I

Calculating with Functions

Chapter 2

An Introduction to Pointfree Programming

Everybody is familiar with the concept of a function since the school desk. The functional intuition traverses mathematics from end to end because it has a solid semantics rooted on a well-known mathematical system - the class of "all" sets and set-theoretical functions.

Functional programming literally means "programming with functions". Programming languages such as LISP or HASKELL allow us to program with functions. However, the functional intuition is far more reaching than producing code which runs on a computer. Since the pioneering work of John McCarthy - the inventor of Lisp - in the early 1960s, one knows that other branches of programming can be structured, or expressed functionally. The idea of producing programs by calculation, that is to say, that of calculating efficient programs out of abstract, inefficient ones has a long tradition in functional programming.

This book is structured around the idea that functional programming can be used as a basis for teaching programming as a whole, from the successor function $n \mapsto n+1$ to large information system design. ${ }^{1}$

This chapter provides a light-weight introduction to the theory of functional programming. The main emphasis is on compositionality, one of the main advantages of "thinking functionally", explaining how to construct new functions out of other functions using a minimal set of predefined functional combinators. This leads to a programming style which is point free in the sense that function

[^1]descriptions dispense with variables (also known as points).
Many technical issues are deliberately ignored and deferred to later chapters. Most programming examples will be provided in the HASKELL functional programming language. Appendix A. 1 includes the listings of some HaSkell modules which complement the Haskell Standard Prelude and help to "animate" the main concepts introduced in this chapter.

2.1 Introducing functions and types

The definition of a function

$$
\begin{equation*}
f: A \rightarrow B \tag{2.1}
\end{equation*}
$$

can be regarded as a kind of "process" abstraction: it is a "black box" which produces an output once it is supplied with an input:

The box isn't really necessary to convey the abstraction, a single labelled arrow sufficing:

$$
A \xrightarrow{f} B
$$

This simplified notation focusses on what is indeed relevant about f - that it can be regarded as a kind of "contract":
f commits itself to producing a B-value provided it is supplied with an A-value.

How is such a value produced? In many situations one wishes to ignore it because one is just using function f. In others, however, one may want to inspect the internals of the "black box" in order to know the function's computation rule. For instance,

$$
\begin{aligned}
\text { succ } & : \mathbb{N} \rightarrow \mathbb{N} \\
\text { succ } n & \stackrel{\text { def }}{=} n+1
\end{aligned}
$$

expresses the computation rule of the successor function - the function succ which finds "the next natural number" - in terms of natural number addition and of natural number 1. What we above meant by a "contract" corresponds to the signature of the function, which is expressed by arrow $\mathbb{N} \rightarrow \mathbb{N}$ in the case of succ and which, by the way, can be shared by other functions, e.g. $s q n \stackrel{\text { def }}{=} n^{2}$.

In programming terminology one says that succ and $s q$ have the same "type". Types play a prominent rôle in functional programming (as they do in other programming paradigms). Informally, they provide the "glue", or interfacing material, for putting functions together to obtain more complex functions. Formally, a "type checking" discipline can be expressed in terms of compositional rules which check for functional expression wellformedness.

It has become standard to use arrows to denote function signatures or function types, recall (2.1). To denote the fact that function f accepts arguments of type A and produces results of type B , we will use the following interchangeable notations: $f: B \leftarrow A, f: A \rightarrow B, B \stackrel{f}{\longleftarrow} A$ or $A \xrightarrow{f} B$. This corresponds to writing $f:: a \rightarrow b$ in the HASKELL functional programming language, where type variables are denoted by lowercase letters. A will be referred to as the domain of f and B will be referred to as the codomain of f. Both A and B are symbols or expressions which denote sets of values, most often called types.

2.2 Functional application

What do we want functions for? If we ask this question to a physician or engineer the answer is very likely to be: one wants functions for modelling and reasoning about the behaviour of real things.

For instance, function distance $t=60 \times t$ could be written by a school physics student to model the distance (in, say, kilometers) a car will drive (per hour) at average speed $60 \mathrm{~km} / \mathrm{hour}$. When questioned about how far the car has gone in 2.5 hours, such a model provides an immediate answer: just evaluate distance 2.5 to obtain 150 km .

So we get a naïve purpose of functions: we want them to be applied to arguments in order to obtain results. Functional application is denoted by juxtaposition, e.g. $f a$ for $B \stackrel{f}{\longleftarrow} A$ and $a \in A$, and associates to the left: $f x y$ denotes $(f x) y$ rather than $f(x y)$.

2.3 Functional equality and composition

Application is not everything we want to do with functions. Very soon our physics student will be able to talk about properties of the distance model, for instance that property

$$
\begin{equation*}
\text { distance }(2 \times t)=2 \times(\text { distance } t) \tag{2.2}
\end{equation*}
$$

holds. Later on, we could learn from her or him that the same property can be restated as distance (twice t) $=$ twice (distance t), by introducing function twice $x \stackrel{\text { def }}{=} 2 \times x$. Or even simply as

$$
\begin{equation*}
\text { distance } \cdot \text { twice }=\text { twice } \cdot \text { distance } \tag{2.3}
\end{equation*}
$$

where "." denotes function-arrow chaining, as suggested by drawing

where both space and time are modelled by real numbers in \mathbb{R}.
This trivial example illustrates some relevant facets of the functional programming paradigm. Which version of the property presented above is "better"? the version explicitly mentioning variable t and requiring parentheses (2.2)? the version hiding variable t but resorting to function twice (2.3)? or even diagram (2.4) alone?

Expression (2.3) is clearly more compact than (2.2). The trend for notation economy and compactness is well-known throughout the history of mathematics. In the 16th century, for instance, algebrists would write 12.cu. \tilde{p}.18.ce. $\tilde{p} .27 . c o . \tilde{p} .17$ for what is nowadays written as $12 x^{3}+18 x^{2}+27 x+17$. We may find such syncopated notation odd, but we should not forget that at its time it was replacing even more obscure and lengthy expression denotations.

Why do people look for compact notations? A compact notation leads to shorter documents (less lines of code in programming) in which patterns are easier to identify and to reason about. Properties can be stated in clear-cut, one-line long equations which are easy to memorize. And diagrams such as (2.4) can be easily drawn which enable us to visualize maths in a graphical format.

Some people will argue that such compact "pointfree" notation (that is, the notation which hides variables, or function "definition points") is too cryptic to be useful as a practical programming medium. In fact, pointfree programming
languages such as Iverson's APL or Backus' FP have been more respected than loved by the programmers community. Virtually all commercial programming languages require variables and so implement the more traditional "pointwise" notation.

Throughout this book we will adopt both, depending upon the context. Our chosen programming medium - HASKELL - blends the pointwise and pointfree programming styles in a quite successful way. In order to switch from one to the other, we need two "bridges": one lifting equality to the functional level and the other lifting function application.

Concerning equality, note that the " $=$ " sign in (2.2) differs from that in (2.3): while the former states that two real numbers are the same number, the latter states that two $\mathbb{R} \leftarrow \mathbb{R}$ functions are the same function. Formally, we will say that two functions $f, g: B \leftarrow A$ are equal if they agree at pointwise-level, that is ${ }^{2}$

$$
\begin{equation*}
f=g \quad \text { iff } \quad\left\langle\forall a: a \in A: f a={ }_{B} \quad g a\right\rangle \tag{2.5}
\end{equation*}
$$

where $={ }_{B}$ denotes equality at B-level. Rule (2.5) is known as extensional equality.
Concerning application, the pointfree style replaces it by the more generic concept of functional composition suggested by function-arrow chaining: wherever two functions are such that the target type of one of them, say $B \longleftarrow^{g} A$ is the same as the source type of the other, say $C<^{f} B$, then another function can be defined, $C \stackrel{f \cdot g}{\rightleftarrows} A$ - called the composition of f and g, or " f after g "which "glues" f and g together:

$$
\begin{equation*}
(f \cdot g) a \stackrel{\text { def }}{=} f(g a) \tag{2.6}
\end{equation*}
$$

This situation is pictured by the following arrow-diagram

or by block-diagram

[^2]Therefore, the type-rule associated to functional composition can be expressed as follows: ${ }^{3}$

$$
\begin{aligned}
& C \stackrel{f}{\longleftarrow} B \\
& \frac{B \leftarrow^{g} A}{C \leftarrow^{f \cdot g} A}
\end{aligned}
$$

Composition is certainly the most basic of all functional combinators. It is the first kind of "glue" which comes to mind when programmers need to combine, or chain functions (or processes) to obtain more elaborate functions (or processes). ${ }^{4}$ This is because of one of its most relevant properties,

$$
\begin{equation*}
(f \cdot g) \cdot h=f \cdot(g \cdot h) \tag{2.8}
\end{equation*}
$$

depicted by diagram

which shares the pattern of, for instance

$$
(a+b)+c=a+(b+c)
$$

and so is called the associative property of composition. This enables us to move parentheses around in pointfree expressions involving functional compositions, or even to omit them altogether, for instance by writing $f \cdot g \cdot h \cdot i$ as an abbreviation of $((f \cdot g) \cdot h) \cdot i$, or of $(f \cdot(g \cdot h)) \cdot i$, or of $f \cdot((g \cdot h) \cdot i)$, etc. For a chain of n-many function compositions the notation $\bigcirc_{i=1}^{n} f_{i}$ will be acceptable as abbreviation of $f_{1} \cdots f_{n}$.

2.4 Identity functions

How free are we to fulfill the "give me an A and I will give you a B " contract of equation (2.1)? In general, the choice of f is not unique. Some $f \mathrm{~s}$ will do as little as possible while others will laboriously compute non-trivial outputs. At one of

[^3]the extremes, we find functions which "do nothing" for us, that is, the added-value of their output when compared to their input amounts to nothing: $f a=a$. In this case $B=A$, of course, and f is said to be the identity function on A :
\[

$$
\begin{align*}
i d_{A} & : A \leftarrow A \tag{2.9}\\
i d_{A} a & \stackrel{\text { def }}{=} a
\end{align*}
$$
\]

Note that every type X "has" its identity $i d_{X}$. Subscripts will be omitted wherever implicit in the context. For instance, the arrow notation $\mathbb{N}<{ }_{\leftarrow}^{\text {id }} \mathbb{N}$ saves us from writing $i d_{\mathbb{N}}$. So, we will often refer to "the" identity function rather than to "an" identity function.

How useful are identity functions? At first sight, they look fairly uninteresting. But the interplay between composition and identity, captured by the following equation,

$$
\begin{equation*}
f \cdot i d=i d \cdot f=f \tag{2.10}
\end{equation*}
$$

will be appreciated later on. This property shares the pattern of, for instance,

$$
a+0=0+a=a
$$

This is why we say that $i d$ is the unit (identity) of composition. In a diagram, (2.10) looks like this:

Note the graphical analogy of diagrams (2.4) and (2.11). The latter is interesting in the sense that it is generic, holding for every f. Diagrams of this kind are very common and express important (and rather 'natural') properties of functions, as we shall see further on.

2.5 Constant functions

Opposite to the identity functions, which do not lose any information, we find functions which lose all (or almost all) information. Regardless of their input, the output of these functions is always the same value.

Let C be a nonempty data domain and let and $c \in C$. Then we define the everywhere c function as follows, for arbitrary A :

$$
\begin{array}{rll}
\underline{c} & : & A \rightarrow C \tag{2.12}\\
\underline{c} a & \stackrel{\text { def }}{=} c
\end{array}
$$

The following property defines constant functions at pointfree level,

$$
\begin{equation*}
\underline{c} \cdot f=\underline{c} \tag{2.13}
\end{equation*}
$$

and is depicted by a diagram similar to (2.11):

Clearly, $\underline{c} \cdot f=\underline{c} \cdot g$, for any f, g, meaning that any difference that may exist in behaviour between such functions is lost.

Note that, strictly speaking, symbol \underline{c} denotes two different functions in diagram (2.14): one, which we should have written \underline{c}_{A}, accepts inputs from A while the other, which we should have written \underline{c}_{B}, accepts inputs from B :

$$
\begin{equation*}
\underline{c}_{B} \cdot f=\underline{c}_{A} \tag{2.15}
\end{equation*}
$$

This property will be referred to as the constant-fusion property.
As with identity functions, subscripts will be omitted wherever implicit in the context.

Exercise 2.1. Use (2.5) to show that $f \cdot h=h \cdot f=f$ has the unique solution $h=i d$, $c f$. (2.10).

Exercise 2.2. The Haskell Prelude provides for constant functions: you write const c for \underline{c}. Check that HASKell assigns the same type to expressions $f \cdot($ const $c)$ and const $(f \quad c)$, for every f and c. What else can you say about these functional expressions? Justify.

2.6 Monics and epics

Identity functions and constant functions are limit points of the functional spectrum with respect to information preservation. All the other functions are in between: they lose "some" information, which is regarded as uninteresting for some reason. This remark supports the following aphorism about a facet of functional programming: it is the art of transforming or losing information in a controlled and precise way. That is to say, the art of constructing the exact observation of data which fits in a particular context or requirement.

How do functions lose information? Basically in two different ways: they may be "blind" enough to confuse different inputs, by mapping them onto the same output, or they may ignore values of their codomain. For instance, \underline{c} confuses all inputs by mapping them all onto c. Moreover, it ignores all values of its codomain apart from c.

Functions which do not confuse inputs are called monics (or injective functions) and obey the following property: $B \stackrel{f}{\leftrightarrows} A$ is monic if, for every pair of functions $A \stackrel{h, k}{\leftarrow} C$, if $f \cdot h=f \cdot k$ then $h=k$, cf. diagram

$$
B<\frac{f}{\leftarrow} A \underset{k}{\stackrel{h}{\gtrless}} C
$$

(we say that f is "post-cancellable"). It is easy to check that "the" identity function is monic,

$$
\begin{gathered}
\quad \begin{array}{c}
i d \cdot h=i d \cdot k \Rightarrow h=k \\
\equiv
\end{array} \begin{array}{c}
\{\text { by }(2.10)\} \\
\\
\\
\equiv \quad
\end{array} \quad\{\text { predicate logic }\}
\end{gathered}
$$

and that any constant function \underline{c} is not monic:

$$
\begin{aligned}
& \quad \begin{array}{c}
\underline{c} \cdot h=\underline{c} \cdot k \Rightarrow h=k \\
\equiv \\
\quad \underline{c}=\underline{c} \Rightarrow h(2.15)\}
\end{array} \\
& \equiv \quad\{\text { function equality is reflexive }\} \\
& \\
& \quad \text { TRUE } \Rightarrow h=k
\end{aligned}
$$

$$
\begin{gathered}
\equiv \quad\{\text { predicate logic }\} \\
h=k
\end{gathered}
$$

So the implication does not hold in general (only if $h=k$).
Functions which do not ignore values of their codomain are called epics (or surjective functions) and obey the following property: $A \stackrel{f}{\leftarrow} B$ is epic if, for every pair of functions $C \stackrel{h, k}{\rightleftarrows} A$, if $h \cdot f=k \cdot f$ then $h=k$, $c f$. diagram

$$
C \underset{{ }_{h}}{\gtrless^{k}} A \leftarrow_{f} B
$$

(we say that f is "pre-cancellable"). As expected, identity functions are epic:

$$
\begin{gathered}
h \cdot i d=k \cdot i d \Rightarrow h=k \\
\equiv \quad\{\text { by }(2.10)\} \\
\\
\equiv \quad \begin{array}{c}
h=k \Rightarrow h=k \\
\\
\\
\text { TRUE }
\end{array} \quad\{\text { predicate logic }\}
\end{gathered}
$$

Exercise 2.3. Under what circumstances is a constant function epic? Justify.

2.7 Isos

A function $B \stackrel{f}{\leftarrow} A$ which is both monic and epic is said to be iso (an isomorphism, or a bijective function). In this situation, f always has a converse (or inverse) $B \xrightarrow{f^{\circ}} A$, which is such that

$$
\begin{equation*}
f \cdot f^{\circ}=i d_{B} \wedge f^{\circ} \cdot f=i d_{A} \tag{2.16}
\end{equation*}
$$

(i.e. f is invertible).

Isomorphisms are very important functions because they convert data from one "format", say A, to another format, say B, without losing information. So f and and f° are faithful protocols between the two formats A and B. Of course,
these formats contain the same "amount" of information, although the same data adopts a different "shape" in each of them. In mathematics, one says that A is isomorphic to B and one writes $A \cong B$ to express this fact.

Isomorphic data domains are regarded as "abstractly" the same. Note that, in general, there is a wide range of isos between two isomorphic data domains. For instance, let Weekday be the set of weekdays,

$$
\begin{aligned}
& \text { Weekday }= \\
& \quad\{\text { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday }\}
\end{aligned}
$$

and let symbol 7 denote the set $\{1,2,3,4,5,6,7\}$, which is the initial segment of \mathbb{N} containing exactly seven elements. The following function f, which associates each weekday with its "ordinal" number,

$$
\begin{aligned}
& f: \text { Weekday } \rightarrow 7 \\
& f \text { Monday }=1 \\
& f \text { Tuesday }=2 \\
& f \text { Wednesday }=3 \\
& f \text { Thursday }=4 \\
& f \text { Friday }=5 \\
& f \text { Saturday }=6 \\
& f \text { Sunday }=7
\end{aligned}
$$

is iso (guess f°). Clearly, $f d=i$ means " d is the i-th day of the week". But note that function $g d \stackrel{\text { def }}{=} \operatorname{rem}(f d, 7)+1$ is also an iso between Weekday and 7 . While f regards Monday the first day of the week, g places Sunday in that position. Both f and g are witnesses of isomorphism

$$
\begin{equation*}
\text { Weekday } \cong 7 \tag{2.17}
\end{equation*}
$$

Isomorphisms are quite flexible in pointwise reasoning. If, for some reason, f° is found handier than isomorphism f in the reasoning, then the shunting rules

$$
\begin{align*}
f \cdot g=h & \equiv g=f^{\circ} \cdot h \tag{2.18}\\
g \cdot f=h & \equiv g=h \cdot f^{\circ} \tag{2.19}
\end{align*}
$$

can be of help.
Finally, note that all classes of functions referred to so far - constants, identities, epics, monics and isos - are closed under composition, that is, the composition of two constants is a constant, the composition of two epics is epic, etc.

2.8 Gluing functions which do not compose - products

Function composition has been presented above as a basis for gluing functions together in order to build more complex functions. However, not every two functions can be glued together by composition. For instance, functions $f: A \leftarrow C$ and $g: B \leftarrow C$ do not compose with each other because the domain of one of them is not the codomain of the other. However, both f and g share the same domain C. So, something we can do about gluing f and g together is to draw a diagram expressing this fact, something like

Because f and g share the same domain, their outputs can be paired, that is, we may write ordered pair $(f c, g c)$ for each $c \in C$. Such pairs belong to the Cartesian product of A and B, that is, to the set

$$
A \times B \stackrel{\text { def }}{=}\{(a, b) \mid a \in A \wedge b \in B\}
$$

So we may think of the operation which pairs the outputs of f and g as a new function combinator $\langle f, g\rangle$ defined as follows:

$$
\begin{gather*}
\langle f, g\rangle \quad: \quad C \rightarrow A \times B \\
\langle f, g\rangle c \quad \stackrel{\text { def }}{=}(f c, g c) \tag{2.20}
\end{gather*}
$$

Traditionally, the pairing combinator $\langle f, g\rangle$ is pronounced " f split g " (or "pair f and g ") and can be depicted by the following "block", or "data flow" diagram:

Function $\langle f, g\rangle$ keeps the information of both f and g in the same way Cartesian product $A \times B$ keeps the information of A and B. So, in the same way A data or B data can be retrieved from $A \times B$ data via the implicit projections π_{1} or π_{2},

$$
\begin{equation*}
A<\stackrel{\pi_{1}}{ } A \times B \xrightarrow{\pi_{2}} B \tag{2.21}
\end{equation*}
$$

defined by

$$
\pi_{1}(a, b)=a \quad \text { and } \quad \pi_{2}(a, b)=b
$$

f and g can be retrieved from $\langle f, g\rangle$ via the same projections:

$$
\begin{equation*}
\pi_{1} \cdot\langle f, g\rangle=f \quad \text { and } \quad \pi_{2} \cdot\langle f, g\rangle=g \tag{2.22}
\end{equation*}
$$

This fact (or pair of facts) will be referred to as the \times-cancellation property and is illustrated in the following diagram which puts everything together:

In summary, the type-rule associated to the "split" combinator is expressed by

A split arises wherever two functions do not compose but share the same domain. What about gluing two functions which fail such a requisite, e.g.

$$
\begin{gathered}
A \leftarrow \\
B \leftarrow \frac{f}{\natural} C \\
\ldots ?
\end{gathered}
$$

The $\langle f, g\rangle$ split combination does not work any more. Nevertheless, a way to "bridge" the domains of f and g, C and D respectively, is to regard them as targets of the projections π_{1} and π_{2} of $C \times D$:

From this diagram $\left\langle f \cdot \pi_{1}, g \cdot \pi_{2}\right\rangle$ arises

mapping $C \times D$ to $A \times B$. It corresponds to the "parallel" application of f and g which is suggested by the following data-flow diagram:

Functional combination $\left\langle f \cdot \pi_{1}, g \cdot \pi_{2}\right\rangle$ appears so often that it deserves special notation - it will be expressed by $f \times g$. So, by definition, we have

$$
\begin{equation*}
f \times g \stackrel{\text { def }}{=}\left\langle f \cdot \pi_{1}, g \cdot \pi_{2}\right\rangle \tag{2.24}
\end{equation*}
$$

which is pronounced "product of f and g " and has typing-rule

$$
\begin{gather*}
A<\frac{f}{\leftarrow} C \\
B \stackrel{g}{\leftrightarrows} D \tag{2.25}\\
A \times B \stackrel{f \times g}{\leftarrow} C \times D
\end{gather*}
$$

Note the overloading of symbol " \times ", which is used to denote both Cartesian product and functional product. This choice of notation will be fully justified later on.

What is the interplay among functional combinators $f \cdot g$ (composition), $\langle f, g\rangle$ (split) and $f \times g$ (product) ? Composition and split relate to each other via the following property, known as \times-fusion: ${ }^{5}$

[^4]
2.8. GLUING FUNCTIONS WHICH DO NOT COMPOSE — PRODUCTS 21

This shows that split is right-distributive with respect to composition. Left-distributivity does not hold but there is something we can say about $f \cdot\langle g, h\rangle$ in case $f=i \times j$:

$$
\begin{aligned}
& (i \times j) \cdot\langle g, h\rangle \\
& =\{\text { by (2.24) }\} \\
& \left\langle i \cdot \pi_{1}, j \cdot \pi_{2}\right\rangle \cdot\langle g, h\rangle \\
& =\quad\{\text { by } \times \text {-fusion (2.26) }\} \\
& \left\langle\left(i \cdot \pi_{1}\right) \cdot\langle g, h\rangle,\left(j \cdot \pi_{2}\right) \cdot\langle g, h\rangle\right\rangle \\
& =\quad\{\text { by }(2.8)\} \\
& \left\langle i \cdot\left(\pi_{1} \cdot\langle g, h\rangle\right), j \cdot\left(\pi_{2} \cdot\langle g, h\rangle\right)\right\rangle \\
& =\quad\{\text { by } \times \text {-cancellation }(2.22)\} \\
& \langle i \cdot g, j \cdot h\rangle
\end{aligned}
$$

The law we have just derived is known as \times-absorption. (The intuition behind this terminology is that "split absorbs \times ", as a special kind of fusion.) It is a consequence of \times-fusion and \times-cancellation and is depicted as follows:

This diagram provides us with two further results about products and projections which can be easily justified:

$$
\begin{align*}
& i \cdot \pi_{1}=\pi_{1} \cdot(i \times j) \tag{2.28}\\
& j \cdot \pi_{2}=\pi_{2} \cdot(i \times j) \tag{2.29}
\end{align*}
$$

Two special properties of $f \times g$ are presented next. The first one expresses a kind of "bi-distribution" of \times with respect to composition:

$$
\begin{equation*}
(g \cdot h) \times(i \cdot j)=(g \times i) \cdot(h \times j) \tag{2.30}
\end{equation*}
$$

We will refer to this property as the \times-functor property. The other property, which we will refer to as the \times-functor-id property, has to do with identity functions:

$$
\begin{equation*}
i d_{A} \times i d_{B}=i d_{A \times B} \tag{2.31}
\end{equation*}
$$

These two properties will be identified as the functorial properties of product. Once again, this choice of terminology will be explained later on.

Let us finally analyse the particular situation in which a split is built involving projections π_{1} and π_{2} only. These exhibit interesting properties, for instance $\left\langle\pi_{1}, \pi_{2}\right\rangle=i d$. This property is known as \times-reflexion and is depicted as follows: ${ }^{6}$

What about $\left\langle\pi_{2}, \pi_{1}\right\rangle$? This corresponds to a diagram

which looks very much the same if submitted to a 180° clockwise rotation (thus A and B swap with each other). This suggests that swap - the name we adopt for $\left\langle\pi_{2}, \pi_{1}\right\rangle$ - is its own inverse; this is checked easily as follows:

$$
\begin{aligned}
& \text { swap • swap } \\
& =\quad\left\{\text { by definition swap } \stackrel{\text { def }}{=}\left\langle\pi_{2}, \pi_{1}\right\rangle\right\} \\
& \left\langle\pi_{2}, \pi_{1}\right\rangle \cdot \text { swap } \\
& =\quad\{\text { by } \times \text {-fusion (2.26) }\} \\
& \left\langle\pi_{2} \cdot \text { swap, } \pi_{1} \cdot \text { swap }\right\rangle \\
& =\quad\{\text { definition of swap twice }\} \\
& \left\langle\pi_{2} \cdot\left\langle\pi_{2}, \pi_{1}\right\rangle, \pi_{1} \cdot\left\langle\pi_{2}, \pi_{1}\right\rangle\right\rangle \\
& =\quad\{\text { by } \times \text {-cancellation (2.22) }\}
\end{aligned}
$$

[^5]\[

=$$
\begin{aligned}
& \left\langle\pi_{1}, \pi_{2}\right\rangle \\
& \quad\{\text { by } \times \text {-reflexion }(2.32)\}
\end{aligned}
$$
\]

Therefore, swap is iso and establishes the following isomorphism

$$
\begin{equation*}
A \times B \cong B \times A \tag{2.33}
\end{equation*}
$$

which is known as the commutative property of product.
The "product datatype" $A \times B$ is essential to information processing and is available in virtually every programming language. In Haskell one writes (A, B) to denote $A \times B$, for A and B two predefined datatypes, fst to denote π_{1} and snd to denote π_{2}. In the C programming language this datatype is called the "struct datatype",

```
struct {
    A first;
    B second;
};
```

while in PASCAL it is called the "record datatype":

```
record
    first: A;
    second: B
end;
```

Isomorphism (2.33) can be re-interpreted in this context as a guarantee that one does not lose (or gain) anything in swapping fields in record datatypes. C or PASCAL programmers know also that record-field nesting has the same status, that is to say that, for instance, datatype

```
record record
    F: A;
    S: record
            F: B; is abstractly the same as
            S: C;
        end
end;
```

```
    F: record
```

 F: record
 F: A;
 F: A;
 S: B
 S: B
 end;
 end;
 S: C;
 S: C;
 end;

```
end;
```

In fact, this is another well-known isomorphism, known as the associative property of product:

$$
\begin{equation*}
A \times(B \times C) \cong(A \times B) \times C \tag{2.34}
\end{equation*}
$$

This is established by $A \times(B \times C) \stackrel{\text { assocr }}{\leftrightarrows}(A \times B) \times C$, which is pronounced "associate to the right" and is defined by

$$
\begin{equation*}
\text { assocr } \stackrel{\text { def }}{=}\left\langle\pi_{1} \cdot \pi_{1}, \pi_{2} \times i d\right\rangle \tag{2.35}
\end{equation*}
$$

Section A. 1 in the appendix lists an extension to the Haskell Standard Pre$l u d e$ that makes isomorphisms such as swap and assocr available. In this module, the concrete syntax chosen for $\langle f, g\rangle$ is split $f \quad g$ and the one chosen for $f \times g$ is $f><g$.

Exercise 2.4. Rely on (2.24) to prove properties (2.30) and (2.31).

2.9 Gluing functions which do not compose - coproducts

The split functional combinator arose in the previous section as a kind of glue for combining two functions which do not compose but share the same domain. The "dual" situation of two non-composable functions $f: C \leftarrow A$ and $g: C \leftarrow B$ which however share the same codomain is depicted in

It is clear that the kind of glue we need in this case should make it possible to apply f in case we are on the " A-side" or to apply g in case we are on the " B side" of the diagram. Let us write $[f, g]$ to denote the new kind of combinator. Its codomain will be C. What about its domain?

We need to describe the datatype which is "either an A or a B ". Since A and B are sets, we may think of $A \cup B$ as such a datatype. This works in case A and B are disjoint sets, but wherever the intersection $A \cap B$ is non-empty it is undecidable whether a value $x \in A \cap B$ is an " A-value" or a " B-value". In the limit, if $A=B$ then $A \cup B=A=B$, that is to say, we have not invented a

2.9. GLUING FUNCTIONS WHICH DO NOT COMPOSE - COPRODUCTS25

new datatype at all. These difficulties can be circumvented by resorting to disjoint union,

$$
A+B \stackrel{\text { def }}{=}\left\{i_{1} a \mid a \in A\right\} \cup\left\{i_{2} b \mid b \in B\right\}
$$

assuming the "tagging" functions

$$
\begin{equation*}
i_{1} a=\left(t_{1}, a\right) \quad, \quad i_{2} b=\left(t_{2}, b\right) \tag{2.36}
\end{equation*}
$$

with types ${ }^{7} A \xrightarrow{i_{1}} A+B \stackrel{i_{2}}{\gtrless} B$. Knowing the exact values of tags t_{1} and t_{2} is not essential to understanding the concept of a disjoint union. It suffices to know that i_{1} and i_{2} tag differently $\left(t_{1} \neq t_{2}\right)$ and consistently.

The values of $A+B$ can be thought of as "copies" of A or B values which are "stamped" with different tags in order to guarantee that values which are simultaneously in A and B do not get mixed up. For instance, the following realizations of $A+B$ in the C programming language,

```
struct {
    int tag; /* 1,2 */
    union {
        A ifA;
        B ifB;
    } data;
};
```

or in PASCAL,

```
record
    case
        tag: integer
            of x =
        1: (P:A);
        2: (S:B)
end;
```

adopt integer tags. In the Haskell Standard Prelude, the $A+B$ datatype is realized by

```
data Either a b = Left a | Right b
```

[^6]So, Left and Right can be thought of as the injections i_{1} and i_{2} in this realization.

At this level of abstraction, disjoint union $A+B$ is called the coproduct of A and B, on top of which we define the new combinator $[f, g]$ (pronounced "either f or g ") as follows:

$$
\begin{align*}
{[f, g] } & : A+B \longrightarrow C \\
{[f, g] x } & \stackrel{\text { def }}{=}\left\{\begin{array}{l}
x=i_{1} a \\
x=i_{2} b
\end{array} \Rightarrow g a b\right. \tag{2.37}
\end{align*}
$$

As we did for products, we can express all this in a diagram:

It is interesting to note how similar this diagram is to the one drawn for products - one just has to reverse the arrows, replace projections by injections and the split arrow by the either one. This expresses the fact that product and coproduct are dual mathematical constructs (compare with sine and cosine in trigonometry). This duality is of great conceptual economy because everything we can say about product $A \times B$ can be rephrased to coproduct $A+B$. For instance, we may introduce the sum of two functions $f+g$ as the notion dual to product $f \times g$:

$$
\begin{equation*}
f+g \stackrel{\text { def }}{=}\left[i_{1} \cdot f, i_{2} \cdot g\right] \tag{2.39}
\end{equation*}
$$

The following list of + -laws provides eloquent evidence of this duality:

+ -cancellation :

+-reflexion :

$$
\begin{align*}
& {\left[i_{1}, i_{2}\right]=i d_{A+B}} \tag{2.41}
\end{align*}
$$

2.9. GLUING FUNCTIONS WHICH DO NOT COMPOSE — COPRODUCTS27
+-fusion :

+ -absorption :

+ -functor:

$$
\begin{equation*}
(g \cdot h)+(i \cdot j)=(g+i) \cdot(h+j) \tag{2.44}
\end{equation*}
$$

+ -functor-id :

$$
\begin{equation*}
i d_{A}+i d_{B}=i d_{A+B} \tag{2.45}
\end{equation*}
$$

In summary, the typing-rules of the either and sum combinators are as follows:

$$
\begin{align*}
& C \stackrel{f}{\leftarrow} A \\
& C \stackrel{f}{\leftarrow} A \\
& \frac{C \leftarrow^{g} B}{C \stackrel{[f, g]}{\leftrightarrows} A+B} \quad \frac{D \leftarrow^{g} B}{C+D \stackrel{f+g}{\leftarrow} A+B} \tag{2.46}
\end{align*}
$$

Exercise 2.5. By analogy (duality) with swap, show that $\left[i_{2}, i_{1}\right]$ is its own inverse and so that fact

$$
\begin{equation*}
A+B \cong B+A \tag{2.47}
\end{equation*}
$$

holds.

Exercise 2.6. Dualize (2.35), that is, write the iso which witnesses fact

$$
\begin{equation*}
A+(B+C) \cong(A+B)+C \tag{2.48}
\end{equation*}
$$

from right to left. Use the either syntax available from the Haskell Standard Prelude to encode this iso in Haskell.

2.10 Mixing products and coproducts

Datatype constructions $A \times B$ and $A+B$ have been introduced above as devices required for expressing the codomain of splits $(A \times B)$ or the domain of eithers $(A+B)$. Therefore, a function mapping values of a coproduct (say $A+B$) to values of a product (say $A^{\prime} \times B^{\prime}$) can be expressed alternatively as an either or as a split. In the first case, both components of the either combinator are splits. In the latter, both components of the split combinator are eithers.

This exchange of format in defining such functions is known as the exchange law. It states the functional equality which follows:

$$
\begin{equation*}
[\langle f, g\rangle,\langle h, k\rangle]=\langle[f, h],[g, k]\rangle \tag{2.49}
\end{equation*}
$$

It can be checked by type-inference that both the left-hand side and the righthand side expressions of this equality have type $B \times D \leftarrow A+C$, for $B \underset{\leftarrow}{\leftarrow} A$, $D \stackrel{g}{\longleftarrow} A, B \stackrel{h}{\longleftarrow} C$ and $D \stackrel{k}{\longleftarrow} C$.

An example of a function which is in the exchange-law format is isomorphism

$$
\begin{equation*}
A \times(B+C) \stackrel{\text { undistr }}{\longleftarrow}(A \times B)+(A \times C) \tag{2.50}
\end{equation*}
$$

(pronounce undistr as "un-distribute-right") which is defined by

$$
\begin{equation*}
\text { undistr } \stackrel{\text { def }}{=}\left[i d \times i_{1}, i d \times i_{2}\right] \tag{2.51}
\end{equation*}
$$

and witnesses the fact that product distributes through coproduct:

$$
\begin{equation*}
A \times(B+C) \cong(A \times B)+(A \times C) \tag{2.52}
\end{equation*}
$$

In this context, suppose that we know of three functions $D \stackrel{f}{\longleftarrow} A, E \stackrel{g}{\longleftarrow} B$ and $F \stackrel{h}{\leftarrow} C$. By (2.46) we infer $E+F \stackrel{g+h}{\leftarrow} B+C$. Then, by (2.25) we infer

$$
\begin{equation*}
D \times(E+F) \stackrel{f \times(g+h)}{\leftrightarrows} A \times(B+C) \tag{2.53}
\end{equation*}
$$

So, it makes sense to combine products and sums of functions and the expressions which denote such combinations have the same "shape" (or symbolic pattern) as the expressions which denote their domain and range - the $\ldots \times(\cdots+\cdots)$ "shape" in this example. In fact, if we abstract such a pattern via some symbol, say F - that is, if we define

$$
\mathbf{F}(\alpha, \beta, \gamma) \stackrel{\text { def }}{=} \alpha \times(\beta+\gamma)
$$

— then we can write $\mathrm{F}(D, E, F) \stackrel{\mathrm{F}(f, g, h)}{\leftrightarrows} \mathrm{F}(A, B, C)$ for (2.53).
This kind of abstraction works for every combination of products and coproducts. For instance, if we now abstract the right-hand side of (2.50) via pattern

$$
\mathrm{G}(\alpha, \beta, \gamma) \stackrel{\text { def }}{=}(\alpha \times \beta)+(\alpha \times \gamma)
$$

we have $\mathrm{G}(f, g, h)=(f \times g)+(f \times h)$, a function which maps $\mathrm{G}(A, B, C)=$ $(A \times B)+(A \times C)$ onto $\mathrm{G}(D, E, F)=(D \times E)+(D \times F)$. All this can be put in a diagram

which unfolds to

$$
\begin{array}{cc}
A \times(B+C) \stackrel{\text { undistr }}{\text { u }}(A \times B)+(A \times C) \tag{2.54}\\
f \times(g+h) \downarrow & \mid(f \times g)+(f \times h) \\
D \times(E+F) & (D \times E)+(D \times F)
\end{array}
$$

once the F and G patterns are instantiated. An interesting topic which stems from (completing) this diagram will be discussed in the next section.

Exercise 2.7. Apply the exchange law to undistr.

Exercise 2.8. Complete the "?"s in diagram

and then solve the implicit equation for x and y.

Exercise 2.9. Repeat exercise 2.8 with respect to diagram

Exercise 2.10. Show that $\left\langle[f, h] \cdot\left(\pi_{1}+\pi_{1}\right),[g, k] \cdot\left(\pi_{2}+\pi_{2}\right)\right\rangle$ reduces to $[f \times g, h \times k]$.

2.11 Elementary datatypes

So far we have talked mostly about arbitrary datatypes represented by capital letters A, B, etc. (lowercase a, b, etc. in the Haskell illustrations). We also mentioned \mathbb{R}, Bool and \mathbb{N} and, in particular, the fact that we can associate to each
natural number n its initial segment $\mathrm{n}=\{1,2, \ldots, n\}$. We extend this to \mathbb{N}_{0} by stating $0=\{ \}$ and, for $n>0, \mathrm{n}+1=\{n+1\} \cup \mathrm{n}$.

Initial segments can be identified with enumerated types and are regarded as primitive datatypes in our notation. We adopt the convention that primitive datatypes are written in the sans serif font and so, strictly speaking, n is distinct from n : the latter denotes a natural number while the former denotes a datatype.

Datatype 0

Among such enumerated types, 0 is the smallest because it is empty. This is the Void datatype in HASKELL, which has no constructor at all. Datatype 0 (which we tend to write simply as 0) may not seem very "useful" in practice but it is of theoretical interest. For instance, it is easy to check that the following "obvious" properties hold,

$$
\begin{align*}
& A+0 \cong A \tag{2.55}\\
& A \times 0 \cong 0 \tag{2.56}
\end{align*}
$$

where the second is actually an equality: $A \times 0=0$.

Datatype 1

Next in the sequence of initial segments we find 1 , which is singleton set $\{1\}$. How useful is this datatype? Note that every datatype A containing exactly one element is isomorphic to $\{1\}$, e.g. $A=\{\mathrm{NIL}\}, A=\{0\}, A=\{1\}, A=\{$ FALSE $\}$, etc.. We represent this class of singleton types by 1 .

Recall that isomorphic datatypes have the same expressive power and so are "abstractly identical". So, the actual choice of inhabitant for datatype 1 is irrelevant, and we can replace any particular singleton set by another without losing information. This is evident from the following, observing isomorphism,

$$
\begin{equation*}
A \times 1 \cong A \tag{2.57}
\end{equation*}
$$

which can be read informally as follows: if the second component of a record ("struct") cannot change, then it is useless and can be ignored. Selector π_{1} is, in this context, an iso mapping the left-hand side of (2.57) to its right-hand side. Its inverse is $\langle i d, \underline{c}\rangle$ where c is a particular choice of inhabitant for datatype 1.

In summary, when referring to datatype 1 we will mean an arbitrary singleton type, and there is a unique iso (and its inverse) between two such singleton types.

The Haskell representative of 1 is datatype (), called the unit type, which contains exactly constructor (). It may seem confusing to denote the type and its unique inhabitant by the same symbol but it is not, since HASKELL keeps track of types and constructors in separate symbol sets.

Note that any function of type $A \rightarrow 1$ is bound to be a constant function. This function, usually called the "bang", or "sink" function, is denoted by an exclamation mark:

$$
\begin{equation*}
!: A \rightarrow 1 \tag{2.58}
\end{equation*}
$$

Clearly, it is the unique function of its type. (Can you write a diferent one, of the same type?)

Finally, what can we say about $1+A$? Every function $B \stackrel{f}{\longleftarrow^{f}} 1+A$ observing this type is bound to be an either $\left[\underline{b_{0}}, g\right]$ for $b_{0} \in B$ and $B<^{g} A$. This is very similar to the handling of a pointer in C or PASCAL: we "pull a rope" and either we get nothing (1) or we get something useful of type B. In such a programming context "nothing" above means a predefined value NIL. This analogy supports our preference in the sequel for NIL as canonical inhabitant of datatype 1. In fact, we will refer to $1+A$ (or $A+1$) as the "pointer to A " datatype. This corresponds to the Maybe type constructor of the HaSkell Standard Prelude.

Datatype 2

Let us inspect the $1+1$ instance of the "pointer" construction just mentioned above. Any observation $B \stackrel{f}{\longleftarrow} 1+1$ can be decomposed in two constant functions: $f=\left[\underline{b_{1}}, \underline{b_{2}}\right]$. Now suppose that $B=\left\{b_{1}, b_{2}\right\}$ (for $b_{1} \neq b_{2}$). Then $1+1 \cong B$ will hold, for whatever choice of inhabitants b_{1} and b_{2}. So we are in a situation similar to 1: we will use symbol 2 to represent the abstract class of all such B s containing exactly two elements. Therefore, we can write:

$$
1+1 \cong 2
$$

Of course, Bool $=\{$ TRUE, FALSE $\}$ and initial segment $2=\{1,2\}$ are in this abstract class. In the sequel we will show some preference for the particular choice of inhabitants $b_{1}=$ TRUE and $b_{2}=$ FALSE, which enables us to use symbol 2 in places where Bool is expected. Clearly,

$$
\begin{equation*}
2 \times A \cong A+A \tag{2.59}
\end{equation*}
$$

Exercise 2.11. Derive the isomorphism

$$
\begin{equation*}
(B+C) \times A \longleftarrow \text { undistl }(B \times A)+(C \times A) \tag{2.60}
\end{equation*}
$$

from undistr (2.50) and other isomorphisms studied thus far.

Exercise 2.12. Furthermore, show that (2.59) follows from (2.60) and, on the practical side, relate Haskell expression

```
either (split (const True) id) (split (const False) id)
```

to the same isomorphism (2.59).

2.12 Natural properties

Let us resume discussion about undistr and the two other functions in diagram (2.54). What about using undistr itself to close this diagram, at the bottom? Note that definition (2.51) works for D, E and F in the same way it does for A, B and C. (Indeed, the particular choice of symbols A, B and C in (2.50) was rather arbitrary.) Therefore, we get:

$$
\begin{aligned}
& A \times(B+C) \xlongequal{\text { undistr }}(A \times B)+(A \times C) \\
& f \times(g+h) \downarrow \\
& D \times(E+F) \underset{\text { undistr }}{\Longleftarrow}(D \times E)+(D \times F)
\end{aligned}
$$

which expresses a very important property of undistr:

$$
\begin{equation*}
(f \times(g+h)) \cdot \text { undistr }=\text { undistr } \cdot((f \times g)+(f \times h)) \tag{2.61}
\end{equation*}
$$

This is called the natural property of undistr. This kind of property (often called "free" instead of "natural") is not a privilege of undistr. As a matter of fact, every function interfacing patterns such as F or G above will exhibit its own natural property. Furthermore, we have already quoted natural properties without
mentioning it. Recall (2.10), for instance. This property (establishing id as the unit of composition) is, after all, the natural property of $i d$. In this case we have $\mathrm{F} \alpha=\mathrm{G} \alpha=\alpha$, as can be easily observed in diagram (2.11).

In general, natural properties are described by diagrams in which two "copies" of the operator of interest are drawn as horizontal arrows:

Note that f is universally quantified, that is to say, the natural property holds for every $f: B \leftarrow A$.

Diagram (2.62) corresponds to unary patterns F and G. As we have seen with undistr, other functions (g, h etc.) come into play for multiary patterns. A very important rôle will be assigned throughout this book to these F, G, etc. "shapes" or patterns which are shared by pointfree functional expressions and by their domain and codomain expressions. From chapter 3 onwards we will refer to them by their proper name - "functor" - which is standard in mathematics and computer science. Then we will also explain the names assigned to properties such as, for instance, (2.30) or (2.44).

Exercise 2.13. Show that (2.28) and (2.29) are natural properties. Dualize these properties. Hint: recall diagram (2.43).

Exercise 2.14. Establish the natural properties of the swap (2.33) and assocr (2.35) isomorphisms.

Exercise 2.15. Draw the natural property of function $\phi=\operatorname{swap} \cdot(i d \times$ swap $)$ as a diagram, that is, identify F and G in (2.62) for this case.

Do the same for $\phi=\operatorname{coswap} \cdot($ swap + swap $)$ where coswap $=\left[i_{2}, i_{1}\right]$.

2.13 Universal properties

Functional constructs $\langle f, g\rangle$ and $[f, g]$ - and their derivatives $f \times g$ and $f+g$ - provide good illustration about what is meant by a program combinator in a compositional approach to programming: the combinator is put forward equipped with a concise set of properties which enable programmers to transform programs, reason about them and perform useful calculations. This raises a programming methodology which is scientific and stable.

Such properties bear standard names such as cancellation, reflexion, fusion, absorption etc.. Where do these names come from? As a rule, for each combinator to be defined one has to define suitable constructions at "interface"-level ${ }^{8}$,e.g. $A \times B$ and $A+B$. These are not chosen or invented at random: each is defined in a way such that the associated combinator is uniquely defined. This is assured by a so-called universal property from which the others can derived.

Take product $A \times B$, for instance. Its universal property states that, for each pair of arrows $A \leftarrow^{f} C$ and $B \stackrel{g}{g}_{\leftrightarrows} C$, there exists an arrow $A \times B \stackrel{\langle f, g\rangle}{\rightleftharpoons} C$ such that

$$
k=\langle f, g\rangle \Leftrightarrow\left\{\begin{array}{l}
\pi_{1} \cdot k=f \tag{2.63}\\
\pi_{2} \cdot k=g
\end{array}\right.
$$

holds — recall diagram (2.23) — for all $A \times B \kappa^{k} C$.
Note that (2.63) is an equivalence, implicitly stating that $\langle f, g\rangle$ is the unique arrow satisfying the property on the right. In fact, read (2.63) in the \Rightarrow direction and let k be $\langle f, g\rangle$. Then $\pi_{1} \cdot\langle f, g\rangle=f$ and $\pi_{2} \cdot\langle f, g\rangle=g$ will hold, meaning that $\langle f, g\rangle$ effectively obeys the property on the right. In other words, we have derived \times-cancellation (2.22). Reading (2.63) in the \Leftarrow direction we understand that, if some k satisfies such properties, then it "has to be" the same arrow as $\langle f, g\rangle$.

The relevance of universal property (2.63) is that it offers a way of solving equations of the form $k=\langle f, g\rangle$. Take for instance the following exercise: can the identity can be expressed, or "reflected", using this combinator? We just solve the equiation $i d=\langle f, g\rangle$ for f and g :

$$
\begin{aligned}
& i d= \\
& \equiv \quad\langle f, g\rangle \\
& \quad\{\text { universal property }(2.63)\}
\end{aligned}
$$

[^7]\[

$$
\begin{aligned}
& \left\{\begin{array}{l}
\pi_{1} \cdot i d=f \\
\pi_{2} \cdot i d=g
\end{array}\right. \\
& \equiv \quad\{\text { by }(2.10)\} \\
& \left\{\begin{array}{l}
\pi_{1}=f \\
\pi_{2}=g
\end{array}\right.
\end{aligned}
$$
\]

The equation has the unique solutions $f=\pi_{1}$ and $g=\pi_{2}$ which, once substituted in the equation itself, yield

$$
i d=\left\langle\pi_{1}, \pi_{2}\right\rangle
$$

i.e., nothing but the \times-reflexion law (2.32).

All other laws can be calculated from the universal property in a similar way. For instance, the \times-fusion (2.26) law is obtained by solving the equation $k=$ $\langle i, j\rangle$ again for f and g, but this time fixing $k=\langle i, j\rangle \cdot h$, assuming i, j and h given: ${ }^{9}$:

$$
\left.\left.\left.\left.\left.\begin{array}{rl}
& \langle i, j\rangle \cdot h=\langle f, g\rangle \\
\equiv & \{\text { universal property (2.63) }\}
\end{array}\right\} \begin{array}{l}
\pi_{1} \cdot(\langle i, j\rangle \cdot h)=f \\
\pi_{2} \cdot(\langle i, j\rangle \cdot h)=g
\end{array}\right\} \begin{array}{c}
\{\text { composition is associative }(2.8)\}
\end{array}\right\} \begin{array}{l}
\left(\pi_{1} \cdot\langle i, j\rangle\right) \cdot h=f \\
\left(\pi_{2} \cdot\langle i, j\rangle\right) \cdot h=g
\end{array}\right\} \begin{array}{c}
\{\text { by } \times \text {-cancellation (derived above) }\}
\end{array}\right\}
$$

Substiting the solutions $f=i \cdot h$ and $g=j \cdot h$ in the equation, we get the \times-fusion law: $\langle i, j\rangle \cdot h=\langle i \cdot h, j \cdot h\rangle$.

It will take about the same effort to derive split structural equality

$$
\langle i, j\rangle=\langle f, g\rangle \Leftrightarrow\left\{\begin{array}{l}
i=f \tag{2.64}\\
j=g
\end{array}\right.
$$

[^8]from universal property (2.63) — just let $k=\langle i, j\rangle$ and solve.
Similar arguments can be built around coproduct's universal property,
\[

k=[f, g] \Leftrightarrow\left\{$$
\begin{array}{r}
k \cdot i_{1}=f \tag{2.65}\\
k \cdot i_{2}=g
\end{array}
$$\right.
\]

from which structural equality of eithers can be inferred,

$$
[i, j]=[f, g] \Leftrightarrow\left\{\begin{array}{l}
i=f \tag{2.66}\\
j=g
\end{array}\right.
$$

as well as the other properties we know about this combinator.

Exercise 2.16. Show that assocr (2.35) is iso by solving the equation assocr \cdot assocl $=i d$ for assocl. Hint: don't ignore the role of universal property (2.63) in the calculation.

Exercise 2.17. Prove the equality: $[\langle f, \underline{k}\rangle,\langle g, \underline{k}\rangle]=\langle[f, g], \underline{k}\rangle$

Exercise 2.18. Derive + -cancellation (2.40), + -reflexion (2.41) and + -fusion (2.42) from universal property (2.65). Then derive the exchange law (2.49) from the universal property of product (2.63) or coproduct (2.65).

Exercise 2.19. Function coassocr $=\left[\right.$ id $\left.+i_{1}, i_{2} \cdot i_{2}\right]$ is a witness of isomorphism $(A+B)+C \cong A+(B+C)$, from left to right. Calculate its converse coassocl by solving the equation

$$
\begin{equation*}
\underbrace{[x,[y, z]]}_{\text {coassocl }} \cdot \text { coassocr }=i d \tag{2.67}
\end{equation*}
$$

for x, y and z.

Exercise 2.20. Let δ be a function of which you know that $\pi_{1} \cdot \delta=i d e \pi_{2} \cdot \delta=i d$ hold. Show that necessarily δ satisfies the natural property $(f \times f) \cdot \delta=\delta \cdot f$.

2.14 Guards and McCarthy's conditional

Most functional programming languages and notations cater for pointwise conditional expressions of the form

$$
\begin{equation*}
\text { if } p x \text { then } g x \text { else } h x \tag{2.68}
\end{equation*}
$$

which evaluates to $g x$ in case $p x$ holds and to $h x$ otherwise, that is

$$
\left\{\begin{array}{ccc}
p x & \Rightarrow g x \\
\neg(p x) & \Rightarrow h x
\end{array}\right.
$$

given some predicate Bool $<{ }^{p} A$, some "then"-function $B \stackrel{g}{\leftrightarrows} A$ and some "else"-function $B{ }_{\longleftarrow}^{h} A$.

Can (2.68) be written in the pointfree style?

The drawing above is an attempt to express such a conditional expression as a "block"-diagram. Firstly, the input x is copied, the left copy being passed to predicate p yielding the Boolean $p x$. One can easily define this part using copy $=$ $\langle i d, i d\rangle$.

The informal part of the diagram is the $T-F$ "switch": it should channel x to g in case $p x$ switches the T-output, or channel x to h otherwise.

At first sight, this $T-F$ gate should be of type $\mathbb{B} \times A \rightarrow A \times A$. But the output cannot be $A \times A$, as f or g act in alternation, not in parallel - it should rather be $A+A$, in which case the last step is achieved just by running $[g, h]$.

How does one switch from our starting product-based model of conditionals to a coproduct-based one?

The key observation is that the type $\mathbb{B} \times A$ market by the dashed line in the block-diagram is isomorphic to $A+A$, recall (2.59). That is, the information captured by the pair $(p x, x) \in \mathbb{B} \times A$ can be converted into a unique $y \in A+A$ with no loss of information. Let us define a new combinator for this, denoted p ?:

$$
(p ?) a=\left\{\begin{array}{ccc}
p a & \Rightarrow & i_{1} a \tag{2.69}\\
\neg(p a) & \Rightarrow & i_{2} a
\end{array}\right.
$$

We call $A+A \leftarrow^{p \text { ? }} A$ a guard, or better, the guard associated to a given predicate Bool $\stackrel{p}{\leftarrow} A$. In a sense, guard p ? is more "informative" than p alone: it provides information about the outcome of testing p on some input a, encoded in terms of the coproduct injections (i_{1} for a true outcome and i_{2} for a false outcome, respectively) without losing the input a itself.

Finally, the composition $[g, h] \cdot p$?, depicted in the following diagram

has (2.68) as pointwise meaning. It is a well-known functional combinator termed "McCarthy conditional" ${ }^{10}$ and usually denoted by the expression $p \rightarrow g, h$. Altogether, we have the definition

$$
\begin{equation*}
p \rightarrow g, h \stackrel{\text { def }}{=}[g, h] \cdot p ? \tag{2.70}
\end{equation*}
$$

which suggests that, to reason about conditionals, one may seek help in the algebra of coproducts. Indeed, the following fact,

$$
\begin{equation*}
f \cdot(p \rightarrow g, h)=p \rightarrow f \cdot g, f \cdot h \tag{2.71}
\end{equation*}
$$

which we shall refer to as the first McCarthy's conditional fusion law ${ }^{11}$, is nothing but an immediate consequence of + -fusion (2.42).

[^9]We shall introduce and define instances of predicate p as long as they are needed. A particularly important assumption of our notation should, however, be mentioned at this point: we assume that, for every datatype A, the equality predicate Bool $\underset{=}{\leftarrow} A \times A$ is defined in a way which guarantees three basic properties: reflexivity ($a==_{A} a$ for every a), transitivity ($a={ }_{A} b$ and $b={ }_{A} c$ implies $a={ }_{A} c$) and symmetry ($a=_{A} b$ iff $b={ }_{A} a$). Subscript A in $=_{A}$ will be dropped wherever implicit in the context.

In HaSkell programming, the equality predicate for a type becomes available by declaring the type as an instance of class Eq, which exports equality predicate ($==$). This does not, however, guarantee the reflexive, transitive and symmetry properties, which need to be proved by dedicated mathematical arguments.

We close this section with an illustration of how smart pointfree algebra can be in reasoning about functions that one does not actually define explicitly. It also shows how relevant the natural properties studied in section 2.12 are. The issue is that our definition of a guard (2.69) is pointwise and most likely unsuitable to prove facts such as, for instance,

$$
\begin{equation*}
p ? \cdot f=(f+f) \cdot(p \cdot f) ? \tag{2.72}
\end{equation*}
$$

Thinking better, instead of "inventing" (2.69), we might (and perhaps should!) have defined

$$
\begin{equation*}
A \underbrace{\langle p, i d\rangle}_{p ?} 2 \times A \xrightarrow{\alpha} A+A \tag{2.73}
\end{equation*}
$$

which actually expresses rather closely our strategy of switching from products to coproducts in the definition of $(p$?). Isomorphism $\alpha(2.59)$ is the subject of exercise 2.12. Do we need to define it explicitly? Perhaps not: from its type, $2 \times A \rightarrow A+A$, we immediately infer its natural (or "free") property:

$$
\begin{equation*}
\alpha \cdot(i d \times f)=(f+f) \cdot \alpha \tag{2.74}
\end{equation*}
$$

It turns out that this is the knowledge we need about α in order to prove (2.72), as the following calculation shows:

$$
\begin{aligned}
= & p ? \cdot f \\
= & \{(2.73) ;\langle p, i d\rangle \cdot f=\langle p \cdot f, f\rangle\} \\
= & \alpha \cdot\langle p \cdot f, f\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \alpha \cdot(i d \times f) \cdot\langle p \cdot f, i d\rangle \\
& =\quad\{\text { free theorem of } \alpha(2.74)\} \\
& (f+f) \cdot \alpha \cdot\langle p \cdot f, i d\rangle \\
& =\quad\{\text { again }(2.73) ;\langle p, i d\rangle \cdot f=\langle p \cdot f, f\rangle\} \\
& (f+f) \cdot(p \cdot f) ?
\end{aligned}
$$

Other examples of this kind of reasoning, based on natural (free) properties of isomorphisms - and often on "shunting" them around using laws $(2.18,2.19)$ will be given later in this book.

The less one has to write to solve a problem, the better. One saves time and one's brain, adding to productivity. This is often called elegance when applying a scientific method. (Unfortunately, be prepared for much lack of it in the software engineering field!)

Exercise 2.21. Prove that the following equality between two conditional expressions

$$
\begin{aligned}
& k(\text { if } p x \text { then } f x \text { else } h x, \text { if } p x \text { then } g x \text { else } i x) \\
= & \text { if } p x \text { then } k(\lambda a p f x, \lambda a p g x) \text { else } k(h x, i x)
\end{aligned}
$$

holds by rewriting it in the pointfree style (using the McCarthy's conditional combinator) and applying the exchange law (2.49), among others.

Exercise 2.22. Prove the first McCarthy's conditional fusion law (2.71). Then, from (2.70) and property (2.72), infer the second such law:

$$
\begin{equation*}
(p \rightarrow f, g) \cdot h=(p \cdot h) \rightarrow(f \cdot h),(g \cdot h) \tag{2.75}
\end{equation*}
$$

Exercise 2.23. Prove that property

$$
\begin{equation*}
\langle f,(p \rightarrow q, h)\rangle=p \rightarrow\langle f, q\rangle,\langle f, h\rangle \tag{2.76}
\end{equation*}
$$

and its corollary

$$
\begin{equation*}
(p \rightarrow g, h) \times f=p \cdot \pi_{1} \rightarrow g \times f, h \times f \tag{2.77}
\end{equation*}
$$

hold, assuming the basic fact:

$$
\begin{equation*}
p \rightarrow f, f=f \tag{2.78}
\end{equation*}
$$

2.15 Gluing functions which do not compose - exponentials

Now that we have made the distinction between the pointfree and pointwise functional notations reasonably clear, it is instructive to revisit section 2.2 and identify functional application as the "bridge" between the pointfree and pointwise worlds. However, we should say "a bridge" rather than "the bridge", for in this section we enrich such an interface with another "bridge" which is very relevant to programming.

Suppose we are given the task to combine two functions, one binary $B \underset{\leftarrow}{\stackrel{f}{\leftrightarrows}} C \times A$ and the other unary: $D \leftarrow^{g} A$. It is clear that none of the combinations $f \cdot g$, $\langle f, g\rangle$ or $[f, g]$ is well-typed. So, f and g cannot be put together directly - they require some extra interfacing.

Note that $\langle f, g\rangle$ would be well-defined in case the C component of f 's domain could be somehow "ignored". Suppose, in fact, that in some particular context the first argument of f happens to be "irrelevant", or to be frozen to some $c \in C$. It is easy to derive a new function

$$
\begin{aligned}
f_{c} & : A \rightarrow B \\
f_{c} a & \stackrel{\text { def }}{=} f(c, a)
\end{aligned}
$$

from f which combines nicely with g via the split combinator: $\left\langle f_{c}, g\right\rangle$ is welldefined and bears type $B \times D \leftarrow A$. For instance, suppose that $C=A$ and f is the equality predicate $=$ on A. Then Bool $\stackrel{{ }_{c}}{\leftarrow} A$ is the "equal to c " predicate on A values:

$$
\begin{equation*}
={ }_{c} a \stackrel{\text { def }}{=} a=c \tag{2.79}
\end{equation*}
$$

2.15. GLUING FUNCTIONS WHICH DO NOT COMPOSE — EXPONENTIALS43

As another example, recall function twice (2.3) which could be defined as \times_{2} using the new notation.

However, we need to be more careful about what is meant by f_{c}. Such as functional application, expression f_{c} interfaces the pointfree and the pointwise levels - it involves a function (f) and a value (c). But, for $B \stackrel{f}{\leftrightarrows} C \times A$, there is a major distinction between $f c$ and f_{c} - while the former denotes a value of type B, i.e. $f c \in B, f_{c}$ denotes a function of type $B \leftarrow A$. We will say that $f_{c} \in B^{A}$ by introducing a new datatype construct which we will refer to as the exponential:

$$
\begin{equation*}
B^{A} \stackrel{\text { def }}{=}\{g \mid g: B \leftarrow A\} \tag{2.80}
\end{equation*}
$$

There are strong reasons to adopt the B^{A} notation to the detriment of the more obvious $B \leftarrow A$ or $A \rightarrow B$ alternatives, as we shall see shortly.

The B^{A} exponential datatype is therefore inhabited by functions from A to B, that is to say, functional declaration $g: B \leftarrow A$ means the same as $g \in B^{A}$. And what do we want functions for? We want to apply them. So it is natural to introduce the apply operator

$$
\begin{align*}
& a p: B \stackrel{a p}{a p^{\text {def }}} B^{A} \times A \tag{2.81}\\
& a p(f, a) \stackrel{\text { de }}{=} f a
\end{align*}
$$

which applies a function f to an argument a.
Back to generic binary function $B \stackrel{f}{\longleftarrow} C \times A$, let us now think of the operation which, for every $c \in C$, produces $f_{c} \in B^{A}$. This can be regarded as a function of signature $B^{A} \leftarrow C$ which expresses f as a kind of C-indexed family of functions of signature $B \leftarrow A$. We will denote such a function by \bar{f} (read \bar{f} as " f transposed"). Intuitively, we want f and \bar{f} to be related to each other by the following property:

$$
\begin{equation*}
f(c, a)=(\bar{f} c) a \tag{2.82}
\end{equation*}
$$

Given c and a, both expressions denote the same value. But, in a sense, \bar{f} is more tolerant than f : while the latter is binary and requires both arguments (c, a) to become available before application, the former is happy to be provided with c first and with a later on, if actually required by the evaluation process.

Similarly to $A \times B$ and $A+B$, exponential B^{A} involves a universal property,

$$
\begin{equation*}
k=\bar{f} \Leftrightarrow f=a p \cdot(k \times i d) \tag{2.83}
\end{equation*}
$$

from which laws for cancellation, reflexion and fusion can be derived:

Exponentials cancellation :

Exponentials reflexion :

$$
\begin{equation*}
\overline{a p}=i d_{B^{A}} \tag{2.85}
\end{equation*}
$$

Exponentials fusion :

Note that the cancellation law is nothing but fact (2.82) written in the pointfree style.

Is there an absorption law for exponentials? The answer is affirmative but first we need to introduce a new functional combinator which arises as the transpose of $f \cdot a p$ in the following diagram:

We shall denote this by f^{A} and its type-rule is as follows:

$$
\frac{C \leftarrow^{f} B}{C^{A} \varkappa^{f^{A}} B^{A}}
$$

2.15. GLUING FUNCTIONS WHICH DO NOT COMPOSE — EXPONENTIALS45

It can be shown that, once A and $C<{ }^{f} B$ are fixed, f^{A} is the function which accepts some input function $B \stackrel{g}{\leftrightarrows} A$ as argument and produces function $f \cdot g$ as result (see exercise 2.39). So f^{A} is the "compose with f " functional combinator:

$$
\begin{equation*}
\left(f^{A}\right) g \stackrel{\text { def }}{=} f \cdot g \tag{2.87}
\end{equation*}
$$

Now we are ready to understand the laws which follow:

Exponentials absorption :

(Note how, from this, we also get $f^{A}=\overline{f \cdot a p}$.)

Exponentials-functor :

$$
\begin{equation*}
(g \cdot h)^{A}=g^{A} \cdot h^{A} \tag{2.89}
\end{equation*}
$$

Exponentials-functor-id :

$$
\begin{equation*}
i d^{A}=i d \tag{2.90}
\end{equation*}
$$

Why the exponential notation. To conclude this section we need to explain why we have adopted the apparently esoteric B^{A} notation for the "function from A to B " data type. This is the opportunity to relate what we have seen above with two (higher order) functions which are very familiar to functional programmers. In the Haskell Prelude they are defined thus:

$$
\begin{aligned}
& \text { curry }::((a, b) \rightarrow c) \rightarrow(a \rightarrow b \rightarrow c) \\
& \text { curry } f a b=f(a, b) \\
& \text { uncurry }::(a \rightarrow b \rightarrow c) \rightarrow(a, b) \rightarrow c \\
& \text { uncurry } f(a, b)=f a b
\end{aligned}
$$

In our notation for types, curry maps functions in function space $C^{A \times B}$ to functions in $\left(C^{B}\right)^{A}$; and uncurry maps functions from the latter function space to the former.

Let us calculate the meaning of curry by removing variables from its definition:

$$
\begin{aligned}
& \overbrace{(\underbrace{\text { curry } f}_{\bar{f}} a)}^{g} b=f(a, b) \\
& \equiv \quad\{\text { introduce } g\} \\
& g b=f(a, b) \\
& \equiv \quad\{\text { since } g b=a p(g, b)(2.81)\} \\
& a p(g, b)=f(a, b) \\
& \equiv \quad\{g=\bar{f} a ; \text { natural- } i d\} \\
& a p(\bar{f} a, i d b)=f(a, b) \\
& \equiv \quad\{\text { product of functions: }(f \times g)(x, y)=(f x, g y)\} \\
& a p((\bar{f} \times i d)(a, b))=f(a, b) \\
& \equiv \quad\{\text { composition }\} \\
& (a p \cdot(\bar{f} \times i d))(a, b)=f(a, b) \\
& \equiv \quad\{\text { extensionality (2.5), i.e. removing points } a \text { and } b\} \\
& a p \cdot(\bar{f} \times i d)=f
\end{aligned}
$$

From the above we infer that the definition of curry is a re-statement of the cancellation law (2.84). That is,

$$
\begin{equation*}
\text { curry } f \stackrel{\text { def }}{=} \bar{f} \tag{2.91}
\end{equation*}
$$

and curry is transposition in HASKELL-speak. ${ }^{12}$
Next we do the same for the definition of uncurry :

$$
\underbrace{\text { uncurry } f}_{k}(a, b)=f a b
$$

[^10]\[

$$
\begin{aligned}
& \equiv \quad \quad\{\text { introduce } k ; \text { lefthand side as calculated above }\} \\
& \\
& \quad k(a, b)=(a p \cdot(f \times i d))(a, b) \\
& \equiv \quad \quad\{\text { extensionality (2.5) }\} \\
& \\
& \quad k=a p \cdot(f \times i d) \\
& \equiv \quad\{\text { universal property }(2.83)\} \\
& \\
& \quad f=\bar{k} \\
& \equiv \quad\{\text { expand } k\} \\
& \\
& \quad f=\overline{\text { uncurry } f}
\end{aligned}
$$
\]

We conclude that uncurry is the inverse of transposition, that is, of curry. We shall use the abbreviation \widehat{f} for uncurry f, whereby the above equality is written $f=\overline{\widehat{f}}$. It can also be checked that $f=\widehat{\bar{f}}$ also holds, instantiating k above by $\widehat{\bar{f}}$:

$$
\equiv \begin{aligned}
& \widehat{\bar{f}}=a p \cdot(\bar{f} \times i d) \\
& \quad\{\text { cancellation (2.84) \}} \\
& \widehat{\bar{f}}=f
\end{aligned}
$$

So uncurry - i.e. $\widehat{(-)}$ - and curry -i.e. $\overline{(-)}$ - are inverses of each other,

$$
\begin{equation*}
g=\bar{f} \Leftrightarrow \hat{g}=f \tag{2.92}
\end{equation*}
$$

leading to isomorphism

$$
A \rightarrow C^{B} \cong A \times B \rightarrow C
$$

which can also be written as

decorated with the corresponding witnesses. ${ }^{13}$

[^11]Isomorphism (2.93) is at the core of the theory and practice of functional programming. It clearly resembles a well known equality concerning numeric exponentials, $b^{c \times a}=\left(b^{a}\right)^{c}$. Moreover, other known facts about numeric exponentials, e.g. $a^{b+c}=a^{b} \times a^{c}$ or $(b \times c)^{a}=b^{a} \times c^{a}$ also find their counterpart in functional exponentials. The counterpart of the former,

$$
\begin{equation*}
A^{B+C} \cong A^{B} \times A^{C} \tag{2.94}
\end{equation*}
$$

arises from the uniqueness of the either combination: every pair of functions $(f, g) \in A^{B} \times A^{C}$ leads to a unique function $[f, g] \in A^{B+C}$ and vice-versa, every function in A^{B+C} is the either of some function in A^{B} and of another in A^{C}.

The function exponentials counterpart of the second fact about numeric exponentials above is

$$
\begin{equation*}
(B \times C)^{A} \cong B^{A} \times C^{A} \tag{2.95}
\end{equation*}
$$

This can be justified by a similar argument concerning the uniqueness of the split combinator $\langle f, g\rangle$.

What about other facts valid for numeric exponentials such as $a^{0}=1$ and $1^{a}=1$? The reader is invited to go back to section 2.11 and recall what 0 and 1 mean as datatypes: the empty (void) and singleton datatypes, respectively. Our counterpart to $a^{0}=1$ then is

$$
\begin{equation*}
A^{0} \cong 1 \tag{2.96}
\end{equation*}
$$

where A^{0} denotes the set of all functions from the empty set to some A. What does (2.96) mean? It simply tells us that there is only one function in such a set - the empty function mapping "no" value at all. This fact confirms our choice of notation once again (compare with $a^{0}=1$ in a numeric context).

Next, we may wonder about facts

$$
\begin{align*}
& 1^{A} \cong 1 \tag{2.97}\\
& A^{1} \cong A \tag{2.98}
\end{align*}
$$

which are the functional exponentiation counterparts of $1^{a}=1$ and $a^{1}=a$. Fact (2.97) is valid: it means that there is only one function mapping A to some singleton set $\{c\}$ - the constant function \underline{c}. There is no room for another function in 1^{A} because only c is available as output value. Our standard denotation for such a unique function is given by (2.58).

2.15. GLUING FUNCTIONS WHICH DO NOT COMPOSE — EXPONENTIALS49

Fact (2.98) is also valid: all functions in A^{1} are (single valued) constant functions and there are as many constant functions in such a set as there are elements in A. These functions are often called (abstract) "points" because of the 1-to-1 mapping between A^{1} and the elements (points) in A.

Exercise 2.24. Relate the isomorphism involving generic elementary type 2

$$
\begin{equation*}
A \times A \cong A^{2} \tag{2.99}
\end{equation*}
$$

to the expression $\backslash f->(f$ True, f False) written in HASKELL syntax.

Exercise 2.25. Consider the witnesses of isomorphism (2.95)

defined by:
pair $(f, g)=\langle f, g\rangle$
unpair $k=\left(\pi_{1} \cdot k, \pi_{2} \cdot k\right)$
Show that pair \cdot unpair $=i d$ and unpair \cdot pair $=i d$ hold.

Exercise 2.26. Show that the following equality

$$
\begin{equation*}
\bar{f} a=f \cdot\langle\underline{a}, i d\rangle \tag{2.100}
\end{equation*}
$$

holds.

Exercise 2.27. Considering $\alpha=\left[\overline{i_{1}}, \overline{i_{2}}\right]$, (a) infer the principal (most general) type of α and depict it in a diagram; (b) $\widehat{\alpha}$ is a well-known isomorphism - tell which by inferring its type.

Exercise 2.28. Prove the equality $\underline{g}=\overline{g \cdot \pi_{2}}$ knowing that

$$
\begin{equation*}
\overline{\pi_{2}}=\underline{i d} \tag{2.101}
\end{equation*}
$$

holds.

2.16 Finitary products and coproducts

In section 2.8 it was suggested that product could be regarded as the abstraction behind data-structuring primitives such as struct in C or record in PASCAL. Similarly, coproducts were suggested in section 2.9 as abstract counterparts of C unions or PASCAL variant records. For a finite A, exponential B^{A} could be realized as an array in any of these languages. These analogies are captured in table 2.1.

In the same way C structs and unions may contain finitely many entries, as may PASCAL (variant) records, product $A \times B$ extends to finitary product $A_{1} \times$ $\ldots \times A_{n}$, for $n \in \mathbb{N}$, also denoted by $\prod_{i=1}^{n} A_{i}$, to which as many projections π_{i} are associated as the number n of factors involved. Of course, splits become n-ary as well

$$
\left\langle f_{1}, \ldots, f_{n}\right\rangle: A_{1} \times \ldots \times A_{n} \leftarrow B
$$

for $f_{i}: A_{i} \leftarrow B, i=1, n$.
Dually, coproduct $A+B$ is extensible to the finitary sum $A_{1}+\cdots+A_{n}$, for $n \in \mathbb{N}$, also denoted by $\sum_{j=1}^{n} A_{j}$, to which as many injections i_{j} are assigned as the number n of terms involved. Similarly, eithers become n-ary

$$
\left[f_{1}, \ldots, f_{n}\right]: A_{1}+\ldots+A_{n} \rightarrow B
$$

for $f_{i}: B \leftarrow A_{i}, i=1, n$.

Abstract notation	PASCAL	C/C++	Description
$A \times B$	```record P: A; S: B end;```	```struct { A first; B second; };```	Records
$A+B$	```record case tag: integer of }\textrm{x} 1: (P:A); 2: (S:B) end;```	```struct { int tag; /* 1,2 */ union { A ifA; B ifB; } data; };```	Variant records
B^{A}	array [A] of B	B ... [A]	Arrays
$1+A$	${ }^{\wedge} \mathrm{A}$	A * . .	Pointers

Table 2.1: Abstract notation versus programming language data-structures.

Datatype n

Next after 2, we may think of 3 as representing the abstract class of all datatypes containing exactly three elements. Generalizing, we may think of n as representing the abstract class of all datatypes containing exactly n elements. Of course, initial segment n will be in this abstract class. (Recall (2.17), for instance: both Weekday and 7 are abstractly represented by 7.) Therefore,

$$
n \cong \underbrace{1+\cdots+1}_{n}
$$

and

$$
\begin{align*}
& \underbrace{A \times \ldots \times A}_{n} \cong A^{n} \tag{2.102}\\
& \underbrace{A+\ldots+A}_{n} \cong n \times A \tag{2.103}
\end{align*}
$$

hold.

Exercise 2.29. On the basis of table 2.1, encode undistr (2.51) in C or Pascal. Compare your code with the HASKELL pointfree and pointwise equivalents.

2.17 Initial and terminal datatypes

All properties studied for binary splits and binary eithers extend to the finitary case. For the particular situation $n=1$, we will have $\langle f\rangle=[f]=f$ and $\pi_{1}=i_{1}=i d$, of course. For the particular situation $n=0$, finitary products "degenerate" to 1 and finitary coproducts "degenerate" to 0 . So diagrams (2.23) and (2.38) are reduced to

The standard notation for the empty split $\left\rangle\right.$ is $!_{C}$, where subscript C can be omitted if implicit in the context. By the way, this is precisely the only function in 1^{C}, recall (2.97) and (2.58). Dually, the standard notation for the empty either [] is $?_{C}$, where subscript C can also be omitted. By the way, this is precisely the only function in C^{0}, recall (2.96).

In summary, we may think of 0 and 1 as, in a sense, the "extremes" of the whole datatype spectrum. For this reason they are called initial and terminal, respectively. We conclude this subject with the presentation of their main properties which, as we have said, are instances of properties we have stated for products and coproducts.

Initial datatype reflexion :

Initial datatype fusion :

$$
\begin{equation*}
f \cdot ?_{A}=?_{B} \tag{2.105}
\end{equation*}
$$

Terminal datatype reflexion :

Terminal datatype fusion :

$$
\begin{equation*}
!_{A} \cdot f=!_{B} \tag{2.107}
\end{equation*}
$$

Exercise 2.30. Particularize the exchange law (2.49) to empty products and empty coproducts, i.e. 1 and 0 .

2.18 Sums and products in Haskell

We conclude this chapter with an analysis of the main primitive available in HASKELL for creating datatypes: the data declaration. Suppose we declare

```
data CostumerId = P Int | CC Int
```

meaning to say that, for some company, a client is identified either by its passport number or by its credit card number, if any. What does this piece of syntax precisely mean?

If we enquire the HASKELL interpreter about what it knows about Cost umerId, the reply will contain the following information:

```
Main> :i CostumerId
-- type constructor
data CostumerId
-- constructors:
P :: Int -> CostumerId
CC :: Int -> CostumerId
```

In general, let A and B be two known datatypes. Via declaration

```
data C = C1 A | C2 B
```

one obtains from HASKELL a new datatype C equipped with constructors $C \lessdot{ }^{C 1} A$ and $C \lessdot C_{2} B$, in fact the only ones available for constructing values of C :

This diagram leads to an obvious instance of coproduct diagram (2.38),

describing that a data declaration in HASKELL means the either of its constructors.

Because there are no other means to build C data, it follows that C is isomorphic to $A+B$. So $[C 1, C 2]$ has an inverse, say inv, which is such that inv $\cdot[C 1, C 2]=i d$. How do we calculate $i n v$? Let us first think of the generic situation of a function $D \leftarrow^{f} C$ which observes datatype C :

This is an opportunity for + -fusion (2.42), whereby we obtain

$$
f \cdot[C 1, C 2]=[f \cdot C 1, f \cdot C 2]
$$

Therefore, the observation will be fully described provided we explain how f behaves with respect to $C 1-c f . f \cdot C 1$ - and with respect to $C 2-c f . f \cdot C 2$.

This is what is behind the typical inductive structure of pointwise f, which will be made of two and only two clauses:

$$
\begin{aligned}
& f: C \rightarrow D \\
& f(C 1 a)=\ldots \\
& f(C 2 b)=\ldots
\end{aligned}
$$

Let us use this in calculating the inverse $i n v$ of $[C 1, C 2]$:

$$
\begin{gathered}
\quad \begin{array}{c}
\text { inv } \cdot[C 1, C 2]=\text { id } \\
\equiv \\
\{\text { by }+ \text {-fusion }(2.42)\}
\end{array} \\
\equiv \begin{array}{c}
{[\text { inv } \cdot C 1, \text { inv } \cdot C 2]=\text { id }}
\end{array} \\
\{\text { by }+ \text {-reflexion }(2.41)\} \\
\equiv \\
{[\text { inv } \cdot C 1, \text { inv } \cdot C 2]=\left[i_{1}, i_{2}\right]} \\
\{\text { either structural equality }(2.66)\} \\
i n v \cdot C 1=i_{1} \wedge i n v \cdot C 2=i_{2}
\end{gathered}
$$

Therefore:

$$
\begin{aligned}
& i n v: C \rightarrow A+B \\
& i n v(C 1 a)=i_{1} a \\
& i n v(C 2 b)=i_{2} b
\end{aligned}
$$

In summary, $C 1$ is a "renaming" of injection $i_{1}, C 2$ is a "renaming" of injection i_{2} and C is "renamed" replica of $A+B$:

$$
C \stackrel{[C 1, C 2]}{\longleftarrow} A+B
$$

[C1, C2] is called the algebra of datatype C and its inverse inv is called the coalgebra of C. The algebra contains the constructors of $C 1$ and $C 2$ of type C, that is, it is used to "build" C-values. In the opposite direction, co-algebra $i n v$ enables us to "destroy" or observe values of C :

Algebra/coalgebras also arise about product datatypes. For instance, suppose that one wishes to describe datatype Point inhabited by pairs $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$ etc. of Cartesian coordinates of a given type, say A. Although $A \times A$ equipped with projections π_{1}, π_{2} "is" such a datatype, one may be interested in a suitably named replica of $A \times A$ in which points are built explicitly by some constructor (say Point) and observed by dedicated selectors (say x and y):

This rises an algebra (Point) and a coalgebra $(\langle x, y\rangle)$ for datatype Point:

In Haskell one writes

```
data Point a = Point { x :: a, y :: a }
```

but be warned that HASKELL delivers Point in curried form:

```
Point :: a -> a -> Point a
```

Finally, what is the "pointer"-equivalent in HASKELL? This corresponds to $A=1$ in (2.108) and to the following HASKELL declaration:

```
data C = C1 () | C2 B
```

Note that HASKELL allows for a more programming-oriented alternative in this case, in which the unit type () is eliminated:

```
data C = C1 | C2 B
```

The difference is that here C 1 denotes an inhabitant of C (and so a clause $f(C 1 a)=$ \ldots is rewritten to $f C 1=\ldots$) while above C1 denotes a (constant) function $C \longleftarrow^{C 1} 1$. Isomorphism (2.98) helps in comparing these two alternative situations.

2.19 Exercises

Exercise 2.31. Let A and B be two disjoint datatypes, that is, $A \cap B=\emptyset$ holds. Show that isomorphism

$$
\begin{equation*}
A \cup B \cong A+B \tag{2.110}
\end{equation*}
$$

holds. Hint: define $A \cup B \longleftarrow{ }^{i} A+B$ as $i=\left[e m b_{A}, e m b_{B}\right]$ for $e m b_{A} a=a$ and $e m b_{B} b=b$, and find its inverse. By the way, why didn't we define i as simply as $i \stackrel{\text { def }}{=}\left[i d_{A}, i d_{B}\right]$?

Exercise 2.32. Knowing that a given function xr satisfies property

$$
\begin{equation*}
\mathrm{xr} \cdot\langle\langle f, g\rangle, h\rangle=\langle\langle f, h\rangle, g\rangle \tag{2.111}
\end{equation*}
$$

for all f, g and h, derive from (2.111) the definition of xr :

$$
\begin{equation*}
\mathrm{xr}=\left\langle\pi_{1} \times i d, \pi_{2} \cdot \pi_{1}\right\rangle \tag{2.112}
\end{equation*}
$$

Exercise 2.33. Let distr (read: 'distribute right') be the bijection which witnesses isomorphism $A \times(B+C) \cong A \times B+A \times C$. Fill in the ". . "in the diagram which follows so that it describes bijection distl (red: 'distribute left') which witnesses isomorphism $(B+C) \times A \cong B \times A+C \times A$:

$$
(B+C) \times A \xrightarrow[\text { distl }]{\stackrel{\text { swap }}{\longrightarrow} \cdots \xrightarrow{\text { distr }} \cdots \xrightarrow{\cdots} B \times A+C \times A, ~}
$$

Exercise 2.34. In the context of exercise 2.33, prove

$$
\begin{equation*}
[g, h] \times f=[g \times f, h \times f] \cdot \operatorname{dist} \mid \tag{2.113}
\end{equation*}
$$

knowing that

$$
\begin{equation*}
f \times[g, h]=[f \times g, f \times h] \cdot \operatorname{distr} \tag{2.114}
\end{equation*}
$$

holds.

Exercise 2.35. The arithmetic law $(a+b)(c+d)=(a c+a d)+(b c+b d)$ corresponds to the isomorphism

$$
(A+B) \times\left(C+\underset{\left.h=\left[i_{1} \times i_{1}, i_{1} \times i_{2}\right],\left[i_{2} \times i_{1}, i_{2} \times i_{2}\right]\right]}{D)} \cong(A \times C+A \times D)+(B \times C+B \times D)\right.
$$

From universal property (2.65) infer the following definition of function h, written in Haskell syntax:

```
h(Left(Left (a,c))) = (Left a,Left c)
h(Left(Right (a,d))) = (Left a,Right d)
h(Right(Left (b,c))) = (Right b,Left c)
h(Right(Right (b,d))) = (Right b,Right d)
```

Exercise 2.36. Every C programmer knows that a struct of pointers

$$
(A+1) \times(B+1)
$$

offers a data type which represents both product $A \times B$ (struct) and coproduct $A+B$ (union), alternatively. Express in pointfree notation the isomorphisms i_{1} to i_{5} of

$$
\begin{aligned}
& (A+1) \times(B+1)<i_{1}((A+1) \times B)+((A+1) \times 1) \\
& \uparrow i_{2} \\
& (A \times B+1 \times B)+(A \times 1+1 \times 1) \\
& \uparrow i_{3} \\
& (A \times B+B)+(A+1) \\
& \uparrow_{i} \\
& (A \times B+(B+A))+1 \longrightarrow i_{5} A \times B+(B+(A+1))
\end{aligned}
$$

which witness the observation above.

Exercise 2.37. Prove the following property of McCarthy conditionals:

$$
\begin{equation*}
p \rightarrow f \cdot g, h \cdot k=[f, h] \cdot\left(p \rightarrow i_{1} \cdot g, i_{2} \cdot k\right) \tag{2.115}
\end{equation*}
$$

Exercise 2.38. Assuming the fact

$$
\begin{equation*}
(p ?+p ?) \cdot p ?=\left(i_{1}+i_{2}\right) \cdot p ? \tag{2.116}
\end{equation*}
$$

show that nested conditionals can be simplified:

$$
\begin{equation*}
p \rightarrow(p \rightarrow f, g),(p \rightarrow h, k)=p \rightarrow f, k \tag{2.117}
\end{equation*}
$$

Exercise 2.39. Show that $(\overline{f \cdot a p}) g=f \cdot g$ holds, cf. (2.87).

Exercise 2.40. Consider the higher-order isomorphism flip defined as follows:

$$
\begin{array}{rllll}
\left(C^{B}\right)^{A} & \cong C^{A \times B} & \cong C^{B \times A} & \cong & \left(C^{A}\right)^{B} \\
f & \mapsto & \widehat{f} & \mapsto & \widehat{f} \cdot \text { swap }
\end{array} \stackrel{\mapsto}{\hat{f} \cdot \text { swap }=\text { flip } f}
$$

Show that flip fxy=fyx.

Exercise 2.41. Let $C \xrightarrow{\text { const }} C^{A}$ be the function of exercise 2.2, that is, const $c=\underline{c}_{A}$. Which fact is expressed by the following diagram featuring const?

Write it at point-level and describe it by your own words.

Exercise 2.42. Show that $\overline{\pi_{2}} \cdot f=\overline{\pi_{2}}$ holds for every f. Thus $\overline{\pi_{2}}$ is a constant function - which one?

Exercise 2.43. Establish the difference between the following two declarations in HASKELL,

```
data D = D1 A | D2 B C
data E = E1 A | E2 (B,C)
```

for A, B and C any three predefined types. Are D and E isomorphic? If so, can you specify and encode the corresponding isomorphism?

2.20 Bibliography notes

A few decades ago John Backus read, in his Turing Award Lecture, a revolutionary paper [3]. This paper proclaimed conventional command-oriented programming languages obsolete because of their inefficiency arising from retaining, at a highlevel, the so-called "memory access bottleneck" of the underlying computation
model - the well-known von Neumann architecture. Alternatively, the (at the time already mature) functional programming style was put forward for two main reasons. Firstly, because of its potential for concurrent and parallel computation. Secondly - and Backus emphasis was really put on this - , because of its strong algebraic basis.

Backus algebra of (functional) programs was providential in alerting computer programmers that computer languages alone are insufficient, and that only languages which exhibit an algebra for reasoning about the objects they purport to describe will be useful in the long run.

The impact of Backus first argument in the computing science and computer architecture communities was considerable, in particular if assessed in quality rather than quantity and in addition to the almost contemporary structured programming trend ${ }^{14}$. By contrast, his second argument for changing computer programming was by and large ignored, and only the so-called algebra of programming research minorities pursued in this direction. However, the advances in this area throughout the last two decades are impressive and can be fully appreciated by reading a textbook written relatively recently by Bird and de Moor [6]. A comprehensive review of the voluminous literature available in this area can also be found in this book.

Although the need for a pointfree algebra of programming was first identified by Backus, perhaps influenced by Iverson's APL growing popularity in the USA at that time, the idea of reasoning and using mathematics to transform programs is much older and can be traced to the times of McCarthy's work on the foundations of computer programming [28], of Floyd's work on program meaning [9] and of Paterson and Hewitt's comparative schematology [39]. Work of the so-called program transformation school was already very expressive in the mid 1970s, see for instance references [7].

The mathematics adequate for the effective integration of these related but independent lines of thought was provided by the categorial approach of Manes and Arbib compiled in a textbook [27] which has very strongly influenced the last decade of 20th century theoretical computer science.

A so-called MPC ("Mathematics of Program Construction") community has been among the most active in producing an integrated body of knowledge on the algebra of programming which has found in functional programming an eloquent and paradigmatic medium. Functional programming has a tradition of absorb-

[^12]ing fresh results from theoretical computer science, algebra and category theory. Languages such as HASKELL [5] have been competing to integrate the most recent developments and therefore are excellent prototyping vehicles in courses on program calculation, as happens with this book.

For fairly recent work on this topic see e.g. [12, 16, 17, 11].

[^0]: ${ }^{1}$ For the slides which eventually will lead to the second part of this book see technical report [37]. The third part will address a linear algebra of programming intended for quantitative reasoning about software. This is even less stable, but a number of papers exist about the topic, starting from [36].

[^1]: ${ }^{1}$ This idea addresses programming in a broad sense, including for instance reversible and quantum programming, where functional programming already plays leading roles [32, 31, 14].

[^2]: ${ }^{2}$ Quantified notation $\langle\forall x: P: Q\rangle$ means: "for all x in the range P, Q holds", where P and Q are logical expressions involving x. This notation will be used sporadically in this book.

[^3]: ${ }^{3}$ This and other type-rules to come adopt the usual "fractional" layout, reminiscent of that used in school arithmetics for addition, subtraction, etc.
 ${ }^{4}$ It even has a place in scripting languages such as UNIX's shell, where $f \mid g$ is the shell counterpart of $g \cdot f$, for appropriate "processes" f and g.

[^4]: ${ }^{5}$ Note how this law can be regarded as a pointfree rendering of (2.20).

[^5]: ${ }^{6}$ For an explanation of the word "reflexion" in the name chosen for this law (and for others to come) see section 2.13 later on.

[^6]: ${ }^{7}$ The tagging functions i_{1} and i_{2} are usually referred to as the injections of the disjoint union.

[^7]: ${ }^{8}$ In the current context, programs "are" functions and program-interfaces "are" the datatypes involved in functional signatures.

[^8]: ${ }^{9}$ Solving equations of this kind is reminiscent of many similar calculations carried out in school maths and physics courses. The spirit is the same. The difference is that this time one is not calculating water pump debits, accelerations, velocities, or other physical entities: the solutions of our equations are (just) functional programs.

[^9]: ${ }^{10}$ After John McCarthy, the computer scientist of first defined it.
 ${ }^{11}$ For the second one go to exercise 2.22 .

[^10]: ${ }^{12}$ This terminology widely adopted in other functional languages.

[^11]: ${ }^{13}$ Writing \bar{f} (resp. \widehat{f}) or curry f (resp. uncurry f) is a matter of taste: the latter are more in the tradition of functional programming and help when the functions have to be named; the former save ink in algebraic expressions and calculations.

[^12]: ${ }^{14}$ Even the C programming language and the UNIX operating system, with their implicit functional flavour, may be regarded as subtle outcomes of the "going functional" trend.

