Appendix A

Appendix

A. 1 Haskell support library

```
infix 5 }
infix 4+
```


Products

$$
\begin{aligned}
& \langle\cdot, \cdot\rangle::(a \rightarrow b) \rightarrow(a \rightarrow c) \rightarrow a \rightarrow(b, c) \\
& \langle f, g\rangle x=(f x, g x) \\
& (\times)::(a \rightarrow b) \rightarrow(c \rightarrow d) \rightarrow(a, c) \rightarrow(b, d) \\
& f \times g=\left\langle f \cdot \pi_{1}, g \cdot \pi_{2}\right\rangle
\end{aligned}
$$

The 0 -adic split is the unique function of its type
(!) :: $a \rightarrow()$
$(!)=\underline{()}$
Renamings:

$$
\begin{aligned}
& \pi_{1}=\mathrm{fst} \\
& \pi_{2}=\text { snd }
\end{aligned}
$$

Coproduct

Renamings:

$$
\begin{aligned}
& i_{1}=i_{1} \\
& i_{2}=i_{2}
\end{aligned}
$$

Either is predefined:

$$
\begin{aligned}
& (+)::(a \rightarrow b) \rightarrow(c \rightarrow d) \rightarrow a+c \rightarrow b+d \\
& f+g=\left[i_{1} \cdot f, i_{2} \cdot g\right]
\end{aligned}
$$

McCarthy's conditional:

$$
p \rightarrow f, g=[f, g] \cdot p ?
$$

Exponentiation

Curry is predefined.

$$
\begin{aligned}
& a p::(a \rightarrow b, a) \rightarrow b \\
& a p=\widehat{(\$)}
\end{aligned}
$$

Functor:

$$
\begin{aligned}
& \therefore::(b \rightarrow c) \rightarrow(a \rightarrow b) \rightarrow a \rightarrow c \\
& f=\overline{f \cdot a p}
\end{aligned}
$$

Pair to predicate isomorphism (2.99):

$$
\begin{aligned}
& p 2 p::(b, b) \rightarrow \mathbb{B} \rightarrow b \\
& p 2 p p b=\text { if } b \text { then }(\text { snd } p) \text { else (fst } p)
\end{aligned}
$$

The exponentiation functor is $(a \rightarrow)$ predefined:
instance Functor $((\rightarrow) s)$ where

$$
\text { fmap } f g=f \cdot g
$$

Others

$\therefore:: a \rightarrow b \rightarrow a$ such that $\underline{a} x=a$ is predefined. Guards:

$$
\begin{aligned}
& \cdot ?::(a \rightarrow \mathbb{B}) \rightarrow a \rightarrow a+a \\
& p ? x=\text { if } p x \text { then } i_{1} x \text { else } i_{2} x
\end{aligned}
$$

Natural isomorphisms

$$
\begin{aligned}
& \text { swap }::(a, b) \rightarrow(b, a) \\
& \text { swap }=\left\langle\pi_{2}, \pi_{1}\right\rangle \\
& \text { assocr }::((a, b), c) \rightarrow(a,(b, c)) \\
& \text { assocr }=\left\langle\pi_{1} \cdot \pi_{1}, \text { snd } \times i d\right\rangle \\
& \text { assocl }::(a,(b, c)) \rightarrow((a, b), c) \\
& \text { assocl }=\left\langle i d \times \pi_{1}, \pi_{2} \cdot \pi_{2}\right\rangle \\
& \text { undistr }::(a, b)+(a, c) \rightarrow(a, b+c) \\
& \text { undistr }=\left[i d \times i_{1}, i d \times i_{2}\right] \\
& \text { undistl }::(b, c)+(a, c) \rightarrow(b+a, c) \\
& \text { undistl }=\left[i_{1} \times i d, i_{2} \times i d\right] \\
& \text { coswap }:: a+b \rightarrow b+a \\
& \text { coswap }=\left[i_{2}, i_{1}\right] \\
& \text { coassocr }::(a+b)+c \rightarrow a+(b+c) \\
& \text { coassocr }=\left[i d+i_{1}, i_{2} \cdot i_{2}\right] \\
& \text { coassocl }:: b+(a+c) \rightarrow(b+a)+c \\
& \text { coassocl }=\left[i_{1} \cdot i_{1}, i_{2}+i d\right] \\
& \text { distl }::(c+a, b) \rightarrow(c, b)+(a, b) \\
& \text { distl }=\left[\overline{i_{1}}, \overline{i_{2}}\right] \\
& \text { distr }::(b, c+a) \rightarrow(b, c)+(b, a) \\
& \text { distr }=(\operatorname{swap}+\operatorname{swap}) \cdot \operatorname{distl} \cdot \text { swap } \\
& \text { flatr }::(a,(b, c)) \rightarrow(a, b, c) \\
& \text { flatr }(a,(b, c))=(a, b, c) \\
& \text { flatl }::((a, b), c) \rightarrow(a, b, c) \\
& \text { flatl }((b, c), d)=(b, c, d) \\
& \text { br }=\langle i d,!\rangle \\
& \text { bl }=\operatorname{swap} \cdot b r
\end{aligned}
$$

Class bifunctor

class BiFunctor f where bmap $::(a \rightarrow b) \rightarrow(c \rightarrow d) \rightarrow(f a c \rightarrow f b d)$
instance BiFunctor $\cdot+\cdot$ where bmap $f g=f+g$

```
instance BiFunctor (, ) where
``` bmap \(f g=f \times g\)

\section*{Monads}

Kleisli monadic composition:
infix \(4 \bullet\)
\((\bullet)::\) Monad \(a \Rightarrow(b \rightarrow a c) \rightarrow(d \rightarrow a b) \rightarrow d \rightarrow a c\)
\((f \bullet g) a=(g a) \gg f\)
Multiplication, also known as join:
```

mult $::($ Monad $m) \Rightarrow m(m b) \rightarrow m b$
mult $=(\gg i d)$

```

Monadic binding:
\[
\begin{aligned}
& a p^{\prime}::(\text { Monad } m) \Rightarrow(a \rightarrow m b, m a) \rightarrow m b \\
& a p^{\prime}=\text { flip }(\gg)
\end{aligned}
\]

List monad:
\[
\begin{aligned}
& \text { singl }:: a \rightarrow[a] \\
& \text { singl }=\text { return }
\end{aligned}
\]

Strong monads:
\[
\begin{aligned}
& \text { class }(\text { Functor } f, \text { Monad } f) \Rightarrow \text { Strong } f \text { where } \\
& \quad \text { rstr }::(f a, b) \rightarrow f(a, b) \\
& \quad \text { rstr }(x, b)=\text { do } a \leftarrow x ; \text { return }(a, b) \\
& \quad \text { lstr }::(b, f a) \rightarrow f(b, a) \\
& \quad \text { lstr }(b, x)=\operatorname{do} a \leftarrow x ; \text { return }(b, a) \\
& \text { instance Strong } 10 \\
& \text { instance Strong [] } \\
& \text { instance Strong Maybe }
\end{aligned}
\]

Double strength:
\[
\begin{aligned}
& \text { dstr }:: \text { Strong } m \Rightarrow\left(\begin{array}{ll}
m & a, m
\end{array}\right) \rightarrow m(a, b) \\
& \text { dstr }=\text { rstr } \bullet \text { lstr }
\end{aligned}
\]

Exercise 4.8.13 in Jacobs' "Introduction to Coalgebra" [20]:
\[
\begin{aligned}
& \text { splitm }:: \text { Strong } \mathrm{F} \Rightarrow \mathrm{~F}(a \rightarrow b) \rightarrow a \rightarrow \mathrm{~F} b \\
& \text { splitm }=\overline{\text { fmap ap } \cdot \text { rstr }}
\end{aligned}
\]

Monad transformers:
```

class (Monad m, Monad (t m)) =>MT t m where -- monad transformer class
lift :: ma->t ma

```

Nested lifting:
\[
\begin{aligned}
& \text { dlift :: }(M T t(t 1 \mathrm{~m}), M T \mathrm{t1} \mathrm{~m}) \Rightarrow m a \rightarrow t(t 1 \mathrm{~m}) a \\
& \text { dlift }=\text { lift } \cdot \text { lift }
\end{aligned}
\]

\section*{Basic functions, abbreviations}
\[
\begin{aligned}
& \text { zero }=\underline{0} \\
& \text { one }=\underline{1} \\
& \text { nil }=\underline{[]} \\
& \text { cons }=\widehat{\vdots} \\
& \text { add }=\widehat{+} \\
& \text { mul }=\widehat{*} \\
& \text { conc }=\widehat{\#} \\
& \text { inMaybe }::()+a \rightarrow \text { Maybe } a \\
& \text { inMaybe }=[\text { Nothing, Just }]
\end{aligned}
\]

\section*{More advanced}
\[
\begin{aligned}
& \text { class }(\text { Functor } f) \Rightarrow \text { Unzipable } f \text { where } \\
& \text { unzp }:: f(a, b) \rightarrow(f \text { a, } f \text { b }) \\
& \text { unzp }=\left\langle\text { fmap } \pi_{1}, \text { fmap } \pi_{2}\right\rangle \\
& \text { class Functor } g \Rightarrow \text { DistL } g \text { where } \\
& \lambda:: \text { Monad } m \Rightarrow g(m a) \rightarrow m(g a) \\
& \text { instance DistL }[] \text { where } \lambda=\text { sequence }
\end{aligned}
\]
instance DistL Maybe where
\(\lambda\) Nothing \(=\) return Nothing
\(\lambda(\) Just \(a)=m p\) Just \(a\) where \(m p f=(\) return \(\cdot f) \bullet i d\)
Convert Monad into Applicative:
\[
\begin{aligned}
& \text { aap }:: \text { Monad } m \Rightarrow m(a \rightarrow b) \rightarrow m a \rightarrow m b \\
& \text { aap } m f m x=\text { do }\{f \leftarrow m f ; x \leftarrow m x ; \text { return }(f x)\}
\end{aligned}
\]

\section*{A. 2 Alloy support library}
not given in the current version of this textbook

\section*{Bibliography}
[1] C. Aarts, R.C. Backhouse, P. Hoogendijk, E.Voermans, and J. van der Woude. A relational theory of datatypes, December 1992. Available from www.cs.nott.ac.uk/~rcb.
[2] R.C. Backhouse. Mathematics of Program Construction. Univ. of Nottingham, 2004. Draft of book in preparation. 608 pages.
[3] J. Backus. Can programming be liberated from the von Neumann style? a functional style and its algebra of programs. CACM, 21(8):613-639, August 1978.
[4] L.S. Barbosa. Components as Coalgebras. University of Minho, December 2001. Ph. D. thesis.
[5] R. Bird. Introduction to Functional Programming. Series in Computer Science. Prentice-Hall International, 2nd edition, 1998. C.A.R. Hoare, series editor.
[6] R. Bird and O. de Moor. Algebra of Programming. Series in Computer Science. Prentice-Hall, 1997.
[7] R.M. Burstall and J. Darlington. A transformation system for developing recursive programs. JACM, 24(1):44-67, January 1977.
[8] M. Erwig and S. Kollmannsberger. Functional pearls: Probabilistic functional programming in Haskell. J. Funct. Program., 16:21-34, January 2006.
[9] R.W. Floyd. Assigning meanings to programs. In J.T. Schwartz, editor, Mathematical Aspects of Computer Science, volume 19, pages 19-32. American Mathematical Society, 1967. Proc. Symposia in Applied Mathematics.
[10] M.M. Fokkinga. Law and Order in Algorithmics. PhD thesis, University of Twente, Dept INF, Enschede, The Netherlands, 1992.
[11] J. Gibbons. Kernels, in a nut shell. JLAMP, 85(5, Part 2):921-930, 2016.
[12] J. Gibbons and R. Hinze. Just do it: simple monadic equational reasoning. In Proceedings of the 16th ACM SIGPLAN international conference on Functional programming, ICFP'11, pages 2-14, New York, NY, USA, 2011. ACM.
[13] Jeremy Gibbons, Graham Hutton, and Thorsten Altenkirch. When is a function a fold or an unfold?, 2001. WGP, July 2001 (slides).
[14] A.S. Green, P.L. Lumsdaine, N.J. Ross, P. Selinger, and B. Valiron. An introduction to quantum programming in Quipper. CoRR, cs.PL(arXiv:1304.5485v1), 2013.
[15] Ralf Hinze. Adjoint folds and unfolds - an extended study. Science of Computer Programming, 78(11):2108-2159, 2013.
[16] Ralf Hinze. Adjoint folds and unfolds - an extended study. Science of Computer Programming, 78(11):2108-2159, 2013.
[17] Ralf Hinze, Nicolas Wu, and Jeremy Gibbons. Conjugate hylomorphisms - or: The mother of all structured recursion schemes. In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL '15, pages 527-538, New York, NY, USA, 2015. ACM.
[18] P. Hudak. The Haskell School of Expression - Learning Functional Programming Through Multimedia. Cambridge University Press, 1st edition, 2000. ISBN 0-521-64408-9.
[19] Graham Hutton and Erik Meijer. Monadic parsing in Haskell. Journal of Functional Programming, 8(4), 1993.
[20] B. Jacobs. Introduction to Coalgebra. Towards Mathematics of States and Observations. Cambridge University Press, 2016.
[21] P. Jansson and J. Jeuring. Polylib - a library of polytypic functions. In Workshop on Generic Programming (WGP'98), Marstrand, Sweden, 1998.
[22] J. Jeuring and P. Jansson. Polytypic programming. In Advanced Functional Programming, number 1129 in LNCS, pages 68-114. Springer-Verlag, 1996.
[23] S.L. Peyton Jones. Haskell 98 Language and Libraries. Cambridge University Press, Cambridge, UK, 2003. Also published as a Special Issue of the Journal of Functional Programming, 13(1) Jan. 2003.
[24] R. Lämmel and J. Visser. A Strafunski Application Letter. In V. Dahl and P.L. Wadler, editors, Proc. of Practical Aspects of Declarative Programming (PADL'03), volume 2562 of LNCS, pages 357-375. Springer-Verlag, January 2003.
[25] S. MacLane. Categories for the Working Mathematician. Springer-Verlag, 1971.
[26] G. Malcolm. Data structures and program transformation. Science of Computer Programming, 14:255-279, 1990.
[27] E.G. Manes and M.A. Arbib. Algebraic Approaches to Program Semantics. Texts and Monographs in Computer Science. Springer-Verlag, 1986. D. Gries, series editor.
[28] J. McCarthy. Towards a mathematical science of computation. In C.M. Popplewell, editor, Proc. of IFIP 62, pages 21-28, Amsterdam-London, 1963. North-Holland Pub. Company.
[29] E. Meijer and G. Hutton. Bananas in space: Extending fold and unfold to exponential types. In S. Peyton Jones, editor, Proceedings of Functional Programming Languages and Computer Architecture (FPCA95), 1995.
[30] Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings 4th Annual IEEE Symp. on Logic in Computer Science, LICS'89, Pacific Grove, CA, USA, 5-8 June 1989, pages 14-23. IEEE Computer Society Press, Washington, DC, 1989.
[31] S-C. Mu, Z. Hu, and M. Takeichi. An injective language for reversible computation. In MPC 2004, pages 289-313, 2004.
[32] S.C. Mu and R. Bird. Quantum functional programming, 2001. 2nd Asian Workshop on Programming Languages and Systems, KAIST, Dajeaon, Korea, December 1718, 2001.
[33] D. Murta and J.N. Oliveira. A study of risk-aware program transformation. SCP, 110:51-77, 2015.
[34] P. Naur and B. Randell, editors. Software Engineering: Report on a conference sponsored by the NATO SCIENCE COMMITTEE, Garmisch, Germany, 7th to 11th October 1968. Scientific Affairs Division, NATO, 1969.
[35] A. Oettinger. The hardware-software complementarity. Commun. ACM, 10:604606, October 1967.
[36] J.N. Oliveira. Towards a linear algebra of programming. FAoC, 24(4-6):433-458, 2012.
[37] J.N. Oliveira. Lecture notes on relational methods in software design, 2015. Available from ResearchGate:
https://www.researchgate.net/profile/Jose_Oliveira34.
[38] J.N. Oliveira and V.C. Miraldo. "Keep definition, change category" - a practical approach to state-based system calculi. JLAMP, 85(4):449-474, 2016.
[39] M.S. Paterson and C.E. Hewitt. Comparative schematology. In Project MAC Conference on Concurrent Systems and Parallel Computation, pages 119-127, August 1970.
[40] G. Villavicencio and J.N. Oliveira. Reverse Program Calculation Supported by Code Slicing . In Proceedings of the Eighth Working Conference on Reverse Engineering (WCRE 2001) 2-5 October 2001, Stuttgart, Germany, pages 35-46. IEEE Computer Society, 2001.
[41] P.L. Wadler. Theorems for free! In 4th International Symposium on Functional Programming Languages and Computer Architecture, pages 347-359, London, Sep. 1989. ACM.```

