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Appendix

A.1 Haskell support library

infix 5×
infix 4 +

Products

〈·, ·〉 :: (a → b)→ (a → c)→ a → (b, c)
〈f , g〉 x = (f x , g x )

(×) :: (a → b)→ (c → d)→ (a, c)→ (b, d)
f × g = 〈f · π1, g · π2〉

The 0-adic split is the unique function of its type

(!) :: a → ()
(!) = ()

Renamings:

π1 = fst
π2 = snd
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Coproduct
Renamings:

i1 = i1
i2 = i2

Either is predefined:

(+) :: (a → b)→ (c → d)→ a + c → b + d
f + g = [i1 · f , i2 · g ]

McCarthy’s conditional:

p → f , g = [f , g ] · p?

Exponentiation
Curry is predefined.

ap :: (a → b, a)→ b

ap = (̂$)

Functor:

·· :: (b → c)→ (a → b)→ a → c

f · = f · ap

Pair to predicate isomorphism (2.99):

p2p :: (b, b)→ B→ b
p2p p b = if b then (snd p) else (fst p)

The exponentiation functor is (a →) predefined:

instance Functor ((→) s) where
fmap f g = f · g

Others
· :: a → b → a such that a x = a is predefined. Guards:

·? :: (a → B)→ a → a + a
p? x = if p x then i1 x else i2 x
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Natural isomorphisms

swap :: (a, b)→ (b, a)
swap = 〈π2, π1〉
assocr :: ((a, b), c)→ (a, (b, c))
assocr = 〈π1 · π1, snd× id〉
assocl :: (a, (b, c))→ ((a, b), c)
assocl = 〈id× π1, π2 · π2〉
undistr :: (a, b) + (a, c)→ (a, b + c)
undistr = [id× i1 , id× i2]
undistl :: (b, c) + (a, c)→ (b + a, c)
undistl = [i1 × id, i2 × id]
coswap :: a + b → b + a
coswap = [i2 , i1]

coassocr :: (a + b) + c → a + (b + c)
coassocr = [id+ i1 , i2 · i2]
coassocl :: b + (a + c)→ (b + a) + c
coassocl = [i1 · i1 , i2 + id]

distl :: (c + a, b)→ (c, b) + (a, b)

distl = [̂i1 , i2]

distr :: (b, c + a)→ (b, c) + (b, a)
distr = (swap+ swap) · distl · swap
flatr :: (a, (b, c))→ (a, b, c)
flatr (a, (b, c)) = (a, b, c)

flatl :: ((a, b), c)→ (a, b, c)
flatl ((b, c), d) = (b, c, d)

br = 〈id, !〉
bl = swap · br

Class bifunctor

class BiFunctor f where
bmap :: (a → b)→ (c → d)→ (f a c → f b d)

instance BiFunctor ·+ · where
bmap f g = f + g
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instance BiFunctor (, ) where
bmap f g = f × g

Monads
Kleisli monadic composition:

infix 4 •
(•) :: Monad a ⇒ (b → a c)→ (d → a b)→ d → a c
(f • g) a = (g a)>>= f

Multiplication, also known as join:

mult :: (Monad m)⇒ m (m b)→ m b
mult = (>>=id)

Monadic binding:

ap′ :: (Monad m)⇒ (a → m b,m a)→ m b

ap′ = ̂flip (>>=)

List monad:

singl :: a → [a ]
singl = return

Strong monads:

class (Functor f ,Monad f )⇒ Strong f where
rstr :: (f a, b)→ f (a, b)
rstr (x , b) = do a ← x ; return (a, b)
lstr :: (b, f a)→ f (b, a)
lstr (b, x ) = do a ← x ; return (b, a)

instance Strong IO

instance Strong [ ]

instance Strong Maybe

Double strength:

dstr :: Strong m ⇒ (m a,m b)→ m (a, b)
dstr = rstr • lstr
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Exercise 4.8.13 in Jacobs’ ”Introduction to Coalgebra” [20]:

splitm :: Strong F⇒ F (a → b)→ a → F b

splitm = fmap ap · rstr

Monad transformers:

class (Monad m,Monad (t m))⇒ MT t m where -- monad transformer class
lift :: m a → t m a

Nested lifting:

dlift :: (MT t (t1 m),MT t1 m)⇒ m a → t (t1 m) a
dlift = lift · lift

Basic functions, abbreviations

zero = 0

one = 1

nil = [ ]

cons = :̂

add = +̂

mul = ∗̂
conc = +̂+

inMaybe :: () + a → Maybe a
inMaybe = [Nothing , Just]

More advanced

class (Functor f )⇒ Unzipable f where
unzp :: f (a, b)→ (f a, f b)
unzp = 〈fmap π1, fmap π2〉

class Functor g ⇒ DistL g where
λ :: Monad m ⇒ g (m a)→ m (g a)

instance DistL [ ] where λ = sequence
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instance DistL Maybe where
λ Nothing = return Nothing
λ (Just a) = mp Just a where mp f = (return · f ) • id

Convert Monad into Applicative:

aap :: Monad m ⇒ m (a → b)→ m a → m b
aap mf mx = do {f ← mf ; x ← mx ; return (f x )}

A.2 Alloy support library
not given in the current version of this textbook
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