
Appendix A

Appendix

A.1 Haskell support library

infix 5×
infix 4 +

Products

〈·, ·〉 :: (a → b)→ (a → c)→ a → (b, c)
〈f , g〉 x = (f x , g x)

(×) :: (a → b)→ (c → d)→ (a, c)→ (b, d)
f × g = 〈f · π1, g · π2〉

The 0-adic split is the unique function of its type

(!) :: a → ()
(!) = ()

Renamings:

π1 = fst
π2 = snd

179

180 APPENDIX A. APPENDIX

Coproduct
Renamings:

i1 = i1
i2 = i2

Either is predefined:

(+) :: (a → b)→ (c → d)→ a + c → b + d
f + g = [i1 · f , i2 · g]

McCarthy’s conditional:

p → f , g = [f , g] · p?

Exponentiation
Curry is predefined.

ap :: (a → b, a)→ b

ap = (̂$)

Functor:

·· :: (b → c)→ (a → b)→ a → c

f · = f · ap

Pair to predicate isomorphism (2.99):

p2p :: (b, b)→ B→ b
p2p p b = if b then (snd p) else (fst p)

The exponentiation functor is (a →) predefined:

instance Functor ((→) s) where
fmap f g = f · g

Others
· :: a → b → a such that a x = a is predefined. Guards:

·? :: (a → B)→ a → a + a
p? x = if p x then i1 x else i2 x

A.1. HASKELL SUPPORT LIBRARY 181

Natural isomorphisms

swap :: (a, b)→ (b, a)
swap = 〈π2, π1〉
assocr :: ((a, b), c)→ (a, (b, c))
assocr = 〈π1 · π1, snd× id〉
assocl :: (a, (b, c))→ ((a, b), c)
assocl = 〈id× π1, π2 · π2〉
undistr :: (a, b) + (a, c)→ (a, b + c)
undistr = [id× i1 , id× i2]
undistl :: (b, c) + (a, c)→ (b + a, c)
undistl = [i1 × id, i2 × id]
coswap :: a + b → b + a
coswap = [i2 , i1]

coassocr :: (a + b) + c → a + (b + c)
coassocr = [id+ i1 , i2 · i2]
coassocl :: b + (a + c)→ (b + a) + c
coassocl = [i1 · i1 , i2 + id]

distl :: (c + a, b)→ (c, b) + (a, b)

distl = [̂i1 , i2]

distr :: (b, c + a)→ (b, c) + (b, a)
distr = (swap+ swap) · distl · swap
flatr :: (a, (b, c))→ (a, b, c)
flatr (a, (b, c)) = (a, b, c)

flatl :: ((a, b), c)→ (a, b, c)
flatl ((b, c), d) = (b, c, d)

br = 〈id, !〉
bl = swap · br

Class bifunctor

class BiFunctor f where
bmap :: (a → b)→ (c → d)→ (f a c → f b d)

instance BiFunctor ·+ · where
bmap f g = f + g

182 APPENDIX A. APPENDIX

instance BiFunctor (,) where
bmap f g = f × g

Monads
Kleisli monadic composition:

infix 4 •
(•) :: Monad a ⇒ (b → a c)→ (d → a b)→ d → a c
(f • g) a = (g a)>>= f

Multiplication, also known as join:

mult :: (Monad m)⇒ m (m b)→ m b
mult = (>>=id)

Monadic binding:

ap′ :: (Monad m)⇒ (a → m b,m a)→ m b

ap′ = ̂flip (>>=)

List monad:

singl :: a → [a]
singl = return

Strong monads:

class (Functor f ,Monad f)⇒ Strong f where
rstr :: (f a, b)→ f (a, b)
rstr (x , b) = do a ← x ; return (a, b)
lstr :: (b, f a)→ f (b, a)
lstr (b, x) = do a ← x ; return (b, a)

instance Strong IO

instance Strong []

instance Strong Maybe

Double strength:

dstr :: Strong m ⇒ (m a,m b)→ m (a, b)
dstr = rstr • lstr

A.1. HASKELL SUPPORT LIBRARY 183

Exercise 4.8.13 in Jacobs’ ”Introduction to Coalgebra” [20]:

splitm :: Strong F⇒ F (a → b)→ a → F b

splitm = fmap ap · rstr

Monad transformers:

class (Monad m,Monad (t m))⇒ MT t m where -- monad transformer class
lift :: m a → t m a

Nested lifting:

dlift :: (MT t (t1 m),MT t1 m)⇒ m a → t (t1 m) a
dlift = lift · lift

Basic functions, abbreviations

zero = 0

one = 1

nil = []

cons = :̂

add = +̂

mul = ∗̂
conc = +̂+

inMaybe :: () + a → Maybe a
inMaybe = [Nothing , Just]

More advanced

class (Functor f)⇒ Unzipable f where
unzp :: f (a, b)→ (f a, f b)
unzp = 〈fmap π1, fmap π2〉

class Functor g ⇒ DistL g where
λ :: Monad m ⇒ g (m a)→ m (g a)

instance DistL [] where λ = sequence

184 APPENDIX A. APPENDIX

instance DistL Maybe where
λ Nothing = return Nothing
λ (Just a) = mp Just a where mp f = (return · f) • id

Convert Monad into Applicative:

aap :: Monad m ⇒ m (a → b)→ m a → m b
aap mf mx = do {f ← mf ; x ← mx ; return (f x)}

A.2 Alloy support library
not given in the current version of this textbook

Bibliography

[1] C. Aarts, R.C. Backhouse, P. Hoogendijk, E.Voermans, and J. van der
Woude. A relational theory of datatypes, December 1992. Available from
www.cs.nott.ac.uk/˜rcb.

[2] R.C. Backhouse. Mathematics of Program Construction. Univ. of Nottingham,
2004. Draft of book in preparation. 608 pages.

[3] J. Backus. Can programming be liberated from the von Neumann style? a functional
style and its algebra of programs. CACM, 21(8):613–639, August 1978.

[4] L.S. Barbosa. Components as Coalgebras. University of Minho, December 2001.
Ph. D. thesis.

[5] R. Bird. Introduction to Functional Programming. Series in Computer Science.
Prentice-Hall International, 2nd edition, 1998. C.A.R. Hoare, series editor.

[6] R. Bird and O. de Moor. Algebra of Programming. Series in Computer Science.
Prentice-Hall, 1997.

[7] R.M. Burstall and J. Darlington. A transformation system for developing recursive
programs. JACM, 24(1):44–67, January 1977.

[8] M. Erwig and S. Kollmannsberger. Functional pearls: Probabilistic functional pro-
gramming in Haskell. J. Funct. Program., 16:21–34, January 2006.

[9] R.W. Floyd. Assigning meanings to programs. In J.T. Schwartz, editor, Mathemati-
cal Aspects of Computer Science, volume 19, pages 19–32. American Mathematical
Society, 1967. Proc. Symposia in Applied Mathematics.

[10] M.M. Fokkinga. Law and Order in Algorithmics. PhD thesis, University of Twente,
Dept INF, Enschede, The Netherlands, 1992.

[11] J. Gibbons. Kernels, in a nut shell. JLAMP, 85(5, Part 2):921–930, 2016.

185

186 BIBLIOGRAPHY

[12] J. Gibbons and R. Hinze. Just do it: simple monadic equational reasoning. In Pro-
ceedings of the 16th ACM SIGPLAN international conference on Functional pro-
gramming, ICFP’11, pages 2–14, New York, NY, USA, 2011. ACM.

[13] Jeremy Gibbons, Graham Hutton, and Thorsten Altenkirch. When is a function a
fold or an unfold?, 2001. WGP, July 2001 (slides).

[14] A.S. Green, P.L. Lumsdaine, N.J. Ross, P. Selinger, and B. Valiron. An introduction
to quantum programming in Quipper. CoRR, cs.PL(arXiv:1304.5485v1), 2013.

[15] Ralf Hinze. Adjoint folds and unfolds — an extended study. Science of Computer
Programming, 78(11):2108–2159, 2013.

[16] Ralf Hinze. Adjoint folds and unfolds — an extended study. Science of Computer
Programming, 78(11):2108–2159, 2013.

[17] Ralf Hinze, Nicolas Wu, and Jeremy Gibbons. Conjugate hylomorphisms – or: The
mother of all structured recursion schemes. In Proceedings of the 42Nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’15, pages 527–538, New York, NY, USA, 2015. ACM.

[18] P. Hudak. The Haskell School of Expression - Learning Functional Programming
Through Multimedia. Cambridge University Press, 1st edition, 2000. ISBN 0-521-
64408-9.

[19] Graham Hutton and Erik Meijer. Monadic parsing in Haskell. Journal of Functional
Programming, 8(4), 1993.

[20] B. Jacobs. Introduction to Coalgebra. Towards Mathematics of States and Observa-
tions. Cambridge University Press, 2016.

[21] P. Jansson and J. Jeuring. Polylib — a library of polytypic functions. In Workshop
on Generic Programming (WGP’98), Marstrand, Sweden, 1998.

[22] J. Jeuring and P. Jansson. Polytypic programming. In Advanced Functional Pro-
gramming, number 1129 in LNCS, pages 68–114. Springer-Verlag, 1996.

[23] S.L. Peyton Jones. Haskell 98 Language and Libraries. Cambridge University
Press, Cambridge, UK, 2003. Also published as a Special Issue of the Journal of
Functional Programming, 13(1) Jan. 2003.

[24] R. Lämmel and J. Visser. A Strafunski Application Letter. In V. Dahl and P.L.
Wadler, editors, Proc. of Practical Aspects of Declarative Programming (PADL’03),
volume 2562 of LNCS, pages 357–375. Springer-Verlag, January 2003.

BIBLIOGRAPHY 187

[25] S. MacLane. Categories for the Working Mathematician. Springer-Verlag, 1971.

[26] G. Malcolm. Data structures and program transformation. Science of Computer
Programming, 14:255–279, 1990.

[27] E.G. Manes and M.A. Arbib. Algebraic Approaches to Program Semantics. Texts
and Monographs in Computer Science. Springer-Verlag, 1986. D. Gries, series edi-
tor.

[28] J. McCarthy. Towards a mathematical science of computation. In C.M. Popplewell,
editor, Proc. of IFIP 62, pages 21–28, Amsterdam-London, 1963. North-Holland
Pub. Company.

[29] E. Meijer and G. Hutton. Bananas in space: Extending fold and unfold to expo-
nential types. In S. Peyton Jones, editor, Proceedings of Functional Programming
Languages and Computer Architecture (FPCA95), 1995.

[30] Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings 4th
Annual IEEE Symp. on Logic in Computer Science, LICS’89, Pacific Grove, CA,
USA, 5–8 June 1989, pages 14–23. IEEE Computer Society Press, Washington, DC,
1989.

[31] S-C. Mu, Z. Hu, and M. Takeichi. An injective language for reversible computation.
In MPC 2004, pages 289–313, 2004.

[32] S.C. Mu and R. Bird. Quantum functional programming, 2001. 2nd Asian Workshop
on Programming Languages and Systems, KAIST, Dajeaon, Korea, December 17-
18, 2001.

[33] D. Murta and J.N. Oliveira. A study of risk-aware program transformation. SCP,
110:51–77, 2015.

[34] P. Naur and B. Randell, editors. Software Engineering: Report on a conference
sponsored by the NATO SCIENCE COMMITTEE, Garmisch, Germany, 7th to 11th
October 1968. Scientific Affairs Division, NATO, 1969.

[35] A. Oettinger. The hardware-software complementarity. Commun. ACM, 10:604–
606, October 1967.

[36] J.N. Oliveira. Towards a linear algebra of programming. FAoC, 24(4-6):433–458,
2012.

[37] J.N. Oliveira. Lecture notes on relational methods in software design, 2015. Avail-
able from ResearchGate:
https://www.researchgate.net/profile/Jose_Oliveira34.

188 BIBLIOGRAPHY

[38] J.N. Oliveira and V.C. Miraldo. “Keep definition, change category” — a practical
approach to state-based system calculi. JLAMP, 85(4):449–474, 2016.

[39] M.S. Paterson and C.E. Hewitt. Comparative schematology. In Project MAC Con-
ference on Concurrent Systems and Parallel Computation, pages 119–127, August
1970.

[40] G. Villavicencio and J.N. Oliveira. Reverse Program Calculation Supported by
Code Slicing . In Proceedings of the Eighth Working Conference on Reverse Engi-
neering (WCRE 2001) 2-5 October 2001, Stuttgart, Germany, pages 35–46. IEEE
Computer Society, 2001.

[41] P.L. Wadler. Theorems for free! In 4th International Symposium on Functional
Programming Languages and Computer Architecture, pages 347–359, London, Sep.
1989. ACM.

