What is the meaning of curry / uncurry?

Lecture note for the
Algebra of Programming Course (CP)
2nd year, LCC+LEI, Univ. of Minho
\section*{J.N.Oliveira}

March 2012
"Good methods, properly explained, sell themselves."
David Parnas [2]

Curry

From the Haskell Prelude 1

$$
\begin{aligned}
& \text { curry }::((a, b) \rightarrow c) \rightarrow(a \rightarrow b \rightarrow c) \\
& \text { curry } f a b=f(a, b) \\
& \text { uncurry }::(a \rightarrow b \rightarrow c) \rightarrow(a, b) \rightarrow c \\
& \text { uncurry } f(a, b)=f a b
\end{aligned}
$$

Looking closer at curry and using \bar{f} as abbreviation of curry f :

$$
\begin{equation*}
\overbrace{(\underbrace{\text { curry }}_{\vec{f}} a)}^{g} b=f(a, b) \tag{1}
\end{equation*}
$$

To better see what's going on, we want to turn the applications of functions f and g explicit through the binary operator $a p$ available from Cp.hs, through the binary

$$
\begin{aligned}
& a p::(a \rightarrow b, a) \rightarrow b \\
& a p(f, a)=f a
\end{aligned}
$$

[^0]which explicitly applies a function to its argument.
We calculate, taking (1) as starting point:
\[

$$
\begin{aligned}
& \overbrace{(\underbrace{\text { curry } f}_{\bar{f}} a)}^{g} b=f(a, b) \\
& \equiv \quad\{\text { definition of } g\} \\
& g b=f(a, b) \\
& \equiv \quad\{\text { since } g b=a p(g, b)\} \\
& a p(g, b)=f(a, b) \\
& \equiv \quad\{\text { since } g=\text { curry } f a=\bar{f} a \text { (abbreviation); natural-id }\} \\
& a p(\bar{f} a, i d b)=f(a, b) \\
& \equiv \quad\{\text { product of functions: }(f \times g)(x, y)=(f x, g y)\} \\
& a p((\bar{f} \times i d)(a, b))=f(a, b) \\
& \equiv \quad\{\text { composition }\} \\
& (a p \cdot(\bar{f} \times i d))(a, b)=f(a, b) \\
& \equiv \quad\{\text { extensional equality }(=\text { removing points } a \text { and } b)\} \\
& a p \cdot(\bar{f} \times i d)=f
\end{aligned}
$$
\]

In a diagram, denoting type $B \rightarrow C$ by C^{B} :

This means that \bar{f} is a solution of the equation $a p \cdot(k \times i d)=f$:

$$
k=\bar{f} \quad \Rightarrow \quad a p \cdot(k \times i d)=f
$$

It turns out to be the unique such solution:

$$
\begin{equation*}
k=\bar{f} \quad \Leftrightarrow \quad a p \cdot(k \times i d)=f \tag{2}
\end{equation*}
$$

Thus we have a universal property.

Uncurry

Next we introduce variables into $\underbrace{a p \cdot(k \times i d)}_{h}$:

$$
\left.\left.\begin{array}{rl}
& h(a, b) \\
= & \{h=a p \cdot(k \times i d)\} \\
& \underbrace{a p \cdot(k \times i d)}_{h}(a, b)
\end{array}\right) \quad\{\text { product } k \times i d\}\right)
$$

Thus $h=\hat{k}$ and (2) can be re-written into:

$$
\begin{equation*}
k=\bar{f} \Leftrightarrow \hat{k}=f \tag{3}
\end{equation*}
$$

This means that curry and uncurry are inverses of each other, leading to isomorphism

$$
A \rightarrow C^{B} \cong A \times B \rightarrow C
$$

which can also be written as

$$
\begin{equation*}
\left(C^{B}\right)^{A} \cong C^{A \times B} \tag{4}
\end{equation*}
$$

The follow up of this can be found in chapter 3 of [1].

References

[1] J.N. Oliveira. Program Design by Calculation, 2008. Draft of textbook in preparation (since 1998). Informatics Department, University of Minho. The following chapters are available from the author's website: An introduction to pointfree programming, Recursion in the pointfree style, Why monads matter and Quasi-inductive datatypes.
[2] David Lorge Parnas. Really rethinking "formal methods". IEEE Computer, 43(1):28-34, 2010.

[^0]: ${ }^{1}$ Functions named after the mathematician Haskell Curry (1900-82).

