
What is the meaning of curry / uncurry?

Lecture note for the
Algebra of Programming Course

CP/1112, 2nd year, LCC+LEI, Univ. of Minho

J.N.Oliveira

March 2012

“Good methods, properly explained, sell themselves.”
David Parnas [2]

Curry

From the Haskell Prelude 1:

curry :: ((a, b)→ c)→ (a → b → c)
curry f a b = f (a, b)

uncurry :: (a → b → c)→ (a, b)→ c
uncurry f (a, b) = f a b

Looking closer at curry and using f̄ as abbreviation of curry f :

g︷ ︸︸ ︷
(curry f︸ ︷︷ ︸

f̄

a) b = f (a, b) (1)

To better see what’s going on, we want to turn the applications of functions f
and g explicit through the binary operator ap available from Cp.hs, through
the binary

ap :: (a → b, a)→ b
ap (f , a) = f a

1Functions named after the mathematician Haskell Curry (1900-82).

1

http://www.haskell.org/haskellwiki/Haskell_Brooks_Curry


which explicitly applies a function to its argument.
We calculate, taking (1) as starting point:

g︷ ︸︸ ︷
(curry f︸ ︷︷ ︸

f̄

a) b = f (a, b)

≡ { definition of g }

g b = f(a, b)

≡ { since g b = ap(g, b) }

ap(g, b) = f(a, b)

≡ { since g = curry f a = f̄ a (abbreviation) ; natural-id }

ap(f̄ a, id b) = f(a, b)

≡ { product of functions: (f × g)(x, y) = (f x, g y) }

ap((f̄ × id)(a, b)) = f(a, b)

≡ { composition }

(ap · (f̄ × id))(a, b) = f(a, b)

≡ { extensional equality (=removing points a and b) }

ap · (f̄ × id) = f

In a diagram, denoting type B → C by CB :

CB CB ×B
ap // C

A

f̄

OO

A×B

f̄×id

OO

f

;;

This means that f̄ is a solution of the equation ap · (k × id) = f :

k = f̄ ⇒ ap · (k × id) = f

It turns out to be the unique such solution:

k = f̄ ⇔ ap · (k × id) = f (2)

Thus we have a universal property.

2



Uncurry

Next we introduce variables into ap · (k × id)︸ ︷︷ ︸
h

:

h(a, b)

= { h = ap · (k × id) }

ap · (k × id)︸ ︷︷ ︸
h

(a, b)

= { product k × id }

ap (k a, b)

= { unfold ap }

(k a) b

= { recall (k a) b = uncurry k (a, b) ; abbreviate uncurry k by k̂ }

uncurry k (a, b)︸ ︷︷ ︸
k̂(a,b)

Thus h = k̂ and (2) can be re-written into:

k = f̄ ⇔ k̂ = f (3)

This means that curry and uncurry are inverses of each other, leading to iso-
morphism

A→ CB ∼= A×B → C

which can also be written as

(CB)A ∼= CA×B (4)

The follow up of this can be found in chapter 3 of [1].

References

[1] J.N. Oliveira. Program Design by Calculation, 2008. Draft of textbook
in preparation (since 1998). Informatics Department, University of Minho.
The following chapters are available from the author’s website: An intro-
duction to pointfree programming, Recursion in the pointfree style, Why monads
matter and Quasi-inductive datatypes.

[2] David Lorge Parnas. Really rethinking “formal methods”. IEEE Computer,
43(1):28–34, 2010.

3

http://www.di.uminho.pt/~{~}jno/ps/pdbc.pdf

