
Chapter 3

Recursion in the Pointfree Style

How useful from a programmer’s point of view are the abstract concepts presented in
the previous chapter? Recall that a table was presented — table 2.1 — which records an
analogy between abstract type notation and the corresponding data-structures available in
common, imperative languages.

This analogy will help in showing how to extend the abstract notation studied thus far
towards a most important field of programming: recursion. This, however, will be pre-
ceeded by a simpler introduction to the subject rooted on very basic and intuitive notions
of mathematics.

3.1 Motivation
Where do algorithms come from? From human imagination only? Surely not — they
actually emerge frommathematics. In a sense, in the same way one may say that hardware
follows the laws of physics (eg. semiconductor electronics) one might say that software is
governed by the laws of mathematics.

This section provides a naive introduction to algorithm analysis and synthesis by
showing how a quite elementary class of algorithms — equivalent to for-loops in C or any
other imperative language — arise from elementary properties of the underlying maths
domain.

We start by showing how the arithmetic operation of multiplying two natural numbers
(in N0) is a for-loop which emerges solely from the algebraic properties of multiplication:

a× 0 = 0
a× 1 = a
a× (b+ c) = a× b+ a× c

(3.1)

55

56 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

These properties are known as the absorption, unit and distributive properties of multipli-
cation, respectively.

Start by making c := 1 in the third (distributive) property, obtaining a×(b+1) = a×
b+ a× 1, and then simplify. The second clause is useful in this simplification but it is not
required in the final system of two equations,

{
a× 0 = 0
a× (b+ 1) = a× b+ a

(3.2)

since it is derivable from the remaining two, for b := 0 and property 0+a = a of addition.
System (3.2) is already a runnable program in a functional language such as Haskell

(among others). The moral of this trivial exercise is that programs arise from the under-
lying maths, instead of being invented or coming out of the blue. Novices in functional
programming do this kind of reasoning all the time without noticing it, when writing their
first programs. For instance, the function which computes discrete exponentials will scale
up the same procedure, thanks to the properties

a0 = 1
a1 = a
ab+c = ab × ac

where the program just developed for multiplication can be re-used, and so and so on.
Type-wise, the multiplication algorithm just derived for natural numbers is not im-

mediate to generalize. Intuitively, it will diverge for b a negative integer and for b a real
number less than 1, at least. Argument a, however, does not seem to be constrained.

Indeed, the two arguments a and b will have different types in general. Let us see why
and how. We start by looking at infix operators (×) and (+) as curried operators — recall
section 2.14. Thus we can resort to the corresponding sections and write 1:

{
(a×)0 = 0
(a×)(b+ 1) = (a+)((a×)b)

(3.3)

It can be easily checked that

(a×) = for (a+) 0

by introducing a for-loop combinator given by
{

for f i 0 = i
for f i (n+ 1) = f (for f i n)

(3.4)

1Recall that section (a×)— respectively (a+)— abbreviates (×)a— respectively (+)a.

3.1. MOTIVATION 57

where f is the loop-body and i is the initialization value. In fact, (for f i)n = fn i, that
is, f is iterated n times over the initial value i.

For-loops are a primitive construct available in many programming languages. In C,
for instance, one will write something like

int mul(int a, int n)
{
int s=0; int i;
for (i=1;i<n+1;i++) {s += a;}
return s;
};

for (the uncurried version of) for (a+) 0 loop.
To better understand this construct let us remove variables from both equations in (3.3)

by lifting function application to function composition and lifting 0 to the “everywhere 0”
(constant) function:

{
(a×) · 0 = 0
(a×) · (+1) = (+a) · (a×)

Using the junc (“either”) pointfree combinator we merge the two equations into a single
one,

[(a×) · 0 , (a×) · (+1)] = [0 , (+a) · (a×)]

— thanks to the Eq-+ rule (2.58) — then single out the common factor (a×) in the left
hand side,

(a×) · [0 , (+1)] = [0 , (+a) · (a×)]

— thanks to+-fusion (2.40) — and finally do a similar fission operation on the other side,

(a×) · [0 , (+1)] = [0 , (+a)] · (id+ (a×)) (3.5)

— thanks to +-absorption (2.41).
As we already know, equalities of compositions are nicely drawn as diagrams. That

of (3.5) is as follows:

N0

(a×)
!!

A+ N0

id+(a×)
!!

[0 ,(+1)]
""

N0 A+ N0
[0 ,(+a)]

""

Function (+1) is the successor function succ on natural numbers. Type A is any (non-
empty) type. For the particular case ofA = 1, the diagram is more interesting, as [0 , succ]
becomes an isomorphism, telling a unique way of building natural numbers:

58 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

Every natural number in N0 either is 0 or the successor of another natural
number.

We will denote such an isomorphism by in and its converse by out in the following
diagram

N0

out=in◦

##

(a×)
!!

∼= 1 + N0

id+(a×)
!!

in=[0 ,succ]

$$

N0 1 + N0

[0 ,(+a)]

$$

capturing both the isomorphism and the (a×) recursive function. By solving the iso-
morphism equation out · in = id we easily obtain the definition of out, the converse of
in 2:

out 0 = i1()

out(n+ 1) = i2 n

Finally, we generalize the target N0 to any non-empty type B, (+a) to any function
B

g %% B and 0 to any constant k in B (this is why B has to be non-empty). The
corresponding generalization of (a×) is denoted by f below:

N0

out=in◦

##

f
!!

∼= 1 + N0

id+f
!!

in=[0 ,succ]

$$

B 1 +B

[k ,g]

$$

It turns out that, given k and g, there is a unique solution to the equation (in f) captured
by the diagram: f · in = [k , g] · (id+ f). We know this solution already, recall (3.4):

f = for g k

As we have seen earlier on, solution uniqueness is captured by universal properties. In
this case we have the following property, which we will refer to by writing “for-loop-
universal”:

f = for g k ≡ f · in = [k , g] · (id+ f) (3.6)
2Note how the singularity of type 1 ensures out a function: what would the outcome of out 0

be in case A were arbitrary?

3.1. MOTIVATION 59

From this property it is possible to infer a basic theory of for-loops. For instance, by
making f = id and solving the for-loop-universal equation (3.6) for g and k we obtain
the reflexion law:

for succ 0 = id (3.7)

This can be compared with the following (useless) program in C:

int id(int n)
{
int s=0; int i;
for (i=1;i<n+1;i++) {s += 1;}
return s;
};

(Clearly, the value returned in s is that of input n.)
More knowledge about for-loops can be extracted from (3.6). Later on we will show

that for-loops are special cases of a more general concept termed catamorphism (see eg.
section 3.6). So it is perhaps wiser to study the (more general) theory of catamorphisms
first and then instantiate it for for-loops. Then we will understand how more interesting
for-loops can be synthesized, for instance those handling more than one “global variable”,
thanks to catamorphism theory (for instance, the mutual recursion laws).

As a generalization to what we’ve just seen happening between for-loops and natu-
ral numbers, it will be shown that a catamorphism is intimately connected to the data-
structure it processes, for instance a finite list (sequence) or a binary tree. A good un-
derstanding of such structures is therefore required. We proceed to studying the list data
structure first, wherefrom trees stem as natural extensions.

Exercise 3.1. Addition is known to be associative (a+ (b+ c) = (a+ b) + c) and have
unit 0 (a + 0 = a). Following the same strategy that was adopted above for (a×), show
that

(a+) = for succ a (3.8)

!

Exercise 3.2. The following fusion-law

h · (for g k) = for j (h k) ⇐ h · g = j · h (3.9)

60 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

can be derived from universal-property (3.6) 3. Since (a+) · id = (a+), provide an
alternative derivation of (3.8) using the fusion-law above.
!

3.2 From natural numbers to finite sequences
Let us consider a very common data-structure in programming: “linked-lists”. In PASCAL
one will write

L = N̂;
N = record

first: A;
next: N̂

end;

to specify such a data-structure L. This consists of a pointer to a node (N), where a node
is a record structure which puts some predefined type A together with a pointer to another
node, and so on. In the C programming language, every x ∈ L will be declared as

L x;

in the context of datatype definition

typedef struct N {
A first;
struct N *next;
} *L;

and so on.
What interests us in such “first year programming course” datatype declarations?

Records and pointers have already been dealt with in table 2.1. So we can use this table
to find the abstract version of datatype L, by replacing pointers by the “1 + · · ·” notation
and records (structs) by the “. . .× . . .” notation:

{
L = 1 +N
N = A× (1 +N)

(3.10)

3A generalization of this property will be derived in section 3.12.

3.2. FROM NATURAL NUMBERS TO FINITE SEQUENCES 61

We obtain a system of two equations on unknowns L andN , in which L’s dependence
on N can be removed by substitution:

{
L = 1 +N
N = A× (1 +N)

≡ { substituting L for 1 +N in the second equation }
{

L = 1 +N
N = A× L

≡ { substituting A× L for N in the first equation }
{

L = 1 +A× L
N = A× L

System (3.10) is thus equivalent to:
{

L = 1 +A× L
N = A× (1 +N)

(3.11)

Intuitively, L abstracts the “possibly empty” linked-list of elements of type A, while N
abstracts the “non-empty” linked-list of elements of type A. Note that L and N are inde-
pendent of each other, but also that each depends on itself. Can we solve these equations
in a way such that we obtain “solutions” for L andN , in the same way we do with school
equations such as, for instance,

x = 1 +
x

2
? (3.12)

Concerning this equation, let us recall how we would go about it in school mathemat-
ics:

x = 1 +
x

2

≡ { adding −x
2 to both sides of the equation }

x− x

2
= 1 +

x

2
− x

2

≡ { −x
2 cancels

x
2 }

x− x

2
= 1

≡ { multiplying both sides of the equation by 2 etc. }
2× x− x = 2

≡ { subtraction }
x = 2

62 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

We very quickly get solution x = 2. However, many steps were omitted from the
actual calculation. This unfolds into the longer sequence of more elementary steps which
follows, in which notation a− b abbreviates a+(−b) and a

b abbreviates a×
1
b , for b '= 0:

x = 1 +
x

2

≡ { adding −x
2 to both sides of the equation }

x− x

2
= (1 +

x

2
)− x

2

≡ { + is associative }

x− x

2
= 1 + (

x

2
− x

2
)

≡ { −x
2 is the additive inverse of

x
2 }

x− x

2
= 1 + 0

≡ { 0 is the unit of addition }

x− x

2
= 1

≡ { multiplying both sides of the equation by 2 }

2× (x− x

2
) = 2× 1

≡ { 1 is the unit of multiplication }

2× (x− x

2
) = 2

≡ { multiplication distributes over addition }

2× x− 2× x

2
= 2

≡ { 2 cancels its inverse 1
2 }

2× x− 1× x = 2

≡ { multiplication distributes over addition }

(2− 1)× x = 2

≡ { 2− 1 = 1 and 1 is the unit of multiplication }
x = 2

Back to (3.11), we would like to submit each of the equations, e.g.

L = 1 +A× L (3.13)

3.2. FROM NATURAL NUMBERS TO FINITE SEQUENCES 63

to a similar reasoning. Can we do it? The analogy which can be found between this
equation and (3.12) goes beyond pattern similarity. From chapter 2 we know that many
properties required in the reasoning above hold in the context of (3.13), provided the “=”
sign is replaced by the “∼=” sign, that of set-theoretical isomorphism. Recall that, for
instance, + is associative (2.46), 0 is the unit of addition (2.79), 1 is the unit of multipli-
cation (2.81), multiplication distributes over addition (2.50) etc. Moreover, the first step
above assumed that addition is compatible (monotonic) with respect to equality,

a = b
c = d

a+ c = b+ d

a fact which still holds when numeric equality gives place to isomorphism and numeric
addition gives place to coproduct:

A ∼= B
C ∼= D

A+ C ∼= B +D

— recall (2.44) for isos f and g.
Unfortunately, the main steps in the reasoning above are concerned with two basic

cancellation properties

x+ b = c ≡ x = c− b

x× b = c ≡ x =
c

b
(b '= 0)

which hold about numbers but do not hold about datatypes. In fact, neither products nor
coproducts have arbitrary inverses 4, and so we cannot “calculate by cancellation”. How
do we circumvent this limitation?

Just think of how we would have gone about (3.12) in case we didn’t know about the
cancellation properties: we would be bound to the x by 1 + x

2 substitution plus the other
properties. By performing such a substitution over and over again we would obtain. . .

x = 1 +
x

2

≡ { x by 1 + x
2 substitution followed by simplification }

x = 1 +
1 + x

2

2
= 1 +

1

2
+

x

4

4The initial and terminal datatypes do have inverses — 0 is its own “additive inverse” and 1 is
its own “multiplicative inverse” — but not all the others.

64 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

≡ { the same as above }

x = 1 +
1

2
+

1 + x
2

4
= 1 +

1

2
+

1

4
+

x

8

≡ { over and over again, n-times }
· · ·

≡ { simplification }

x =
n∑

i=0

1

2i
+

x

2n+1

≡ { sum of n first terms of a geometric progression }

x = (2− 1

2n
) +

x

2n+1

≡ { let n → ∞ }

x = (2− 0) + 0

≡ { simplification }
x = 2

Clearly, this is a much more complicated way of finding solution x = 2 for equation
(3.12). But we would have loved it in case it were the only knownway, and this is precisely
what happens with respect to (3.13). In this case we have:

L = 1 +A× L

≡ { substitution of 1 +A× L for L }

L = 1 +A× (1 +A× L)

≡ { distributive property (2.50) }

L ∼= 1 +A× 1 +A× (A× L)

≡ { unit of product (2.81) and associativity of product (2.32) }

L ∼= 1 +A+ (A×A)× L

≡ { by (2.82), (2.84) and (2.87) }

L ∼= A0 +A1 +A2 × L

≡ { another substitution as above and similar simplifications }

L ∼= A0 +A1 +A2 +A3 × L

≡ { after (n+ 1)-many similar steps }

3.2. FROM NATURAL NUMBERS TO FINITE SEQUENCES 65

L ∼=
n∑

i=0

Ai +An+1 × L

Bearing a large n in mind, let us deliberately (but temporarily) ignore termAn+1×L.
Then L will be isomorphic to the sum of n-many contributions Ai,

L ∼=
n∑

i=0

Ai

each of them consisting of i-long tuples, or sequences, of values of A. (Number i is said
to be the length of any sequence in Ai.) Such sequences will be denoted by enumerating
their elements between square brackets, for instance the empty sequence [] which is the
only inhabitant in A0, the two element sequence [a1, a2] which belongs to A2 provided
a1, a2 ∈ A, and so on. Note that all such contributions are mutually disjoint, that is,
Ai ∩ Aj = ∅ wherever i '= j. (In other words, a sequence of length i is never a sequence
of length j, for i '= j.) If we join all contributions Ai into a single set, we obtain the set
of all finite sequences on A, denoted by A! and defined as follows:

A! def
=

⋃

i≥0

Ai (3.14)

The intuition behind taking the limit in the numeric calculation above was that term
x

2n+1 was getting smaller and smaller as n went larger and larger and, “in the limit”, it
could be ignored. By analogy, taking a similar limit in the calculation just sketched above
will mean that, for a “sufficiently large” n, the sequences in An are so long that it is very
unlikely that we will ever use them! So, for n → ∞ we obtain

L ∼=
∞∑

i=0

Ai

Because
∑∞

i=0A
i is isomorphic to

⋃∞
i=0A

i (see exercise 2.20), we finally have:

L ∼= A!

All in all, we have obtained A! as a solution to equation (3.13). In other words,
datatype L is isomorphic to the datatype which contains all finite sequences of some pre-
defined datatype A. This corresponds to the HASKELL [a] datatype, in general. Recall
that we started from the “linked-list datatype” expressed in PASCAL or C. In fact, wher-
ever the C programmer thinks of linked-lists, the HASKELL programmer will think of
finite sequences.

But, what does equation (3.13) mean in fact? Is A! the only solution to this equation?
Back to the numeric field, we know of equations which have more than one solution —

66 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

for instance x = x2+3
4 , which admits two solutions 1 and 3 —, which have no solution

at all — for instance x = x + 1—, or which admit an infinite number of — for instance
x = x.

We will address these topics in the next section about inductive datatypes and in chap-
ter 7, where the formal semantics of recursion will be made explicit. This is where the
“limit” constructions used informally in this section will be shown to make sense.

3.3 Introducing inductive datatypes
Datatype L as defined by (3.13) is said to be recursive because L “recurs” in the definition
of L itself 5. From the discussion above, it is clear that set-theoretical equality “=” in this
equation should give place to set-theoretical isomorphism (“∼=”):

L ∼= 1 +A× L (3.15)

Which isomorphism L 1 +A× Lin"" do we expect to witness (3.13)? This will de-
pend on which particular solution to (3.13) we are thinking of. So far we have seen only
one, A!. By recalling the notion of algebra of a datatype (section 2.18), so we may
rephrase the question as: which algebra

A! 1 +A×A!in""

do we expect to witness the tautology which arises from (3.13) by replacing unknown L
with solution A!, that is

A! ∼= 1 +A×A! ?

It will have to be of the form in = [in1, in2] as depicted by the following diagram:

1
i1%%

in1 &&!
!!

!!
!!

!!
!! 1 +A×A!

in
!!

A×A!i2""

in2
''"""

""
""
""
""
"

A!

(3.16)

Arrows in1 and in2 can be guessed rather intuitively: in1 = [], which will express
the “NIL pointer” by the empty sequence, at A! level, and in2 = cons, where cons is the
standard “left append” sequence constructor, which we for the moment introduce rather
informally as follows:

cons : A×A! %% A!

cons(a, [a1, . . . , an]) = [a, a1, . . . , an]
(3.17)

5By analogy, we may regard (3.12) as a “recursive definition” of number 2.

3.3. INTRODUCING INDUCTIVE DATATYPES 67

In a diagram:

1
i1%%

[] &&!
!!

!!
!!

!!
!! 1 +A×A!

[[],cons]
!!

A×A!i2""

cons
''"""

""
""
""
""
"

A!

(3.18)

Of course, for in to be iso it needs to have an inverse, which is not hard to guess,

out
def
= (! + 〈hd , tl〉) · (=[]?) (3.19)

where sequence operators hd (head of a nonempty sequence) and tl (tail of a nonempty
sequence) are (again informally) described as follows:

hd : A! %% A
hd [a1, a2, . . . , an] = a1

(3.20)

tl : A! %% A!

tl [a1, a2, . . . , an] = [a2, . . . , an]
(3.21)

Showing that in and out are each other inverses is not a hard task either:

in · out = id

≡ { definitions of in and out }

[[], cons] · (! + 〈hd , tl〉) · (=[]?) = id

≡ { +-absorption (2.41) and (2.15) }

[[], cons · 〈hd , tl〉] · (=[]?) = id

≡ { property of sequences: cons(hd s, tl s) = s }

[[], id] · (=[]?) = id

≡ { going pointwise (2.60) }
{

=[] a ⇒ [[], id] (i1 a)
¬(=[] a) ⇒ [[], id] (i2 a)

= a

≡ { +-cancellation (2.38) }
{

=[] a ⇒ [] a
¬(=[] a) ⇒ id a

= a

≡ { a = [] in one case and identity function (2.9) in the other }

68 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

{
a = [] ⇒ a

¬(a = []) ⇒ a
= a

≡ { property (p → f, f) = f holds }
a = a

A comment on the particular choice of terminology above: symbol in suggests that
we are going inside, or constructing (synthesizing) values ofA!; symbol out suggests that
we are going out, or destructing (analyzing) values of A!. We shall often resort to this
duality in the sequel.

Are there more solutions to equation (3.15)? In trying to implement this equation, a
HASKELL programmer could have written, after the declaration of type A, the following
datatype declaration:

data L = Nil () | Cons (A,L)

which, as we have seen in section 2.18, can be written simply as

data L = Nil | Cons (A,L) (3.22)

and generates diagram

1
i1%%

Nil
((!

!!
!!

!!
!!

!! 1 +A× L

in′

!!

A× L
i2""

Cons
))###

##
##
##
##
#

L

(3.23)

leading to algebra in′ = [Nil, Cons].
HASKELL seems to have generated another solution for the equation, which it calls

L. To avoid the inevitable confusion between this symbol denoting the newly created
datatype and symbol L in equation (3.15), which denotes a mathematical variable, let us
use symbol T to denote the former (T stands for “type”). This can be coped with very
simply by writing T instead of L in (3.22):

data T = Nil | Cons (A,T) (3.24)

In order to make T more explicit, we will write inT instead of in′.
Some questions are on demand at this point. First of all, what is datatype T? What

are its inhabitants? Next, is T 1 +A× T
inT"" an iso or not?

HASKELL will help us to answer these questions. Suppose that A is a primitive nu-
meric datatype, and that we add deriving Show to (3.24) so that we can “see” the
inhabitants of the T datatype. The information associated to T is thus:

3.3. INTRODUCING INDUCTIVE DATATYPES 69

Main> :i T
-- type constructor
data T

-- constructors:
Nil :: T
Cons :: (A,T) -> T

-- instances:
instance Show T
instance Eval T

By typing Nil

Main> Nil
Nil :: T

we confirm that Nil is itself an inhabitant of T, and by typing Cons

Main> Cons
<<function>> :: (A,T) -> T

we realize that Cons is not so (as expected), but it can be used to build such inhabitants,
for instance:

Main> Cons(1,Nil)
Cons (1,Nil) :: T

or

Main> Cons(2,Cons(1,Nil))
Cons (2,Cons (1,Nil)) :: T

etc.We conclude that expressions involving Nil and Cons are inhabitants of type T. Are
these the only ones? The answer is yes because, by design of the HASKELL language,
the constructors of type T will remain fixed once its declaration is interpreted, that is,
no further constructor can be added to T. Does inT have an inverse? Yes, its inverse is
coalgebra

outT : T %% 1 +A× T

outTNil = i1 NIL
outT(Cons(a, l)) = i2(a, l)

(3.25)

which can be straightforwardly encoded in HASKELL using the Either realization of +
(recall sections 2.9 and 2.18):

70 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

outT :: T -> Either () (A,T)
outT Nil = Left ()
outT (Cons(a,l)) = Right(a,l)

In summary, isomorphism

T

outT
##

∼= 1 +A× T

inT

$$ (3.26)

holds, where datatype T is inhabited by symbolic expressions which we may visualize
very conveniently as trees, for instance

!

!
!

!
!

"
"
"!
!

!
!

"
"

"! !
1 Nil

Cons

2
Cons

picturing expression Cons(2, Cons(1, Nil)). Nil is the empty tree and Cons may be
regarded as the operation which adds a new root and a new branch, say a, to a tree t:

!
!

!
!

"
"
"

t

!
!

!
!

"
"

"
t

!
!

!
!

"
"
"!Cons(a,) =

Cons

a

The choice of symbols T, Nil and Cons was rather arbitrary in (3.24). Therefore, an
alternative declaration such as, for instance,

data U = Stop | Join (A,U) (3.27)

would have been perfectly acceptable, generating another solution for the equation under
algebra [Stop, Join]. It is easy to check that (3.27) is but a renaming ofNil to Stop and
of Cons to Join. Therefore, both datatypes are isomorphic, or “abstractly the same”.

Indeed, any other datatypeX inductively defined by a constant and a binary construc-
tor accepting A and X as parameters will be a solution to the equation. Because we are

3.4. OBSERVING AN INDUCTIVE DATATYPE 71

just renaming symbols in a consistent way, all such solutions are abstractly the same. All
of them capture the abstract notion of a list of symbols.

We wrote “inductively” above because the set of all expressions (trees) which inhabit
the type is defined by induction. Such types are called inductive and we shall have a lot
more to say about them in chapter 7 .

Exercise 3.3. Obviously,

either (const []) (:)

does not work as a HASKELL realization of the mediating arrow in diagram (3.18). What
do you need to write instead?
!

3.4 Observing an inductive datatype
Suppose that one is asked to express a particular observation of an inductive such as T

(3.24), that is, a function of signature B T
f"" for some target type B. Suppose, for

instance, that A is N0 (the set of all non-negative integers) and that we want to add all
elements which occur in a T-list. Of course, we have to ensure that addition is available
in N0,

add : N0 × N0
%% N0

add(x, y)
def
= x+ y

and that 0 ∈ N0 is a value denoting “the addition of nothing”. So constant arrow

N0 1
0

"" is available. Of course, add(0, x) = add(x, 0) = x holds, for all x ∈ N0.
This property means that N0, together with operator add and constant 0, forms a monoid,
a very important algebraic structure in computing which will be exploited intensively later
in this book. The following arrow “packaging” N0, add and 0,

N0 1 + N0 × N0
[0,add]

"" (3.28)

is a convenient way to express such a structure. Combining this arrow with the algebra

T 1 + N0 × T
inT"" (3.29)

72 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

which defines T, and the function f we want to define, the target of which is B = N0, we
get the almost closed diagram which follows, in which only the dashed arrow is yet to be
filled in:

T

f
!!

1 + N0 × T
inT""

!!
N0 1 + N0 × N0

[0,add]
""

(3.30)

We know that inT = [Nil, Cons]. A pattern for the missing arrow is not difficult to
guess: in the same way f bridges T and N0 on the lefthand side, it will do the same job
on the righthand side. So pattern · · ·+ · · ·× f comes to mind (recall section 2.10), where
the “· · ·” are very naturally filled in by identity functions. All in all, we obtain diagram

T

f
!!

1 + N0 × T
[Nil,Cons]

""

id+id×f
!!

N0 1 + N0 × N0
[0,add]

""

(3.31)

which pictures the following property of f

f · [Nil, Cons] = [0, add] · (id+ id× f) (3.32)

and is easy to convert to pointwise notation:

f · [Nil, Cons] = [0, add] · (id+ id× f)

≡ { (2.40) on the lefthand side, (2.41) and identity id on the righthand side }

[f ·Nil, f · Cons] = [0, add · (id× f)]

≡ { either structural equality (2.58) }
{

f ·Nil = 0
f · Cons = add · (id× f)

≡ { going pointwise }
{

(f ·Nil)x = 0x
(f · Cons)(a, x) = (add · (id× f))(a, x)

≡ { composition (2.6), constant (2.12), product (2.22) and definition of add }
{

f Nil = 0
f(Cons(a, x)) = a+ f x

3.4. OBSERVING AN INDUCTIVE DATATYPE 73

Note that we could have used outT in diagram (3.30),

T
outT %%

f
!!

1 + N0 × T

id+id×f
!!

N0 1 + N0 × N0
[0,add]

""

(3.33)

obtaining another version of the definition of f ,

f = [0, add] · (id+ id× f) · outT (3.34)

which would lead to exactly the same pointwise recursive definition:

f = [0, add] · (id+ id× f) · outT
≡ { (2.41) and identity id on the righthand side }

f = [0, add · (id× f)] · outT
≡ { going pointwise on outT (3.25) }

{
f Nil = ([0, add · (id× f)] · outT)Nil
f(Cons(a, x)) = ([0, add · (id× f)] · outT)(a, x)

≡ { definition of outT (3.25) }
{

f Nil = ([0, add · (id× f)] · i1)Nil
f(Cons(a, x)) = ([0, add · (id× f)] · i2)(a, x)

≡ { +-cancellation (2.38) }
{

f Nil = 0Nil
f(Cons(a, x)) = (add · (id× f)) (a, x)

≡ { simplification }
{

f Nil = 0
f(Cons(a, x)) = a+ f x

Pointwise f mirrors the structure of type T in having has many definition clauses as
constructors in T. Such functions are said to be defined by induction on the structure of
their input type. If we repeat this calculation for N0

! instead of T, that is, for

out = (! + 〈hd , tl〉) · (=[]?)

— recall (3.19) — taking place of outT, we get a “more algorithmic” version of f :

f = [0, add] · (id+ id× f) · (! + 〈hd , tl〉) · (=[]?)

74 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

≡ { +-functor (2.42), identity and ×-absorption (2.25) }

f = [0, add] · (! + 〈hd , f · tl〉) · (=[]?)

≡ { +-absorption (2.41) and constant 0 }

f = [0, add · 〈hd , f · tl〉] · (=[]?)

≡ { going pointwise on guard =[]? (2.60) and simplifying }

f l =

{
l = [] ⇒ 0 l

¬(l = []) ⇒ (add · 〈hd , f · tl〉) l

≡ { simplification }

f l =

{
l = [] ⇒ 0

¬(l = []) ⇒ hd l + f(tl l)

The outcome of this calculation can be encoded in HASKELL syntax as

f l | l == [] = 0
| otherwise = head l + f (tail l)

or

f l = if l == []
then 0
else head l + f (tail l)

both requiring the equality predicate “==” and destructors “head” and “tail”.

3.5 Synthesizing an inductive datatype
The issue which concerns us in this section dualizes what we have just dealt with: in-
stead of analyzing or observing an inductive type such as T (3.24), we want to be able to
synthesize (generate) particular inhabitants of T. In other words, we want to be able to

specify functions with signature B
f %% T for some given source type B. Let B = N0

and suppose we want f to generate, for a given natural number n > 0, the list containing
all numbers less or equal to n in decreasing order

Cons(n,Cons(n− 1, Cons(. . . , Nil)))

or the empty list Nil, in case n = 0.
Let us try and draw a diagram similar to (3.33) applicable to the new situation. In

trying to “re-use” this diagram, it is immediate that arrow f should be reversed. Bearing

3.5. SYNTHESIZING AN INDUCTIVE DATATYPE 75

duality in mind, we may feel tempted to reverse all arrows just to see what happens.
Identity functions are their own inverses, and inT takes the place of outT:

T 1 + N0 × T
inT""

N0

f

**

%% 1 + N0 × N0

id+id×f

**

Interestingly enough, the bottom arrow is the one which is not obvious to reverse, meaning
that we have to “invent” a particular destructor of N0, say

N0
g %% 1 + N0 × N0

fitting in the diagram and generating the particular computational effect we have in mind.
Once we do this, a recursive definition for f will pop out immediately,

f = inT · (id+ id× f) · g (3.35)

which is equivalent to:

f = [Nil, Cons · (id× f)] · g (3.36)

Because we want f 0 = Nil to hold, g (the actual generator of the computation) should
distinguish input 0 from all the others. One thus decomposes g as follows,

N0
=0?%%

g

++N0 + N0
!+h %% 1 + N0 × N0

leaving h to fill in. This will be a split providing, on the lefthand side, for the value to be
Cons’ed to the output and, on the righthand side, for the “seed” to the next recursive call.
Since we want the output values to be produced contiguously and in decreasing order, we
may define h = 〈id, pred〉 where, for n > 0,

pred n
def
= n− 1 (3.37)

computes the predecessor of n. Altogether, we have synthesized

g = (! + 〈id, pred〉) · (=0?) (3.38)

Filling this in (3.36) we get

f = [Nil, Cons · (id× f)] · (! + 〈id, pred〉) · (=0?)

≡ { +-absorption (2.41) followed by ×-absorption (2.25) etc. }

f = [Nil, Cons · 〈id, f · pred〉] · (=0?)

≡ { going pointwise on guard =0? (2.60) and simplifying }

f n =

{
n = 0 ⇒ Nil

¬(n = 0) ⇒ Cons(n, f (n− 1))

76 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

which matches the function we had in mind:

f n | n == 0 = Nil
| otherwise = Cons(n,f(n-1))

We shall see briefly that the constructions of the f function adding up a list of num-
bers in the previous section and, in this section, of the f function generating a list of
numbers are very standard in algorithm design and can be broadly generalized. Let us
first introduce some standard terminology.

3.6 Introducing (list) catas, anas and hylos
Suppose that, back to section 3.4, we want to multiply, rather than add, the elements
occurring in lists of type T (3.24). How much of the program synthesis effort presented
there can be reused in the design of the new function?

It is intuitive that only the bottom arrow N0 1 + N0 × N0
[0,add]

"" of diagram
(3.33) needs to be replaced, because this is the only place where we can specify that target
datatype N0 is now regarded as the carrier of another (multiplicative rather than additive)
monoidal structure,

N0 1 + N0 × N0
[1,mul]

"" (3.39)

for mul(x, y)
def
= x y. We are saying that the argument list is now to be reduced by the

multiplication operator and that output value 1 is expected as the result of “nothing left to
multiply”.

Moreover, in the previous section we might have wanted our number-list generator to
produce the list of even numbers smaller than a given number, in decreasing order (see
exercise 3.6). Intuition will once again help us in deciding that only arrow g in (3.35)
needs to be updated.

The following diagrams generalize both constructions by leaving such bottom arrows
unspecified,

T
outT %%

f
!!

1 + N0 × T

id+id×f
!!

B 1 + N0 ×Bg
""

T 1 + N0 × T
inT""

B

f

**

g
%% 1 + N0 ×B

id+id×f

** (3.40)

and express their duality (cf. the directions of the arrows). It so happens that, for each
of these diagrams, f is uniquely dependent on the g arrow, that is to say, each particular

3.6. INTRODUCING (LIST) CATAS, ANAS AND HYLOS 77

instantiation of g will determine the corresponding f . So both gs can be regarded as
“seeds” or “genetic material” of the f functions they uniquely define 6.

Following the standard terminology, we express these facts by writing f = (|g|) with
respect to the lefthand side diagram and by writing f = [(g)] with respect to the right-
hand side diagram. Read (|g|) as “the T-catamorphism induced by g” and [(g)] as “the
T-anamorphism induced by g”. This terminology is derived from the Greek words κατα
(cata) and ανα (ana) meaning, respectively, “downwards” and “upwards” (compare with
the direction of the f arrow in each diagram). The exchange of parentheses “()” and “[]”
in double parentheses “(| |)” and “[()]” is aimed at expressing the duality of both concepts.

We shall have a lot to say about catamorphisms and anamorphisms of a given type
such as T. For the moment, it suffices to say that

• theT-catamorphism induced by B 1 + N0 ×B
g"" is the unique function B T

(|g|)
""

which obeys to property (or is defined by)

(|g|) = g · (id+ id× (|g|)) · outT (3.41)

which is the same as

(|g|) · inT = g · (id+ id× (|g|)) (3.42)

• given B
g %% 1 + N0 ×B the T-anamorphism induced by g is the unique func-

tion B
[(g)]

%% T which obeys to property (or is defined by)

[(g)] = inT · (id+ id× [(g)]) · g (3.43)

From (3.40) it can be observed thatT can act as a mediator between anyT-anamorphism

and any T-catamorphism, that is to say, B T
(|g|)

"" composes with T C
[(h)]

"" , for some
C h %% 1 + N0 × C . In other words, a T-catamorphism call always observe (consume)
the output of a T-anamorphism. The latter produces a list of N0s which is consumed by
the former. This is depicted in the diagram which follows:

B 1 + N0 ×B
g""

T

(|g|)

**

1 + N0 × T
inT""

id+id×(|g|)

**

C

[(h)]

**

h
%% 1 + N0 × C

id+id×[(h)]

**

(3.44)

6The theory which supports the statements of this paragraph will not be dealt with until chapter
7 .

78 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

What can we say about the (|g|) · [(h)] composition? It is a function from B to C which re-
sorts to T as an intermediate data-structure and can be subject to the following calculation
(cf. outermost rectangle in (3.44)):

(|g|) · [(h)] = g · (id+ id× (|g|)) · (id+ id× [(h)]) · h

≡ { +-functor (2.42) }

(|g|) · [(h)] = g · ((id · id) + (id× (|g|)) · (id× [(h)])) · h

≡ { identity and ×-functor (2.28) }

(|g|) · [(h)] = g · (id+ id× (|g|) · [(h)]) · h

This calculation shows how to define C B
(|g|)·[(h)]

"" in one go, that is to say, doing
without any intermediate data-structure:

B 1 + N0 ×B
g""

C

(|g|)·[(h)]

**

h
%% 1 + N0 × C

id+id×(|g|)·[(h)]

** (3.45)

As an example, let us see what comes out of (|g|) · [(h)] for h and g respectively given by
(3.38) and (3.39):

(|g|) · [(h)] = g · (id+ id× (|g|) · [(h)]) · h

≡ { (|g|) · [(h)] abbreviated to f and instantiating h and g }

f = [1,mul] · (id+ id× f) · (! + 〈id, pred〉) · (=0?)

≡ { +-functor (2.42) and identity }

f = [1,mul] · (! + (id× f) · 〈id, pred〉) · (=0?)

≡ { ×-absorption (2.25) and identity }

f = [1,mul] · (! + 〈id, f · pred〉) · (=0?)

≡ { +-absorption (2.41) and constant 1 (2.15) }

f = [1,mul · 〈id, f · pred〉] · (=0?)

≡ { McCarthy conditional (2.59) }

f = (=0?) → 1,mul · 〈id, f · pred〉

Going pointwise, we get — via (2.59) —

f 0 = [1,mul · 〈id, f · pred〉](i1 0)

3.6. INTRODUCING (LIST) CATAS, ANAS AND HYLOS 79

= { +-cancellation (2.38) }
1 0

= { constant function (2.12) }
1

and

f(n+ 1) = [1,mul · 〈id, f · pred〉](i2(n+ 1))

= { +-cancellation (2.38) }

mul · 〈id, f · pred〉(n+ 1)

= { pointwise definitions of split, identity, predecessor andmul }

(n+ 1)× f n

In summary, f is but the well-known factorial function:
{

f 0 = 1
f(n+ 1) = (n+ 1)× f n

This result comes to no surprise if we look at diagram (3.44) for the particular g and
h we have considered above and recall a popular “definition” of factorial:

n! = n× (n− 1)× . . .× 1︸ ︷︷ ︸
n times

(3.46)

In fact, [(h)]n produces T-list

Cons(n,Cons(n− 1, . . . Cons(1, Nil)))

as an intermediate data-structure which is consumed by (|g|) , the effect of which is but the
“replacement” of Cons by × and Nil by 1, therefore accomplishing (3.46) and realizing
the computation of factorial.

The moral of this example is that a function as simple as factorial can be decomposed
into two components (producer/consumer functions) which share a common intermedi-
ate inductive datatype. The producer function is an anamorphism which “represents” or
produces a “view” of its input argument as a value of the intermediate datatype. The
consumer function is a catamorphism which reduces this intermediate data-structure and
produces the final result. Like factorial, many functions can be handsomely expressed by
a (|g|) · [(h)] composition for a suitable choice of the intermediate type, and of g and h. The
intermediate data-structure is said to be virtual in the sense that it only exists as a means
to induce the associated pattern of recursion and disappears by calculation.

80 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

The composition (|g|) · [(h)] of a T-catamorphism with a T-anamorphism is called a T-
hylomorphism 7 and is denoted by !g, h". Because g and h fully determine the behaviour
of the !g, h" function, they can be regarded as the “genes” of the function they define. As
we shall see, this analogy with biology will prove specially useful for algorithm analysis
and classification.

Exercise 3.4. A way of computing n2, the square of a given natural number n, is to
sum up the n first odd numbers. In fact, 12 = 1, 22 = 1 + 3, 32 = 1 + 3 + 5, etc.,
n2 = (2n− 1) + (n− 1)2. Following this hint, express function

sq n
def
= n2 (3.47)

as a T-hylomorphism and encode it in HASKELL.
!

Exercise 3.5. Write function xn as a T-hylomorphism and encode it in HASKELL.
!

Exercise 3.6. The following function in HASKELL computes the T-sequence of all even
numbers less or equal to n:

f n = if n <= 1
then Nil
else Cons(m,f(m-2))
where m = if even n then n else n-1

Find its “genetic material”, that is, function g such that f=[(g)] in

T 1 + N0 × T
inT""

N0

[(g)]

**

g
%% 1 + N0 × N0

id+id×[(g)]

**

!

7This terminology is derived from the Greek word vλoσ (hylos) meaning “matter”.

3.7. INDUCTIVE TYPES MORE GENERALLY 81

3.7 Inductive types more generally
So far we have focussed our attention exclusively to a particular inductive type T (3.29)
— that of finite sequences of non-negative integers. This is, of course, of a very limited
scope. First, because one could think of finite sequences of other datatypes, e.g. Booleans
or many others. Second, because other datatypes such as trees, hash-tables etc. exist which
our notation and method should be able to take into account.

Although a generic theory of arbitrary datatypes requires a theoretical elaboration
which cannot be explained at once, we can move a step further by taking the two obser-
vations above as starting points. We shall start from the latter in order to talk generically
about inductive types. Then we introduce parameterization and functorial behaviour.

Suppose that, as a mere notational convention, we abbreviate every expression of the
form “1+N0× . . .” occurring in the previous section by “F . . .”, e.g. 1+N0×B by FB,
e.g. 1 + N0 × T by FT

T

outT
,,∼= FT

inT

-- (3.48)

etc. This is the same as introducing a datatype-level operator

FX
def
= 1 + N0 ×X (3.49)

which maps every datatype A into datatype 1 + N0 × A. Operator F captures the pattern
of recursion which is associated to so-called “right” lists (of non-negative integers), that
is, lists which grow to the right. The slightly different pattern GX

def
= 1 + X × N0 will

generate a different, although related, inductive type

X ∼= 1 +X × N0 (3.50)

— that of so-called “left” lists (of non-negative integers). And it is not difficult to think of
the pattern which is merges both right and left lists and gives rise to bi-linear lists, better
known as binary trees:

X ∼= 1 +X × N0 ×X (3.51)

One may think of many other expressions FX and guess the inductive datatype they
generate, for instance HX

def
= N0 + N0 ×X generating non-empty lists of non-negative

integers (N+
0). The general rule is that, given an inductive datatype definition of the form

X ∼= FX (3.52)

(also called a domain equation), its pattern of recursion is captured by a so-called functor
F.

82 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

3.8 Functors
The concept of a functor F, borrowed from category theory, is a most generic and useful
device in programming 8. As we have seen, F can be regarded as a datatype constructor
which, given datatype A, builds a more elaborate datatype FA; given another datatype
B, builds a similarly elaborate datatype FB; and so on. But what is more important
and has the most beneficial consequences is that, if F is regarded as a functor, then its
data-structuring effect extends smoothly to functions in the following way: suppose that

B A
f"" is a function which observes A into B, which are parameters of FA and FB,

respectively. By definition, if F is a functor then FB FA
F f"" exists for every such f :

A

f
!!

FA

F f
!!

B FB

F f extends f to F-structures and will, by definition, obey to two very basic properties: it
commutes with identity

F idA = id(FA) (3.53)

and with composition

F(g · h) = (F g) · (Fh) (3.54)

Two simple examples of a functor follow:

• Identity functor: define FX = X , for every datatype X , and F f = f . Properties
(3.53) and (3.54) hold trivially just by removing symbol F wherever it occurs.

• Constant functors: for a given C, define FX = C (for all datatypes X) and F f =
idC , as expressed in the following diagram:

A

f
!!

C

idC
!!

B C

Properties (3.53) and (3.54) hold trivially again.
8The category theory practitioner must be warned of the fact that the word functor is used here

in a too restrictive way. A proper (generic) definition of a functor will be provided later in this
book.

3.9. POLYNOMIAL FUNCTORS 83

Data construction Universal construct Functor Description
A×B 〈f, g〉 f × g Product
A+B [f, g] f + g Coproduct
BA f fA Exponential

Table 3.1: Datatype constructions and associated operators.

In the same way functions can be unary, binary, etc., we can have functors with more
than one argument. So we get binary functors (also called bifunctors), ternary functors
etc.. Of course, properties (3.53) and (3.54) have to hold for every parameter of an n-ary
functor. For a binary functor B, for instance, equation (3.53) becomes

B (idA, idB) = idB (A,B) (3.55)

and equation (3.54) becomes

B (g · h, i · j) = B (g, i) · B (h, j) (3.56)

Product and coproduct are typical examples of bifunctors. In the former case one
has B (A,B) = A × B and B (f, g) = f × g — recall (2.22). Properties (2.29) and
(2.28) instantiate (3.55) and (3.56), respectively, and this explains why we called them
the functorial properties of product. In the latter case, one has B (A,B) = A + B and
B (f, g) = f + g — recall (2.37) — and functorial properties (2.43) and (2.42). Finally,
exponentiation is a functorial construction too: assuming A, one has FX def

= XA and
F f

def
= f · ap and functorial properties (2.73) and (2.74). All this is summarized in table

3.1.
Such as functions, functors may compose with each other in the obvious way: the

composition of F and G, denoted F · G, is defined by

(F · G)X def
= F (GX) (3.57)

(F · G)f def
= F (G f) (3.58)

3.9 Polynomial functors
Wemay put constant, product, coproduct and identity functors together to obtain so-called
polynomial functors, which are described by polynomial expressions, for instance

FX = 1 +A×X

— recall (3.15). A polynomial functor is either

84 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

• a constant functor or the identity functor, or

• the (finitary) product or coproduct (sum) of other polynomial functors, or

• the composition of other polynomial functors.

So the effect on arrows of a polynomial functor is computed in an easy and structured
way, for instance:

F f = (1 +A×X)f

= { sum of two functors where A is a constant and X is a variable }

(1)f + (A×X)f

= { constant functor and product of two functors }

id1 + (A)f × (X)f

= { constant functor and identity functor }

id1 + idA × f

= { subscripts dropped for simplicity }

id+ id× f

So, 1 +A× f denotes the same as id1 + idA × f , or even the same as id+ id× f if one
drops the subscripts.

It should be clear at this point that what was referred to in section 2.10 as a “symbolic
pattern” applicable to both datatypes and arrows is after all a functor in the mathematical
sense. The fact that the same polynomial expression is used to denote both the data
and the operators which structurally transform such data is of great conceptual economy
and practical application. For instance, once polynomial functor (3.49) is assumed, the
diagrams in (3.40) can be written as simply as

T
outT %%

f
!!

FT

F f
!!

B FBg
""

T FT
inT""

B

f

**

g
%% FB

F f

** (3.59)

It is useful to know that, thanks to the isomorphism laws studied in chapter 2, every
polynomial functor F may be put into the canonical form,

FX ∼= C0 + (C1 ×X) + (C2 ×X2) + · · ·+ (Cn ×Xn)
=

∑n
i=0Ci ×Xi (3.60)

3.9. POLYNOMIAL FUNCTORS 85

and that Newton’s binomial formula

(A+B)n ∼=
n∑

p=0

nCp ×An−p ×Bp (3.61)

can be used in such conversions. These are performed up to isomorphism, that is to say,
after the conversion one gets a different but isomorphic datatype. Consider, for instance,
functor

FX
def
= A× (1 +X)2

(where A is a constant datatype) and check the following reasoning:

FX = A× (1 +X)2

∼= { law (2.87) }

A× ((1 +X)× (1 +X))

∼= { law (2.50) }

A× ((1 +X)× 1 + (1 +X)×X))

∼= { laws (2.81), (2.31) and (2.50) }

A× ((1 +X) + (1×X +X ×X))

∼= { laws (2.81) and (2.87) }

A× ((1 +X) + (X +X2))

∼= { law (2.46) }

A× (1 + (X +X) +X2)

∼= { canonical form obtained via laws (2.50) and (2.88) }

A︸︷︷︸
C0

+A× 2︸ ︷︷ ︸
C1

×X + A︸︷︷︸
C2

×X2

Exercise 3.7. Synthesize the isomorphism A+A× 2×X +A×X2 A× (1 +X2)ν""

implicit in the above reasoning.
!

86 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

3.10 Polynomial inductive types
An inductive datatype is said to be polynomial wherever its pattern of recursion is de-
scribed by a polynomial functor, that is to say, wherever F in equation (3.52) is polyno-
mial. For instance, datatype T (3.29) is polynomial (n = 1) and its associated polynomial
functor is canonically defined with coefficients C0 = 1 and C1 = N0. For reasons that
will become apparent later on, we shall always impose C0 '= 0 to hold in a polynomial
datatype expressed in canonical form.

Polynomial types are easy to encode in HASKELL wherever the associated functor is
in canonical polynomial form, that is, wherever one has

T ∼=
∑n

i=0Ci × Ti

inT

.. (3.62)

Then we have
inT

def
= [f1, . . . , fn]

where, for i = 1, n, fi is an arrow of type T Ci × Ti"" . Since n is finite, one may
expand exponentials according to (2.87) and encode this in HASKELL as follows:

data T = C0 |
C1 (C1,T) |
C2 (C2,(T,T)) |
... |
Cn (Cn,(T, ..., T))

Of course the choice of symbol Ci to realize each fi is arbitrary 9. Several instances of
polynomial inductive types (in canonical form) will be mentioned in section 3.14. Section
3.18 will address the conversion between inductive datatypes induced by so-called natural
transformations.

The concepts of catamorphism, anamorphism and hylomorphism introduced in sec-
tion 3.6 can be extended to arbitrary polynomial types. We devote the following sections
to explaining catamorphisms in the polynomial setting. Polynomial anamorphisms and
hylomorphisms will not be dealt with until chapter 7.

9A more traditional (but less close to (3.62)) encoding will be

data T = C0 | C1 C1 T | C2 C2 T T | ... | Cn Cn T ... T (3.63)

delivering every constructor in curried form.

3.11. F-ALGEBRAS AND F-HOMOMORPHISMS 87

3.11 F-algebras and F-homomorphisms
Our interest in polynomial types is basically due to the fact that, for polynomial F, equa-
tion (3.52) always has a particularly interesting solution which corresponds to our notion
of a recursive datatype.

In order to explain this, we need two notions which are easy to understand: first, that
of an F-algebra, which simply is any function α of signature A FAα"" . A is called
the carrier of F-algebra α and contains the values which α manipulates by computing
new A-values out of existing ones, according to the F-pattern (the “type” of the algebra).
As examples, consider [0, add] (3.28) and inT (3.29), which are both algebras of type
FX = 1+N0 ×X . The type of an algebra clearly determines its form. For instance, any
algebra α of type FX = 1+X×X will be of form [α1,α2], where α1 is a constant and
α2 is a binary operator. So monoids are algebras of this type 10.

Secondly, we introduce the notion of an F-homomorphism which is but a function
observing a particular F-algebra α into another F-algebra β:

A

f
!!

FA

F f
!!

α""

B FB
β

""

f · α = β · (F f) (3.64)

Clearly, f can be regarded as a structural translation between A and B, that is, A and
B have a similar structure 11. Note that — thanks to (3.53) — identity functions are
always (trivial) F-homomorphisms and that — thanks to (3.54) — these homomorphisms
compose, that is, the composition of two F-homomorphisms is an F-homomorphism.

3.12 F-catamorphisms
An F-algebra can be epic, monic or both, that is, iso. Iso F-algebras are particularly
relevant to our discussion because they describe solutions to theX ∼= FX equation (3.52).
Moreover, for polynomial F a particular iso F-algebra always exists, which is denoted by
µF FµFin"" and has special properties. First, its carrier is the smallest among the
carriers of other iso F-algebras, and this is why it is denoted by µF— µ for “minimal” 12.
Second, it is the so-called initial F-algebra. What does this mean?

10But not every algebra of this type is a monoid, since the type of an algebra only fixes its syntax
and does not impose any properties such as associativity, etc.

11Cf. homomorphism = homo (the same) + morphos (structure, shape).
12µF means the least fixpoint solution of equation X ∼= FX , as will be described in chapter 7 .

88 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

It means that, for every F-algebra α there exists one and only one F-homomorphism
between in and α. This unique arrow mediating in and α is therefore determined by
α itself, and is called the F-catamorphism generated by α. This construct, which was
introduced in 3.6, is in general denoted by (|α|)

F
:

µF

f=(|α|)
F

!!

FµF

F (|α|)
F

!!

in""

A FAα
""

(3.65)

We will drop the F subscript in (|α|)
F
wherever deducible from the context, and often call

α the “gene” of (|α|)
F
.

As happens with splits, eithers and transposes, the uniqueness of the catamorphism
construct is captured by a universal property established in the class of all F-homomorphisms:

k = (|α|) ⇔ k · in = α · F k (3.66)

According to the experience gathered from section 2.12 onwards, a few properties can be
expected as consequences of (3.66). For instance, one may wonder about the “gene” of
the identity catamorphism. Just let k = id in (3.66) and see what happens:

id = (|α|)⇔ id · in = α · F id

= { identity (2.10) and F is a functor (3.53) }

id = (|α|)⇔ in = α · id

= { identity (2.10) once again }

id = (|α|)⇔ in = α

= { α replaced by in and simplifying }

id = (|in|)

Thus one finds out that the genetic material of the identity catamorphism is the initial
algebra in. Which is the same as establishing the reflection property of catamorphisms:

Cata-reflection :

µF

(|in|)
!!

FµF

F (|in|)
!!

in""

µF FµF
in

""

(|in|) = idµF (3.67)

3.12. F-CATAMORPHISMS 89

In a more intuitive way, one might have observed that (|in|) is, by definition of in, the
unique arrow mediating µF and itself. But another arrow of the same type is already
known: the identity idµF. So these two arrows must be the same.

Another property following immediately from (3.66), for k = (|α|), is

Cata-cancellation :

(|α|) · in = α · F (|α|) (3.68)

Because in is iso, this law can be rephrased as follows

(|α|) = α · F (|α|) · out (3.69)

where out denotes the inverse of in:

µF

out
//∼= FµF

in

$$

Now, let f be F-homomorphism (3.64) between F-algebras α and β. How does it
relate to (|α|) and (|β|)? Note that f · (|α|) is an arrow mediating µF and B. But B is the
carrier of β and (|β|) is the unique arrow mediating µF and B. So the two arrows are the
same:

Cata-fusion :

µF

(|α|)
!!

FµF

F(|α|)
!!

in""

A

f
!!

FAα
""

F f
!!

B FB
β

""

f · (|α|) = (|β|) if f · α = β · F f (3.70)

Of course, this law is also a consequence of the universal property, for k = f · (|α|):

f · (|α|) = (|β|) ⇔ (f · (|α|)) · in = β · F (f · (|α|))

⇔ { composition is associative and F is a functor (3.54) }

f · ((|α|) · in) = β · (F f) · (F (|α|))

⇔ { cata-cancellation (3.68) }

f · α · F (|α|) = β · F f · F (|α|)

90 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

⇐ { require f to be a F-homomorphism (3.64) }

f · α · F (|α|) = f · α · F (|α|) ∧ f · α = β · F f

⇔ { simplify }

f · α = β · F f

The presentation of the absorption property of catamorphisms entails the very impor-
tant issue of parameterization and deserves to be treated in a separate section, as follows.

3.13 Parameterization and type functors
By analogy with what we have done about splits (product), eithers (coproduct) and trans-
poses (exponential), we now look forward to identifying F-catamorphisms which exhibit
functorial behaviour.

Suppose that one wishes to square all numbers which are members of lists of type T
(3.29). It can be checked that

(|[Nil, Cons · (sq × id)]|) (3.71)

will do this for us, where N0 N0
sq"" is given by (3.47). This catamorphism, which

converted to pointwise notation is nothing but function h which follows
{

hNil = Nil
h(Cons(a, l)) = Cons(sq a, h l)

maps type T to itself. This is because sq maps N0 to N0. Now suppose that, instead of sq ,

one would like to apply a given function B N0
f"" (for some B other than N0) to all

elements of the argument list. It is easy to see that it suffices to replace f for sq in (3.71).
However, the output type no longer is T, but rather type T′ ∼= 1 +B × T′.

Types T and T′ are very close to each other. They share the same “shape” (recursive
pattern) and only differ with respect to the type of elements — N0 in T and B in T′. This
suggests that these two types can be regarded as instances of a more generic list datatype
List

ListX ∼= 1 +X × ListX

in=[Nil,Cons]

00 (3.72)

in which the type of elements X is allowed to vary. Thus one has T = ListN0 and
T′ = ListB.

3.13. PARAMETERIZATION AND TYPE FUNCTORS 91

By inspection, it can be checked that, for every B A
f"" ,

(|[Nil, Cons · (f × id)]|) (3.73)

maps ListA to ListB. Moreover, for f = id one has:

(|[Nil, Cons · (id× id)]|)

= { by the ×-functor-id property (2.29) and identity }

(|[Nil, Cons]|)

= { cata-reflection (3.67) }

id

Therefore, by defining

List f
def
= (|[Nil, Cons · (f × id)]|)

what we have just seen can be written thus:

List idA = idListA

This is nothing but law (3.53) for F replaced by List. Moreover, it will not be too difficult
to check that

List (g · f) = List g · List f

also holds — cf. (3.54). Altogether, this means that List can be regarded as a functor.
In programming terminology one says that ListX (the “lists ofXs datatype”) is para-

metric and that, by instantiating parameter X , one gets ground lists such as lists of inte-
gers, booleans, etc. The illustration above deepens one’s understanding of parameteri-
zation by identifying the functorial behaviour of the parametric datatype along with its
parameter instantiations.

All this can be broadly generalized and leads to what is commonly known by a type
functor. First of all, it should be clear that the generic format

T ∼= FT

adopted so far for the definition of an inductive type is not sufficiently detailed because
it does not provide a parametric view of T. For simplicity, let us suppose (for the mo-
mement) that only one parameter is identified in T. Then we may factor this out via type
variable X and write (overloading symbol T)

TX ∼= B(X,TX)

92 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

where B is called the type’s base functor. Binary functor B(X,Y) is given this name
because it is the basis of the whole inductive type definition. By instantiation of X one
obtains F. In the example above, B (X,Y) = 1 +X × Y and in fact FY = B (N0, Y) =
1 + N0 × Y , recall (3.49). Moreover, one has

F f = B (id, f) (3.74)

and so every F-homomorphism can be written in terms of the base-functor of F, e.g.

f · α = β · B (id, f)

instead of (3.64).
TX will be referred to as the type functor generated by B:

TX︸︷︷︸
type functor

∼= B(X,TX)︸ ︷︷ ︸
base functor

We proceed to the description of its functorial behaviour—T f—for a given B A
f"" .

As far as typing rules are concerned, we shall have

B A
f""

TB TA
T f""

So we should be able to express T f as a B (A,)-catamorphism (|g|):

A

f

!!

TA

T f=(|g|)
!!

B (A,TA)
inTA""

B (id,T f)
!!

B TB B (A,TB)g
""

As we know that inTB is the standard constructor of values of type TB, we may put it
into the diagram too:

A

f

!!

TA

T f=(|g|)
!!

B (A,TA)
inTA""

B (id,T f)
!!

B TB B (A,TB)g
""

B (B,TB)

inTB

11!!!!!!!!!!

3.13. PARAMETERIZATION AND TYPE FUNCTORS 93

The catamorphism’s gene g will be synthesized by filling the dashed arrow in the diagram
with the “obvious” B (f, id), whereby one gets

T f
def
= (|inTB · B (f, id)|) (3.75)

and a final diagram, where inTA is abbreviated by inA (ibid. inTB by inB):

A

f

!!

TA

T f=(|inB ·B (f,id)|)
!!

B (A,TA)
inA""

B (id,T f)
!!

B TB B (B,TB)
inB

"" B (A,TB)
B (f,id)
""

Next, we proceed to derive the useful law of cata-absorption

(|g|) · T f = (|g · B (f, id)|) (3.76)

as consequence of the laws studied in section 3.12. Our target is to show that, for k =
(|g|) · T f in (3.66), one gets α = g · B (f, id):

(|g|) · T f = (|α|)

⇔ { type-functor definition (3.75) }

(|g|) · (|inB · B (f, id)|) = (|α|)

⇐ { cata-fusion (3.70) }

(|g|) · inB · B (f, id) = α · B (id, (|g|))

⇔ { cata-cancellation (3.68) }

g · B (id, (|g|)) · B (f, id) = α · B (id, (|g|))

⇔ { B is a bi-functor (3.56) }

g · B (id · f, (|g|) · id) = α · B (id, (|g|))

⇔ { id is natural (2.11) }

g · B (f · id, id · (|g|)) = α · B (id, (|g|))

⇔ { (3.56) again, this time from left to right }

g · B (f, id) · B (id, (|g|)) = α · B (id, (|g|))

⇐ { Leibniz }

g · B (f, id) = α

94 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

The following diagram pictures this property of catamorphisms:

A

f

!!

TA

T f

!!

B (A,TA)
inA""

B (id,T f)
!!

C TC

(|g|)
!!

B (C,TC)
inC

""

B (id,(|g|))
!!

B (A,TC)
B (f,id)
""

B (id,(|g|))
!!

D B (C,D)g
"" B (A,D)

B (f,id)
""

It remains to show that (3.75) indeed defines a functor. This can be verified by check-
ing properties (3.53) and (3.54) for F = T :

• Property type-functor-id, cf. (3.53):

T id

= { by definition (3.75) }

(|inB · B (id, id)|)

= { B is a bi-functor (3.55) }

(|inB · id|)

= { identity and cata-reflection (3.67) }

id

• Property type-functor, cf. (3.54) :

T (f · g)

= { by definition (3.75) }

(|inB · B (f · g, id)|)

= { id · id = id and B is a bi-functor (3.56) }

(|inB · B (f, id) · B (g, id)|)

= { cata-absorption (3.76) }

(|inB · B (f, id)|) · T g

= { again cata-absorption (3.76) }

(|inB|) · T f · T g

= { cata-reflection (3.67) followed by identity }

T f · T g

3.14. A CATALOGUEOF STANDARD POLYNOMIAL INDUCTIVE TYPES95

3.14 A catalogue of standard polynomial inductive
types

The following table contains a collection of standard polynomial inductive types and as-
sociated base type bi-functors, which are in canonical form (3.62). The table contains two
extra columns which may be used as bookmarks for equations (3.74) and (3.75), respec-
tively 13:

Description TX B (X,Y) B (id, f) B (f, id)

“Right” Lists ListX 1 +X × Y id+ id× f id+ f × id
“Left” Lists LListX 1 + Y ×X id+ f × id id+ id× f
Non-empty Lists NListX X +X × Y id+ id× f f + f × id
Binary Trees BTreeX 1 +X × Y 2 id+ id× f2 id+ f × id
“Leaf” Trees LTreeX X + Y 2 id+ f2 f + id

(3.77)

All type functors T in this table are unary. In general, one may think of inductive
datatypes which exhibit more than one type parameter. Should n parameters be identified
in T, then this will be based on an n+ 1-ary base functor B, cf.

T(X1, . . . , Xn) ∼= B(X1, . . . , Xn,T(X1, . . . , Xn))

So, every n + 1-ary polynomial functor B(X1, . . . , Xn, Xn+1) can be identified as the
basis of an inductive n-ary type functor (the convention is to stick to the canonical form
and reserve the last variableXn+1 for the “recursive call”). While type bi-functors (n = 2)
are often found in programming, the situation in which n > 2 is relatively rare. For
instance, the combination of leaf-trees with binary-trees in (3.77) leads to the so-called
“full tree” type bi-functor

Description T(X1, X2) B(X1, X2, Y) B(id, id, f) B(f, g, id)

“Full” Trees FTree(X1, X2) X1 +X2 × Y 2 id+ id× f2 f + g × id
(3.78)

As we shall see later on, these types are widely used in programming. In the actual
encoding of these types in HASKELL, exponentials are normally expanded to products
according to (2.87), see for instance

data BTree a = Empty | Node(a, (BTree a, BTree a))

Moreover, one may chose to curry the type constructors as in, e.g.

data BTree a = Empty | Node a (BTree a) (BTree a)

13Since (idA)2 = id(A2) one writes id2 for id in this table.

96 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

Exercise 3.8. Write as a catamorphisms

• the function which counts the number of elements of a non-empty list (type NList
in (3.77)).

• the function which computes the maximum element of a binary-tree of natural num-
bers.

!

Exercise 3.9. Characterize the function which is defined by (|[[], h]|) for each of the
following definitions of h:

h(x, (y1, y2)) = y1 ++ [x] ++ y2 (3.79)
h = ++ · (singl ×++) (3.80)
h = ++ · (++× singl) · swap (3.81)

assuming singl a = [a]. Identify in (3.77) which datatypes are involved as base functors.
!

Exercise 3.10. Write as a catamorphism the function which computes the frontier of a
tree of type LTree (3.77), listed from left to right.
!

3.15 Functors and type functors in HASKELL
The concept of a (unary) functor is provided in HASKELL in the form of a particular class
exporting the fmap operator:

class Functor f where
fmap :: (a -> b) -> (f a -> f b)

3.16. THE MUTUAL-RECURSION LAW 97

So fmap g encodes F g once we declare F as an instance of class Functor. The most
popular use of fmap has to do with HASKELL lists, as allowed by declaration

instance Functor [] where
fmap f [] = []
fmap f (x:xs) = f x : fmap f xs

in language’s Standard Prelude.
In order to encode the type functors we have seen so far we have to do the same

concerning their declaration. For instance, should we write

instance Functor BTree
where fmap f =

cataBTree (inBTree . (id -|- (f >< id)))

concerning the binary-tree datatype of (3.77) and assuming appropriate declarations of
cataBTree and inBTree, then fmap is overloaded and used across such binary-trees.

Bi-functors can be added easily by writing

class BiFunctor f where
bmap :: (a -> b) -> (c -> d) -> (f a c -> f b d)

Exercise 3.11. Declare all datatypes in (3.77) in HASKELL notation and turn them into
HASKELL type functors, that is, define fmap in each case.
!

Exercise 3.12. Declare datatype (3.78) in HASKELL notation and turn it into an instance
of class BiFunctor.
!

3.16 The mutual-recursion law
The theory developed so far for building (and reasoning about) recursive functions doesn’t
cope with mutual recursion. As a matter of fact, the pattern of recursion of a given

98 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

cata(ana,hylo)morphism involves only the recursive function being defined, even though
more than once, in general, as dictated by the relevant base functor.

It turns out that rules for handling mutual recursion are surprisingly simple to calcu-
late. As motivation, recall section 2.10 where, by mixing products with coproducts, we
obtained a result — the exchange rule (2.47) — which stemmed from putting together the
two universal properties of product and coproduct, (2.55) and (2.57), respectively.

The question we want to address in this section is of the same brand: what can one
tell about catamorphisms which output pairs of values? By (2.55), such catamorphisms
are bound to be splits, as are the corresponding genes:

T

(|〈h,k〉|)

!!

FT

F (|〈h,k〉|)
!!

in""

A×B F (A×B)
〈h,k〉
""

As we did for the exchange rule, we put (2.55) and the universal property of catamor-
phisms (3.66) against each other and calculate:

〈f, g〉 = (|〈h, k〉|)

≡ { cata-universal (3.66) }

〈f, g〉 · in = 〈h, k〉 · F 〈f, g〉

≡ { ×-fusion (2.24) twice }

〈f · in, g · in〉 = 〈h · F 〈f, g〉, k · F 〈f, g〉〉

≡ { (2.56) }

f · in = h · F 〈f, g〉 ∧ g · in = k · F 〈f, g〉

The rule thus obtained,
{

f · in = h · F 〈f, g〉
g · in = k · F 〈f, g〉 ≡ 〈f, g〉 = (|〈h, k〉|) (3.82)

is referred to as the mutual recursion law (or as “Fokkinga’s law”) and is useful in com-
bining two mutually recursive functions f and g

T

f

!!

FT

F 〈f,g〉
!!

in""

A F (A×B)
h

""

T

g

!!

FT

F 〈f,g〉
!!

in""

B F (A×B)
k

""

3.16. THE MUTUAL-RECURSION LAW 99

into a single catamorphism.
When applied from left to right, law (3.82) is surprisingly useful in optimizing recur-

sive functions in a way which saves redundant traversals of the input inductive type T.
Let us take the Fibonacci function as example:

fib 0 = 1

fib 1 = 1

fib(n+ 2) = fib(n+ 1) + fib n

It can be shown that fib is a hylomorphism of type LTree (3.77), fib = !count, fibd", for
count = [1, add], add(x, y) = x + y and fibd n = if n < 2 then i1Nil else i2(n −
1, n− 2). This hylo-factorization of fib tells its internal algorithmic structure: the divide
step [(fibd)] builds a tree whose number of leaves is a Fibonacci number; the conquer step
(|count|) just counts such leaves.

There is, of course, much re-calculation in this hylomorphism. Can we improve its
performance? The clue is to regard the two instances of fib in the recursive branch as
mutually recursive over the natural numbers. This clue is suggested not only by fib
having two base cases (so, perhaps it hides two functions) but also by the lookahead n+2
in the recursive clause.

We start by defining a function which reduces such a lookahead by 1,

f n = fib(n+ 1)

Clearly, f(n+ 1) = fib(n+ 2) = f n+ fib n and f 0 = fib 1 = 1. Putting f and fib
togther,

f 0 = 1

f(n+ 1) = f n+ fib n

fib 0 = 1

fib(n+ 1) = f n

we obtain two mutually recursive functions over the natural numbers (N0) which trans-
form into pointfree equalities

f · [0, suc] = [1, add · 〈f, fib〉]
fib · [0, suc] = [1, f]

over

N0

##
∼= 1 + N0︸ ︷︷ ︸

FN0in=[0,suc]

$$ (3.83)

100 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

Reverse +-absorption (2.41) will further enable us to rewrite the above into

f · in = [1, add] · F 〈f, fib〉
fib · in = [1,π1] · F 〈f, fib〉

thus bringing functor F f = id+ f explicit and preparing for mutual recursion removal:

f · in = [1, add] · F 〈f, fib〉
fib · in = [1,π1] · F 〈f, fib〉

≡ { (3.82) }

〈f, fib〉 = (|〈[1, add], [1,π1]〉|)

≡ { exchange law (2.47) }

〈f, fib〉 = (|[〈1, 1〉, 〈add,π1〉]|)

≡ { going pointwise and denoting 〈f, fib〉 by fib′ }
{

fib′ 0 = (1, 1)
fib′ (n+ 1) = (x+ y, x) where (x, y) = fib′ n

Since fib = π2 · fib′ we easily recover fib from fib′ and obtain the intended linear
version of Fibonacci, below encoded in Haskell:

fib n = y where (x,y) = fib’ n
fib’ 0 = (1,1)
fib’ (n+1) = (x+y,x)

where (x,y) = fib’ n

This version of fib is actually the semantics of the “for-loop”— recall (3.6) — one would
write in an imperative language which would initialize two global variables x, y := 1, 1,
loop over assignment x, y := x + y, x and yield the result in y. In the C programming
language, one would write

int fib(int n)
{
int x=1; int y=1; int i;
for (i=1;i<=n;i++) {int a=x; x=x+y; y=a;}
return y;
};

where the extra variable a is required for ensuring that simultaneous assignment x, y :=
x+ y, x takes place in a sequential way.

3.16. THE MUTUAL-RECURSION LAW 101

Recall from section 3.1 that allN0 catamorphisms are of shape (|[k, g]|) and such that
(|[k, g]|)n = gnk, where gn is the n-th iteration of g, that is, g0 = id and gn+1 = g · gn.
That is, g is the body of a “for-loop” which repeats itself n-times, starting with initial
value k. Recall also that the for-loop combinator is nothing but the “fold combinator”
(3.4) associated to the natural number data type.

In a sense, the mutual recursion law gives us a hint on how global variables “are born”
in computer programs, out of the maths definitions themselves. Quite often more that two
such variables are required in linearizing hylomorphisms by mutual recursion. Let us see
an example. The question is: how many squares can one draw on a n×n-tiled wall? The
answer is given by function

ns n
def
=

∑

i=1,n

i2

that is,

ns 0 = 0

ns(n+ 1) = (n+ 1)2 + ns n

in Haskell. However, this hylomorphism is inefficient because each iteration involves
another hylomorphism computing square numbers.

One way of improving ns is to introduce function bnm n
def
= (n + 1)2 and express

this over (3.83),

bnm 0 = 1

bnm(n+ 1) = 2n+ 3 + bnm n

hoping to blend ns with bnm using the mutual recursion law. However, the same problem
arises in bnm itself, which now depends on term 2n+ 3. We invent lin n

def
= 2n + 3 and

repeat the process, thus obtaining:

lin 0 = 3

lin(n+ 1) = 2 + lin n

By redefining

bnm′ 0 = 1

bnm′(n+ 1) = lin n+ bnm′ n

ns′ 0 = 0

ns′(n+ 1) = bnm′ n+ ns′ n

102 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

we obtain three functions — ns′, bnm′ and lin—mutually recursive over the polynomial
base F g = id+ g of the natural numbers.

Exercise 3.13 below shows how to extend (3.82) to three mutually recursive functions
(3.84). (From this it is easy to extend it further to the n-ary case.) It is routine work to
show that, by application of (3.84) to the above three functions, one obtains the linear
version of ns which follows:

ns’’ n = let (a,b,c) = aux n in a
where

aux 0 = (0,1,3)
aux(n+1) = let (a,b,c) = aux n

in (a+b,b+c,2+c)

In retrospect, note that (in general) not every system of nmutually recursive functions

f1 = φ1(f1, . . . , fn)
...
fn = φn(f1, . . . , fn)

involving n functions and n functional combinators φ1, . . . ,φn can be handled by a suit-
ably extended version of (3.82). This only happens if all fi have the same “shape”, that
is, if they share the same base functor F.

Exercise 3.13. Show that law (3.82) generalizes to more than two mutually recursive
functions, in this case three:

f · in = h · F 〈f, 〈g, j〉〉
g · in = k · F 〈f, 〈g, j〉〉
j · in = l · F 〈f, 〈g, j〉〉

≡ 〈f, 〈g, j〉〉 = (|〈h, 〈k, l〉〉|) (3.84)

!

Exercise 3.14. The exponential function ex : IR → IR (where “e” denotes Euler’s
number) can be defined in several ways, one being the calculation of Taylor series:

ex =
∞∑

n=0

xn

n!
(3.85)

The following function, in Haskell,

3.16. THE MUTUAL-RECURSION LAW 103

exp :: Double -> Integer -> Double
exp x 0 = 1
exp x (n+1) = xˆ(n+1) / fac (n+1) + (exp x n)

computes an approximation of ex, where the second parameter tells how many terms to
compute. For instance, while exp 1 1 = 2.0, exp 1 10 yields 2.7182818011463845.
Function exp x n performs badly for n larger and larger: while exp 1 100 runs instan-

taneously, exp 1 1000 takes around 9 seconds, exp 1 2000 takes circa 33 seconds, and so
on.
Decompose exp into mutually recursive functions so as to apply (3.84) and obtain the

following linear version:
exp x n = let (e,b,c) = aux x n

in e where
aux x 0 = (1,2,x)
aux x (n+1) = let (e,s,h) = aux x n

in (e+h,s+1,(x/s)*h)

!

Exercise 3.15. Show that, for all n ∈ N0, n = sucn0. Hint: use cata-reflexion (3.67).
!

As example of application of (3.82) for T other than N0, consider the following re-
cursive predicate which checks whether a (non-empty) list is ordered,

ord : A+ %% 2
ord [a] = TRUE
ord (cons(a, l)) = a ≥ (listMax l) ∧ (ord l)

where ≥ is assumed to be a total order on datatype A and

listMax = (|[id,max]|) (3.86)

computes the greatest element of a given list of As:

A+

listMax
!!

A+A×A+

id+id×listMax
!!

[singl ,cons]
""

A A+A×A
[id,max]

""

104 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

(In the diagram, singl a = [a].)
Predicate ord is not a catamorphism because of the presence of listMax l in the

recursive branch. However, the following diagram depicting ord

A+

ord

!!

A+A×A+

id+id×〈listMax,ord〉
!!

[singl ,cons]
""

2 A+A× (A× 2)
[TRUE,α]

""

(where α(a, (m, b))
def
= a ≥ m ∧ b) suggests the possibility of using the mutual recursion

law. One only has to find a way of letting listMax depend also on ord, which isn’t
difficult: for any A+ g %% B , one has

A+

listMax

!!

A+A×A+

id+id×〈listMax,g〉
!!

[singl ,cons]
""

A A+A× (A×B)
[id,max·(id×π1)]

""

where the extra presence of g is cancelled by projection π1.
For B = 2 and g = ord we are in position to apply Fokkinga’s law and obtain:

〈listMax, ord〉 = (|〈[id,max · (id× π1)], [TRUE,α]〉|)

= { exchange law (2.47) }

(|[〈id, TRUE〉, 〈max · (id× π1),α〉]|)

Of course, ord = π2 · 〈listMax, ord〉. By denoting the above synthesized catamorphism
by aux, we end up with the following version of ord:

ord l = let (a, b) = aux l
in b

where

aux : A+ %% A× 2
aux [a] = (a, TRUE)
aux (cons(a, l)) = let (m, b) = aux l

in (max(a,m), (a > m ∧ b))

3.17. “BANANA-SPLIT”: A COROLLARYOF THEMUTUAL-RECURSIONLAW105

3.17 “Banana-split”: a corollary of themutual-recursion
law

Let h = i · Fπ1 and k = j · Fπ2 in (3.82). Then

f · in = (i · Fπ1) · F 〈f, g〉

≡ { composition is associative and F is a functor }

f · in = i · F (π1 · 〈f, g〉)

≡ { by ×-cancellation (2.20) }

f · in = i · F f
≡ { by cata-cancellation }

f = (|i|)

Similarly, from k = j · Fπ2 we get

g = (|j|)

Then, from (3.82), we get

〈(|i|), (|j|)〉 = (|〈i · Fπ1, j · Fπ2〉|)

that is

〈(|i|), (|j|)〉 = (|(i× j) · 〈Fπ1,Fπ2〉|) (3.87)

by (reverse) ×-absorption (2.25).
This law provides us with a very useful tool for “parallel loop” inter-combination:

“loops” (|i|) and (|j|) are fused together into a single “loop” (|(i × j) · 〈Fπ1,Fπ2〉|). The
need for this kind of calculation arises very often. Consider, for instance, the function
which computes the average of a non-empty list of natural numbers,

average
def
= (/) · 〈sum, length〉 (3.88)

where sum and length are the expected N+ catamorphisms:

sum = (|[id,+]|)
length = (|[1, succ · π2]|)

As defined by (3.88), function average performs two independent traversals of the argu-
ment list before division (/) takes place. Banana-split will fuse such two traversals into a

106 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

single one (see function aux below), thus leading to a function which will run ”twice as
fast”:

average l = x/y
where (x, y) = aux l

aux[a] = (a, 1)
aux(cons(a, l)) = (a+ x, y + 1)

where (x, y) = aux l

(3.89)

Exercise 3.16. Calculate (3.89) from (3.88). Which of these two versions of the same
function is easier to understand?
!

3.18 Inductive datatype isomorphism
not yet available

3.19 Bibliography notes
It is often the case that the expressive power of a particular programming language or
paradigm is counter-productive in the sense that too much freedom is given to program-
mers. Sooner or later, these will end up writing unintelligible (authorship dependent) code
which will become a burden to whom has to maintain it. Such has been the case of imper-
ative programming in the past (inc. assembly code), where the unrestricted use of goto
instructions eventually gave place to if-then-else, while and repeat structured
programming constructs.

A similar trend has been observed over the last decades at a higher programming
level: arbitrary recursion and/or (side) effects have been considered harmful in functional
programming. Instead, programmers have been invited to structure their code around
generic program devices such as eg. fold/unfold combinators, which bring discipline to
recursion. One witnesses progress in the sense that the loss of freedom is balanced by the
increase of formal semantics and the availability of program calculi.

Such disciplined programming combinators have been extended from list-processing
to other inductive structures thanks to one of the most significant advances in program-
ming theory over the last decade: the so-called functorial approach to datatypes which

3.19. BIBLIOGRAPHY NOTES 107

originated mainly from [MA86], was popularized by [Mal90] and reached textbook for-
mat in [BdM97]. A comfortable basis for exploiting polymorphism [Wad89], the “datatypes
as functors” moto has proved beneficial at a higher level of abstraction, giving birth to
polytypism [JJ96].

The literature on anas, catas and hylos is vast (see eg. [MH95], [JJ98], [GHA01]) and
it is part of a broader discipline which has become known as the mathematics of program
construction [Bac04]. This chapter provides an introduction to such as discipline. Only
the calculus of catamorphisms is presented. The corresponding theory of anamorphisms
and hylomorphisms demands further mathematical machinery (functions generalized to
binary relations) and won’t be dealt with before chapters 5 and 7. The results on mutual
recursion presented in this chapter were pionered by Maarten Fokkinga [Fok92].

108 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

