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“Good methods, properly explained, sell themselves.”
David Parnas [3]

Note 1 — What is the meaning of curry?

Haskell Prelude:
curry :: ((a,b) = ¢) = (a — b — ¢)
curry f a b= f (a,b)

Looking closer:
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Turning function application explicit, as in Cp . hs,

ap::(a—bya)—b

ap (f,a)=fa
we calculate:
gb = f(a,b)
{ since g b = ap(g,b) }
ap(g,b) = f(a,b)

{ since g = f a;identity function }



ap(f a,idb) = f(a,b)
{ product of functions: (f x g)(z,y) = (f z,9y) }

ap((f x id)(a,b)) = f(a,b)

{ composition }

(ap - (f x id))(a,b) = f(a,b)

{ extensional equality (=remove points) }
ap- (f xid) = f
In a diagram, denoting type B — C by C':

ap
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This means that f is a solution of the equation ap - (k x id) = f:
k=f = ap-(kxid) = f

It turns out to be the unique such solution:
k=f < ap-(kxid) = f

Thus we have a universal property. The follow up of this can be found in
chapter 3 of [2].

Note 2 — Where do algorithms come from?

Where do algorithms come from? From human imagination only? Surely not
— they actually emerge from mathematics. This note provides a naive intro-
duction to algorithm synthesis by showing how for-loops in C or any other
imperative language arise from elementary properties of the underlying maths
domain.

Let us start by showing how the arithmetic operation of multiplying two
natural numbers is a for-loop which emerges solely from the algebraic proper-
ties of multiplication:

ax0=0
axl=a (1)
ax(b+c)=axb+axc

Just let ¢ := 1 in the third (distributive property, obtaining a x (b+1) = a x
b+ a x 1 and then simplify. The second clause is useful in this simplification



but it is not required in the final system of two equations,

ax0=0
{ ax(b+1l)=axb+a @

since it is derivable from the two, for b := 0 and property 0+ a = a of addition.
This system is already a runnable program in a functional language such as
Haskell and many others.

The moral of this trivial exercise is that programs arise from the underly-
ing maths, instead of being invented or coming out of the blue. Haskell 1st
year students do this kind of reasoning all the time without noticing, in the
first programs they write. For instance, the function which computes discrete
exponentials will scale up this thanks to the properties

a®=1
alza
ab+c:abxac

where the program just developed for multiplication can be re-used, and so on.

Type-wise, the multiplication algorithm just derived for natural numbers is
not immediate to generalize. Intuitively, it will diverge for b a negative integer
and for b a real number less than 1, at least. Argument a, however, does not
seem to be constrained.

Indeed, the two arguments a and b will have different types in general. Let
us see why and how. We start by looking at infix operators x and + as curried
operators — which is what they are in Haskell, cf. eg. type (x) :: (Num a) =
a — a — a. Thus we can resort to the corresponding sections and write:

L

It can be easily checked that (ax) = for (a+) 0 where the for-loop combinator
is given by

ax)0=0
ax) (

b+1) = (a+) ((ax) b)

for fi0 =i 3
forfi(n+1)=f (forfin) ®)

where f is the loop-body and i is the initialization value. In fact, for f i n = f"4,
that is, f is iterated n times over the initial value i. For loops are a primitive
construct available in many programming languages. In C, for instance, we
will write something like

int mul (int a, int n)

{

int s=0; int i;

for (i=1;i<n+1;i++) {s += a;}
return s;

}i



for (the uncurried version of) for-loop for (a+) 0.

To better understand this construct let us remove variables from both equa-
tions by lifting function application to function composition and lifting 0 to the
“everywhere 0” function:

{ (ax)-0=0
(ax) - (+1) = (+a) - (ax)

Using the junc (“either”) pointfree combinator we merge the two equations
into a single one,

[(ax)-0,(ax)- (+1)] = [0,(+a)-(ax)]

(thanks to the Eq-+ rule) single out the common factor (ax) on the left hand
side,

(@x)-[0,(+1)] = [0,(+a)- (ax)]
(thanks to +-fusion) and do a similar fission operation on the other side,
(ax)-[0,(+1)] = [0,(+a)]- (id+ (ax)) 4)

thanks to +-absorption.
Equalities of compositions are nicely drawn as diagrams. That of (@) is as
follows:
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Function (+1) is the successor function succ. Type A4 is any (non-empty) type.
For the particular case A = 1 the diagram is more interesting, as [0 , succ] be-
comes an isomorphism, telling a unique way to build natural numbers: every
natural number either is 0 or the successor of another natural number. Thus:
out=1in°
T
Ny [ 1+ Ny
(ml in=[0 ,succ] lid+(GX)

<~ 14N
No <o + o

By solving the isomorphism equation out - in = id we easily obtain the defini-
tion of out, the converse of inﬂ

INote how the singularity of type 1 ensures out a function: what would be the outcome of
out 0 in case A were arbitrary?



out 0 =1y ()
out (n+1)=1isn

Finally, we generalize (+a) to any function g :: B — B and 0 to any constant
kin B (thus B is assumed non-empty). The corresponding generalization of
(ax) is denoted by f below:

out=in°

m
No = 1+ Ny
\/

fJ/ in=[0 ,succ] lid-&-f
B 1+B

[k ,9]

It turns out that, given & and g, there is a unique solution to the equation
(in f) captured by the diagram. We know this solution already, recall (3):

f = forgk

Such uniqueness of solutions leads us to yet another universal property, that of
for-loops:

f=forgk = f-in=[k,g] (id+f) 5)

From this property we infer the theory of for-loops in the standard way.
For instance, making f = id and solving the equation for g and & we obtain the
for-reflexion law:

for succ0 = id (6)

More knowledge about for-loops can be extracted from (5). Moreover, more
elaborate and interesting for-loops arise from (5) and the law of mutual recur-
sion. Come to lecture T-11 next week and read section 3.15 of [2].

Following a standard notation and terminology, and bearing a generaliza-
tion to come up soon, we will refer to such a unique solution as the catamorphism
[1] over the natural numbers induced by k£ and g and resort to the so-called
“banana parentheses” to denote it: ([k , ¢]). This notation is more general and
enables us to treat many different programming schemes as if they were ab-
stractly the same. This will be addressed from lecture T-12 onwards.
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