
Chapter 4

Why Monads Matter

In this chapter we present a powerful device in state-of-the-art programming, that of a
monad. The monad concept is nowadays of primary importance in computing science
because it makes it possible to describe computational effects as disparate as input/output,
comprehension notation, state variable updating, context dependence, partial behaviour
etc. in an elegant and uniform way.

Our motivation to this concept will start from a well-known problem in functional
programming (and computing as a whole) — that of coping with undefined computations.

4.1 Partial functions
Consider the IR to IR function

g x
def
= 1/x

Clearly, g is undefined for x = 0 because g 0 = 1/0 is so big a real number that it cannot
be properly evaluated. In fact, the HASKELL output for g 0 = 1/0 is just “panic”:

Main> g 0

Program error: {primDivDouble 1.0 0.0}

Main>

Functions such as g above are called partial functions because they cannot be applied
to all of their inputs (i.e., they diverge for some of their inputs). Partial functions are
very common in mathematics or programming — for other examples think of e.g. list-
processing functions head and tail.

105

106 CHAPTER 4. WHY MONADS MATTER

Panic is very dangerous in programming. In order to avoid this kind of behaviour
one has two alternatives, either ensuring that every call to g x is protected — i.e., the
contexts which wrap up such calls ensure pre-condition x 6= 0, or one raises exceptions,
i.e. explicit error values. In the former case, mathematical proofs need to be carried out
in order to ensure safety (that is, pre-condition compliance). The overall effect is that of
restricting the domain of the partial function. In the latter case one goes the other way
round, by extending the co-domain (vulg. range) of the function so that it accommodates
exceptional outputs. In this way one might define, in HASKELL:

data ExtReal = Ok Real | Error

and then redefine

g :: Real -> ExtReal
g 0 = Error
g n = Ok 1/n

In general, one might define parametric type

data Ext a = Ok a | Error

in order to extend an arbitrary data type a with its (polymorphic) exception (or error
value). Clearly, the isomorphisms hold:

ExtA ∼= MaybeA ∼= 1 +A

So, in abstract terms, one may regard as partial every function of type

1 +A B
goo

for some A and B 1.

4.2 Putting partial functions together
Do partial functions compose? Their types won’t match in general:

1 +B A
goo

1 + C B
foo

1In conventional programming, every function delivering a pointer as result — as in e.g. the C
programming language — can be regarded as one of these functions.

4.2. PUTTING PARTIAL FUNCTIONS TOGETHER 107

Clearly, we have to extend f — which is itself a partial function — to some f ′ able to
accept arguments from 1 +B:

1

...

��

i1
��

1 +B

f ′zz

A
goo

1 + C B

i2

OO

f
oo

The most “obvious” instance of the ellipsis (. . .) in the diagram above is i1 and this
corresponds to what is called strict composition: an exception produced by the producer
function g is propagated to the output of the consumer function f :

f • g def
= [i1, f] · g (4.1)

Expressed in terms of Ext, composite function f • g works as follows:

(f • g)a = f ′(g a)

where

f ′ Error = Error

f ′ (Ok b) = f b

Altogether, we have the following Haskell pointwise expression for f • g:

\a -> f’ (g a)
where f’ Error = Error

f’ (Ok b) = f b

Note that the adopted extension of f can be decomposed — by reverse +-absorption
(2.41) — into

f ′ = [i1, id] · (id+ f)

as displayed in diagram

1 + (1 + C)

[i1,id]
��

1 +B
id+foo A

goo

1 + C B
foo

108 CHAPTER 4. WHY MONADS MATTER

All in all, we have the following version of (4.1):

f • g def
= [i1, id] · (id+ f) · g

Does this functional composition scheme have a unit, that is, is there a u such that

f • u = f = u • f (4.2)

holds? Clearly, if it exists, it must bear type 1 +A A
uoo . Let us solve (4.2) for u:

f • u = f = u • f
≡ { substitution }

[i1, f] · u = f = [i1, u] · f
⇐ { let u = i2 }

[i1, f] · i2 = f = [i1, i2] · f ∧ u = i2

≡ { by +-cancellation (2.38) and +-reflection (2.39) }
f = f = id · f ∧ u = i2

⇐ { identity }
u = i2

4.3 Lists
In contrast to partial functions, which may produce no output, let us now consider func-
tions which deliver too many outputs, for instance, lists of output values:

B? A
goo

C? B
foo

Functions f and g do not compose but, once again, one can think of extending the con-
sumer function (f) by mapping it along the output of the producer function (g):

(C?)? B?f?oo

C? B
foo

4.4. MONADS 109

To complete the process, one has to flatten the nested-sequence output in (C?)? via the ob-

vious list-catamorphism C? (C?)?
concatoo , where concat def

= (|[[],++]|). In sum-
mary:

f • g def
= concat · f? · g (4.3)

as captured in the following diagram:

(C?)?

concat
��

B?f?oo A
goo

C? B
foo

Exercise 4.1. Show that singl (recall exercise 3.7) is the unit u of • in the context of
(4.3).
2

Exercise 4.2. Encode in HASKELL a pointwise version of (4.3). Hint: first apply (list)
cata-absorption (3.67).
2

4.4 Monads
Both function composition schemes (4.1) and (4.3) above share the same polytypic pat-
tern: the output of the producer function is “F-times” more elaborate than the input of the
consumer function, where F is some parametric datatype — FX = 1+X in case of (4.1),
and FX = X? in case of (4.3). Then a composition scheme is devised for such functions,
which is displayed in

F(FC)

µ

��

FB
F foo A

goo

FC B
foo

110 CHAPTER 4. WHY MONADS MATTER

and is given by

f • g def
= µ · F f · g (4.4)

where FA F2A
µoo is a suitable polymorphic function. (In the case of µ = [i1, id]

in case (4.1), and µ = concat in case (4.3).)
Together with a unit function FA A

uoo and µ, datatype F will form a so-called
monad type, of which (1+) and ()? are the two examples seen above. Arrow µ · F f is
called the extension of f . Functions µ and u are referred to as the monad’s multiplication
and unit, respectively. The monadic composition scheme (4.4) is referred to as Kleisli
composition.

A monadic arrow FB A
foo conveys the idea of a function which produces an

output of “type” B “wrapped by F”, where datatype F describes some kind of (compu-
tational) “effect”. The monad’s unit FB B

uoo is a primitive monadic arrow which
produces (i.e. promotes, injects, wraps) data together with such an effect.

The monad concept is nowadays of primary importance in computing science because
it makes it possible to describe computational effects as disparate as input/output, state
variable updating, context dependence, partial behaviour (seen above) etc. in an elegant
and uniform way. Moreover, the monad’s operators exhibit notable properties which make
it possible to reason about such computational effects.

The remainder of this section is devoted to such properties. First of all, the properties
implicit in the following diagrams will be required for F to be regarded as a monad:

Multiplication :

F2A

µ

��

F3A

Fµ
��

µoo

FA F2Aµ
oo

µ · µ = µ · Fµ (4.5)

Unit :

F2A

µ

��

FA
uoo

Fu
��id{{

FA F2Aµ
oo

µ · u = µ · Fu = id (4.6)

Simple but beautiful symmetries apparent in these diagrams make it easy to memorize
their laws and check them for particular cases. For instance, for the (1+) monad, law (4.6)
will read as follows:

[i1, id] · i2 = [i1, id] · (id+ i2) = id

4.4. MONADS 111

These equalities are easy to check.
In laws (4.5) and (4.6), the different instances of µ and u are differently typed, as

these are polymorphic and exhibit natural properties:

µ-natural :

A

f
��

FA

F f
��

F2A
µoo

F2 f
��

B FB F2Bµ
oo

F f · µ = µ · F2 f (4.7)

u-natural :

A

f
��

FA

F f
��

A
uoo

f
��

B FB Bu
oo

F f · u = u · f (4.8)

The simplest of all monads is the identity monad FX
def
= X , which is such that

µ = id, u = id and f • g = f · g. So — in a sense — the whole functional discipline
studied thus far was already monadic, over the simplest of all monads: the identity one.
Put in other words, such functional discipline can be framed into a wider discipline in
which an arbitrary monad is present — the one we study in this chapter.

4.4.1 Properties involving (Kleisli) composition
The following properties arise from the definitions and monadic properties presented
above:

f • (g • h) = (f • g) • h (4.9)

u • f = f = f • u (4.10)

(f • g) · h = f • (g · h) (4.11)

(f · g) • h = f • (F g · h) (4.12)

id • id = µ (4.13)

Properties (4.9) and (4.10) are the monadic counterparts of, respectively, (2.8) and (2.10),
meaning that monadic composition preserves the properties of normal functional compo-
sition. In fact, for the identity monad, these properties coincide with each other.

112 CHAPTER 4. WHY MONADS MATTER

Above we have shown that property (4.10) holds for the list monad, recall (4.2). A
general proof can be produced similarly. We select property (4.9) as an illustration of the
rôle of the monadic properties:

f • (g • h)

= { definition (4.4) twice }
µ · F f · (µ · F g · h)

= { µ is natural (4.7) }
µ · µ · F(F f) · F g · h

= { functor F }
µ · µ · F(F f · g) · h

= { definition (4.4) }
µ · (F f · g) • h

= { definition (4.4) }
(f • g) • h

Exercise 4.3. Check the other laws above.
2

4.5 Monadic application (binding)
The monadic extension of functional application ap (2.67) is another operator ap′ which
is intended to be “tolerant” in face of any F’ed argument x:

(FB)A × FA
ap′ // FB

ap′(f, x) = f ′ x = (µ · F f)x
(4.14)

If in curry/flipped format, monadic application is called binding and denoted by sym-
bol “>>=”, looking very much like postfix functional application,

((FB)A)FA
>>= // FB (4.15)

4.6. SEQUENCING AND THE DO-NOTATION 113

that is:

x >>= f
def
= (µ · F f)x (4.16)

This operator will exhibit properties arising from its definition and the basic monadic
properties, e.g.

x >>= u

≡ { definition (4.16) }
(µ · Fu)x

≡ { law (4.6) }
(id)x

≡ { identity function }
x

At pointwise level, one may chain monadic compositions from left to right, e.g.

(((x >>= f1)>>= f2)>>= . . . fn−1)>>= fn

for functions A
f1 // FB1 , B1

f2 // FB2 , . . . Bn−1
fn // FBn .

4.6 Sequencing and the do-notation
Given two monadic values x and y, it becomes possible to “sequence” them, thus obtain-
ing another of such value, by defining the following operator:

x >> y
def
= x >>= y (4.17)

For instance, within the finite-list monad, one has

[1, 2]>> [3, 4] = (concat · [3, 4]?)[1, 2] = concat[[3, 4], [3, 4]] = [3, 4, 3, 4]

Because this operator is associative (prove this as an exercise), one may iterate it to
more than two arguments and write, for instance,

x1 >> x2 >> . . . >> xn

This leads to the popular do notation, which is another piece of (pointwise) notation
which makes sense in a monadic context:

do x1;x2; . . . ;xn
def
= x1 >> do x2; . . . ;xn

for n ≥ 1. For n = 1 one trivially has

do x1
def
= x1

114 CHAPTER 4. WHY MONADS MATTER

4.7 Generators and comprehensions
The do-notation accepts a variant in which the arguments of the >> operator are “genera-
tors” of the form

a← x (4.18)

where, for a of type A, x is an inhabitant of monadic type FA. One may regard a← x as
meaning “let a be taken from x”. Then the do-notation extends as follows:

do a← x1;x2; . . . ;xn
def
= x1 >>= λa.(do x2; . . . ;xn) (4.19)

Of course, we should now allow for the xi to range over terms involving variable a. For
instance, by writing (again in the list-monad)

do a← [1, 2, 3]; [a2] (4.20)

we mean

[1, 2, 3]>>= λa.[a2]

= concat((λa.[a2])
?
[1, 2, 3])

= concat[[1], [4], [9]]

= [1, 4, 9]

The analogy with classical set-theoretic ZF-notation, whereby one might write {a2 |
a ∈ {1, 2, 3}} to describe the set of the first three perfect squares, calls for the following
notation,

[a2 | a← [1, 2, 3]] (4.21)

as a “shorthand” of (4.20). This is an instance of the so-called comprehension notation,
which can be defined in general as follows:

[e | a1← x1, . . . , an← xn] = do a1← x1; . . . ; an← xn;u(e) (4.22)

where u is the monad’s unit (4.6,4.8).
Alternatively, comprehensions can be defined as follows, where p, q stand for arbitrary

generators:

[t] = u t (4.23)

[f x | x← l] = (F f)l (4.24)

[t | p, q] = µ[[t | q] | p] (4.25)

Note, however, that comprehensions are not restricted to lists or sets — they can be
defined for any monad F.

4.8. MONADS IN HASKELL 115

4.8 Monads in HASKELL

In the Standard Prelude for HASKELL, one finds the following minimal definition of the
Monad class,

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

where return refers to the unit of m, on top of which the “sequence” operator

(>>) :: m a -> m b -> m b
fail :: String -> m a

is defined by

p >> q = p >>= \ _ -> q

as expected. This class is instantiated for finite sequences ([]), Maybe and IO.
The µ multiplication operator is function join in module Monad.hs:

join :: (Monad m) => m (m a) -> m a
join x = x >>= id

This is easily justified:

join x = x >>= id (4.26)

= { definition (4.16) }
(µ · F id)x

= { functors commute with identity (3.44) }
(µ · id)x

= { law (2.10) }
µx

In Mpi.hswe define (Kleisli) monadic composition in terms of the binding operator:

(.!) :: Monad a => (b -> a c) -> (d -> a b) -> d -> a c
(f .! g) a = (g a) >>= f

116 CHAPTER 4. WHY MONADS MATTER

4.8.1 Monadic I/O
IO, a parametric datatype whose inhabitants are special values called actions or com-
mands, is a most relevant monad. Actions perform the interconnection between HASKELL

and the environment (file system, operating system). For instance, getLine :: IOString
is a particular action. Parameter String refers to the fact that this action “delivers” —
or extracts — a string from the environent. This meaning is clearly conveyed by the type
String assigned to symbol l in

do l← getLine; . . . l . . .

which is consistent with typing rule for generators (4.18). Sequencing corresponds to the
“;” syntax in most programming languages (e.g. C) and the do-notation is particulary
intuitive in the IO-context.

Examples of functions delivering actions are

FilePath
readF ile // IOString

and

Char
putChar // IO()

— both produce I/O commands as result.
As is to be expected, the implementation of the IO monad in HASKELL — avail-

able from the Standard Prelude — is not totally visible, for it is bound to deal with the
intrincacies of the underlying machine:

instance Monad IO where
(>>=) = primbindIO
return = primretIO

Rather interesting is the way IO is regarded as a functor:

fmap f x = x >>= (return . f)

This goes the other way round, the monadic structure “helping” in defining the functor
structure, everything consistent with the underlying theory:

x >>= (u · f) = (µ · IO(u · f))x

= { functors commute with composition }
(µ · IOu · IO f)x

= { law (4.6) for F = IO }
(IO f)x

= { definition of fmap }
(fmap f)x

4.9. THE STATE MONAD 117

For enjoyable reading on monadic input/output in HASKELL see [Hud00], chapter 18.

Exercise 4.4. Use the do-notation and the comprehension notation to output the follow-
ing truth-table, in HASKELL:

p / q False True

False False False
True False True

2

Exercise 4.5. Extend the Maybe monad to the following “error message” exception
handling datatype:

data Error a = Err String | Ok a deriving Show

In case of several error messages issued in a do sequence, how many turn up on the
screen? Which ones?
2

4.9 The state monad
NB: this section is still a draft

The so-called state monad is a monad whose inhabitants are state-transitions encoding a
particular brand of state-based automaton known as Mealy machine. Given a set A (input
alphabet), a set B (output alphabet) and a set of states S, a deterministic Mealy machine
(DMM) is specified by a transition function of type

A× S δ // B × S (4.27)

Wherever (b, s′) = δ(a, s), we say that the machine has transition

s
a|b // s′

118 CHAPTER 4. WHY MONADS MATTER

and refer to s as the before state, and to s′ as the after state.
It is clear from (4.27) that δ can be expressed as the split of two functions f and g,

δ = 〈f, g〉, as depicted in the following diagram:

g

f
a

s

b = f(a, s)

s′ = g(a, s)

-

-

�
�
�
�
�S

-p
-p -

(4.28)

The information recorded in the state of a DMM is either meaningless to the user of
the machine (as in eg. the case of states represented by numbers) or too complex to be
perceived and handled explicitly (as is the case of eg. the data kept in a large database).
So, it is convenient to abstract from it. Such an abstraction leads to the state monad in the
following way: taking (4.27) and recalling (2.75), we simply transpose (ie. curry) δ and
obtain

A
δ // (B × S)S︸ ︷︷ ︸

(St S) B

(4.29)

thus “shifting” the input state to the output. In this way, δ a is a function capturing all
state-transitions (and corresponding outputs) for input a. For instance, the function which
appends a new element to the back of a queue,

enq(a, s)
def
= s++ [a]

can be converted into a DMM by adding to it a dummy output of type 1 and then trans-
posing:

enqueue : A→ (1× S)S

enqueue a
def
= 〈!, (++[a])〉 (4.30)

Action enqueue performs enq on the state while acknowledging it by issuing an output
of type 1.

4.9. THE STATE MONAD 119

Unit and multiplication. Let us show that

(St S) A ∼= (A× S)S (4.31)

forms a monad. As we shall see, the fact that the values of this monad are functions
brings the theory of exponentiation to the forefront. Thus, a review of section 2.14 is
recommended at this point.

Notation f̂ will be used to abbreviate uncurry f , enabling the following variant of
universal law (2.67),

k̂ = f ⇔ f = ap · (k × id) (4.32)

whose cancellation

k̂ = ap · (k × id) (4.33)

is written pointwise as follows:

k̂(c, a) = (k c)a (4.34)

First of all, what is the functor behind (4.31)? Fixing the state space S, we obtain

FX
def
= (X × S)S (4.35)

on objects and

Ff
def
= (f × id)S (4.36)

on functions, where ()S is the exponential functor (2.71).
The unit of this monad is the transpose of the simplest of all Mealy machines — the

identity:

u : A→ (A× S)S

u = id
(4.37)

Let us see what this means:

u = id

≡ { (2.67) }
ap · (u× id) = id

≡ { introducing variables }
ap(u a, s) = (a, s)

≡ { definition of ap }
(u a)s = (a, s)

120 CHAPTER 4. WHY MONADS MATTER

So, action u a performed on state s keeps s unchanged and outputs a.
From the type of µ, for this monad,

((A× S)S × S)
S µ // (A× S)S

one figures out µ = xS (recalling the exponential functor as defined by (2.71)) for x
of type ((A× S)S × S)

x // (A× S) . This, on its turn, is easily recognized as an

instance of the ap polymorphic function (2.67), which is such that ap = îd, recall (2.69).
Altogether, we define

µ = apS (4.38)

Let us inspect the behaviour of µ by checking the meaning of applying it to an action
expressed as in diagram (2.75):

µ〈f, g〉 = apS〈f, g〉
≡ { (2.71) }

µ〈f, g〉 = ap · 〈f, g〉
≡ { extensional equality (2.5) }

µ〈f, g〉s = ap(f s, g s)

≡ { definition of ap }
µ〈f, g〉s = (f s)(g s)

We find out that µ “unnests” the action inside f by applying it to the state delivered by g.

Checking the monadic laws. The calculation of (4.6) is made in two parts, checking
µ · u = id first,

µ · u
= { definitions }

apS · id
= { exponentials absorption (2.72) }

ap · id
= { reflection (2.69) }

id

4.9. THE STATE MONAD 121

and then checking µ · (Fu) = id:

µ · (Fu)

= { (4.38,4.36) }

apS · (id× id)S

= { functor }

(ap · (id× id))S

= { cancellation (2.68) }

idS

= { functor }
id

The proof of (4.5) is also not difficult once supported by the laws of exponentials.

Kleisli composition. Let us calculate f • g for this monad:

f • g
= { (4.4) }

µ · F f · g
= { (4.38) ; (4.36) }

apS · (f × id)S · g
= { ()S is a functor }

(ap · (f × id))S · g
= { (4.32) }

f̂S · g
= { cancellation }

f̂S · ĝ
= { absorption (2.72) }

f̂ · ĝ
In summary, we have:

f • g = f̂ · ĝ (4.39)

122 CHAPTER 4. WHY MONADS MATTER

which can be written alternatively as

f̂ • g = f̂ · ĝ

Let us use this in calculating law

pop • push = u (4.40)

where push and pop are such that

push : A→ (1× S)S

p̂ush
def
= 〈!, (̂:)〉 (4.41)

pop : 1→ (A× S)S

p̂op
def
= 〈head, tail〉 · π2

(4.42)

for S the datatype of finite lists. We reason:

pop • push
= { (4.39) }

p̂op · p̂ush
= { (4.41, 4.42) }

〈head, tail〉 · π2 · 〈!, (̂:)〉
= { (2.20, 2.24) }

〈head, tail〉 · (̂:)
= { out · in = id (lists) }

id

= { (4.37) }
u

Bind. The effect of binding a state transition x to a state-monadic function h is calcu-
lated in a similar way:

x >>= h

= { (4.16) }
(µ · Fh)x

4.9. THE STATE MONAD 123

= { (4.38) and (4.36) }

(apS · (h× id)S)x

= { ()S is a functor }

(ap · (h× id))Sx

= { cancellation (4.33) }

ĥSx

= { exponential functor (2.71) }

ĥ · x

Let us unfold ĥ · x by splitting x into its components two components f and g:

〈f, g〉>>= h = ĥ · 〈f, g〉
≡ { go pointwise }

(〈f, g〉>>= h)s = ĥ(〈f, g〉s)
≡ { (2.18) }

(〈f, g〉>>= h)s = ĥ(f s, g s)

≡ { (4.34) }
(〈f, g〉>>= h)s = h(f s)(g s)

In summary, for a given “before state” s, g s is the intermediate state upon which f s runs
and yields the output and (final) “after state”.

Two prototypical inhabitants of the state monad: get and put. These generic
actions are defined as follows, in the PF-style:

get
def
= 〈id, id〉 (4.43)

put
def
= 〈!, π1〉 (4.44)

Action g retrieves the data stored in the state without changing it, while put — which can
also be written

put s = 〈!, s〉 (4.45)

or even as

put s = modify s (4.46)

124 CHAPTER 4. WHY MONADS MATTER

where

modify f
def
= 〈!, f〉 (4.47)

updates the state via state-to-state function f — stores a particular value in the state.
The following is an example, in Haskell, of the standard use of get/put in managing

context data, in this case a counter. The function decorates each node of a BTree (recall
this datatype from page 91) with its position in the tree:

decBTree Empty = return Empty
decBTree (Node (a,(t1,t2))) =

do n <- get ;
put(n+1) ;
x <- decBTree t1 ;
y <- decBTree t2 ;
return (Node((a,n),(x,y)))

To close the chapter, we will present a strategy for deriving this kind of monadic functions.

4.10 ‘Monadification’ of Haskell code made easy
There is an easy roadmap for “monadification” of Haskell code. What do we mean by
monadification? Well, in a sense — as we shall soon see — every piece of code is
monadic: we don’t notice this because the underlying monad is invisible. We are going to
see how to make it visible taking advantage of monadic do notation and leaving it open
for instantiation. This will bridge the gap between monads’ theory and its application to
handling particular effects in concrete situations.

Let us take as starting point the pointwise version of sum, the list catamorphism
which adds all numbers found in its input:

sum [] = 0
sum (h:t) = h + sum t

Notice that this code could have been written as follows

sum [] = id 0
sum (h:t) = let x = sum t in id (h+x)

using let notation and two instances of the identity function. Question: why such a
“baroque” version of the starting, so simple a piece of code? Answer:

• The let ... in ... notation stresses the fact that recursive call happens earlier than
the delivery of the result.

4.10. ‘MONADIFICATION’ OF HASKELL CODE MADE EASY 125

• The id functions signal the exit points of the algorithm, that is, the points where it
returns something to the caller.

Next, let us

• re-write id into return;

• re-write let x = ... in ... into do { x <- ... ; ... }

One will obtain the following version of sum:

msum [] = return 0
msum (h:t) = do {x <- msum t ; return (h+x) }

Typewise, while sum has type (Num a) => [a] -> a, msum has type

(Monad m, Num a) => [a] -> m a

That is, msum is monadic — parametric on monad m — while sum is not.
There is a particular monad for which sum and msum coincide: the identity monad

Id X = X . It is very easy to show that inside this monad return is the identity and do
means the same as let — enough for the pointwise versions of the two functions to be
the same. Thus the “invisible” monad mentioned earlier is the identity monad.

In summary, the monadic version is generic in the sense that it runs on whatever
monad you like, enabling you to perform side effects while the code runs. If you don’t
need any effects then you get the “non-monadic” version as special case, as seen above.
Otherwise, Haskell will automatically switch to the effects you want, depending on the
monad you choose (often determined by context).

For each particular monad we may decide to add specific monadic code like get and
put in the decBTree example, where we want to take advantage of the state monad.
As another example, check the following enrichment of msum with state-monadic code
helping you to trace the execution of your program:

msum’ [] = return 0
msum’ (h:t) =

do {x <- msum’ t ;
print ("x= " ++ show x);
return (h+x) }

Thus one obtains traces the code in the way prescribed by the particular usage of the print
(state monadic) function:

*Main> msum’ [3,5,1,3,4]
"x= 0"

126 CHAPTER 4. WHY MONADS MATTER

"x= 4"
"x= 7"
"x= 8"
"x= 13"

*Main>

In the reverse direction, one may try and see what happens to monadic code upon
removing all monad-specific functions and going into the identity monad once it gets
monad generic. In the case of decBTree, for instance, we will get

decBTree Empty = return Empty
decBTree (Node (a,(t1,t2))) =

do
x <- decBTree t1 ;
y <- decBTree t2 ;
return (Node(a,(x,y)))

once get and put are removed (and therefore all instances of n), and then

decBTree Empty = Empty
decBTree (Node (a,(t1,t2))) =

let
x = decBTree t1
y = decBTree t2

in Node(a,(x,y))

This is the identity function on type BTree, recall the cata-reflection law (3.58). So, the
archetype of (inspiration for) much monadic code is the most basic of all tree traversal
functions — the identity 2. The same could be said about imperative code of a particular
class — the recursive descent one — much used in construction, for instance.

Playing with effects

As it may seem from the previous examples, adding effects to produce monadic code is
far from arbitrary. This can be further appreciated by defining the function that yields the
smallest element of a list,

getmin [a] = a
getmin (h:t) = min h (getmin t)

2We have seen the same kind of “inspiration” before in building type functors (3.66) which,
for f = id, boil down to the identity.

4.10. ‘MONADIFICATION’ OF HASKELL CODE MADE EASY 127

which is incomplete in the sense that it does not specify the meaning of getmin []. As
this is mathematically undefined, it should be expressed “outside the maths”, that is, as an
effect. Thus, to complete the defintion we first go monadic, as we did before,

mgetmin [a] = return a
mgetmin (h:t) = do {x <- mgetmin t ; return (min h x) }

and then chose a monad in which to express the meaning of getmin [], for instance
the Maybe monad

mgetmin [] = Nothing
mgetmin [a] = return a
mgetmin (h:t) = do {x <- mgetmin t ; return (min h x) }

Alternatively, we might have written

mgetmin [] = Error "Empty input"

going into the Errormonad, or even the simpler (yet interesting) mgetmin [] = [],
which shifts the code into the list monad, yielding singleton lists in the success case,
otherwise the empty list.

Function getmin above is an example of a partial function, that is, a function which
is undefined for some of its inputs. These functions cause much interference in functional
programming, which monads help us to keep under control.

Let us see how such interference is coped with in the case of higher order functions,
taking map as example

map f [] = []
map f (h:t) = (f h): map f t

and supposing f is not a total function. How do we cope with erring evaluations of f h?
As before, we first “letify” the code,

map f [] = []
map f (h:t) = let

b = f h
x = map f t in b:x

we go monadic in the usual way,

mmap f [] = return []
mmap f (h:t) = do { b <- f h ; x <- mmap f t ; return (b:x) }

and everything goes smoothly — as can be checked, the function thus built is of the
expected (monadic) type:

128 CHAPTER 4. WHY MONADS MATTER

mmap :: (Monad m) => (a -> m b) -> [a] -> m [b]

Run mmap Just [1,2,3,4], for instance: you will obtain Just [1,2,3,4]. Now
run mmap print [1,2,3,4]. You will see the items in the sequence printed sequen-
tially.

One may wonder about the behaviour of the mmap for f the identity function: will
we get an error? No, we get a well-typed function of type [m a] -> m [a], for m a
monad. We thus obtain the well-known monadic function sequence which evaluates
each action in the input sequence, from left to right, collecting the results. For instance,
applying this function to input sequence [Just 1, Nothing, Just 2] the output
will be Nothing.

There is much more one could say about monadic programming, but this is enough to
see where such a programming style comes from.

Exercise 4.6. Use the monadification technique to encode monadic function

filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]

which generalizes the list-based filter function.
2

Exercise 4.7. “Reverse” the following monadic code into its non-monadic archetype:

f :: (Monad m) => (a -> m Bool) -> [a] -> m [a]
f p [] = return []
f p (h:t) = do { b <- p h ;

t’ <- f p t;
return(if b then h:t’ else [])

}

Which function of the Haskell Prelude do you get by such reverse monadification?
2

To be continued

4.11. BIBLIOGRAPHY NOTES 129

4.11 Bibliography notes
The use of monads in computer science started with Moggi [Mog89], who had the idea
that monads should supply the extra semantic information needed to implement the lambda-
calculus theory. Haskell [Jon03] is among the computer languages which make systematic
use of monads for implementing effects and imperative constructs in an otherwise purely
functional language.

Category theorists invented monads in the 1960’s to concisely express certain aspects
of universal algebra. Functional programmers invented list comprehensions in the 1970’s
to concisely express certain programs involving lists. Philip Wadler [Wad89] made a
great contribution in the field by showing that list comprehensions could be generalised
to arbitrary monads and unify with imperative “do”-notation in case of the monad which
explains imperative computations.

Monads are nowadays an essential feature of functional programming and are used in
fields as diverse as language parsing [HM93], component-oriented programming [Bar01],
strategic programming [LV03] and multimedia [Hud00].

