Chapter 3

Recursion in the Pointfree Style

How useful from a programmer’s point of view are the absticepts presented in
the previous chapter? Recall that a table was presented le-2db— which records an
analogy between abstract type notation and the correspgidita-structures available in
common, imperative languages.

This analogy is precisely our point of departure for extagdihe abstract notation
towards a most important field of programmingcursion

3.1 Motivation

Let us consider a very common data-structure in programmilimied-lists”. In PASCAL
one will write

a

L = N;
N = record
first: A;
next: N
end;

to specify such a data-structulce This consists of a pointer toraode(N), where a node
is a record structure which puts some predefined #/pegether with a pointer to another
node, and so on. In the C programming language, everyl will be declared as

L x;
in the context of datatype definition

typedef struct N {
A first;

55

56 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

struct N * next;
}oxL

and so on.

What interests us in such “first year programming courseatgtpe declarations?
Records and pointers have already been dealt with in tableSh we can use this table
to find the abstract version of datatypeby replacing pointers by thel“+ - - -” notation
and recordsdtructg by the “ .. x ..."” notation:

{ L = 1+N (3.1)

N = Ax(1+N)

We obtain a system of two equations on unknowirend NV, in which L’s dependence
on N can be removed by substitution:

N = Ax(1+N)
= { substitutingL for 1 + N in the second equatioh

L = 1+N
N = AxL

{L_1+N

{ substitutingA x L for N in the first equatior}

L = 1+AxL
N = AxL

System (3.1) is thus equivalent to:

(3.2)

L = 1+AxL
N Ax(1+N)

Intuitively, L abstracts the “possibly empty” linked-list of elements e A, while N
abstracts the “non-empty” linked-list of elements of typeNote thatl. and N are inde-
pendent of each other, but also that each depends on itseifWe solve these equations
in a way such that we obtain “solutions” férand NV, in the same way we do with school
equations such as, for instance,

x:1+% ? (3.3)

Concerning this equation, let us recall how we would go aligntschool mathemat-
ics:

T
:]_ —
x +2

3.1. MOTIVATION 57

{ adding— £ to both sides of the equatign

1+.27 X
T— == - — =
2 2 2
= { =5 cancels? }
X
r——=1
2

{ multiplying both sides of the equation Byetc. }

2xx—x=2
{ subtraction}

r =2

We very quickly get solutiom: = 2. However, many steps were omitted from the
actual calculation. This unfolds into the longer sequerficeare elementary steps which
follows, in which notatior: — b abbreviates, + (—b) and$ abbreviates, x ¢, for b # 0:

142
r = -
2

{ adding— 3 to both sides of the equatign

xr s X
1+
rog=0+3)-3

{ + is associative

x €T

T
—Z =1 - _Z
rog=itG o)
= { —% is the additive inverse of }
T
—==1+0
x 5 +
= { 0is the unit of addition}
T
—Z =1
T3

{ multiplying both sides of the equation By}

2><(xfg):2><1

{ 1is the unit of multiplication}

x
2x(z—=)=2
(x=3)

{ multiplication distributes over additioh

58 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

INT—2x =9
2

{ 2 cancels its inversé }

2Xr—1xx=2

{ multiplication distributes over additiop

2-1)xaz=2

{2 —1=1andl is the unit of multiplication}

T =2
Back to (3.2), we would like to submit each of the equatiang,
L = 1+AxL (3.4)

to a similar reasoning. Can we do it? The analogy which canobhad between this
equation and (3.3) goes beyond pattern similarity. Fronpteha2 we know that many
properties required in the reasoning above hold in the gbiofe(3.4), provided the “="
sign is replaced by the=” sign, that of set-theoretical isomorphism. Recall that, f
instance+ is associative (2.46)) is the unit of addition (2.79)1 is the unit of multipli-
cation (2.81), multiplication distributes over additidh%0) etc. Moreover, the first step
above assumed that addition is compatible (monotonic) respect to equality,

a = b
c = d
at+c = b+d

a fact which still holds when numeric equality gives placesmmorphism and numeric
addition gives place to coproduct:

B

D
B+D

A
C
A+C

| 111

—recall (2.44) for isog andg.
Unfortunately, the main steps in the reasoning above areecnad with two basic
cancellation properties

z+b=c = z=c—-b
rxb=c = x:g (b+#0)

which hold about numbers but do not hold about datatypesadt heither products nor

3.1. MOTIVATION 59

coproducts have arbitrary inversksand so we cannot “calculate by cancellation”. How
do we circumvent this limitation?

Just think of how we would have gone about (3.3) in case we'tdkthow about the
cancellation propertieswe would be bound to the by 1 + 5 substitution plus the other
properties. By performing such a substitution over and again we would obtain. ..

x
= 1 —
x + 9
= { x by 1 4 substitution followed by simplification
1+% 1 =z
=1 2 _ 1442
T + 5 + 5 + 1

{ the same as above

1+%_1+1+1+x
4 2 4 8

{ over and over agaim-times}

14 lig
Ty

{ simplification}

n
o 1 T
T=2 51 T gnm
=0

{ sum ofn first terms of a geometric progressign

1 T

m:(2_2_n)+2n+1

{letn — o }

r=(2-0)40
= { simplification }
x=2

Clearly, this is a much more complicated way of finding solut: = 2 for equation
(3.3). But we would have loved it in case it were the only knavay, and this is precisely
what happens with respect to (3.4). In this case we have:

L=1+AXxL

1The initial and terminal datatypes do have inverse$ is-its own “additive inverse” and is
its own “multiplicative inverse” — but not all the others.

60 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

{ substitution ofl + A x L for L }
L=1+4Ax(1+AxL)

{ distributive property (2.50)
L1+ Ax1+Ax(AxL)

{ unit of product (2.81) and associativity of product (2.32)
L=1+A+(AxA)xL

{ by (2.82), (2.84) and (2.87)
LAY+ AY 4+ A% < L

{ another substitution as above and similar simplificatipns

LAY A+ A2+ A3 L
= { after (n + 1)-many similar step$

LgZAi+A"+1 x L
=0

Bearing a large: in mind, let us deliberately (but temporarily) ignore teAfit! x L.
Then L will be isomorphic to the sum af-many contributionsA?,

L Zn:Ai
=0

each of them consisting éflong tuples, osequencewf values ofA. (Number: is said

to be thelengthof any sequence ir’.) Such sequences will be denoted by enumerating
their elements between square brackets, for instancentipty sequenc which is the
only inhabitant inA°, the two element sequen¢e;, as] which belongs taA? provided
ai,a2 € A, and so on. Note that all such contributions are mutualljoufis that is,
AN A7 = () whereveri # j. (In other words, a sequence of lengtis never a sequence
of lengthj, for i # 5.) If we join all contributionsA? into a single set, we obtain the set
of all finite sequencesn A, denoted by4d* and defined as follows:

A A (3.5)

i>0

The intuition behind taking the limit in the numeric caldid& above was that term
sagr Was getting smaller and smaller asvent larger and larger and, “in the limit”, it
could be ignored. By analogy, taking a similar limit in théocgation just sketched above
will mean that, for a “sufficiently largeh, the sequences iA™ are so long that it is very

3.2. INTRODUCING INDUCTIVE DATATYPES 61

unlikely that we will ever use them! So, far— oo we obtain

L iAi
=0

Becausé)_:°, A is isomorphic td J;°, A (see exercise 2.20), we finally have:

Allin all, we have obtainedi* as a solution to equation (3.4). In other words, datatype
L is isomorphic to the datatype which contains all finite seges of some predefined
datatypeA. This corresponds to the A3KELL [a] datatype, in general. Recall that
we started from the “linked-list datatype” expressed As€AL or C. In fact, wherever
the C programmer thinks of linked-lists, theaBKELL programmer will think of finite
sequences.

But, what does equation (3.4) mean in fact4fsthe only solution to this equation?
Back to the numeric field, we know of equations which have ntlba@ one solution —
for instancer = sz’, which admits two solution$ and3 —, which have no solution
at all — for instancer = x + 1 —, or which admit an infinite number of — for instance
Tr = .

We will address these topics in the next section abmluctivedatatypes and in chap-
ter 7, where the formal semantics of recursion will be magdiek This is where the
“limit” constructions used informally in this section whle shown to make sense.

3.2 Introducing inductive datatypes

DatatypelL as defined by (3.4) is said to becursivebecausd. “recurs” in the definition
of L itself 2. From the discussion above, it is clear that set-theolegipaality “=" in this
equation should give place to set-theoretical isomorpli<i):

L = 1+AxL (3.6)

Which isomorphismz, <“— 1 + A x L dowe expect to witness (3.4)? This will depend
on which particular solution to (3.4) we are thinking of. %o Wwe have seen only one,
A*. By recalling the notion ofilgebraof a datatype (section 2.18), so we may rephrase
the question as: which algebra

A< 14 A x A*

2By analogy, we may regard (3.3) as a “recursive definitioniamber2.

62 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

do we expect to witness the tautology which arises from (Byd)eplacing unknowrl.
with solution A*, that is

A =2 14+ AxA* ?

It will have to be of the formn = [inq,ing] as depicted by the following diagram:

11— 4 Ax A< Ax A* (3.7)
A*
Arrows in; andiny can be guessed rather intuitiveliz; = [], which will express

the “NIL pointer” by the empty sequence, At level, andiny = cons, wherecons is the
standard “left append” sequence constructor, which weHemhoment introduce rather
informally as follows:

cons: A x A* —— A*

cons(a,la,...,as)) = [a,a1,...,a,) (3.8)
In a diagram:
1— 214+ Ax A2 A x A (3.9)
[[],cons
A*

Of course, forin to be iso it needs to have an inverse, which is not hard to guess
out & (14 (hd 1)) - (=,?) (3.10)

where sequence operatdrd (head of a nonempty sequeh@ndtl (tail of a nonempty
sequenceare (again informally) described as follows:

hd: Ax—— A
hdla1,az,...,a,] = a1 (311)
: o — 4 (3.12)

tla1,azg,...,a,) = [ag,...,a,]

3.2. INTRODUCING INDUCTIVE DATATYPES 63

Showing thatin andout are each other inverses is not a hard task either:
in - out = id
= { definitions ofin andout }
[[],cons |- (! +<(hdtl)) - (=[7) = id
{ +-absorption (2.41) and (2.15)
[U, cons - (hdtl)] - (:H?) =id

{ property of sequencesons(hds,tl s) = s }
[[],id]- (=(3?) = id
{ going pointwise (2.60)}
{ =[] a = [u,id}(ila)
(= a) = [[lid](iza)
{ +-cancellation (2.38)}

=[] a = ua _
ﬁ(:[] CL) = ida
= { a =[] inone case and identity function (2.9) in the other

{ a=[] = a :a
“a=1) = a
{ property(p — f, f) = f holds }

a=a

A comment on the particular choice of terminology above: Bghin suggests that
we are going inside, or constructing (synthesizing) vabfes*; symbolout suggests that
we are going out, or destructing (analyzing) valuesdof We shall often resort to this
duality in the sequel.

Are there more solutions to equation (3.6)? In trying to iempént this equation, a
HASKELL programmer could have written, after the declaration oétgpthe following
datatype declaration:

data L = Nil () | Cons (A,L)
which, as we have seen in section 2.18, can be written singply a

data L = Nil | Cons (A,L) (3.13)

64 CHAPTER 3. RECURSION IN THE POINTFREE STYLE
and generates diagram

1— 21 b AX LE— AL (3.14)

o !

L

leading to algebran’ = [Nil, Cons |.

HASKELL seems to have generated another solution for the equathinhv calls
L. To avoid the inevitable confusion between this symbol tiegothe newly created
datatype and symbdl in equation (3.6), which denotes a mathematical variableys
use symbolT to denote the formerT{ stands for “type”). This can be coped with very
simply by writing T instead ol in (3.13):

data T = Nil | Cons (A,T) (3.15)

In order to makel more explicit, we will writeint instead ofin’.
Some questions are on demand at this point. First of all, vehdatatypeT? What

are its inhabitants? Next, iF <—— 1+ A x T an iso or not?

HAskKELL will help us to answer these questions. Suppose ghata primitive nu-
meric datatype, and that we adeériving Show to (3.15) so that we can “see” the
inhabitants of th& datatype. The information associatedlt@s thus:

Main> i T
-- type constructor
data T

-- constructors:
Nil @@ T
Cons :: (AT) > T

-- instances:
instance Show T
instance Eval T

By typing Nil

Main> Nil
Nil = T

we confirm that/Vil is itself an inhabitant off, and by typingCons

3.2. INTRODUCING INDUCTIVE DATATYPES 65

Main> Cons
<<function>> :: (AT) > T

we realize thatCons is not so (as expected), but it can be used to build such itdrebj
for instance:

Main> Cons(1,Nil)

Cons (L,Nil) == T

or

Main> Cons(2,Cons(1,Nil))

Cons (2,Cons (L,Nil)) == T

etc.We conclude thagxpressioninvolving Nil andCons are inhabitants of typ&. Are
these theonly ones? The answer igesbecause, by design of theAdKELL language,
the constructors of typ@ will remain fixed once its declaration is interpreted, that i

no further constructor can be addedTto Doesint have an inverse? Yes, its inverse is
coalgebra

outt: T——=1+AxT
outt Nil = i1 NIL (3.16)
outt(Cons(a,l)) =iaz(a,l)

which can be straightforwardly encoded imsKELL using theEither realization of+
(recall sections 2.9 and 2.18):

outT :: T -> Either () (AT)
outT Nil = Left ()
outT (Cons(a,l)) = Right(a,l)

In summary, isomorphism

T = 1+AxT (3.17)
_//

holds, where datatyp& is inhabited by symbolic expressions which we may visualize
very conveniently as trees, for instance

Cons

Cons

66 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

picturing expressioCons(2, Cons(1, Nil)). Nil is the empty tree and'ons may be
regarded as the operation which adds a new root and a newhbisae:, to a treet:

Cons(a, j) = .

The choice of symbol$, Nil andCons was rather arbitrary in (3.15). Therefore, an
alternative declaration such as, for instance,

Cons

data U = Stop | Join (A,U) (3.18)

would have been perfectly acceptable, generating anotthaian for the equation under
algebrd] Stop, Join |. Itis easy to check that (3.18) is but a renaming\vat to Stop and
of Cons to Join. Therefore, both datatypes are isomorphic, or “abstrah#ysame”.
Indeed, any other datatyp€ inductivelydefined by a constant and a binary construc-
tor acceptingd and X as parameters will be a solution to the equation. Becauseave a
just renaming symbols in a consistent way, all such solstame abstractly the same. All
of them capture the abstract notion dfsi of symbols.
We wrote “inductively” above because the set of all exp@ssitrees) which inhabit
the type is defined by induction. Such types are calheldictiveand we shall have a lot
more to say about them in chapter 7 .

Exercise 3.1. Obviously,
either (const []) (?)

does not work as &lASKELL realization of the mediating arrow in diagram (3.9). What
do you need to write instead?
O

3.3 Observing an inductive datatype

Suppose that one is asked to express a particldaervationof an inductive such as

(3.15), that is, a function of signatur® S T for some target typd3. Suppose, for

3.3. OBSERVING AN INDUCTIVE DATATYPE 67

instance, thatd is Ny (the set of all non-negative integers) and that we want toaddd
elements which occur in @-list. Of course, we have to ensure that addition is avaglabl
in N,

add : |N0 X |N0 —_— |N0

add(z,y) &ef +y

and that0 € Ny is a value denoting “the addition of nothing”. So constanmbar

No <— 1 is available. Of courseydd(0,) = add(z,0) = = holds, for allz € No.
This property means thi#, together with operatardd and constand, forms amonoid
a very important algebraic structure in computing whicH tél exploited intensively later
in this book. The following arrow “packagindN, add ando,

0,add
Np <221 14 Ng = N (3.19)

is a convenient way to express such a structure. Combiniagitrow with the algebra

mnT

T 1+NyxT (3.20)

which definesT, and the functiory we want to define, the target of whichis= Ny, we
get the almost closed diagram which follows, in which onky ttrashed arrow is yet to be
filled in:

in-r

T 14Ny x T (3.21)
fl

\
Ng 14+ INg x Ng

[Q,add]

We know thatint = [Nil,Cons]. A pattern for the missing arrow is not difficult to
guess: in the same waybridgesT andINy on the lefthand side, it will do the same job
on the righthand side. So pattern + - - - x f comes to mind (recall section 2.10), where

the “ - ." are very naturally filled in by identity functions. All in kiwe obtain diagram
Nil,Cons
T e] 1+MNoxT (3.22)
fl lidJridxf
No Oadd] 1+ INg x Ng

which pictures the following property of
f-[Nil,Cons] = [0,add]- (id+1id x f) (3.23)

68 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

and is easy to convert to pointwise notation:

f-[Nil,Cons]=[0,add]- (id+id x f)
{ (2.40) on the lefthand side, (2.41) and identityon the righthand side
[f-Nil, f-Cons| =[0,add - (id x f)]
= { either structural equality (2.58)}
{ J-Nil=0
f-Cons=add- (id x f)

{ going pointwise}

{ (f - Nil)z =0z
(f-Cons)(a,x) = (add - (id x f))(a,x)

= { composition (2.6), constant (2.12), product (2.22) anchitedh of add }

FNil=0
{ f(Cons(a,x))=a+ fx

Note that we could have used:t in diagram (3.21),

T— T 1 NgxT (3.24)
fl lidJridxf

|No<m 1+ INg x Ng

obtaining another version of thiefinitionof f,
f = [0,add]- (id+ id x f) - outt (3.25)
which would lead to exactly the same pointwise recursivenitefi:
f=10,add]- (id+id x f) - outt
{ (2.41) and identityid on the righthand side
f=10,add- (id x f)] - outt
{ going pointwise orutt (3.16) }

{ fNil = ([0,add - (id x)] - outt)Nil
f(Cons(a,x)) = ([0,add - (id x f)] - outt)(a,x)

{ definition ofout (3.16) }

3.3. OBSERVING AN INDUCTIVE DATATYPE 69
FNil = ([0,add - (id x f)] - i1)Nil
f(Cons(a,x)) = ([0,add - (id x f)]-i2)(a,x)
{ +-cancellation (2.38)}

{ £ Nil = 0 Nil
f(Cons(a,x)) = (add - (id x f)) (a,x)

{ simplification }

FNil=0
{ f(Cons(a,x)) =a+ fz

Pointwise f mirrors the structure of typ& in having has many definition clauses as
constructors inl. Such functions are said to be defirlggdinduction orthe structure of
their input type. If we repeat this calculation fbli * instead ofT, that is, for

out = (1 + <hd,t|>) . (Z[]7)
— recall (3.10) — taking place afut, we get a “more algorithmic” version ¢f.
f=10,add]- (id +id x f)- (! + (hd 1)) - (=[;7)
{ +-functor (2.42), identity anck-absorption (2.25)}
f=10add]-("+(hd, f-th) - (=[17)
{ +-absorption (2.41) and consteht}

f=10add-(hd, f-t)]- (=7
{ going pointwise on guare:(;? (2.60) and simplifying }

B I=[] = 0I
fl—{ ~(t=[]) = (add-(hd,f-t}))l
{ simplification }

B =[] =0
fl—{ﬂ(z:[]) ~ hdl+ f(tIl)

The outcome of this calculation can be encoded AsKELL syntax as

fl]l=1] =0
| otherwise = head | + f (tail I)

or

70 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

fl=ifl==1
then 0
else head | + f (tail 1)

”

both requiring the equality predicate=” and destructorstiead ” and “tail

3.4 Synthesizing an inductive datatype

The issue which concerns us in this section dualizes whatawve fust dealt with: in-
stead of analyzing asbservingan inductive type such aB (3.15), we want to be able to
synthesize (generate) particular inhabitantd ofin other words, we want to be able to

specify functions with signatures . T for some given source typg. Let B = Ny
and suppose we warftto generate, for a given natural number- 0, the list containing
all numbers less or equal toin decreasing order

Cons(n,Cons(n — 1,Cons(...,Nil)))

or the empty listVil, in casen = 0.

Let us try and draw a diagram similar to (3.24) applicableht® new situation. In
trying to “re-use” this diagram, it is immediate that arrgvshould be reversed. Bearing
duality in mind, we may feel tempted to reverse all arrows jossee what happens.
Identity functions are their own inverses, amd- takes the place afut:

in-r

T 1+NoxT
fT Tid+id><f
IN() > 1 —+ lNO X |NO

Interestingly enough, the bottom arrow is the one which {boious to reverse, meaning
that we have to “invent” a particular destructorlgf, say

No —2= 1+ Ng x Ny

fitting in the diagram andeneratingthe particular computational effect we have in mind.
Once we do this, a recursive definition fémill pop out immediately,

f = int-(id+idx f)-g (3.26)
which is equivalent to:

f = [Nil,Cons-(idx f)]-g (3.27)

3.5. INTRODUCING (LIST) CATAS, ANAS AND HYLOS 71

Because we wanf 0 = Nil to hold, g (the actual generator of the computation) should
distinguish input from all the others. One thus decompogess follows,

Ny —2 N + Ng —H2 14 Ny x N,
\—/)

g

leavingh to fill in. This will be asplit providing, on the lefthand side, for the value to be
Cons’ed to the output and, on the righthand side, for the “seedh#¢onext recursive call.
Since we want the output values to be produced contiguowmslyredecreasing order, we
may defineh = (id, pred) where, forn > 0,
def
predn = n—1 (3.28)
computes th@redecessoof n. Altogether, we have synthesized

g = (I+ (id,pred) - (=97) (3.29)
Filling this in (3.27) we get
f=1[Nil,Cons - (id x f)]- (! + (id, pred)) - (=0?)
{ +-absorption (2.41) followed by -absorption (2.25¢tc. }
f=[Nil,Cons - (id, f - pred) | - (=0?)
{ going pointwise on guarek,? (2.60) and simplifying }

fn—{ n=0 = Nil
| ~(n=0) = Cons(n,f(n—1))

which matches the function we had in mind:

fn|n== = Nil
| otherwise = Cons(n,f(n-1))

We shall see briefly that the constructions of ghiunction adding up a list of num-
bers in the previous section and, in this section, of fhieinction generating a list of
numbers are very standard in algorithm design and can bellgrganeralized. Let us
first introduce some standard terminology.

3.5 Introducing (list) catas, anas and hylos

Suppose that, back to section 3.3, we wantroltiply, rather than add, the elements
occurring in lists of typeT (3.15). How much of the program synthesis effort presented
there can be reused in the design of the new function?

72 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

.. . [0,add] .
It is intuitive that only the bottom arrowiN, 1+ Ny x Ny of diagram

(3.24) needs to be replaced, because this is the only plagewle can specify that target
datatypelNg is now regarded as the carrier of another (multiplicativhenthan additive)
monoidal structure,

[Lmul]

No 1+ INg x Ng (330)

for mul(z,y) def y. We are saying that the argument list is now to be reduced édy th
multiplication operator and that output valliés expected as the result of “nothing left to
multiply”.

Moreover, in the previous section we might have wanted oorbar-list generator to
produce the list of even numbers smaller than a given nunibelecreasing order (see
exercise 3.4). Intuition will once again help us in decidihgt only arrowg in (3.26)
needs to be updated.

The following diagrams generalize both constructions byileg such bottom arrows
unspecified,

T T 4Ny xT T M 14Ny xT (3.31)
f l lid—I—idx f f} 1id+id>< f
B 14+ Ny x B B 1+Ngx B

g9 g9

and express their dualitcf, the directions of the arrows). It so happens that, for each
of these diagramsj, is uniquely dependent on thiearrow, that is to say, each particular
instantiation ofg will determine the corresponding.. So bothgs can be regarded as
“seeds” or “genetic material” of th¢ functions they uniquely definé

Following the standard terminology, we express these factsriting f = (|g) with
respect to the lefthand side diagram and by writjhg= [(¢)] with respect to the right-
hand side diagram. Redd) as “the T-catamorphisminduced byg” and [g) as “the
T-anamorphismnduced byg”. This terminology is derived from the Greek words T«
(cata) andvva (@ana) meaning, respectively, “downwards” and “upwardghipare with
the direction of thef arrow in each diagram). The exchange of parenthesgsahd “[|
in double parentheseg {)” and “[]” is aimed at expressing the duality of both concepts.

We shall have a lot to say about catamorphisms and anamorpluta given type
such asT. For the moment, it suffices to say that

e theT-catamorphism induced byg <?— 1 + N, x B is the unique function Sl T

3The theory which supports the statements of this paragraphavbe dealt with until chapter
7.

3.5. INTRODUCING (LIST) CATAS, ANAS AND HYLOS 73

which obeys to property (or is defined by)

(g = g-(id+id x (g)) - outt (3.32)

which is the same as

lg) -int = g-(id+id x (g]) (3.33)

e given B > 14+NyxB the T-anamorphism induced hyis the unique func-

tion B Lol T which obeys to property (or is defined by)

(9] = int-(id+idx[g))-g (3.34)

From (3.31) it can be observed thiatan act as a mediator between drgnamorphism

and anyT-catamorphism, that is to say A T composes withT o C , forsome

c—ls14 Ny x C . In other words, & -catamorphism call always observe (consume)
the output of ar-anamorphism. The latter produces a list\yfs which is consumed by
the former. This is depicted in the diagram which follows:

g

B 1+ Nox B (3.35)
qg)T Tz‘dﬂ‘dxqg\)

T T 14N xT
[(h)]T Tid-ﬁ-idx[(h)]

C 14Ny x C

h

What can we say about ttig|) - [2] composition? It is a function from® to C' which re-
sorts toT as arnintermediatedata-structure and can be subject to the following calmriat
(cf. outermost rectangle in (3.35)):

(gD - (h)] = g- (id +id x (g)) - (id +id x [(h]]) - A
{ +-functor (2.42) }

(gD - (R) = g - ((id - id) + (id x (g])) - (id x [(h])) - h
{ identity andx-functor (2.28) }

(gD - (n)] = g - (id +id x (g) - (P)) - 1

74 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

This calculation shows how to defing' UL O

without any intermediate data-structure:

B in one go, that is to say, doing

g

B 1+ Ny x B (3.36)
qu-[(h)]T Tz’dﬂ'dxqgv[(h)]
C 1+ Ny xC

h

As an example, let us see what comes outgf - [(»] for h andg respectively given by
(3.29) and (3.30):
(gD - (n) = g (id+id x (g]) - [(R]) - h

{ (9] - [h) abbreviated tgf and instantiatingh andg }
f=1Lmul] (id+id x f)- (' + (id, pred)) - (=0?)

{ +-functor (2.42) and identity}
f=1Lmul]-('+ (id x [) - (id, pred)) - (=0?)

{ x-absorption (2.25) and identity
f=[Lmul]-('+ (id, f - pred) - (=0?)

{ +-absorption (2.41) and constan{2.15) }

{ McCarthy conditional (2.59)}

f = (:0?) - l? mul - <7’d7 f . pred)

Going pointwise, we get — via (2.59) —

O = [Lmul-(id, f-pred](i1 0)
= { +-cancellation (2.38)}
10
= { constant function (2.12}
1
and
f(n+1) = [Lmul- (id,f-pred](iz(n + 1))

= { +-cancellation (2.38)}

3.5. INTRODUCING (LIST) CATAS, ANAS AND HYLOS 75

mul - (id, f - pred)(n + 1)
= { pointwise definitions o$plit, identity, predecessor andul }
(n+1)x fn

In summary,f is but the well-known factorial function:

{ fo=1
fln+1)=(Mn+1)x fn

This result comes to no surprise if we look at diagram (3.85}te particulaty and
h we have considered above and recall a popular “definitiorfactorial:

nl = nxn-—-1)x...x1 (3.37)

n times
In fact, [[h)] n producesT -list

Cons(n,Cons(n—1,...Cons(1, Nil)))

as an intermediate data-structure which is consumefdpythe effect of which is but the
“replacement” ofCons by x andNil by 1, therefore accomplishing (3.37) and realizing
the computation of factorial.

The moral of this example is that a function as simple as fedtoan bedecomposed
into two components (producer/consumer functions) whitdres a common intermedi-
ate inductive datatype. The producer function is an anahismpwhich “represents” or
produces a “view” of its input argument as a value of the mtediate datatype. The
consumer function is a catamorphism which reduces thisnrediate data-structure and
produces the final result. Like factorial, many functiona ba handsomely expressed by
a(g) - [(h) composition for a suitable choice of the intermediate tgpel ofg andh. The
intermediate data-structure is said toustual in the sense that it only exists as a means
to induce the associated pattern of recursion and disappgaralculation.

The compositior{g|) - [h)] of a T-catamorphism with &-anamorphism is called &
hylomorphisnf and is denoted bfjg, h]. Becausgy andh fully determine the behaviour
of the [g,] function, they can be regarded as the “genes” of the funttien define. As
we shall see, this analogy with biology will prove specialleful for algorithm analysis
and classification.

Exercise 3.2. A way of computing:?, the square of a given natural number is to
sum up then first odd numbers. In factl? = 1,22 =1+ 3,32 = 1+ 3 + 5, etc,
n? = (2n — 1) + (n — 1)2. Following this hint, express function

sqn & 52 (3.38)

4This terminology is derived from the Greek wardloo (hylos) meaning “matter”.

76 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

as aT-hylomorphism and encode it HASKELL.
O

Exercise 3.3. Write functionz™ as aT-hylomorphism and encode it HASKELL.
O

Exercise 3.4. The following function irHASKELL computes thd-sequence of all even
numbers less or equal ta:

fn=ifn<=1
then Nil
else Cons(m,f(m-2))
where m = if even n then n else n-1

Find its “genetic material”, that is, functiory such that f§(g)| in

T 4 NgxT

[(g)]T Ticﬂ’idx[(g)}
INO 1+ |N0 X |NQ

g

3.6 Inductive types more generally

So far we have focussed our attention exclusively to a pdatidnductive typeT (3.20)
— that of finite sequences of non-negative integers. Thisfispurse, of a very limited
scope. First, because one could think of finite sequencethef datatypes.g.Booleans
or many others. Second, because other datatypes suchsahaisk-tablestc.exist which
our notation and method should be able to take into account.

3.7. FUNCTORS 77

Although a generic theory of arbitrary datatypes requirdbemretical elaboration
which cannot be explained at once, we can move a step funthieking the two obser-
vations above as starting points. We shall start from tterlat order to talk generically
about inductive types. Then we introduce parameterizatimhfunctorial behaviour.

Suppose that, as a mere notational convention, we ableetaty expression of the
form “1 4+ Ng x ..."” occurring in the previous section b¥*..”, e.g.1+ Ny x BbyF B,
e.g.1+Nyx ThyFT

outT
T
T o FT 3.39
wmT
etc. This is the same as introducing a datatype-level operator

FXY 14Ny x X (3.40)

which maps every datatypé into datatypel + Ny x A. OperatorF captures the pattern

of recursion which is associated to so-called “right” li&$ non-negative integers), that

is, lists which grow to the right. The slightly different patn G X © 4 X x INo will

generate a different, although related, inductive type
X 214X xN (3.41)

— that of so-called “left” lists (of non-negative integer#)nd it is not difficult to think of
the pattern which is merges both right and left lists andgige to bi-linear lists, better
known asbinary trees

X 214X xNgxX (3.42)

One may think of many other expressioRs{ and guess the inductive datatype they

generate, for instande X def No + Ng x X generating non-empty lists of non-negative
integers [\I(J{). The general rule is that, given an inductive datatype difimof the form

X =~ FX (3.43)

(also called a domain equation), its pattern of recursiaaured by a so-callgdnctor
F.

3.7 Functors

The concept of a functdf, borrowed from category theory, is a most generic and useful
device in programming. As we have seerf, can be regarded as a datatype constructor

5The category theory practitioner must be warned of the fattthe wordunctoris used here
in a too restrictive way. A proper (generic) definition of anéwor will be provided later in this

78 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

which, given datatyped, builds a more elaborate datatyped; given another datatype
B, builds a similarly elaborate datatypeB; and so on. But what is more important
and has the most beneficial consequences is thatjsfregarded as a functor, then its
data-structuring effect extends smoothly to functionshim following way: suppose that
B <f— A is afunction which observes into B, which are parameters 6fA andF B,

respectively. By definition, if is a functor thenF B S F A exists for every suclt:

A e FA
1 e
B FB

F f extendsf to F-structures and will, by definition, obey to two very basioerties: it
commutes with identity

Fida = idF g (3.44)
and with composition
Flg-h) = (Fg)-(Fh) (3.45)
Two simple examples of a functor follow:

¢ |dentity functor: defind X = X, for every datatypeX, andF f = f. Properties
(3.44) and (3.45) hold trivially just by removing symidolvherever it occurs.

e Constant functors: for a givefl, defineF X = C (for all datatypesX) andF f =
idc, as expressed in the following diagram:

A C
fl lidc
B C

Properties (3.44) and (3.45) hold trivially again.

In the same way functions can be unary, binatg, we can have functors with more
than one argument. So we get binary functors (also cdlifeohctorg, ternary functors
etc. Of course, properties (3.44) and (3.45) have to hold foryeparameter of am-ary
functor. For a binary functoB, for instance, equation (3.44) becomes

B (ida,idp) = idga,p) (3.46)

book.

3.8. POLYNOMIAL FUNCTORS 79

| Data construction | Universal construct | Functor | Description |

AXx B (f,9) f xg | Product
A+ B [f,9] f+g | Coproduct
BA f A Exponential

Table 3.1: Datatype constructions and associated opsrator

and equation (3.45) becomes

Product and coproduct are typical examples of bifunctorsthé former case one
hasB(A,B) = A x BandB(f,g) = f x g — recall (2.22). Properties (2.29) and
(2.28) instantiate (3.46) and (3.47), respectively, ansl éxplains why we called them
the functorial properties of product. In the latter cases basB (A, B) = A + B and
B(f,g9) = f + g—recall (2.37) — and functorial properties (2.43) and (2.4Znally,
exponentiation is a functorial construction too: assumiigone hask X 4 x4 and
Ff def f - ap and functorial properties (2.73) and (2.74). All this is soarized in table
3.1

Such as functions, functors may compose with each othereirolivious way: the

composition off andG, denotedF - G, is defined by

F-0x ¥ Fx) (3.48)

F-6of ¥ F@Gy (3.49)

3.8 Polynomial functors

We may put constant, product, coproduct and identity fuisatmgether to obtain so-called
polynomial functorswhich are described by polynomial expressions, for irc#an

FX=1+AxX
— recall (3.6). A polynomial functor is either
e a constant functor or the identity functor, or
o the (finitary) product or coproduct (sum) of other polynohfiimctors, or

e the composition of other polynomial functors.

80 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

So the effect on arrows of a polynomial functor is compute@rnneasy and structured
way, for instance:

Ff = (I+AxX)f
= { sum of two functors wherél is a constant and’ is a variable }
() f+ (Ax X)f
= { constant functor and product of two functo}s
idi + (A) f x (X)f
= { constant functor and identity functoy
idy +1idg X f
= { subscripts dropped for simplicity
id+id x f
So,1+ A x f denotes the same a$ + id4 x f, or even the same ag + id x f if one
drops the subscripts.

It should be clear at this point that what was referred to atise 2.10 as a “symbolic
pattern” applicable to both datatypes and arrows is aftex fainctor in the mathematical
sense. The fact that the same polynomial expression is wusddriote both the data
and the operators which structurally transform such datd ggeat conceptual economy

and practical application. For instance, once polynomiakfor (3.40) is assumed, the
diagrams in (3.31) can be written as simply as

outt inT

T FT T<——FT (3.50)
N
B<———FB B————FB

It is useful to know that, thanks to the isomorphism laws istdidn chapter 2, every
polynomial functorF may be put into the canonical form,

FX & OO+(01XX)+(CQXX2)+"'+(ORXX7L)

Y Oix X (3.51)
- =0 '
and thatNewton’s binomial formula
(A+B)" = > "Cpx A"P x BP (3.52)

p=0

3.9. POLYNOMIAL INDUCTIVE TYPES 81

can be used in such conversions. These are performed umtorigbism, that is to say,
after the conversion one gets a different but isomorphiatglpe. Consider, for instance,

functor

FX % Ax 1+ X)2

(whereA is a constant datatype) and check the following reasoning:

FX Ax(1+X)2
{ law (2.87) }
Ax(1+X)x (1+X))
{ law (2.50) }
Ax(1+X)x1+(1+X)x X))
{ laws (2.81), (2.31) and (2.50)
AXx(14+4X)+(1xX+X x X))
{ laws (2.81) and (2.87)
Ax (14 X)+ (X + X?%)
{ law (2.46) }
Ax (14 (X +X)+ X%
{ canonical form obtained via laws (2.50) and (2.88)

1

1

1

14

1%

I

A +Ax2xX+ A xX?
- == ~~
OO Cl CQ

Exercise 3.5. Synthesize the isomorphism+ A x 2 x X + A x X2<=— A x (1 + X?)

implicit in the above reasoning.
O

3.9 Polynomial inductive types

An inductive datatype is said to tmlynomialwherever its pattern of recursion is de-
scribed by a polynomial functor, that is to say, wherevén equation (3.43) is polyno-
mial. For instance, datatype(3.20) is polynomial{ = 1) and its associated polynomial

82 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

functor is canonically defined with coefficient§) = 1 andC; = INy. For reasons that
will become apparent later on, we shall always imp6ge#£ 0 to hold in apolynomial
datatype expressed in canonical form.

Polynomial types are easy to encode indELL wherever the associated functor is
in canonical polynomial form, that is, wherever one has

T o S, Cix T (3.53)
\’/
in‘r
Then we have
. def
mT é [fla"')fn]

where, fori = 1,n, f; is an arrow of typeT <—— C; x T*. Sincen is finite, one may
expand exponentials according to (2.87) and encode thig\gkiHLL as follows:

data T = CO |
C1l (C1,T) |
C2 (C2(T,T)) |

|
Cn (Cny(T, ..., T))

Of course the choice of symbd@li to realize eacty; is arbitrary®. Several instances of
polynomial inductive types (in canonical form) will be mimted in section 3.13. Section
3.17 will address the conversion between inductive datstypduced by so-callethtural
transformations

The concepts of catamorphism, anamorphism and hylomaerphmisoduced in sec-
tion 3.5 can be extended to arbitrary polynomial types. Wetethe following sections
to explaining catamorphisms in the polynomial setting. yRomial anamorphisms and
hylomorphisms will not be dealt with until chapter 7.

3.10 F-algebras andF-homomorphisms

Our interest in polynomial types is basically due to the fhet, for polynomialF, equa-
tion (3.43) always has a particularly interesting solutidmich corresponds to our notion
of a recursive datatype.

6A more traditional (but less close to (3.53)) encoding wél b
data T=CO0O|CLcCcaT|]C2C2TT]|.. |[ChCNT.. T (3.54)

delivering every constructor in curried form.

3.11. F-CATAMORPHISMS 83

In order to explain this, we need two notions which are easintterstand: first, that
of anF-algebra which simply is any functionx of signature A <*—F A . Ais called
the carrier of F-algebrac and contains the values whieh manipulates by computing
new A-values out of existing ones, according to theattern (the “type” of the algebra).
As examples, considér0, add | (3.19) andint (3.20), which are both algebras of type
FX =1+ Ny x X. The type of an algebra clearly determines its form. Forainse, any
algebrax of typeF X = 1+ X x X will be of form [a1, as], wherea, is a constant and
as is a binary operator. So monoids are algebras of this type

Secondly, we introduce the notion of &homomorphisnwhich is but a function
observing a particulaf-algebraa into anotherF-algebrags:

A<"—FA f-a=p-(Ff) (3.55)

LY

B<ﬁ—FB

Clearly, f can be regarded as a structural translation betweamd B, that is, A and

B have a similar structur. Note that — thanks to (3.44) — identity functions are
always (trivial)F-homomorphisms and that — thanks to (3.45) — these homorsonsh
compose, that is, the composition of tlichomomorphisms is aR-homomorphism.

3.11 F-catamorphisms

An F-algebra can be epic, monic or both, that is, iso. Fsalgebras are particularly
relevant to our discussion because they describe solutidhe X = F X equation (3.43).
Moreover, for polynomiaF a particular isd--algebra always exists, which is denoted by

uF <"~ F uF and has special properties. First, its carrier is the sstalong the
carriers of other is¢-algebras, and this is why it is denoted foly — 1 for “minimal” °.
Second, it is the so-calladitial F-algebra. What does this mean?

It means that, for everff-algebrax there exists one and only ofrehomomorphism
betweenin and . This unique arrow mediating: and « is therefore determined by
« itself, and is called thé&-catamorphisngenerated byv. This construct, which was
introduced in 3.5, is in general denoted (y)):

"But not every algebra of this type is a monoid, since the tyamalgebra only fixes its syntax
and does not impose any properties such as associatitaty,

8Cf. homomorphisrs homo(the same) -morphog(structure, shape).

9uF means the least fixpoint solution of equati&n= F X, as will be described in chapter 7 .

84 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

pF <" FpuF (3.56)
f:GaDFl quO‘DF
A<=—4—FA
We will drop theF subscript in(a)r wherever deducible from the context, and often call
a the “gene” of(a)g.

As happens withsplits eithersand transposes, the uniqueness of the catamorphism
construct is captured by a universal property establishéuki class of alF-homomorphisms:

k=(a) & k-in=a-Fk (3.57)

According to the experience gathered from section 2.12 oisya few properties can be
expected as consequences of (3.57). For instance, one nmalewabout the “gene” of
the identity catamorphism. Just let= id in (3.57) and see what happens:
id=(a)<id-in=a-Fid
= { identity (2.10) andF is a functor (3.44)}
id=(a) < in=a-id
{ identity (2.10) once agair}

id = (a) ©in =«
= { «areplaced byin and simplifying }
id = (in])

Thus one finds out that the genetic material of the identitaroarphism is the initial
algebrain. Which is the same as establishing th#lection propertyof catamorphisms:

Cata-reflection :

pF <" FuF (in) = id,F (3.58)

uF - F uF

In a more intuitive way, one might have observed tfat)) is, by definition ofin, the
unique arrow mediating:F and itself. But another arrow of the same type is already
known: the identityid,r. So these two arrows must be the same.

Another property following immediately from (3.57), fér= («|), is

3.11. F-CATAMORPHISMS 85

Cata-cancellation :

(af) -in =a - F(a) (3.59)
Becausen is iso, this law can be rephrased as follows
(a) = a-F(a) - out (3.60)
whereout denotes the inverse of.:
out
T
uF = FuF
_/

Now, let f be F-homomorphism (3.55) betwednalgebrasa and 3. How does it
relate to(«|) and(3))? Note thatf - («| is an arrow mediatinglF and B. But B is the
carrier of 3 and(|3)) is the unique arrow mediatingF and B. So the two arrows are the
same:

Cata-fusion :

uF <" F uF f-lab=(5) ¥ f-a=p-Ff (3.61)

(]al)l lF(IaD

A<T FA
fl lFf
B <ﬁ— FB
Of course, this law is also a consequence of the universakepy fork = f - (a):
f-la)=(8) < (f-(a))-in=p5-F(f-(a))
& { composition is associative afds a functor (3.45)}
f-Wa) -in) =B (Ff)- (F(a))
= { cata-cancellation (3.59}
fra-Fla)=5-Ff-F(a)
<= { requiref to be aF-homomorphism (3.55)}
fra-Fla)=f-a-Flap)Af-a=p-Ff
= { simplify }
fra=p-Ff

The presentation of th@bsorptionproperty of catamorphisms entails the very impor-
tant issue of parameterization and deserves to be treateddparate section, as follows.

86 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

3.12 Parameterization and type functors

By analogy with what we have done abapiits (product),eithers(coproduct) and trans-
poses (exponential), we now look forward to identifyiRgatamorphisms which exhibit
functorial behaviour.

Suppose that one wishes to square all numbers which are mewidests of typeT
(3.20). It can be checked that

([Nil,Cons - (sqx id)]| (3.62)

s
will do this for us, wherelNg Bl Ny is given by (3.38). This catamorphism, which
converted to pointwise notation is nothing but functiowhich follows

h Nil = Nil
h(Cons(a,l)) = Cons(sqa, hl)
maps typeT to itself. This is becaussgmapsiNg to INg. Now suppose that, instead s,

one would like to apply a given functiorB S No (for someB other thanN) to all
elements of the argument list. It is easy to see that it sufficeeplacef for sqin (3.62).
However, the output type no longerTs but rather typél’ =1+ B x T'.

TypesT andT’ are very close to each other. They share the same “shapeitgiez
pattern) and only differ with respect to the type of element#, in T andB in T'. This
suggests that these two types can be regarded as instarecesooé generic list datatype
List

List X = 14 X x List X (3.63)
v
in=[Nil,Cons]
in which the type of elementX is allowed to vary. Thus one has = List Ny and
T' = List B.
By inspection, it can be checked that, for evaBy<f— A,

([Nil, Cons - (f x id)]) (3.64)
mapsList A to List B. Moreover, forf = id one has:
([Nil, Cons - (id x id)]|
= { by the x-functor-id property (2.29) and identity
([il, Cons)
= { cata-reflection (3.58)}
id

3.12. PARAMETERIZATION AND TYPE FUNCTORS 87

Therefore, by defining
Listf < ([Nil,Cons- (f x id)])
what we have just seen can be written thus:
Listida = idiista

This is nothing but law (3.44) fof replaced byList. Moreover, it will not be too difficult
to check that

List(¢g- f) = Listg-Listf

also holds —¢f. (3.45). Altogether, this means thatt can be regarded as a functor.

In programming terminology one says thadt X (the “lists of X's datatype”) ipara-
metricand that, by instantiating paramet&r, one gets ground lists such as lists of inte-
gers, booleansetc. The illustration above deepens one’s understanding ofnpetexi-
zation by identifying the functorial behaviour of the paegtnit datatype along with its
parameter instantiations.

All this can be broadly generalized and leads to what is conmynknown by atype
functor. First of all, it should be clear that the generic format

T =~ FT

adopted so far for the definition of an inductive type is ndfisiently detailed because
it does not provide a parametric view ®f For simplicity, let us suppose (for the mo-
mement) that only one parameter is identified’inThen we may factor this out vigpe
variable X and write (overloading symbdar)

TX ~ B(X,TX)

whereB is called the type'dase functor Binary functorB(X,Y") is given this name
because it is the basis of the whole inductive type definitBp instantiation ofX one
obtainsF. In the example abov&® (X,Y) =1+ X x Y andinfactFY = B (Ny,Y) =
1+ Ny x Y, recall (3.40). Moreover, one has

Ff = B(d,f) (3.65)
and so every-homomorphism can be written in terms of the base-functdr, efg.
fra=p-B(id, f)
instead of (3.55).

88 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

T X will be referred to as thgype functorgenerated byg:
TX ~ B(X,TX)
~~ —_——

type functor base functor

We proceed to the description of its functorial behaviouf—+— for a given B S A.

As far as typing rules are concerned, we shall have

B<l— 4

Tr
TB=—TA

So we should be able to expréBg as aB (A, -)-catamorphisig|):

A TA<——"T4 B(ATA)
fl T f—dg)l lB (id,T f)
B TB ;—B(A,TB)

As we know thatint g is the standard constructor of values of typé3, we may put it
into the diagram too:

A TA A B(A,TA)
fj Tf—(lg)j lB (id,T f)
B TB 5 B(A,TB)
:nk .
B(B,TB)

The catamorphism’s gengewill be synthesized by filling the dashed arrow in the diagram
with the “obvious”B (£, id), whereby one gets

T Y (inrp-B(f,id) (3.66)

and a final diagram, whetie 4 is abbreviated byn 4 (ibid. inT g by ing):

ina

A TA B(A,TA)
fl TfIGinB-B(fﬂ'd)Dl lB(id,Tf)

3.12. PARAMETERIZATION AND TYPE FUNCTORS 89

Next, we proceed to derive the useful lawaata-absorption

lgh-Tf = (g-B(f,id)) (3.67)
as consequence of the laws studied in section 3.11. Our tiargge show that, fork =
(g) - T fin(3.57), one geta = g - B(f,id):

(g)-Tf= ()
& { type-functor definition (3.66)}
(9D - linp - B(f,id)) = (o)
= { cata-fusion (3.61)}
(g) -inp - B(f,id) = a - B(id, (g))
& { cata-cancellation (3.59}
g-B(id, (g)) - B(f,id) = a - B (id, (g])
& { Bis a bi-functor (3.47)}
g-B(id- f,(g)) - id) = - B(id, (g))
& { idis natural (2.11)}
g9-B(f-id,id-(g)) = a-B(id, (g))
& { (3.47) again, this time from left to righ}
g-B(f,id)-B(id, (g) = a - B (id, (g))
&= { Leibniz }
g-B(f.id) =a

The following diagram pictures this property of catamogpohs:

A TA na B (A, T A)

fj Tfj lB(id,Tf)

C TCWB(C,TC)W)B(A,TC)
(gD lB(idyﬂgl)) lB(ifL(]gD)

It remains to show that (3.66) indeed defines a functor. Tduisbe verified by check-
ing properties (3.44) and (3.45) fér= T

90 CHAPTER 3. RECURSION IN THE POINTFREE STYLE
e Propertytype-functor-id, cf. (3.44):
Tid
{ by definition (3.66) }
(inp - B (id, id)))
{ Bis a bi-functor (3.46)}
(inp - id)
{ identity and cata-reflection (3.58)

id

e Propertytype-functor, cf. (3.45) :

T(f-9)

= { by definition (3.66) }
(inp-B(f-g,id)]

= { id -id = id andB is a bi-functor (3.47)}

= { cata-absorption (3.67)
(ing-B(f,id))-Tyg

= { again cata-absorption (3.6%)
(ing) - Tf-Tg

= { cata-reflection (3.58) followed by identity
Tf-Tg

3.13 A catalogue of standard polynomial inductive
types

The following table contains a collection of standard polyral inductive types and as-
sociated base type bi-functors, which are in canonical {@&&3). The table contains two
extra columns which may be used as bookmarks for equatio5)(a&nd (3.66), respec-

3.13. ACATALOGUE OF STANDARD POLYNOMIAL INDUCTIVE TYPES1

tively 19:
| Description | TX B(X,Y) B (id, f) B (f,id)
“Right” Lists List X 1+ X XY | id+idx f | id+ f xid
“Left” Lists LList X 1+4Y xX | id+fxid | id+idx f (3.68)
Non-empty Lists| NList X | X + X xY | id+idx f | f+ f xid
Binary Trees BTreeX | 1+ X xY? | id+id x f? | id+ f x id
“Leaf” Trees LTree X X+Y? id + f? f+id

All type functorsT in this table are unary. In general, one may think of inductiv
datatypes which exhibit more than one type parameter. 8hophrameters be identified
in T, then this will be based on an-+ 1-ary base functoB, cf.

T(X1,...,X,) = B(Xy,...,X,, T(X1,...,X,))
So, everyn + 1-ary polynomial functoB(X1, ..., X,, X,+1) can be identified as the
basis of an inductivex-ary type functor (the convention is to stick to the canoinfoem
and reserve the last variablg, | ; for the “recursive call”). While type bi-functors.(= 2)
are often found in programming, the situation in which> 2 is relatively rare. For
instance, the combination of leaf-trees with binary-tree3.68) leads to the so-called

“full tree” type bi-functor

| Description | T(X1, X») | B(X1,X2,Y) | B(id,id, f) | B(f,g,id) \,3 69)
| “Full” Trees | FTree(X1,Xs) | X1+ Xo x Y2 [id+idx f2 | f+gxid [

As we shall see later on, these types are widely used in progmag. In the actual
encoding of these types inA$KELL, exponentials are normally expanded to products
according to (2.87), see for instance

data BTree a = Empty | Node(a, (BTree a, BTree a))
Moreover, one may chose to curry the type constructors &sgn,

data BTree a = Empty | Node a (BTree a) (BTree a)

Exercise 3.6. Write as a catamorphisms

e the function which counts the number of elements of a noryelisp (typeNList
in (3.68)).

0Since(ida)? = id 42) one writesid? for id in this table.

92 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

¢ the function which computes the maximum element of a bineeysf natural num-
bers.

Exercise 3.7. Characterize the function which is defined],]|) for each of the
following definitions of: B

h(z, (y1,92)) = y1 -+ [z] H 2 (3.70)
h = +#-(singlx +) (3.71)
h = 4 (# xsingl) - swap (3.72)

assumingsingla = [a]. Identify in (3.68) which datatypes are involved as basetfrs.
O

Exercise 3.8. Write as a catamorphism the function which computedrtindier of a tree
of typeLTree (3.68), listed from left to right.
O

3.14 Functors and type functors in HASKELL

The concept of a (unary) functor is provided imsKELL in the form of a particular class
exporting themap operator:

class Functor f where
fmap :: (@ -> b) > (f a ->fb)

Sofmap g encoded g once we declaré as an instance of clagainctor . The most
popular use ofmap has to do with FASKELL lists, as allowed by declaration

instance Functor [] where
fmap f [] =1
fmap f (xixs) = f x : fmap f xs

3.15. THE MUTUAL-RECURSION LAW 93

in language’sStandard Prelude
In order to encode the type functors we have seen so far wethate the same
concerning their declaration. For instance, should weewrit

instance Functor BTree
where fmap f =
cataBTree (inBTree . (id -|- (f >< id)))

concerning the binary-tree datatype of (3.68) and assumjpmgopriate declarations of
cataBTree andinBTree ,thenfmap is overloaded and used across such binary-trees.
Bi-functors can be added easily by writing

class BiFunctor f where
bmap :: (@ ->b) ->(c >d) > (fac->fbd)

Exercise 3.9. Declare all datatypes in (3.68) iHASKELL notation and turn them into
HASKELL type functors, that is, defifarap in each case.
O

Exercise 3.10. Declare datatype (3.69) iHASKELL notation and turn it into an instance
of classBi Funct or .
O

3.15 The mutual-recursion law

The theory developed so far for building (and reasoning gbieaursive functions doesn't
cope with mutual recursion. As a matter of fact, the pattdrmeoursion of a given
cata(ana,hylo)morphism involves only the recursive fiamcbeing defined, even though
more than once, in general, as dictated by the relevant baséof.

It turns out that rules for handling mutual recursion argeaingly simple to calcu-
late. As motivation, recall section 2.10 where, by mixingdurcts with coproducts, we
obtained a result — thexchange rul€2.47) — which stemmed from putting together the
two universal properties of product and coproduct, (2.5%6) @.57), respectively.

94 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

The question we want to address in this section is of the saarebwhat can one
tell about catamorphisms which output pairs of vaRieBy (2.55), such catamorphisms
are bound to beplits as are the correspondilggnes

in

T FT
G(W@))l lF ({hsk)D

As we did for the exchange rule, we put (2.55) and the univensaperty of catamor-
phisms (3.57) against each other and calculate:

(f,9) = ({h, k)

{ cata-universal (3.57}
= { x-fusion (2.24) twice}
(f-in,g-in) =(h-F(f,g),k-F(f,9))

{ (2.56) }
frin=h-F(f,g) N g-in=k-F(f g)
The rule thus obtained,

{ frin="h-F(f g)
g-in==k-F(fg)
is referred to as thenutual recursion lawor as “Fokkinga’s law”) and is useful in com-
bining two mutually recursive functiongandg

= (f,9) = ((h k)] (3.73)

T—" FT T—" FT
fl lF () 9 lF (+.9)
A<—F(AxB) B~—F(AxB)

into a single catamorphism.

When applied from left to right, law (3.73) is surprisinglgeful in optimizing recur-
sive functions in a way which saves redundant traversalbefiriput inductive typer.
Let us take the Fibonacci function as example:

fibo = 1
fibl = 1
fib(n+2) = fib(n+1)+ fibn

3.15. THE MUTUAL-RECURSION LAW 95

It can be shown thatib is a hylomorphism of typ&Tree (3.68), fib = [count, fibd], for
count = [1,add], add(x,y) = x +y and fibd n = if n < 2 then iy Nil else iz(n —
1,n — 2). This hylo-factorization offib tells its internal algorithmic structure: thidvide
step|(fibd) builds a tree whose number of leaves is a Fibonacci numbecpthquer step
(count]) just counts such leaves.

There is, of course, much re-calculation in this hylomosphi Can we improve its
performance? The clue is to regard the two instancegilofn the recursive branch as
mutually recursive over the natural numbers. This clue ggested not only byfib
having two base cases (so, perhaps it hides two functiong)ismby the lookaheaad + 2
in the recursive clause.

We start by defining a function which reduces such a lookabgék]

fn = fibn+1)

Clearly, f(n+ 1) = fib(n+2) = fn+ fibnandf 0 = fib1 = 1. Putting f and fib
togther,

f0 =1
fin+1) = fn+ fibn
fib0 = 1

fibln+1) = fn

we obtain two mutually recursive functions over the natumainbers Ny) which trans-
form into pointfree equalities

f’[QvSUC] = [l7add<f7f2b>]
fib’[Q,SUC] = [l7f]
over
Ny~ = Mo (3.74)

O =
S~ __— FNp

in=[0,suc |

Reverset-absorption (2.41) will further enable us to rewrite theabmto

fib-in = [1,m] -F(f, fib)

thus bringing functoF f = id + f explicit and preparing for mutual recursion removal:

fib-in = [1,m] F{(f, fib)

96 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

{ 3.73) }
(f,fib) = (([1,add],[1,m]))
{ exchange law (2.47)
<fa flb> = (I[<lyl>> <a‘dda 7T1>]D
{ going pointwise and denotingf, fib) by fit' }

Fit 0= (1,1)
{ fit (n+1) = (z + y,x) where (x,y) = fib/ n

Since fib = m - fib we easily recoverfib from fib' and obtain the intended linear
version of Fibonacci (encoded in Haskell):

fib n = y where (x,y) = fib’ n
fib’ 0 = (1,1)
fib’ (n+1) = (x+y,X)
where (x,y) = fib’ n

This version offib is actually the semantics of the “for-loop” one would write an
imperative language which would initialize two global adiesz,y := 1,1, loop over
assignment:, y := = + y,z and yield the result iy. In the C programming language,
one would write

int fib(int n)

{

int x=1; int y=1; int i

for (i=1;i<=n;i++) {int a=x; x=x+y; y=a;}
return vy;

h

where the extra variable is required for ensuring thaimultaneousssignment, i :=
x + y, x takes place in a sequential way.

Our intuition above is confirmed by observing thatldjj catamorphisms are of shape
([k,9]), and that[k, g |)n = g™k, whereg" is then-th iteration ofg, that is,¢* = id
andg™t! = ¢ - ¢". Sog is the body of a “for-loop” which repeats itselftimes, starting
with initial value k.

Such a for-loop combinator is nothing but the “fold comboradassociated to the nat-
ural number data type, which becomes explicit by solving -#@i§3.57) — the equation

forgk = ([kg])

3.15. THE MUTUAL-RECURSION LAW 97

obtaining

forgk0 = k
forgk(n+1) = g(forgkn)
In a sense, the mutual recursion law gives us a hint on hovaglariables “are born”
in computer programs, out of the maths definitions themsel@eiite often more that two
such variables are required in linearizing hylomorphismsnoitual recursion. Let us see

an example. The question isow many squares can one draw on & n-tiled wall? The
answer is given by function

def .2
nsn = E 1

=1n
that is,

ns0 = 0
ns(n+1) = (n+1)%+nsn

in Haskell. However, this hylomorphism is inefficient besateach iteration involves
another hylomorphism computing square numbers.

One way of improvingrs is to introduce functiorbnm n = (n + 1)% and express
this over (3.74),

bnm0 = 1
bnm(n+1) = 2n+3+bnmn

hoping to blenchs with bnm using the mutual recursion law. However, the same problem

arises inbnm itself, which now depends on tertm + 3. We inventlin n df 9n 4 3 and
repeat the process, thus obtaining:

lin0 = 3
linln+1) = 2+linn
By redefining
bnm'0 = 1
bnm/(n+1) = linn+bnm'n
ns0 = 0

ns'(n+1) = bnm' n+ns'n

98 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

we obtain three functions -=s’, bnm' andlin — mutually recursive over the polynomial
baseF g = id + g of the natural numbers.

Exercise 3.11 below shows how to extend (3.73) to three miytggcursive functions
(3.75). (From this it is easy to extend it further to thery case.) It is routine work to
show that, by application of (3.75) to the above three fumsj one obtains the linear
version ofns which follows:

ns” n = let (a,b,c) = aux n in a

where
aux 0 = (0,1,3)
aux(n+1) = let (a,b,c) = aux n

in (at+b,b+c,2+c)

In retrospect, note that (in general) not every systemmiutually recursive functions

fi=01(f1,--, fa)

.lfn :¢n(fla7fn)

involving n functions andh functional combinatorsq, . . . , ¢,, can be handled by a suit-
ably extended version of (3.73). This only happens iffathave the same “shape”, that
is, if they share the same base fundtor

Exercise 3.11. Show that law (3.73) generalizes to more than two mutualtynsve
functions, in this case three:

frin=h-F(f(g,7))
g-in=k-F(f(g,5)) = (£:9,:3)) = ((h; (k1)) (3.75)
Jjein=1-F(f {g,5))

Exercise 3.12. The exponential functioa® : R — R (where “¢” denotes Euler’s
number) can be defined in several ways, one being the calmulat Taylor series:

& = ZZ—T (3.76)

n=0

The following function, in Haskell,

3.15. THE MUTUAL-RECURSION LAW 99

exp :: Double -> Integer -> Double
exp x 0 =1
exp x (n+l) = x(n+1) / fac (n+1) + (exp x n)

computes an approximation ef, where the second parameter tells how many terms to
compute. For instance, whitecp 1 1 = 2.0, exp 1 10 yields2.7182818011463845.
Functionezp x n performs badly for larger and larger: whileezp 1 100 runs instan-
taneouslyexp 1 1000 takes around 9 secondsyp 1 2000 takes circa 33 seconds, and so
on.
Decomposexp into mutually recursive functions so as to apply (3.75) ahthm the
following linear version:

exp Xx n = let (e,b,c) = aux x n
in e where
aux x 0 = (1,2,x)
aux x (n+l) = let (e,s,h) = aux x n
in (e+h,s+1,(x/s) *h)

Exercise 3.13. From the following basic properties of addition and muitikion,

ax0 = 0 (3.77)
axl = a (3.78)
ax(b+c) = axbt+axc (3.79)

show thata x n = for (a+) 0.
O

Exercise 3.14. Calculate the for-loop implementation of natural numbepaxentials
from the basic properties:

=1 (3.80)
at=a (3.81)
b+c b

a’" =a’ x a® (3.82)

100 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

Exercise 3.15. Show that, for alln € INg, n = suc™0. Hint: use cata-reflexion (3.58).
O

As example of application of (3.73) far other thanN, consider the following re-
cursive predicate which checks whether a (hon-empty)distdered,

ord: AT ——=2
ord[a] = TRUE
ord (cons(a,l)) = a > (listMaxl) A (ordl)

where> is assumed to be a total order on datatypand
listMax = ([id, max]| (3.83)
computes the greatest element of a given listief

sin |,cons
b2t gL Axoat

l'L’st]Waxl lid+id><listMam

A+Ax A

[id,maz |
(In the diagramsingla = [a].)

Predicateord is not a catamorphism because of the presencésolM azx [in the
recursive branch. However, the following diagram depitind

[singl.cons |
At<———A+ Ax AT

ord lid—&-idx (listMax,ord)

2WA+AX(AX2)

(wherea(a, (m,b)) ey > m A b) suggests the possibility of using the mutual recursion

law. One only has to find a way of lettingstMax depend also owrd, which isn’t

3.16. “BANANA-SPLIT”: ACOROLLARY OF THE MUTUAL-RECURSIONLAW101

difficult: for any o+ —2> B, one has

[Sing',cons]

A+Ax AT
listMaxl lid—}—idx (listM az,g)

A+ Ax (AxB)

[id;maz-(idxm1)]

where the extra presence @fs cancelled by projection .
For B = 2 andg = ord we are in position to apply Fokkinga’s law and obtain:

(listMax,ord) = ({[id,max - (id X 71)],[TRUE, & |)))
= { exchange law2.47)}
([(id, TRUE), (maz - (id x m1),)])

Of courseprd = my - (listMax, ord). By denoting the above synthesized catamorphism
by aux, we end up with the following version of-d:

ordl = let (a,b)=auxl
m b
where

auxr : At ——= A x 2
aux [a] = (a, TRUE)
aux (cons(a,l)) = let (m,b) = auxl
in (maz(a,m),(a>mAb))

3.16 *“Banana-split”: a corollary of the mutual-recursion

law

Leth =14 -Fm andk = j-Fmein (3.73). Then
frin={(i-Fm) F(fg)

{ composition is associative atds a functor}
frin=i-F(m-(f9))

{ by x-cancellation (2.20}
f-in=i-Ff

{ by cata-cancellatior

f= (i)

102 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

Similarly, fromk = j - F 1o we get
9= ()
Then, from (3.73), we get

((aD, (5D) = (€@ - Fy,j - F))

that is

(e, (50> = (@@ > 5) - (F 1, Fra)) (3.84)

by (reverse)x-absorption (2.25).

This law provides us with a very useful tool for “parallel ointer-combination:
“loops” (i]) and(|;j|) are fused together into a single “loof){i x j) - (F w1, Fms))). The
need for this kind of calculation arises very often. Considler instance, the function
which computes the average of a non-empty list of naturallbars)

average def (/) - (sum,length) (3.85)
wheresum andlength are the expectebl™ catamorphisms:

sum = ([id,+])
length = ([1, succ - 72]|

As defined by (3.82), functionverage performs two independent traversals of the argu-
ment list before divisior{/) takes place. Banana-split will fuse such two traversats ant
single one (see functiomux below), thus leading to a function which will run "twice as
fast™

averagel = x/y
where (z,y) = aux
auxla] = (a,1) (3.86)
auz(cons(a,l)) = (a+z,y+1)
where (x,y) = aux

Exercise 3.16. Calculate (3.83) from (3.82). Which of these two versionthefsame
function is easier to understand?
O

3.17. INDUCTIVE DATATYPE ISOMORPHISM 103

3.17 Inductive datatype isomorphism

| not yet availabl¢

3.18 Bibliography notes

It is often the case that the expressive power of a partiquiagramming language or
paradigm is counter-productive in the sense that too mwegdfym is given to program-
mers. Sooner or later, these will end up writing uninteligi(authorship dependent) code
which will become a burden to whom has to maintain it. Suchiees the case of imper-
ative programming in the past (inc. assembly code), whezaitinestricted use afoto
instructions eventually gave placeife¢hen-else ,while andrepeat structured
programming constructs.

A similar trend has been observed over the last decades gharhprogramming
level: arbitrary recursion and/or (side) effects have bamrsidered harmful in functional
programming. Instead, programmers have been invited twtste their code around
generic program devices such as fgd/unfold combinators, which bring discipline to
recursion. One witnesses progress in the sense that theflveedom is balanced by the
increase of formal semantics and the availability of progcalculi.

Such disciplined programming combinators have been egtefrom list-processing
to other inductive structures thanks to one of the most Bgmit advances in program-
ming theory over the last decade: the so-cafi@ukctorial approach to datatypes which
originated mainly from [MA86], was popularized by [Mal90hé reached textbook for-
mat in [BAM97]. A comfortable basis for exploitingplymorphisnjWad89], the “datatypes
as functors” moto has proved beneficial at a higher level sfrabtion, giving birth to
polytypism[JJ96].

The literature oranas catasandhylosis vast (see eg. [MH95], [JJ98], [GHAO1]) and
it is part of a broader discipline which has become known astathematics of program
construction[Bac04]. This chapter provides an introduction to such asigiine. Only
the calculus of catamorphisms is presented. The corregmptiteory of anamorphisms
and hylomorphisms demands further mathematical machiaedywill won't be dealt
with before chapters 5 and 7. The results on mutual recurmiesented in this chapter
were pionered by Maarten Fokkinga [Fok92].

