
Chapter 3

Recursion in the Pointfree Style

How useful from a programmer’s point of view are the abstractconcepts presented in
the previous chapter? Recall that a table was presented — table 2.1 — which records an
analogy between abstract type notation and the corresponding data-structures available in
common, imperative languages.

This analogy is precisely our point of departure for extending the abstract notation
towards a most important field of programming:recursion.

3.1 Motivation

Let us consider a very common data-structure in programming: “linked-lists”. In PASCAL

one will write
L = N̂;
N = record

first: A;
next: N̂

end;

to specify such a data-structureL. This consists of a pointer to anode(N), where a node
is a record structure which puts some predefined typeA together with a pointer to another
node, and so on. In the C programming language, everyx ∈ L will be declared as

L x;

in the context of datatype definition

typedef struct N {
A first;

55

56 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

struct N * next;
} * L;

and so on.
What interests us in such “first year programming course” datatype declarations?

Records and pointers have already been dealt with in table 2.1. So we can use this table
to find the abstract version of datatypeL, by replacing pointers by the “1 + · · ·” notation
and records (structs) by the “. . . × . . .” notation:

{
L = 1 + N
N = A× (1 + N)

(3.1)

We obtain a system of two equations on unknownsL andN , in whichL’s dependence
onN can be removed by substitution:

{
L = 1 + N
N = A× (1 + N)

≡ { substitutingL for 1 + N in the second equation}
{

L = 1 + N
N = A× L

≡ { substitutingA× L for N in the first equation}
{

L = 1 + A× L
N = A× L

System (3.1) is thus equivalent to:
{

L = 1 + A× L
N = A× (1 + N)

(3.2)

Intuitively, L abstracts the “possibly empty” linked-list of elements of type A, while N
abstracts the “non-empty” linked-list of elements of typeA. Note thatL andN are inde-
pendent of each other, but also that each depends on itself. Can we solve these equations
in a way such that we obtain “solutions” forL andN , in the same way we do with school
equations such as, for instance,

x = 1 +
x

2
? (3.3)

Concerning this equation, let us recall how we would go aboutit in school mathemat-
ics:

x = 1 +
x

2

3.1. MOTIVATION 57

≡ { adding−x
2 to both sides of the equation}

x− x

2
= 1 +

x

2
− x

2

≡ { −x
2 cancelsx

2 }

x− x

2
= 1

≡ {multiplying both sides of the equation by2 etc. }
2× x− x = 2

≡ { subtraction}
x = 2

We very quickly get solutionx = 2. However, many steps were omitted from the
actual calculation. This unfolds into the longer sequence of more elementary steps which
follows, in which notationa− b abbreviatesa+ (−b) and a

b abbreviatesa× 1
b , for b 6= 0:

x = 1 +
x

2

≡ { adding−x
2 to both sides of the equation}

x− x

2
= (1 +

x

2
)− x

2

≡ { + is associative}

x− x

2
= 1 + (

x

2
− x

2
)

≡ { −x
2 is the additive inverse ofx2 }

x− x

2
= 1 + 0

≡ { 0 is the unit of addition}

x− x

2
= 1

≡ { multiplying both sides of the equation by2 }

2× (x− x

2
) = 2× 1

≡ { 1 is the unit of multiplication}

2× (x− x

2
) = 2

≡ { multiplication distributes over addition}

58 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

2× x− 2× x

2
= 2

≡ { 2 cancels its inverse12 }
2× x− 1× x = 2

≡ {multiplication distributes over addition}
(2− 1)× x = 2

≡ { 2− 1 = 1 and1 is the unit of multiplication}
x = 2

Back to (3.2), we would like to submit each of the equations,e.g.

L = 1 + A× L (3.4)

to a similar reasoning. Can we do it? The analogy which can be found between this
equation and (3.3) goes beyond pattern similarity. From chapter 2 we know that many
properties required in the reasoning above hold in the context of (3.4), provided the “=”
sign is replaced by the “∼=” sign, that of set-theoretical isomorphism. Recall that, for
instance,+ is associative (2.46),0 is the unit of addition (2.79),1 is the unit of multipli-
cation (2.81), multiplication distributes over addition (2.50)etc.Moreover, the first step
above assumed that addition is compatible (monotonic) withrespect to equality,

a = b
c = d

a + c = b + d

a fact which still holds when numeric equality gives place toisomorphism and numeric
addition gives place to coproduct:

A ∼= B
C ∼= D

A + C ∼= B + D

— recall (2.44) for isosf andg.
Unfortunately, the main steps in the reasoning above are concerned with two basic

cancellation properties

x + b = c ≡ x = c− b

x× b = c ≡ x =
c

b
(b 6= 0)

which hold about numbers but do not hold about datatypes. In fact, neither products nor

3.1. MOTIVATION 59

coproducts have arbitrary inverses1, and so we cannot “calculate by cancellation”. How
do we circumvent this limitation?

Just think of how we would have gone about (3.3) in case we didn’t know about the
cancellation properties: we would be bound to thex by 1 + x

2 substitution plus the other
properties. By performing such a substitution over and overagain we would obtain. . .

x = 1 +
x

2

≡ { x by 1 + x
2 substitution followed by simplification}

x = 1 +
1 + x

2

2
= 1 +

1

2
+

x

4

≡ { the same as above}

x = 1 +
1

2
+

1 + x
2

4
= 1 +

1

2
+

1

4
+

x

8

≡ { over and over again,n-times}
· · ·

≡ { simplification}

x =

n∑

i=0

1

2i
+

x

2n+1

≡ { sum ofn first terms of a geometric progression}

x = (2− 1

2n
) +

x

2n+1

≡ { let n→∞ }
x = (2− 0) + 0

≡ { simplification }
x = 2

Clearly, this is a much more complicated way of finding solution x = 2 for equation
(3.3). But we would have loved it in case it were the only knownway, and this is precisely
what happens with respect to (3.4). In this case we have:

L = 1 + A× L

1The initial and terminal datatypes do have inverses —0 is its own “additive inverse” and1 is
its own “multiplicative inverse” — but not all the others.

60 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

≡ { substitution of1 + A× L for L }
L = 1 + A× (1 + A× L)

≡ { distributive property (2.50)}
L ∼= 1 + A× 1 + A× (A× L)

≡ { unit of product (2.81) and associativity of product (2.32)}
L ∼= 1 + A + (A×A)× L

≡ { by (2.82), (2.84) and (2.87)}

L ∼= A0 + A1 + A2 × L

≡ { another substitution as above and similar simplifications}

L ∼= A0 + A1 + A2 + A3 × L

≡ { after(n + 1)-many similar steps}

L ∼=
n∑

i=0

Ai + An+1 × L

Bearing a largen in mind, let us deliberately (but temporarily) ignore termAn+1×L.
ThenL will be isomorphic to the sum ofn-many contributionsAi,

L ∼=
n∑

i=0

Ai

each of them consisting ofi-long tuples, orsequences, of values ofA. (Numberi is said
to be thelengthof any sequence inAi.) Such sequences will be denoted by enumerating
their elements between square brackets, for instance theempty sequence[] which is the
only inhabitant inA0, the two element sequence[a1, a2] which belongs toA2 provided
a1, a2 ∈ A, and so on. Note that all such contributions are mutually disjoint, that is,
Ai ∩Aj = ∅ whereveri 6= j. (In other words, a sequence of lengthi is never a sequence
of lengthj, for i 6= j.) If we join all contributionsAi into a single set, we obtain the set
of all finite sequencesonA, denoted byA⋆ and defined as follows:

A⋆ def
=

⋃

i≥0

Ai (3.5)

The intuition behind taking the limit in the numeric calculation above was that term
x

2n+1 was getting smaller and smaller asn went larger and larger and, “in the limit”, it
could be ignored. By analogy, taking a similar limit in the calculation just sketched above
will mean that, for a “sufficiently large”n, the sequences inAn are so long that it is very

3.2. INTRODUCING INDUCTIVE DATATYPES 61

unlikely that we will ever use them! So, forn→∞ we obtain

L ∼=
∞∑

i=0

Ai

Because
∑∞

i=0 Ai is isomorphic to
⋃∞

i=0 Ai (see exercise 2.20), we finally have:

L ∼= A⋆

All in all, we have obtainedA⋆ as a solution to equation (3.4). In other words, datatype
L is isomorphic to the datatype which contains all finite sequences of some predefined
datatypeA. This corresponds to the HASKELL [a] datatype, in general. Recall that
we started from the “linked-list datatype” expressed in PASCAL or C. In fact, wherever
the C programmer thinks of linked-lists, the HASKELL programmer will think of finite
sequences.

But, what does equation (3.4) mean in fact? IsA⋆ the only solution to this equation?
Back to the numeric field, we know of equations which have morethan one solution —
for instancex = x2+3

4 , which admits two solutions1 and3 —, which have no solution
at all — for instancex = x + 1 —, or which admit an infinite number of — for instance
x = x.

We will address these topics in the next section aboutinductivedatatypes and in chap-
ter 7, where the formal semantics of recursion will be made explicit. This is where the
“limit” constructions used informally in this section willbe shown to make sense.

3.2 Introducing inductive datatypes

DatatypeL as defined by (3.4) is said to berecursivebecauseL “recurs” in the definition
of L itself 2. From the discussion above, it is clear that set-theoretical equality “=” in this
equation should give place to set-theoretical isomorphism(“∼=”):

L ∼= 1 + A× L (3.6)

Which isomorphismL 1 + A× L
inoo do we expect to witness (3.4)? This will depend

on which particular solution to (3.4) we are thinking of. So far we have seen only one,
A⋆. By recalling the notion ofalgebraof a datatype (section 2.18), so we may rephrase
the question as: which algebra

A⋆ 1 + A×A⋆inoo

2By analogy, we may regard (3.3) as a “recursive definition” ofnumber2.

62 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

do we expect to witness the tautology which arises from (3.4)by replacing unknownL
with solutionA⋆, that is

A⋆ ∼= 1 + A×A⋆ ?

It will have to be of the formin = [in1, in2] as depicted by the following diagram:

1
i1//

in1 %%JJJJJJJJJJJ 1 + A×A⋆

in
��

A×A⋆i2oo

in2wwpppppppppppp

A⋆

(3.7)

Arrows in1 andin2 can be guessed rather intuitively:in1 = [], which will express
the “NIL pointer” by the empty sequence, atA⋆ level, andin2 = cons, wherecons is the
standard “left append” sequence constructor, which we for the moment introduce rather
informally as follows:

cons : A×A⋆ // A⋆

cons(a, [a1, . . . , an]) = [a, a1, . . . , an]
(3.8)

In a diagram:

1
i1//

[] %%J
JJJJJJJJJJ 1 + A×A⋆

[[],cons]

��

A×A⋆i2oo

cons
wwpppppppppppp

A⋆

(3.9)

Of course, forin to be iso it needs to have an inverse, which is not hard to guess,

out
def
= (! + 〈hd, tl〉) · (=[]?) (3.10)

where sequence operatorshd (head of a nonempty sequence) and tl (tail of a nonempty
sequence) are (again informally) described as follows:

hd : A⋆ // A
hd[a1, a2, . . . , an] = a1

(3.11)

tl : A⋆ // A⋆

tl [a1, a2, . . . , an] = [a2, . . . , an]
(3.12)

3.2. INTRODUCING INDUCTIVE DATATYPES 63

Showing thatin andout are each other inverses is not a hard task either:

in · out = id

≡ { definitions ofin andout }
[[], cons] · (! + 〈hd, tl〉) · (=[]?) = id

≡ { +-absorption (2.41) and (2.15)}
[[], cons · 〈hd, tl〉] · (=[]?) = id

≡ { property of sequences:cons(hds, tl s) = s }
[[], id] · (=[]?) = id

≡ { going pointwise (2.60)}
{

=[] a ⇒ [[], id] (i1 a)

¬(=[] a) ⇒ [[], id] (i2 a)
= a

≡ { +-cancellation (2.38)}
{

=[] a ⇒ [] a

¬(=[] a) ⇒ id a
= a

≡ { a = [] in one case and identity function (2.9) in the other}
{

a = [] ⇒ a
¬(a = []) ⇒ a

= a

≡ { property(p→ f, f) = f holds }
a = a

A comment on the particular choice of terminology above: symbol in suggests that
we are going inside, or constructing (synthesizing) valuesof A⋆; symbolout suggests that
we are going out, or destructing (analyzing) values ofA⋆. We shall often resort to this
duality in the sequel.

Are there more solutions to equation (3.6)? In trying to implement this equation, a
HASKELL programmer could have written, after the declaration of type A, the following
datatype declaration:

data L = Nil () | Cons (A,L)

which, as we have seen in section 2.18, can be written simply as

data L = Nil | Cons (A,L) (3.13)

64 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

and generates diagram

1
i1//

Nil
$$J

JJJJJJJJJJ 1 + A× L

in′

��

A× L
i2oo

Cons
xxqqqqqqqqqqqq

L

(3.14)

leading to algebrain′ = [Nil, Cons].
HASKELL seems to have generated another solution for the equation, which it calls

L. To avoid the inevitable confusion between this symbol denoting the newly created
datatype and symbolL in equation (3.6), which denotes a mathematical variable, let us
use symbolT to denote the former (T stands for “type”). This can be coped with very
simply by writingT instead ofL in (3.13):

data T = Nil | Cons (A,T) (3.15)

In order to makeT more explicit, we will writeinT instead ofin′.
Some questions are on demand at this point. First of all, whatis datatypeT? What

are its inhabitants? Next, isT 1 + A× T
inToo an iso or not?

HASKELL will help us to answer these questions. Suppose thatA is a primitive nu-
meric datatype, and that we addderiving Show to (3.15) so that we can “see” the
inhabitants of theT datatype. The information associated toT is thus:

Main> :i T
-- type constructor
data T

-- constructors:
Nil :: T
Cons :: (A,T) -> T

-- instances:
instance Show T
instance Eval T

By typing Nil

Main> Nil
Nil :: T

we confirm thatNil is itself an inhabitant ofT, and by typingCons

3.2. INTRODUCING INDUCTIVE DATATYPES 65

Main> Cons
<<function>> :: (A,T) -> T

we realize thatCons is not so (as expected), but it can be used to build such inhabitants,
for instance:

Main> Cons(1,Nil)
Cons (1,Nil) :: T

or

Main> Cons(2,Cons(1,Nil))
Cons (2,Cons (1,Nil)) :: T

etc.We conclude thatexpressionsinvolving Nil andCons are inhabitants of typeT. Are
these theonly ones? The answer isyesbecause, by design of the HASKELL language,
the constructors of typeT will remain fixed once its declaration is interpreted, that is,
no further constructor can be added toT. DoesinT have an inverse? Yes, its inverse is
coalgebra

outT : T // 1 + A× T

outT Nil = i1 NIL

outT(Cons(a, l)) = i2(a, l)

(3.16)

which can be straightforwardly encoded in HASKELL using theEither realization of+
(recall sections 2.9 and 2.18):

outT :: T -> Either () (A,T)
outT Nil = Left ()
outT (Cons(a,l)) = Right(a,l)

In summary, isomorphism

T

outT
**∼= 1 + A× T

inT

hh (3.17)

holds, where datatypeT is inhabited by symbolic expressions which we may visualize
very conveniently as trees, for instance

t

t
�

�
�

@
@

@t
�

�
�

@
@

@t t
1 Nil

Cons

2
Cons

66 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

picturing expressionCons(2, Cons(1, Nil)). Nil is the empty tree andCons may be
regarded as the operation which adds a new root and a new branch, saya, to a treet:

t
�

�
�

@
@

@
t

t
�

�
�

@
@

@
t

t
�

�
�

@
@

@tCons(a,) =

Cons

a

The choice of symbolsT, Nil andCons was rather arbitrary in (3.15). Therefore, an
alternative declaration such as, for instance,

data U = Stop | Join (A,U) (3.18)

would have been perfectly acceptable, generating another solution for the equation under
algebra[Stop, Join]. It is easy to check that (3.18) is but a renaming ofNil to Stop and
of Cons to Join. Therefore, both datatypes are isomorphic, or “abstractlythe same”.

Indeed, any other datatypeX inductivelydefined by a constant and a binary construc-
tor acceptingA andX as parameters will be a solution to the equation. Because we are
just renaming symbols in a consistent way, all such solutions are abstractly the same. All
of them capture the abstract notion of alist of symbols.

We wrote “inductively” above because the set of all expressions (trees) which inhabit
the type is defined by induction. Such types are calledinductiveand we shall have a lot
more to say about them in chapter 7 .

Exercise 3.1. Obviously,

either (const []) (:)

does not work as aHASKELL realization of the mediating arrow in diagram (3.9). What
do you need to write instead?
2

3.3 Observing an inductive datatype

Suppose that one is asked to express a particularobservationof an inductive such asT

(3.15), that is, a function of signatureB T
foo for some target typeB. Suppose, for

3.3. OBSERVING AN INDUCTIVE DATATYPE 67

instance, thatA is IN0 (the set of all non-negative integers) and that we want to addall
elements which occur in aT-list. Of course, we have to ensure that addition is available
in IN0,

add : IN0 × IN0
// IN0

add(x, y)
def
= x + y

and that0 ∈ IN0 is a value denoting “the addition of nothing”. So constant arrow

IN0 1
0oo is available. Of course,add(0, x) = add(x, 0) = x holds, for allx ∈ IN0.

This property means thatIN0, together with operatoradd and constant0, forms amonoid,
a very important algebraic structure in computing which will be exploited intensively later
in this book. The following arrow “packaging”IN0, add and0,

IN0 1 + IN0 × IN0
[0,add]oo (3.19)

is a convenient way to express such a structure. Combining this arrow with the algebra

T 1 + IN0 × T
inToo (3.20)

which definesT, and the functionf we want to define, the target of which isB = IN0, we
get the almost closed diagram which follows, in which only the dashed arrow is yet to be
filled in:

T

f

��

1 + IN0 × T
inToo

��
IN0 1 + IN0 × IN0

[0,add]
oo

(3.21)

We know thatinT = [Nil, Cons]. A pattern for the missing arrow is not difficult to
guess: in the same wayf bridgesT andIN0 on the lefthand side, it will do the same job
on the righthand side. So pattern· · ·+ · · · × f comes to mind (recall section 2.10), where
the “· · ·” are very naturally filled in by identity functions. All in all, we obtain diagram

T

f

��

1 + IN0 × T
[Nil,Cons]oo

id+id×f

��
IN0 1 + IN0 × IN0

[0,add]
oo

(3.22)

which pictures the following property off

f · [Nil, Cons] = [0, add] · (id + id× f) (3.23)

68 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

and is easy to convert to pointwise notation:

f · [Nil, Cons] = [0, add] · (id + id× f)

≡ { (2.40) on the lefthand side, (2.41) and identityid on the righthand side}
[f ·Nil, f · Cons] = [0, add · (id× f)]

≡ { eitherstructural equality (2.58)}
{

f ·Nil = 0
f · Cons = add · (id× f)

≡ { going pointwise}
{

(f ·Nil)x = 0 x
(f · Cons)(a, x) = (add · (id × f))(a, x)

≡ { composition (2.6), constant (2.12), product (2.22) and definition of add }
{

f Nil = 0
f(Cons(a, x)) = a + f x

Note that we could have usedoutT in diagram (3.21),

T
outT //

f

��

1 + IN0 × T

id+id×f

��
IN0 1 + IN0 × IN0

[0,add]
oo

(3.24)

obtaining another version of thedefinitionof f ,

f = [0, add] · (id + id× f) · outT (3.25)

which would lead to exactly the same pointwise recursive definition:

f = [0, add] · (id + id× f) · outT

≡ { (2.41) and identityid on the righthand side}
f = [0, add · (id× f)] · outT

≡ { going pointwise onoutT (3.16) }
{

f Nil = ([0, add · (id× f)] · outT)Nil
f(Cons(a, x)) = ([0, add · (id× f)] · outT)(a, x)

≡ { definition ofoutT (3.16)}

3.3. OBSERVING AN INDUCTIVE DATATYPE 69

{
f Nil = ([0, add · (id × f)] · i1)Nil
f(Cons(a, x)) = ([0, add · (id× f)] · i2)(a, x)

≡ { +-cancellation (2.38)}
{

f Nil = 0 Nil
f(Cons(a, x)) = (add · (id× f)) (a, x)

≡ { simplification }
{

f Nil = 0
f(Cons(a, x)) = a + f x

Pointwisef mirrors the structure of typeT in having has many definition clauses as
constructors inT. Such functions are said to be definedby induction onthe structure of
their input type. If we repeat this calculation forIN0

⋆ instead ofT, that is, for

out = (! + 〈hd, tl〉) · (=[]?)

— recall (3.10) — taking place ofoutT, we get a “more algorithmic” version off :

f = [0, add] · (id + id× f) · (! + 〈hd, tl〉) · (=[]?)

≡ { +-functor (2.42), identity and×-absorption (2.25)}
f = [0, add] · (! + 〈hd, f · tl〉) · (=[]?)

≡ { +-absorption (2.41) and constant0 }
f = [0, add · 〈hd, f · tl〉] · (=[]?)

≡ { going pointwise on guard=[]? (2.60) and simplifying}

f l =

{
l = [] ⇒ 0 l
¬(l = []) ⇒ (add · 〈hd, f · tl〉) l

≡ { simplification }

f l =

{
l = [] ⇒ 0
¬(l = []) ⇒ hdl + f(tl l)

The outcome of this calculation can be encoded in HASKELL syntax as

f l | l == [] = 0
| otherwise = head l + f (tail l)

or

70 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

f l = if l == []
then 0
else head l + f (tail l)

both requiring the equality predicate “==” and destructors “head ” and “tail ”.

3.4 Synthesizing an inductive datatype

The issue which concerns us in this section dualizes what we have just dealt with: in-
stead of analyzing orobservingan inductive type such asT (3.15), we want to be able to
synthesize (generate) particular inhabitants ofT. In other words, we want to be able to

specify functions with signatureB
f // T for some given source typeB. Let B = IN0

and suppose we wantf to generate, for a given natural numbern > 0, the list containing
all numbers less or equal ton in decreasing order

Cons(n,Cons(n− 1, Cons(. . . , Nil)))

or the empty listNil, in casen = 0.
Let us try and draw a diagram similar to (3.24) applicable to the new situation. In

trying to “re-use” this diagram, it is immediate that arrowf should be reversed. Bearing
duality in mind, we may feel tempted to reverse all arrows just to see what happens.
Identity functions are their own inverses, andinT takes the place ofoutT:

T 1 + IN0 × T
inToo

IN0

f

OO

// 1 + IN0 × IN0

id+id×f

OO

Interestingly enough, the bottom arrow is the one which is not obvious to reverse, meaning
that we have to “invent” a particular destructor ofIN0, say

IN0
g // 1 + IN0 × IN0

fitting in the diagram andgeneratingthe particular computational effect we have in mind.
Once we do this, a recursive definition forf will pop out immediately,

f = inT · (id + id× f) · g (3.26)

which is equivalent to:

f = [Nil, Cons · (id× f)] · g (3.27)

3.5. INTRODUCING (LIST) CATAS, ANAS AND HYLOS 71

Because we wantf 0 = Nil to hold,g (the actual generator of the computation) should
distinguish input0 from all the others. One thus decomposesg as follows,

IN0
=0?//

g

22IN0 + IN0
!+h // 1 + IN0 × IN0

leavingh to fill in. This will be asplit providing, on the lefthand side, for the value to be
Cons’ed to the output and, on the righthand side, for the “seed” tothe next recursive call.
Since we want the output values to be produced contiguously and in decreasing order, we
may defineh = 〈id, pred〉 where, forn > 0,

predn
def
= n− 1 (3.28)

computes thepredecessorof n. Altogether, we have synthesized

g = (! + 〈id, pred〉) · (=0?) (3.29)

Filling this in (3.27) we get

f = [Nil, Cons · (id× f)] · (! + 〈id, pred〉) · (=0?)

≡ { +-absorption (2.41) followed by×-absorption (2.25)etc.}
f = [Nil, Cons · 〈id, f · pred〉] · (=0?)

≡ { going pointwise on guard=0? (2.60) and simplifying}

f n =

{
n = 0 ⇒ Nil

¬(n = 0) ⇒ Cons(n, f (n− 1))

which matches the function we had in mind:

f n | n == 0 = Nil
| otherwise = Cons(n,f(n-1))

We shall see briefly that the constructions of thef function adding up a list of num-
bers in the previous section and, in this section, of thef function generating a list of
numbers are very standard in algorithm design and can be broadly generalized. Let us
first introduce some standard terminology.

3.5 Introducing (list) catas, anas and hylos

Suppose that, back to section 3.3, we want tomultiply, rather than add, the elements
occurring in lists of typeT (3.15). How much of the program synthesis effort presented
there can be reused in the design of the new function?

72 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

It is intuitive that only the bottom arrowIN0 1 + IN0 × IN0
[0,add]oo of diagram

(3.24) needs to be replaced, because this is the only place where we can specify that target
datatypeIN0 is now regarded as the carrier of another (multiplicative rather than additive)
monoidal structure,

IN0 1 + IN0 × IN0
[1,mul]oo (3.30)

for mul(x, y)
def
= x y. We are saying that the argument list is now to be reduced by the

multiplication operator and that output value1 is expected as the result of “nothing left to
multiply”.

Moreover, in the previous section we might have wanted our number-list generator to
produce the list of even numbers smaller than a given number,in decreasing order (see
exercise 3.4). Intuition will once again help us in decidingthat only arrowg in (3.26)
needs to be updated.

The following diagrams generalize both constructions by leaving such bottom arrows
unspecified,

T
outT //

f

��

1 + IN0 × T

id+id×f

��
B 1 + IN0 ×Bg

oo

T 1 + IN0 × T
inToo

B

f

OO

g
// 1 + IN0 ×B

id+id×f

OO (3.31)

and express their duality (cf. the directions of the arrows). It so happens that, for each
of these diagrams,f is uniquely dependent on theg arrow, that is to say, each particular
instantiation ofg will determine the correspondingf . So bothgs can be regarded as
“seeds” or “genetic material” of thef functions they uniquely define3.

Following the standard terminology, we express these factsby writing f = (|g|) with
respect to the lefthand side diagram and by writingf = [(g)] with respect to the right-
hand side diagram. Read(|g|) as “theT-catamorphisminduced byg” and [(g)] as “the
T-anamorphisminduced byg”. This terminology is derived from the Greek wordsκατα
(cata) andανα (ana) meaning, respectively, “downwards” and “upwards” (compare with
the direction of thef arrow in each diagram). The exchange of parentheses “()” and “[]”
in double parentheses “(| |)” and “[()]” is aimed at expressing the duality of both concepts.

We shall have a lot to say about catamorphisms and anamorphisms of a given type
such asT. For the moment, it suffices to say that

• theT-catamorphism induced byB 1 + IN0 ×B
goo is the unique functionB T

(|g|)oo

3The theory which supports the statements of this paragraph will not be dealt with until chapter
7 .

3.5. INTRODUCING (LIST) CATAS, ANAS AND HYLOS 73

which obeys to property (or is defined by)

(|g|) = g · (id + id× (|g|)) · outT (3.32)

which is the same as

(|g|) · inT = g · (id + id× (|g|)) (3.33)

• given B
g // 1 + IN0 ×B theT-anamorphism induced byg is the unique func-

tion B
[(g)] // T which obeys to property (or is defined by)

[(g)] = inT · (id + id× [(g)]) · g (3.34)

From (3.31) it can be observed thatT can act as a mediator between anyT-anamorphism

and anyT-catamorphism, that is to say,B T
(|g|)oo composes withT C

[(h)]oo , for some

C
h // 1 + IN0 × C . In other words, aT-catamorphism call always observe (consume)

the output of aT-anamorphism. The latter produces a list ofIN0s which is consumed by
the former. This is depicted in the diagram which follows:

B 1 + IN0 ×B
goo

T

(|g|)

OO

1 + IN0 × T
inToo

id+id×(|g|)

OO

C

[(h)]

OO

h
// 1 + IN0 × C

id+id×[(h)]

OO

(3.35)

What can we say about the(|g|) · [(h)] composition? It is a function fromB to C which re-
sorts toT as anintermediatedata-structure and can be subject to the following calculation
(cf. outermost rectangle in (3.35)):

(|g|) · [(h)] = g · (id + id× (|g|)) · (id + id× [(h)]) · h
≡ { +-functor (2.42)}

(|g|) · [(h)] = g · ((id · id) + (id× (|g|)) · (id× [(h)])) · h
≡ { identity and×-functor (2.28)}

(|g|) · [(h)] = g · (id + id× (|g|) · [(h)]) · h

74 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

This calculation shows how to defineC B
(|g|)·[(h)]oo in one go, that is to say, doing

without any intermediate data-structure:

B 1 + IN0 ×B
goo

C

(|g|)·[(h)]

OO

h
// 1 + IN0 × C

id+id×(|g|)·[(h)]

OO (3.36)

As an example, let us see what comes out of(|g|) · [(h)] for h andg respectively given by
(3.29) and (3.30):

(|g|) · [(h)] = g · (id + id× (|g|) · [(h)]) · h
≡ { (|g|) · [(h)] abbreviated tof and instantiatingh andg }

f = [1,mul] · (id + id× f) · (! + 〈id, pred〉) · (=0?)

≡ { +-functor (2.42) and identity}
f = [1,mul] · (! + (id× f) · 〈id, pred〉) · (=0?)

≡ { ×-absorption (2.25) and identity}
f = [1,mul] · (! + 〈id, f · pred〉) · (=0?)

≡ { +-absorption (2.41) and constant1 (2.15) }
f = [1,mul · 〈id, f · pred〉] · (=0?)

≡ { McCarthy conditional (2.59)}
f = (=0?)→ 1,mul · 〈id, f · pred〉

Going pointwise, we get — via (2.59) —

f 0 = [1,mul · 〈id, f · pred〉](i1 0)

= { +-cancellation (2.38)}
1 0

= { constant function (2.12)}
1

and

f(n + 1) = [1,mul · 〈id, f · pred〉](i2(n + 1))

= { +-cancellation (2.38)}

3.5. INTRODUCING (LIST) CATAS, ANAS AND HYLOS 75

mul · 〈id, f · pred〉(n + 1)

= { pointwise definitions ofsplit, identity, predecessor andmul }
(n + 1)× f n

In summary,f is but the well-known factorial function:
{

f 0 = 1
f(n + 1) = (n + 1)× f n

This result comes to no surprise if we look at diagram (3.35) for the particularg and
h we have considered above and recall a popular “definition” offactorial:

n! = n× (n − 1)× . . . × 1︸ ︷︷ ︸
n times

(3.37)

In fact, [(h)] n producesT-list

Cons(n,Cons(n− 1, . . . Cons(1, Nil)))

as an intermediate data-structure which is consumed by(|g|) , the effect of which is but the
“replacement” ofCons by× andNil by 1, therefore accomplishing (3.37) and realizing
the computation of factorial.

The moral of this example is that a function as simple as factorial can bedecomposed
into two components (producer/consumer functions) which share a common intermedi-
ate inductive datatype. The producer function is an anamorphism which “represents” or
produces a “view” of its input argument as a value of the intermediate datatype. The
consumer function is a catamorphism which reduces this intermediate data-structure and
produces the final result. Like factorial, many functions can be handsomely expressed by
a(|g|) · [(h)] composition for a suitable choice of the intermediate type,and ofg andh. The
intermediate data-structure is said to bevirtual in the sense that it only exists as a means
to induce the associated pattern of recursion and disappears by calculation.

The composition(|g|) · [(h)] of aT-catamorphism with aT-anamorphism is called aT-
hylomorphism4 and is denoted byJg, hK. Becauseg andh fully determine the behaviour
of theJg, hK function, they can be regarded as the “genes” of the functionthey define. As
we shall see, this analogy with biology will prove speciallyuseful for algorithm analysis
and classification.

Exercise 3.2. A way of computingn2, the square of a given natural numbern, is to
sum up then first odd numbers. In fact,12 = 1, 22 = 1 + 3, 32 = 1 + 3 + 5, etc.,
n2 = (2n − 1) + (n− 1)2. Following this hint, express function

sqn
def
= n2 (3.38)

4This terminology is derived from the Greek wordvλoσ (hylos) meaning “matter”.

76 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

as aT-hylomorphism and encode it inHASKELL.
2

Exercise 3.3. Write functionxn as aT-hylomorphism and encode it inHASKELL.
2

Exercise 3.4. The following function inHASKELL computes theT-sequence of all even
numbers less or equal ton:

f n = if n <= 1
then Nil
else Cons(m,f(m-2))

where m = if even n then n else n-1

Find its “genetic material”, that is, functiong such that f=[(g)] in

T 1 + IN0 × T
inToo

IN0

[(g)]

OO

g
// 1 + IN0 × IN0

id+id×[(g)]

OO

2

3.6 Inductive types more generally

So far we have focussed our attention exclusively to a particular inductive typeT (3.20)
— that of finite sequences of non-negative integers. This is,of course, of a very limited
scope. First, because one could think of finite sequences of other datatypes,e.g.Booleans
or many others. Second, because other datatypes such as trees, hash-tablesetc.exist which
our notation and method should be able to take into account.

3.7. FUNCTORS 77

Although a generic theory of arbitrary datatypes requires atheoretical elaboration
which cannot be explained at once, we can move a step further by taking the two obser-
vations above as starting points. We shall start from the latter in order to talk generically
about inductive types. Then we introduce parameterizationand functorial behaviour.

Suppose that, as a mere notational convention, we abbreviate every expression of the
form “1+ IN0× . . .” occurring in the previous section by “F . . .”, e.g.1+ IN0×B by F B,
e.g.1 + IN0 × T by F T

T

outT
((∼= F T

inT

gg (3.39)

etc.This is the same as introducing a datatype-level operator

F X
def
= 1 + IN0 ×X (3.40)

which maps every datatypeA into datatype1 + IN0 ×A. OperatorF captures the pattern
of recursion which is associated to so-called “right” lists(of non-negative integers), that

is, lists which grow to the right. The slightly different patternG X
def
= 1 + X × IN0 will

generate a different, although related, inductive type

X ∼= 1 + X × IN0 (3.41)

— that of so-called “left” lists (of non-negative integers). And it is not difficult to think of
the pattern which is merges both right and left lists and gives rise to bi-linear lists, better
known asbinary trees:

X ∼= 1 + X × IN0 ×X (3.42)

One may think of many other expressionsF X and guess the inductive datatype they

generate, for instanceHX
def
= IN0 + IN0 ×X generating non-empty lists of non-negative

integers (IN+
0). The general rule is that, given an inductive datatype definition of the form

X ∼= F X (3.43)

(also called a domain equation), its pattern of recursion iscaptured by a so-calledfunctor
F.

3.7 Functors

The concept of a functorF, borrowed from category theory, is a most generic and useful
device in programming5. As we have seen,F can be regarded as a datatype constructor

5The category theory practitioner must be warned of the fact that the wordfunctor is used here
in a too restrictive way. A proper (generic) definition of a functor will be provided later in this

78 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

which, given datatypeA, builds a more elaborate datatypeF A; given another datatype
B, builds a similarly elaborate datatypeF B; and so on. But what is more important
and has the most beneficial consequences is that, ifF is regarded as a functor, then its
data-structuring effect extends smoothly to functions in the following way: suppose that

B A
foo is a function which observesA into B, which are parameters ofF A andF B,

respectively. By definition, ifF is a functor thenF B F A
F foo exists for every suchf :

A

f

��

F A

F f

��
B F B

F f extendsf to F-structures and will, by definition, obey to two very basic properties: it
commutes with identity

F idA = id(F A) (3.44)

and with composition

F(g · h) = (F g) · (F h) (3.45)

Two simple examples of a functor follow:

• Identity functor: defineF X = X, for every datatypeX, andF f = f . Properties
(3.44) and (3.45) hold trivially just by removing symbolF wherever it occurs.

• Constant functors: for a givenC, defineF X = C (for all datatypesX) andF f =
idC , as expressed in the following diagram:

A

f

��

C

idC

��
B C

Properties (3.44) and (3.45) hold trivially again.

In the same way functions can be unary, binary,etc., we can have functors with more
than one argument. So we get binary functors (also calledbifunctors), ternary functors
etc.. Of course, properties (3.44) and (3.45) have to hold for every parameter of ann-ary
functor. For a binary functorB, for instance, equation (3.44) becomes

B (idA, idB) = idB (A,B) (3.46)

book.

3.8. POLYNOMIAL FUNCTORS 79

Data construction Universal construct Functor Description

A×B 〈f, g〉 f × g Product
A + B [f, g] f + g Coproduct

BA f fA Exponential

Table 3.1: Datatype constructions and associated operators.

and equation (3.45) becomes

B (g · h, i · j) = B (g, i) · B (h, j) (3.47)

Product and coproduct are typical examples of bifunctors. In the former case one
hasB (A,B) = A × B andB (f, g) = f × g — recall (2.22). Properties (2.29) and
(2.28) instantiate (3.46) and (3.47), respectively, and this explains why we called them
the functorial properties of product. In the latter case, one hasB (A,B) = A + B and
B (f, g) = f + g — recall (2.37) — and functorial properties (2.43) and (2.42). Finally,

exponentiation is a functorial construction too: assumingA, one hasF X
def
= XA and

F f
def
= f · ap and functorial properties (2.73) and (2.74). All this is summarized in table

3.1.
Such as functions, functors may compose with each other in the obvious way: the

composition ofF andG, denotedF · G, is defined by

(F · G)X
def
= F (G X) (3.48)

(F · G)f
def
= F (G f) (3.49)

3.8 Polynomial functors

We may put constant, product, coproduct and identity functors together to obtain so-called
polynomial functors, which are described by polynomial expressions, for instance

F X = 1 + A×X

— recall (3.6). A polynomial functor is either

• a constant functor or the identity functor, or

• the (finitary) product or coproduct (sum) of other polynomial functors, or

• the composition of other polynomial functors.

80 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

So the effect on arrows of a polynomial functor is computed inan easy and structured
way, for instance:

F f = (1 + A×X)f

= { sum of two functors whereA is a constant andX is a variable}
(1)f + (A×X)f

= { constant functor and product of two functors}
id1 + (A)f × (X)f

= { constant functor and identity functor}
id1 + idA × f

= { subscripts dropped for simplicity}
id + id× f

So,1 + A× f denotes the same asid1 + idA × f , or even the same asid + id× f if one
drops the subscripts.

It should be clear at this point that what was referred to in section 2.10 as a “symbolic
pattern” applicable to both datatypes and arrows is after all a functor in the mathematical
sense. The fact that the same polynomial expression is used to denote both the data
and the operators which structurally transform such data isof great conceptual economy
and practical application. For instance, once polynomial functor (3.40) is assumed, the
diagrams in (3.31) can be written as simply as

T
outT //

f

��

F T

F f

��
B F Bg

oo

T F T
inToo

B

f

OO

g
// F B

F f

OO (3.50)

It is useful to know that, thanks to the isomorphism laws studied in chapter 2, every
polynomial functorF may be put into the canonical form,

F X ∼= C0 + (C1 ×X) + (C2 ×X2) + · · ·+ (Cn ×Xn)
=

∑n
i=0 Ci ×Xi (3.51)

and thatNewton’s binomial formula

(A + B)n ∼=
n∑

p=0

nCp ×An−p ×Bp (3.52)

3.9. POLYNOMIAL INDUCTIVE TYPES 81

can be used in such conversions. These are performed up to isomorphism, that is to say,
after the conversion one gets a different but isomorphic datatype. Consider, for instance,
functor

F X
def
= A× (1 + X)2

(whereA is a constant datatype) and check the following reasoning:

F X = A× (1 + X)2

∼= { law (2.87) }
A× ((1 + X)× (1 + X))

∼= { law (2.50) }
A× ((1 + X)× 1 + (1 + X)×X))

∼= { laws (2.81), (2.31) and (2.50)}
A× ((1 + X) + (1×X + X ×X))

∼= { laws (2.81) and (2.87)}

A× ((1 + X) + (X + X2))

∼= { law (2.46) }

A× (1 + (X + X) + X2)

∼= { canonical form obtained via laws (2.50) and (2.88)}

A︸︷︷︸
C0

+ A× 2︸ ︷︷ ︸
C1

×X + A︸︷︷︸
C2

×X2

Exercise 3.5. Synthesize the isomorphismA + A× 2×X + A×X2 A× (1 + X2)
νoo

implicit in the above reasoning.
2

3.9 Polynomial inductive types

An inductive datatype is said to bepolynomialwherever its pattern of recursion is de-
scribed by a polynomial functor, that is to say, whereverF in equation (3.43) is polyno-
mial. For instance, datatypeT (3.20) is polynomial (n = 1) and its associated polynomial

82 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

functor is canonically defined with coefficientsC0 = 1 andC1 = IN0. For reasons that
will become apparent later on, we shall always imposeC0 6= 0 to hold in apolynomial
datatype expressed in canonical form.

Polynomial types are easy to encode in HASKELL wherever the associated functor is
in canonical polynomial form, that is, wherever one has

T ∼=
∑n

i=0 Ci × Ti

inT

ii (3.53)

Then we have
inT

def
= [f1, . . . , fn]

where, fori = 1, n, fi is an arrow of typeT Ci × Tioo . Sincen is finite, one may
expand exponentials according to (2.87) and encode this in HASKELL as follows:

data T = C0 |
C1 (C1,T) |
C2 (C2,(T,T)) |
... |
Cn (Cn,(T, ..., T))

Of course the choice of symbolCi to realize eachfi is arbitrary6. Several instances of
polynomial inductive types (in canonical form) will be mentioned in section 3.13. Section
3.17 will address the conversion between inductive datatypes induced by so-callednatural
transformations.

The concepts of catamorphism, anamorphism and hylomorphism introduced in sec-
tion 3.5 can be extended to arbitrary polynomial types. We devote the following sections
to explaining catamorphisms in the polynomial setting. Polynomial anamorphisms and
hylomorphisms will not be dealt with until chapter 7.

3.10 F-algebras andF-homomorphisms

Our interest in polynomial types is basically due to the factthat, for polynomialF, equa-
tion (3.43) always has a particularly interesting solutionwhich corresponds to our notion
of a recursive datatype.

6A more traditional (but less close to (3.53)) encoding will be

data T = C0 | C1 C1 T | C2 C2 T T | ... | Cn Cn T ... T (3.54)

delivering every constructor in curried form.

3.11. F-CATAMORPHISMS 83

In order to explain this, we need two notions which are easy tounderstand: first, that

of anF-algebra, which simply is any functionα of signatureA F A
αoo . A is called

the carrier of F-algebraα and contains the values whichα manipulates by computing
newA-values out of existing ones, according to theF-pattern (the “type” of the algebra).
As examples, consider[0, add] (3.19) andinT (3.20), which are both algebras of type
F X = 1+ IN0×X. The type of an algebra clearly determines its form. For instance, any
algebraα of typeF X = 1+X×X will be of form [α1, α2], whereα1 is a constant and
α2 is a binary operator. So monoids are algebras of this type7.

Secondly, we introduce the notion of anF-homomorphismwhich is but a function
observing a particularF-algebraα into anotherF-algebraβ:

A

f

��

F A

F f

��

αoo

B F B
β

oo

f · α = β · (F f) (3.55)

Clearly, f can be regarded as a structural translation betweenA andB, that is,A and
B have a similar structure8. Note that — thanks to (3.44) — identity functions are
always (trivial)F-homomorphisms and that — thanks to (3.45) — these homomorphisms
compose, that is, the composition of twoF-homomorphisms is anF-homomorphism.

3.11 F-catamorphisms

An F-algebra can be epic, monic or both, that is, iso. IsoF-algebras are particularly
relevant to our discussion because they describe solutionsto theX ∼= F X equation (3.43).
Moreover, for polynomialF a particular isoF-algebra always exists, which is denoted by

µF F µF
inoo and has special properties. First, its carrier is the smallest among the

carriers of other isoF-algebras, and this is why it is denoted byµF — µ for “minimal” 9.
Second, it is the so-calledinitial F-algebra. What does this mean?

It means that, for everyF-algebraα there exists one and only oneF-homomorphism
betweenin and α. This unique arrow mediatingin andα is therefore determined by
α itself, and is called theF-catamorphismgenerated byα. This construct, which was
introduced in 3.5, is in general denoted by(|α|)

F
:

7But not every algebra of this type is a monoid, since the type of an algebra only fixes its syntax
and does not impose any properties such as associativity,etc.

8Cf. homomorphism= homo(the same) +morphos(structure, shape).
9µF means the least fixpoint solution of equationX ∼= FX , as will be described in chapter 7 .

84 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

µF

f=(|α|)
F

��

F µF

F (|α|)
F

��

inoo

A F Aα
oo

(3.56)

We will drop theF subscript in(|α|)
F

wherever deducible from the context, and often call
α the “gene” of(|α|)

F
.

As happens withsplits, eithersand transposes, the uniqueness of the catamorphism
construct is captured by a universal property established in the class of allF-homomorphisms:

k = (|α|) ⇔ k · in = α · F k (3.57)

According to the experience gathered from section 2.12 onwards, a few properties can be
expected as consequences of (3.57). For instance, one may wonder about the “gene” of
the identity catamorphism. Just letk = id in (3.57) and see what happens:

id = (|α|)⇔ id · in = α · F id

= { identity (2.10) andF is a functor (3.44)}
id = (|α|)⇔ in = α · id

= { identity (2.10) once again}
id = (|α|)⇔ in = α

= { α replaced byin and simplifying }
id = (|in|)

Thus one finds out that the genetic material of the identity catamorphism is the initial
algebrain. Which is the same as establishing thereflection propertyof catamorphisms:

Cata-reflection :

µF

(|in|)
��

F µF

F (|in|)
��

inoo

µF F µF
in

oo

(|in|) = idµF (3.58)

In a more intuitive way, one might have observed that(|in|) is, by definition ofin, the
unique arrow mediatingµF and itself. But another arrow of the same type is already
known: the identityidµF. So these two arrows must be the same.

Another property following immediately from (3.57), fork = (|α|), is

3.11. F-CATAMORPHISMS 85

Cata-cancellation :

(|α|) · in = α · F (|α|) (3.59)

Becausein is iso, this law can be rephrased as follows

(|α|) = α · F (|α|) · out (3.60)

whereout denotes the inverse ofin:

µF

out
))∼= F µF

in

hh

Now, let f be F-homomorphism (3.55) betweenF-algebrasα andβ. How does it
relate to(|α|) and(|β|)? Note thatf · (|α|) is an arrow mediatingµF andB. But B is the
carrier ofβ and(|β|) is the unique arrow mediatingµF andB. So the two arrows are the
same:

Cata-fusion :

µF

(|α|)
��

F µF

F(|α|)

��

inoo

A

f

��

F Aα
oo

F f

��
B F B

β
oo

f · (|α|) = (|β|) if f · α = β · F f (3.61)

Of course, this law is also a consequence of the universal property, fork = f · (|α|):
f · (|α|) = (|β|) ⇔ (f · (|α|)) · in = β · F (f · (|α|))

⇔ { composition is associative andF is a functor (3.45)}
f · ((|α|) · in) = β · (F f) · (F (|α|))

⇔ { cata-cancellation (3.59)}
f · α · F (|α|) = β · F f · F (|α|)

⇐ { requiref to be aF-homomorphism (3.55)}
f · α · F (|α|) = f · α · F (|α|) ∧ f · α = β · F f

⇔ { simplify }
f · α = β · F f

The presentation of theabsorptionproperty of catamorphisms entails the very impor-
tant issue of parameterization and deserves to be treated ina separate section, as follows.

86 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

3.12 Parameterization and type functors

By analogy with what we have done aboutsplits(product),eithers(coproduct) and trans-
poses (exponential), we now look forward to identifyingF-catamorphisms which exhibit
functorial behaviour.

Suppose that one wishes to square all numbers which are members of lists of typeT
(3.20). It can be checked that

(|[Nil, Cons · (sq× id)]|) (3.62)

will do this for us, whereIN0 IN0
sqoo is given by (3.38). This catamorphism, which

converted to pointwise notation is nothing but functionh which follows
{

hNil = Nil
h(Cons(a, l)) = Cons(sqa, h l)

maps typeT to itself. This is becausesqmapsIN0 to IN0. Now suppose that, instead ofsq,

one would like to apply a given functionB IN0
foo (for someB other thanIN0) to all

elements of the argument list. It is easy to see that it suffices to replacef for sq in (3.62).
However, the output type no longer isT, but rather typeT′ ∼= 1 + B × T′.

TypesT andT′ are very close to each other. They share the same “shape” (recursive
pattern) and only differ with respect to the type of elements— IN0 in T andB in T′. This
suggests that these two types can be regarded as instances ofa more generic list datatype
List

List X ∼= 1 + X × List X

in=[Nil,Cons]

jj (3.63)

in which the type of elementsX is allowed to vary. Thus one hasT = List IN0 and
T′ = List B.

By inspection, it can be checked that, for everyB A
foo ,

(|[Nil, Cons · (f × id)]|) (3.64)

mapsList A to ListB. Moreover, forf = id one has:

(|[Nil, Cons · (id× id)]|)
= { by the×-functor-id property (2.29) and identity}

(|[Nil, Cons]|)
= { cata-reflection (3.58)}

id

3.12. PARAMETERIZATION AND TYPE FUNCTORS 87

Therefore, by defining

List f
def
= (|[Nil, Cons · (f × id)]|)

what we have just seen can be written thus:

List idA = idList A

This is nothing but law (3.44) forF replaced byList. Moreover, it will not be too difficult
to check that

List (g · f) = List g · List f

also holds —cf. (3.45). Altogether, this means thatList can be regarded as a functor.
In programming terminology one says thatList X (the “lists ofXs datatype”) ispara-

metricand that, by instantiating parameterX, one gets ground lists such as lists of inte-
gers, booleans,etc. The illustration above deepens one’s understanding of parameteri-
zation by identifying the functorial behaviour of the parametric datatype along with its
parameter instantiations.

All this can be broadly generalized and leads to what is commonly known by atype
functor. First of all, it should be clear that the generic format

T ∼= F T

adopted so far for the definition of an inductive type is not sufficiently detailed because
it does not provide a parametric view ofT. For simplicity, let us suppose (for the mo-
mement) that only one parameter is identified inT. Then we may factor this out viatype
variableX and write (overloading symbolT)

TX ∼= B(X,TX)

whereB is called the type’sbase functor. Binary functorB(X,Y) is given this name
because it is the basis of the whole inductive type definition. By instantiation ofX one
obtainsF. In the example above,B (X,Y) = 1 + X × Y and in factF Y = B (IN0, Y) =
1 + IN0 × Y , recall (3.40). Moreover, one has

F f = B (id, f) (3.65)

and so everyF-homomorphism can be written in terms of the base-functor ofF, e.g.

f · α = β · B (id, f)

instead of (3.55).

88 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

TX will be referred to as thetype functorgenerated byB:

TX︸︷︷︸
type functor

∼= B(X,TX)︸ ︷︷ ︸
base functor

We proceed to the description of its functorial behaviour —T f — for a given B A
foo .

As far as typing rules are concerned, we shall have

B A
foo

TB TA
T foo

So we should be able to expressT f as aB (A,)-catamorphism(|g|):

A

f

��

TA

T f=(|g|)

��

B (A,TA)
inT Aoo

B (id,T f)
��

B TB B (A,TB)g
oo

As we know thatinTB is the standard constructor of values of typeTB, we may put it
into the diagram too:

A

f

��

TA

T f=(|g|)

��

B (A,TA)
inT Aoo

B (id,T f)
��

B TB B (A,TB)g
oo

B (B,TB)

inT B

eeJJJJJJJJJJ

The catamorphism’s geneg will be synthesized by filling the dashed arrow in the diagram
with the “obvious”B (f, id), whereby one gets

T f
def
= (|inTB · B (f, id)|) (3.66)

and a final diagram, whereinT A is abbreviated byinA (ibid. inT B by inB):

A

f

��

TA

T f=(|inB·B (f,id)|)

��

B (A,TA)
inAoo

B (id,T f)
��

B TB B (B,TB)
inB

oo B (A,TB)
B (f,id)
oo

3.12. PARAMETERIZATION AND TYPE FUNCTORS 89

Next, we proceed to derive the useful law ofcata-absorption

(|g|) · T f = (|g · B (f, id)|) (3.67)

as consequence of the laws studied in section 3.11. Our target is to show that, fork =
(|g|) · T f in (3.57), one getsα = g · B (f, id):

(|g|) · T f = (|α|)
⇔ { type-functor definition (3.66)}

(|g|) · (|inB · B (f, id)|) = (|α|)
⇐ { cata-fusion (3.61)}

(|g|) · inB · B (f, id) = α · B (id, (|g|))
⇔ { cata-cancellation (3.59)}

g · B (id, (|g|)) · B (f, id) = α · B (id, (|g|))
⇔ { B is a bi-functor (3.47)}

g · B (id · f, (|g|) · id) = α · B (id, (|g|))
⇔ { id is natural (2.11)}

g · B (f · id, id · (|g|)) = α · B (id, (|g|))
⇔ { (3.47) again, this time from left to right}

g · B (f, id) · B (id, (|g|)) = α · B (id, (|g|))
⇐ { Leibniz }

g · B (f, id) = α

The following diagram pictures this property of catamorphisms:

A

f

��

TA

T f

��

B (A,TA)
inAoo

B (id,T f)
��

C TC

(|g|)

��

B (C,TC)
inC

oo

B (id,(|g|))
��

B (A,TC)
B (f,id)
oo

B (id,(|g|))
��

D B (C,D)g
oo B (A,D)

B (f,id)
oo

It remains to show that (3.66) indeed defines a functor. This can be verified by check-
ing properties (3.44) and (3.45) forF = T :

90 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

• Propertytype-functor-id , cf. (3.44):

T id

= { by definition (3.66)}
(|inB · B (id, id)|)

= { B is a bi-functor (3.46)}
(|inB · id|)

= { identity and cata-reflection (3.58)}
id

• Propertytype-functor, cf. (3.45) :

T (f · g)

= { by definition (3.66)}
(|inB · B (f · g, id)|)

= { id · id = id andB is a bi-functor (3.47)}
(|inB · B (f, id) · B (g, id)|)

= { cata-absorption (3.67)}
(|inB · B (f, id)|) · T g

= { again cata-absorption (3.67)}
(|inB|) · T f · T g

= { cata-reflection (3.58) followed by identity}
T f · T g

3.13 A catalogue of standard polynomial inductive
types

The following table contains a collection of standard polynomial inductive types and as-
sociated base type bi-functors, which are in canonical form(3.53). The table contains two
extra columns which may be used as bookmarks for equations (3.65) and (3.66), respec-

3.13. A CATALOGUE OF STANDARD POLYNOMIAL INDUCTIVE TYPES91

tively 10:

Description TX B (X,Y) B (id, f) B (f, id)

“Right” Lists List X 1 + X × Y id + id× f id + f × id

“Left” Lists LList X 1 + Y ×X id + f × id id + id× f

Non-empty Lists NList X X + X × Y id + id× f f + f × id

Binary Trees BTree X 1 + X × Y 2 id + id× f2 id + f × id

“Leaf” Trees LTree X X + Y 2 id + f2 f + id

(3.68)

All type functorsT in this table are unary. In general, one may think of inductive
datatypes which exhibit more than one type parameter. Should n parameters be identified
in T, then this will be based on ann + 1-ary base functorB, cf.

T(X1, . . . ,Xn) ∼= B(X1, . . . ,Xn,T(X1, . . . ,Xn))

So, everyn + 1-ary polynomial functorB(X1, . . . ,Xn,Xn+1) can be identified as the
basis of an inductiven-ary type functor (the convention is to stick to the canonical form
and reserve the last variableXn+1 for the “recursive call”). While type bi-functors (n = 2)
are often found in programming, the situation in whichn > 2 is relatively rare. For
instance, the combination of leaf-trees with binary-treesin (3.68) leads to the so-called
“full tree” type bi-functor

Description T(X1,X2) B(X1,X2, Y) B(id, id, f) B(f, g, id)

“Full” Trees FTree(X1,X2) X1 + X2 × Y 2 id + id× f2 f + g × id
(3.69)

As we shall see later on, these types are widely used in programming. In the actual
encoding of these types in HASKELL, exponentials are normally expanded to products
according to (2.87), see for instance

data BTree a = Empty | Node(a, (BTree a, BTree a))

Moreover, one may chose to curry the type constructors as in,e.g.

data BTree a = Empty | Node a (BTree a) (BTree a)

Exercise 3.6. Write as a catamorphisms

• the function which counts the number of elements of a non-empty list (typeNList

in (3.68)).

10Since(idA)2 = id(A2) one writesid2 for id in this table.

92 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

• the function which computes the maximum element of a binary-tree of natural num-
bers.

2

Exercise 3.7. Characterize the function which is defined by(|[[], h]|) for each of the
following definitions ofh:

h(x, (y1, y2)) = y1 ++ [x] ++ y2 (3.70)

h = ++ · (singl×++) (3.71)

h = ++ · (++× singl) · swap (3.72)

assumingsingla = [a]. Identify in (3.68) which datatypes are involved as base functors.
2

Exercise 3.8. Write as a catamorphism the function which computes thefrontierof a tree
of typeLTree (3.68), listed from left to right.
2

3.14 Functors and type functors in HASKELL

The concept of a (unary) functor is provided in HASKELL in the form of a particular class
exporting thefmap operator:

class Functor f where
fmap :: (a -> b) -> (f a -> f b)

So fmap g encodesF g once we declareF as an instance of classFunctor . The most
popular use offmap has to do with HASKELL lists, as allowed by declaration

instance Functor [] where
fmap f [] = []
fmap f (x:xs) = f x : fmap f xs

3.15. THE MUTUAL-RECURSION LAW 93

in language’sStandard Prelude.
In order to encode the type functors we have seen so far we haveto do the same

concerning their declaration. For instance, should we write

instance Functor BTree
where fmap f =

cataBTree (inBTree . (id -|- (f >< id)))

concerning the binary-tree datatype of (3.68) and assumingappropriate declarations of
cataBTree andinBTree , thenfmap is overloaded and used across such binary-trees.

Bi-functors can be added easily by writing

class BiFunctor f where
bmap :: (a -> b) -> (c -> d) -> (f a c -> f b d)

Exercise 3.9. Declare all datatypes in (3.68) inHASKELL notation and turn them into
HASKELL type functors, that is, definefmap in each case.
2

Exercise 3.10. Declare datatype (3.69) inHASKELL notation and turn it into an instance
of classBiFunctor.
2

3.15 The mutual-recursion law

The theory developed so far for building (and reasoning about) recursive functions doesn’t
cope with mutual recursion. As a matter of fact, the pattern of recursion of a given
cata(ana,hylo)morphism involves only the recursive function being defined, even though
more than once, in general, as dictated by the relevant base functor.

It turns out that rules for handling mutual recursion are surprisingly simple to calcu-
late. As motivation, recall section 2.10 where, by mixing products with coproducts, we
obtained a result — theexchange rule(2.47) — which stemmed from putting together the
two universal properties of product and coproduct, (2.55) and (2.57), respectively.

94 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

The question we want to address in this section is of the same brand: what can one
tell about catamorphisms which output pairs of values? By (2.55), such catamorphisms
are bound to besplits, as are the correspondinggenes:

T

(|〈h,k〉|)

��

F T

F (|〈h,k〉|)
��

inoo

A×B F (A×B)
〈h,k〉
oo

As we did for the exchange rule, we put (2.55) and the universal property of catamor-
phisms (3.57) against each other and calculate:

〈f, g〉 = (|〈h, k〉|)
≡ { cata-universal (3.57)}
〈f, g〉 · in = 〈h, k〉 · F 〈f, g〉

≡ { ×-fusion (2.24) twice}
〈f · in, g · in〉 = 〈h · F 〈f, g〉, k · F 〈f, g〉〉

≡ { (2.56) }

f · in = h · F 〈f, g〉 ∧ g · in = k · F 〈f, g〉
The rule thus obtained,

{
f · in = h · F 〈f, g〉
g · in = k · F 〈f, g〉 ≡ 〈f, g〉 = (|〈h, k〉|) (3.73)

is referred to as themutual recursion law(or as “Fokkinga’s law”) and is useful in com-
bining two mutually recursive functionsf andg

T

f

��

F T

F 〈f,g〉
��

inoo

A F (A×B)
h

oo

T

g

��

F T

F 〈f,g〉
��

inoo

B F (A×B)
k

oo

into a single catamorphism.
When applied from left to right, law (3.73) is surprisingly useful in optimizing recur-

sive functions in a way which saves redundant traversals of the input inductive typeT.
Let us take the Fibonacci function as example:

fib 0 = 1

fib 1 = 1

fib(n + 2) = fib(n + 1) + fib n

3.15. THE MUTUAL-RECURSION LAW 95

It can be shown thatfib is a hylomorphism of typeLTree (3.68),fib = Jcount, fibdK, for
count = [1, add], add(x, y) = x + y andfibd n = if n < 2 then i1Nil else i2(n −
1, n − 2). This hylo-factorization offib tells its internal algorithmic structure: thedivide
step[(fibd)] builds a tree whose number of leaves is a Fibonacci number; theconquer step
(|count|) just counts such leaves.

There is, of course, much re-calculation in this hylomorphism. Can we improve its
performance? The clue is to regard the two instances offib in the recursive branch as
mutually recursive over the natural numbers. This clue is suggested not only byfib
having two base cases (so, perhaps it hides two functions) but also by the lookaheadn+2
in the recursive clause.

We start by defining a function which reduces such a lookaheadby 1,

f n = fib(n + 1)

Clearly,f(n + 1) = fib(n + 2) = f n + fib n andf 0 = fib 1 = 1. Puttingf andfib
togther,

f 0 = 1

f(n + 1) = f n + fib n

fib 0 = 1

fib(n + 1) = f n

we obtain two mutually recursive functions over the naturalnumbers (IN0) which trans-
form into pointfree equalities

f · [0, suc] = [1, add · 〈f, fib〉]
fib · [0, suc] = [1, f]

over

IN0

**∼=
1 + IN0︸ ︷︷ ︸

F IN0

in=[0,suc]

hh (3.74)

Reverse+-absorption (2.41) will further enable us to rewrite the above into

f · in = [1, add] · F 〈f, fib〉
fib · in = [1, π1] · F 〈f, fib〉

thus bringing functorF f = id + f explicit and preparing for mutual recursion removal:

f · in = [1, add] · F 〈f, fib〉
fib · in = [1, π1] · F 〈f, fib〉

96 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

≡ { (3.73) }

〈f, fib〉 = (|〈[1, add], [1, π1]〉|)
≡ { exchange law (2.47)}

〈f, fib〉 = (|[〈1, 1〉, 〈add, π1〉]|)
≡ { going pointwise and denoting〈f, fib〉 by fib′ }

{
fib′ 0 = (1, 1)
fib′ (n + 1) = (x + y, x) where (x, y) = fib′ n

Sincefib = π2 · fib′ we easily recoverfib from fib′ and obtain the intended linear
version of Fibonacci (encoded in Haskell):

fib n = y where (x,y) = fib’ n
fib’ 0 = (1,1)
fib’ (n+1) = (x+y,x)

where (x,y) = fib’ n

This version offib is actually the semantics of the “for-loop” one would write in an
imperative language which would initialize two global variablesx, y := 1, 1, loop over
assignmentx, y := x + y, x and yield the result iny. In the C programming language,
one would write

int fib(int n)
{
int x=1; int y=1; int i;
for (i=1;i<=n;i++) {int a=x; x=x+y; y=a;}
return y;
};

where the extra variablea is required for ensuring thatsimultaneousassignmentx, y :=
x + y, x takes place in a sequential way.

Our intuition above is confirmed by observing that allIN0 catamorphisms are of shape
(|[k, g]|), and that(|[k, g]|)n = gnk, wheregn is then-th iteration ofg, that is,g0 = id
andgn+1 = g · gn. Sog is the body of a “for-loop” which repeats itselfn-times, starting
with initial valuek.

Such a for-loop combinator is nothing but the “fold combinator” associated to the nat-
ural number data type, which becomes explicit by solving — using (3.57) — the equation

for g k = (|[k, g]|)

3.15. THE MUTUAL-RECURSION LAW 97

obtaining

for g k 0 = k

for g k (n + 1) = g(for g k n)

In a sense, the mutual recursion law gives us a hint on how global variables “are born”
in computer programs, out of the maths definitions themselves. Quite often more that two
such variables are required in linearizing hylomorphisms by mutual recursion. Let us see
an example. The question is:how many squares can one draw on an×n-tiled wall? The
answer is given by function

ns n
def
=

∑

i=1,n

i2

that is,

ns 0 = 0

ns(n + 1) = (n + 1)2 + ns n

in Haskell. However, this hylomorphism is inefficient because each iteration involves
another hylomorphism computing square numbers.

One way of improvingns is to introduce functionbnm n
def
= (n + 1)2 and express

this over (3.74),

bnm 0 = 1

bnm(n + 1) = 2n + 3 + bnm n

hoping to blendns with bnm using the mutual recursion law. However, the same problem

arises inbnm itself, which now depends on term2n + 3. We inventlin n
def
= 2n + 3 and

repeat the process, thus obtaining:

lin 0 = 3

lin(n + 1) = 2 + lin n

By redefining

bnm′ 0 = 1

bnm′(n + 1) = lin n + bnm′ n

ns′ 0 = 0

ns′(n + 1) = bnm′ n + ns′ n

98 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

we obtain three functions —ns′, bnm′ andlin — mutually recursive over the polynomial
baseF g = id + g of the natural numbers.

Exercise 3.11 below shows how to extend (3.73) to three mutually recursive functions
(3.75). (From this it is easy to extend it further to then-ary case.) It is routine work to
show that, by application of (3.75) to the above three functions, one obtains the linear
version ofns which follows:

ns’’ n = let (a,b,c) = aux n in a
where

aux 0 = (0,1,3)
aux(n+1) = let (a,b,c) = aux n

in (a+b,b+c,2+c)

In retrospect, note that (in general) not every system ofn mutually recursive functions

f1 = φ1(f1, . . . , fn)
...
fn = φn(f1, . . . , fn)

involving n functions andn functional combinatorsφ1, . . . , φn can be handled by a suit-
ably extended version of (3.73). This only happens if allfi have the same “shape”, that
is, if they share the same base functorF.

Exercise 3.11. Show that law (3.73) generalizes to more than two mutually recursive
functions, in this case three:

f · in = h · F 〈f, 〈g, j〉〉
g · in = k · F 〈f, 〈g, j〉〉
j · in = l · F 〈f, 〈g, j〉〉

≡ 〈f, 〈g, j〉〉 = (|〈h, 〈k, l〉〉|) (3.75)

2

Exercise 3.12. The exponential functionex : IR → IR (where “e” denotes Euler’s
number) can be defined in several ways, one being the calculation of Taylor series:

ex =

∞∑

n=0

xn

n!
(3.76)

The following function, in Haskell,

3.15. THE MUTUAL-RECURSION LAW 99

exp :: Double -> Integer -> Double
exp x 0 = 1
exp x (n+1) = xˆ(n+1) / fac (n+1) + (exp x n)

computes an approximation ofex, where the second parameter tells how many terms to
compute. For instance, whileexp 1 1 = 2.0, exp 1 10 yields2.7182818011463845.

Functionexp x n performs badly forn larger and larger: whileexp 1 100 runs instan-
taneously,exp 1 1000 takes around 9 seconds,exp 1 2000 takes circa 33 seconds, and so
on.

Decomposeexp into mutually recursive functions so as to apply (3.75) and obtain the
following linear version:

exp x n = let (e,b,c) = aux x n
in e where

aux x 0 = (1,2,x)
aux x (n+1) = let (e,s,h) = aux x n

in (e+h,s+1,(x/s) * h)

2

Exercise 3.13. From the following basic properties of addition and multiplication,

a ∗ 0 = 0 (3.77)

a ∗ 1 = a (3.78)

a ∗ (b + c) = a ∗ b + a ∗ c (3.79)

show thata ∗ n = for (a+) 0.
2

Exercise 3.14. Calculate the for-loop implementation of natural number exponentials
from the basic properties:

a0 = 1 (3.80)

a1 = a (3.81)

ab+c = ab × ac (3.82)

100 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

2

Exercise 3.15. Show that, for alln ∈ IN0, n = sucn0. Hint: use cata-reflexion (3.58).
2

As example of application of (3.73) forT other thanIN0, consider the following re-
cursive predicate which checks whether a (non-empty) list is ordered,

ord : A+ // 2
ord [a] = TRUE

ord (cons(a, l)) = a ≥ (listMax l) ∧ (ord l)

where≥ is assumed to be a total order on datatypeA and

listMax = (|[id,max]|) (3.83)

computes the greatest element of a given list ofAs:

A+

listMax
��

A + A×A+

id+id×listMax

��

[singl,cons]
oo

A A + A×A
[id,max]

oo

(In the diagram,singla = [a].)
Predicateord is not a catamorphism because of the presence oflistMax l in the

recursive branch. However, the following diagram depicting ord

A+

ord

��

A + A×A+

id+id×〈listMax,ord〉
��

[singl,cons]oo

2 A + A× (A× 2)
[TRUE,α]

oo

(whereα(a, (m, b))
def
= a ≥ m ∧ b) suggests the possibility of using the mutual recursion

law. One only has to find a way of lettinglistMax depend also onord, which isn’t

3.16. “BANANA-SPLIT”: A COROLLARY OF THE MUTUAL-RECURSIONLAW101

difficult: for any A+
g // B , one has

A+

listMax

��

A + A×A+

id+id×〈listMax,g〉
��

[singl,cons]
oo

A A + A× (A×B)
[id,max·(id×π1)]

oo

where the extra presence ofg is cancelled by projectionπ1.
ForB = 2 andg = ord we are in position to apply Fokkinga’s law and obtain:

〈listMax, ord〉 = (|〈[id,max · (id× π1)], [TRUE, α]〉|)
= { exchange law(2.47)}

(|[〈id, TRUE〉, 〈max · (id× π1), α〉]|)
Of course,ord = π2 · 〈listMax, ord〉. By denoting the above synthesized catamorphism
by aux, we end up with the following version oford:

ord l = let (a, b) = aux l
in b

where

aux : A+ // A× 2
aux [a] = (a, TRUE)
aux (cons(a, l)) = let (m, b) = aux l

in (max(a,m), (a > m ∧ b))

3.16 “Banana-split”: a corollary of the mutual-recursion
law

Let h = i · F π1 andk = j · F π2 in (3.73). Then

f · in = (i · F π1) · F 〈f, g〉
≡ { composition is associative andF is a functor}

f · in = i · F (π1 · 〈f, g〉)
≡ { by×-cancellation (2.20)}

f · in = i · F f

≡ { by cata-cancellation}
f = (|i|)

102 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

Similarly, fromk = j · F π2 we get

g = (|j|)

Then, from (3.73), we get

〈(|i|), (|j|)〉 = (|〈i · F π1, j · F π2〉|)

that is

〈(|i|), (|j|)〉 = (|(i× j) · 〈F π1,F π2〉|) (3.84)

by (reverse)×-absorption (2.25).
This law provides us with a very useful tool for “parallel loop” inter-combination:

“loops” (|i|) and(|j|) are fused together into a single “loop”(|(i × j) · 〈F π1,F π2〉|). The
need for this kind of calculation arises very often. Consider, for instance, the function
which computes the average of a non-empty list of natural numbers,

average
def
= (/) · 〈sum, length〉 (3.85)

wheresum andlength are the expectedIN+ catamorphisms:

sum = (|[id,+]|)
length = (|[1, succ · π2]|)

As defined by (3.82), functionaverage performs two independent traversals of the argu-
ment list before division(/) takes place. Banana-split will fuse such two traversals into a
single one (see functionaux below), thus leading to a function which will run ”twice as
fast”:

average l = x/y
where (x, y) = aux l

aux[a] = (a, 1)
aux(cons(a, l)) = (a + x, y + 1)

where (x, y) = aux l

(3.86)

Exercise 3.16. Calculate (3.83) from (3.82). Which of these two versions ofthe same
function is easier to understand?
2

3.17. INDUCTIVE DATATYPE ISOMORPHISM 103

3.17 Inductive datatype isomorphism

not yet available

3.18 Bibliography notes

It is often the case that the expressive power of a particularprogramming language or
paradigm is counter-productive in the sense that too much freedom is given to program-
mers. Sooner or later, these will end up writing unintelligible (authorship dependent) code
which will become a burden to whom has to maintain it. Such hasbeen the case of imper-
ative programming in the past (inc. assembly code), where the unrestricted use ofgoto
instructions eventually gave place toif-then-else , while andrepeat structured
programming constructs.

A similar trend has been observed over the last decades at a higher programming
level: arbitrary recursion and/or (side) effects have beenconsidered harmful in functional
programming. Instead, programmers have been invited to structure their code around
generic program devices such as eg.fold/unfold combinators, which bring discipline to
recursion. One witnesses progress in the sense that the lossof freedom is balanced by the
increase of formal semantics and the availability of program calculi.

Such disciplined programming combinators have been extended from list-processing
to other inductive structures thanks to one of the most significant advances in program-
ming theory over the last decade: the so-calledfunctorial approach to datatypes which
originated mainly from [MA86], was popularized by [Mal90] and reached textbook for-
mat in [BdM97]. A comfortable basis for exploitingpolymorphism[Wad89], the “datatypes
as functors” moto has proved beneficial at a higher level of abstraction, giving birth to
polytypism[JJ96].

The literature onanas, catasandhylosis vast (see eg. [MH95], [JJ98], [GHA01]) and
it is part of a broader discipline which has become known as the mathematics of program
construction[Bac04]. This chapter provides an introduction to such as discipline. Only
the calculus of catamorphisms is presented. The corresponding theory of anamorphisms
and hylomorphisms demands further mathematical machineryand will won’t be dealt
with before chapters 5 and 7. The results on mutual recursionpresented in this chapter
were pionered by Maarten Fokkinga [Fok92].

