
J.N. Oliveira

PROGRAM DESIGN BY
CALCULATION

(DRAFT)

University of Minho
(in preparation)

2

J.N. Oliveira

PROGRAM DESIGN BY
CALCULATION

(DRAFT)

University of Minho
(in preparation)

Contents

1 Introduction 3
1.1 Why Program Design by Calculation? 5
1.2 Why this Book? . 6
1.3 Book Structure . 7
1.4 How to Read This Book . 7

I Calculating with Functions 9

2 An Introduction to Pointfree Programming 11
2.1 Introducing functions and types 12
2.2 Functional application . 13
2.3 Functional equality and composition13
2.4 Identity functions . 16
2.5 Constant functions . 16
2.6 Monics and epics . 17
2.7 Isos . 19
2.8 Gluing functions which do not compose — products20
2.9 Gluing functions which do not compose — coproducts 27
2.10 Mixing products and coproducts 30
2.11 Natural properties . 33
2.12 Universal properties . 34
2.13 Guards and McCarthy’s conditional 36
2.14 Gluing functions which do not compose — exponentials 38
2.15 Elementary datatypes . 43
2.16 Finitary products and coproducts45
2.17 Initial and terminal datatypes .47
2.18 Sums and products in HASKELL 48

i

ii CONTENTS

2.19 Exercises . 51
2.20 Bibliography notes . 53

3 Recursion in the Pointfree Style 55
3.1 Motivation . 55
3.2 Introducing inductive datatypes61
3.3 Observing an inductive datatype 66
3.4 Synthesizing an inductive datatype70
3.5 Introducing (list) catas, anas and hylos 71
3.6 Inductive types more generally 76
3.7 Functors . 77
3.8 Polynomial functors . 79
3.9 Polynomial inductive types . 81
3.10 F-algebras andF-homomorphisms 82
3.11 F-catamorphisms . 83
3.12 Parameterization and type functors 86
3.13 A catalogue of standard polynomial inductive types 90
3.14 Functors and type functors in HASKELL 92
3.15 The mutual-recursion law . 93
3.16 “Banana-split”: a corollary of the mutual-recursion law 101
3.17 Inductive datatype isomorphism 102
3.18 Bibliography notes . 102

4 Why Monads Matter 105
4.1 Partial functions . 105
4.2 Putting partial functions together 106
4.3 Lists . 108
4.4 Monads . 109

4.4.1 Properties involving (Kleisli) composition 111
4.5 Monadic application (binding) 112
4.6 Sequencing and thedo-notation 113
4.7 Generators and comprehensions 114
4.8 Monads in HASKELL . 115

4.8.1 Monadic I/O . 116
4.9 The state monad . 117
4.10 Bibliography notes . 124

CONTENTS iii

II Moving Away From (Pure) Functions 125

5 Quasi-inductive datatypes 127
5.1 Introducing Non-inductive Datatypes 127
5.2 Structural Induction . 133
5.3 Well-founded coalgebras and induction134
5.4 Datatype invariants and proof obligations 136
5.5 Binary relations and finite mappings 138
5.6 Finite mapping induction principle140
5.7 An overview of the powerset and finite mapping algebras 141
5.8 Exercises . 141
5.9 Bibliography notes . 143

III Calculating with Relations 145

6 Introduction to Relational Calculation 147
6.1 Functions are not enough . 147
6.2 Relational composition and converse151
6.3 Relational equality . 152
6.4 Specifications as “properties” . 154
6.5 Relational approach . 154
6.6 Pre/post specification style . 155
6.7 From predicates to relations . 156
6.8 Basic relational combinators . 158
6.9 Converse . 160
6.10 Meet . 161
6.11 Pointwise vs pointfree notation162
6.12 Orders and their taxonomy . 164
6.13 Derived combinators . 166
6.14 Entireness and simplicity . 168
6.15 Surjectiveness and injectiveness 168
6.16 Binary relation taxonomy . 169
6.17 Reasoning about functions . 170
6.18 Galois connections . 174
6.19 Converse in a Galois connection 177
6.20 Functions in a Galois connection 177
6.21 Relational division . 178

iv CONTENTS

6.22 Meet and join . 182
6.23 Relationalsplit . 183
6.24 Relationaleither . 184
6.25 Meaning of VDM-SL specs . 188
6.26 Relational semantics of VDM-SL 190
6.27 Relational McCarthy conditional191
6.28 Reasoning about VDM-SL . 192
6.29 Bibliography notes . 196

7 An Introduction to Relational Hylomorphisms 197
7.1 “How” does one specify? . 197
7.2 Divide-and-conquer (formally) 198
7.3 Relators . 199
7.4 Properties of relators . 200
7.5 Equations and fixpoints . 202
7.6 Solving (Fixpoint) Equations . 203
7.7 Solving (Fixpoint) Equations III 204
7.8 Solving relational equations . 205
7.9 Laws of the Fixpoint Calculus 206
7.10 µ-fusion theorem . 209
7.11 Hylo(cata)-fusion . 211
7.12 Hylo(ana)-fusion . 212
7.13 Examples: VDM collective types 213
7.14 Relational cata(ana)morphisms214
7.15 Inductive coreflexives . 215
7.16 Hylos as unique solutions . 218
7.17 Accessibility and membership 219
7.18 Hylo-factorization Theorem . 222
7.19 Virtual data-structuring . 223
7.20 Final note on inductive relation≺ 224
7.21 Bibliography notes . 224

8 Theorems for Free 225
8.1 Parametric polymorphism: why? 225
8.2 Free theorem of typet . 226
8.3 Reynolds arrow operator . 227
8.4 Pointwise version of FT . 229
8.5 Second example: FT of(| |) . 230

CONTENTS v

8.6 Bibliography notes . 231

IV Data Refinement by Calculation 233

9 On Data Representation 235
9.1 Introduction . 235
9.2 Data refinement . 237
9.3 Representation relations . 238
9.4 Right invertibility . 239
9.5 Refinement inequations . 239
9.6 Relational representation . 241
9.7 Functional representation . 242
9.8 Concrete invariants . 242
9.9 A fundamental iso abstraction 243
9.10 Pointfreeuntot = (i◦1·) . 244
9.11 Properties of≤ . 245
9.12 Structural data refinement . 246
9.13 The finite map bifunctor . 251
9.14 Transposing relations . 254
9.15 Transposing finite relations . 255
9.16 Recursive data refinement . 256
9.17 Recursion “removal” . 257
9.18 Closure and wellfoundedness . 260
9.19 Object oriented Data Implementation 261
9.20 Multiple inheritance . 261
9.21 Bibliography notes . 262

10 On Algorithmic Refinement 265
10.1 Implicit/explicit refinement .265
10.2 Handling refinement equations 268
10.3 Solving refinement equations . 268
10.4 Properties of⊢ . 269
10.5 Stepwise refinement . 270
10.6 Refinement is a partial order . 271
10.7 Main refinement strategies . 272
10.8 Data refinement in full . 273
10.9 Analysis of refinement equation 274

vi CONTENTS

10.10Solving refinement equations . 275
10.11Functional solutions . 275
10.12Calculation ofwhile/for loops 277
10.13Bibliography notes . 277

A Haskell Support Library in Haskell 279
A.0.1 Set.hs . 279

B Solutions to Selected Exercises 281

List of Exercises

Exercise 2.1 . 17
Exercise 2.2 . 19
Exercise 2.3 . 26
Exercise 2.4 . 26
Exercise 2.5 . 30
Exercise 2.6 . 30
Exercise 2.7 . 32
Exercise 2.8 . 32
Exercise 2.9 . 32
Exercise 2.10 . 34
Exercise 2.11 . 34
Exercise 2.12 . 36
Exercise 2.13 . 37
Exercise 2.14 . 37
Exercise 2.15 . 38
Exercise 2.16 . 42
Exercise 2.17 . 45
Exercise 2.18 . 46
Exercise 2.19 . 48
Exercise 2.20 . 51
Exercise 2.21 . 52
Exercise 2.22 . 52
Exercise 2.23 . 52
Exercise 2.24 . 52
Exercise 2.25 . 53
Exercise 3.1 . 66
Exercise 3.2 . 75
Exercise 3.3 . 76

vii

0 LIST OF EXERCISES

Exercise 3.4 . 76
Exercise 3.5 . 81
Exercise 3.6 . 91
Exercise 3.7 . 92
Exercise 3.8 . 92
Exercise 3.9 . 93
Exercise 3.10 . 93
Exercise 3.11 . 98
Exercise 3.12 . 98
Exercise 3.13 . 99
Exercise 3.14 . 99
Exercise 3.15 . 102
Exercise 4.1 . 109
Exercise 4.2 . 109
Exercise 4.3 . 112
Exercise 4.4 . 117
Exercise 4.5 . 117
Exercise 5.1 . 132
Exercise 5.2 . 132
Exercise 5.3 . 134
Exercise 5.4 . 136
Exercise 5.5 . 138
Exercise 5.6 . 141
Exercise 5.7 . 142
Exercise 5.8 . 142
Exercise 5.9 . 142

Preamble

This textbook in preparation has arisen from the author’s research and teaching
experience. Its main aim is to provide software practitioners with a calculational
approach to the design of software artifacts ranging from simple algorithms and
functions to the specification and realization of information systems. Put in other
words, the book invites software designers to raise standards and adopt mature
development techniques found in other engineering disciplines, which (as a rule)
are rooted on a sound mathematical basis so as to enable algebraic reasoning.

It is interesting to note that while coining the phrasesoftware engineeringin
the 1960s, our colleagues of the time were already promisingsuch high quality
standards. The terminology seems to date from the Garmisch NATO conference
in 1968, from whose report [NR69] the following excerpt is quoted:

In late 1967 the Study Group recommended the holding of a working con-
ference on Software Engineering. The phrase ‘software engineering’ was
deliberately chosen as being provocative, in implying the need for software
manufacture to be based on the types of theoretical foundations and practi-
cal disciplines, that are traditional in the established branches of engineer-
ing.

Provocative or not, the need for sound theoretical foundations has clearly been un-
der concern since the very beginning of the discipline. However, how “scientific”
do such foundations turn out to be, now that four decades havesince elapsed?

Ten years ago, Richard Bird and Oege de Moore published a textbook [BdM97]
in whose preface C.A.R. Hoare writes:

Programming notation can be expressed by “formulæ and equations(...)
which share theeleganceof those which underliephysicsandchemistryor
any other branch of basic science”.

The formulæ and equations mentioned in this quotation are those of the discipline
known as theAlgebra of Programming. Many others have contributed to this body

1

2 LIST OF EXERCISES

of knowledge, notably Roland Backhouse and his colleagues at Eindhoven and
Nottingham, see eg. [ABH+92] and [Bac04], among many others. Unfortunately,
both of these references are still unpublished.

When the author of this draft textbook decided to teachAlgebra of Program-
ming to 2nd year students of the Minho degrees in computer science, back to
1998, he found [BdM97] too difficult for the students to follow, mainly because
of its explicit categorial (allegorical) flavour. So he decided to start writing slides
and notes helping the students to read the book. Eventually,such notes became
chapters 2 to 4 of the current version of the monograph. The same procedure
was taken when teaching the relational approach of [BdM97] to 4th and 5th year
students (today at master level).

This draft book is by and large incomplete, most chapters being still in slide
form. Such chapters are omitted from the current print-out.

Braga, University of Minho, December 2008

José N. Oliveira

Part I

Calculating with Functions

9

Chapter 2

An Introduction to Pointfree
Programming

Everybody is familiar with the concept of afunctionsince the school desk. The functional
intuition traverses mathematics from end to end because it has a solid semantics rooted on
a well-known mathematical system — the class of “all” sets and set-theoretical functions.

Functional programming literally means “programming withfunctions”. Program-
ming languages such as LISP or HASKELL allow us to program with functions. However,
the functional intuition is far more reaching than producing code which runs on a com-
puter. Since the pioneering work of John McCarthy — the inventor of LISP — in the
early 1960s, one knows that other branches of programming can be structured, or ex-
pressed functionally. The idea of producing programs bycalculation, that is to say, that
of calculating efficient programs out of abstract, inefficient ones has a long tradition in
functional programming.

This book is structured around the idea that functional programming can be used as
a basis for teaching programming as a whole, from the successor functionn 7→ n + 1 to
large information system design.

This chapter provides a light-weight introduction to the theory of functional program-
ming. Its emphasis is on explaining how to construct new functions out of other functions
using a minimal set of predefined functional combinators. This leads to a programming
style which ispoint free in the sense that function descriptions dispense with variables
(definitionpoints).

Many technical issues are deliberately ignored and deferred to later chapters. Most
programming examples will be provided in the HASKELL functional programming lan-
guage. Appendix A includes the listings of some HASKELL modules which complement
the HUGS Standard Prelude(which is based very closely on theStandard Preludefor
HASKELL 1.4.) and help to “animate” the main concepts introduced in this chapter.

11

12 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

2.1 Introducing functions and types

The definition of a function

f : A // B (2.1)

can be regarded as a kind of “process” abstraction: it is a “black box” which produces an
output once it is supplied with an input:

f- -x(∈ A) f x(∈ B)

From another viewpoint,f can be regarded as a kind of “contract”: it commits itself
to producing aB-value provided it is supplied with anA-value. How is such a value
produced? In many situations one wishes to ignore it becauseone is justusing function
f . In others, however, one may want to inspect the internals ofthe “black box” in order
to know the function’scomputation rule. For instance,

succ : IN // IN

succn def
= n + 1

expresses the computation rule of thesuccessorfunction — the functionsuccwhich finds
“the next natural number” — in terms of natural number addition and of natural number
1. What we above meant by a “contract” corresponds to thesignatureof the function,
which is expressed by arrowIN // IN in the case ofsuccand which, by the way, can

be shared by other functions,e.g. sqn
def
= n2.

In programming terminology one says thatsuccandsqhave the same “type”. Types
play a prominent rôle in functional programming (as they doin other programming paradigms).
Informally, they provide the “glue”, or interfacing material, for putting functions to-
gether to obtain more complex functions. Formally, a “type checking” discipline can
be expressed in terms of compositional rules which check forfunctional expression well-
formedness.

It has become standard to use arrows to denote function signatures or function types,
recall (2.1). In this book the following variants will be used interchangeably to denote
the fact that functionf accepts arguments of typeA and produces results of typeB: f :

2.2. FUNCTIONAL APPLICATION 13

B Aoo , f : A // B , B A
foo or A

f // B . This corresponds to writingf
:: a -> b in the HASKELL functional programming language, where type variables
are denoted by lowercase letters.A will be referred to as thedomainof f andB will be
referred to as thecodomainof f . BothA andB are symbols which denote sets of values,
very often calledtypes.

2.2 Functional application

What do we want functions for? If we ask this question to a physician or engineer the
answer is very likely to be: one wants functions for modelling and reasoning about the
behaviour of real things.

For instance, functiondistancet = 60×t could be written by a school physics student
to model the distance (in, say, kilometers) a car will drive (per hour) at average speed
60km/hour. When questioned about how far the car has gone in 2.5 hours, such a model
provides an immediate answer: just evaluatedistance2.5 to obtain150km.

So we get a naı̈ve purpose of functions: we want them to beapplied to arguments
in order to obtain results. Functionalapplication is denoted by juxtaposition,e.g.f a

for B A
foo anda ∈ A, and associates to the left:f x y denotes(f x) y rather than

f (x y).

2.3 Functional equality and composition

Application is not everything we want to do with functions. Very soon our physics student
will be able to talk about properties of thedistancemodel, for instance that property

distance(2× t) = 2× (distancet) (2.2)

holds. Later on, we could learn from her or him that the same property can be restated as

distance(twicet) = twice(distancet), by introducing functiontwicex
def
= 2×x. Or even

simply as

distance· twice= twice· distance (2.3)

where “·” denotes function-arrow chaining, as suggested by drawing

IR

distance
��

IR
twiceoo

distance
��

IR IR
twice
oo

(2.4)

14 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

where both space and time are modelled by real numbers.
This trivial example illustrates some relevant facets of the functional programming

paradigm. Which version of the property presented above is “better”? the version explic-
itly mentioning variablet and requiring parentheses (2.2)? the version hiding variable t
but resorting to functiontwice (2.3)? or even drawing (2.4)?

Expression (2.3) is clearly more compact than (2.2). The trend for notation economy
and compactness is well-known throughout the history of mathematics. In the 16th cen-
tury, for instance, algebrists would write12.cu.̃p.18.ce.̃p.27.co.̃p.17 for what is nowadays
written as12x3+18x2+27x+17. We may find suchsyncopatednotation odd, but should
not forget that at its time it was replacing even more obscureexpression denotations.

Why do people look for compact notations? A compact notationleads to shorter
documents (less lines of code in programming) in which patterns are easier to identify
and to reason about. Properties can be stated in clear-cut, one-line long equations which
are easy to memorize. And diagrams such as (2.4) can be easilydrawn which enable us
to visualize maths in a graphical format.

Some people will argue that such compact “pointfree” notation (that is, the notation
which hides variables, or function “definition points”) is too cryptic to be useful as a prac-
tical programming medium. In fact, pointfree programming languages such as Iverson’s
APL or Backus’ FP have been more respected than loved by the programmers community.
Virtually all commercial programming languages require variables and so implement the
more traditional “pointwise” notation.

Throughout this book we will adopt both, depending upon the context. Our chosen
programming medium — HASKELL — blends the pointwise and pointfree programming
styles in a quite successful way. In order to switch from one to the other, we need two
“bridges”: one lifting equality to the functional level andthe other lifting application.

Concerning equality, note that the “=” sign in (2.2) differs from that in (2.3): while
the former states that two real numbers are the same number, the latter states that two
IR IRoo functions are the same function. Formally, we will say that two functions
f, g : B Aoo are equal if they agree at pointwise-level, that is

f = g iff 〈∀ a : a ∈ A : f a =B g a〉 (2.5)

where=B denotes equality atB-level.
Concerning application, the pointfree style replaces it bythe more generic concept

of functionalcompositionsuggested by function-arrow chaining: wherever two functions

are such that the target type of one of them, sayB A
goo is the same as the source type

of the other, sayC B
foo , then another function can be defined,C A

f ·goo — called
thecompositionof f andg, or “f afterg” — which “glues” f andg together:

(f · g) a
def
= f (g a) (2.6)

2.3. FUNCTIONAL EQUALITY AND COMPOSITION 15

This situation is pictured by the following arrow-diagram

B

f

��

A
goo

f ·g��~~
~~

~~
~

C

(2.7)

or by block-diagram

- ga -g a
f - f (g a)

Therefore, the type-rule associated to functional composition can be expressed as follows:

B C
foo

C A
goo

B A
f ·goo

Composition is certainly the most basic of all functional combinators. It is the first
kind of “glue” which comes to mind when programmers need to combine, or chain func-
tions (or processes) to obtain more elaborate functions (orprocesses)1. This is because
of one of its most relevant properties,

(f · g) · h = f · (g · h) (2.8)

which shares the pattern of, for instance

(a + b) + c = a + (b + c)

and so is called theassociativeproperty of composition. This enables us to move paren-
theses around in pointfree expressions involving functional compositions, or even to omit
them, for instance by writingf ·g ·h·i as an abbreviation of((f ·g)·h)·i, or of (f ·(g ·h))·i,
or of f · ((g ·h) · i), etc.For a chain ofn-many function compositions the notation©n

i=1fi

will be acceptable as abbreviation off1 · · · · · fn.

1It even has a place in script languages such as UNIX ’s, wheref | g is the shell counterpart
of g · f , for appropriate “processes”f andg.

16 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

2.4 Identity functions

How free are we to fulfill the “give me anA and I will give you aB” contract of equation
(2.1)? In general, the choice off is not unique. Somefs will do as little as possible
while others will laboriously compute non-trivial outputs. At one of the extremes, we
find functions which “do nothing” for us, that is, the added-value of their output when
compared to their input amounts to nothing:

f a = a

In this caseB = A, of course, andf is said to be theidentity function onA:

idA : A Aoo

idA a
def
= a

(2.9)

Note that every typeX “has” its identity idX . Subscripts will be omitted wherever

implicit in the context. For instance, the arrow notationIN IN
idoo saves us from writing

idIN, etc.. So, we will often refer to “the” identity function rather than to “an” identity
function.

How useful are identity functions? At first sight, they look fairly uninteresting. But
the interplay between composition and identity, captured by the following equation,

f · id = id · f = f (2.10)

will be appreciated later on. This property shares the pattern of, for instance,

a + 0 = 0 + a = a

This is why we say thatid is theunit of composition. In a diagram, (2.10) looks like this:

A

f

��

A
idoo

f

��
B B

id
oo

(2.11)

Note the graphical analogy of diagrams (2.4) and (2.11). Diagrams of this kind are very
common and express important properties of functions, as weshall see further on.

2.5 Constant functions

Opposite to the identity functions, which do not lose any information, we find functions
which lose all (or almost all) information. Regardless of their input, the output of these
functions is always the same value.

2.6. MONICS AND EPICS 17

Let C be a nonempty data domain and let andc ∈ C. Then we define theeverywhere
c function as follows, for arbitraryA:

c : A // C

ca
def
= c

(2.12)

The following property defines constant functions at pointfree level,

c · f = c (2.13)

and is depicted by a diagram similar to (2.11):

C

id
��

A
coo

f

��
C Bc

oo

(2.14)

Note that, strictly speaking, symbolc denotes two different functions in diagram (2.14):
one, which we should have writtencA, accepts inputs fromA while the other, which we
should have writtencB , accepts inputs fromB:

cB · f = cA (2.15)

This property will be referred to as the constant-fusionproperty.
As with identity functions, subscripts will be omitted wherever implicit in the context.

Exercise 2.1. TheHUGS Standard Preludeprovides for constant functions: you write
const c for c. Check thatHUGS assigns the same type to expressionsf . const c
andconst (f c), for everyf andc. What else can you say about these functional
expressions? Justify.
2

2.6 Monics and epics

Identity functions and constant functions are the limit points of the functional spectrum
with respect to information preservation. All the other functions are in between: they lose
“some” information, which is regarded as uninteresting forsome reason. This remark
supports the following aphorism about a facet of functionalprogramming: it is theart

18 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

of transforming or losing information in a controlled and precise way. That is to say,
the art of constructing the exact observation of data which fits in a particular context or
requirement.

How do functions lose information? Basically in two different ways: they may be
“blind” enough to confuse different inputs, by mapping themonto the same output, or
they may ignore values of their codomain. For instance,c confusesall inputs by mapping
them all ontoc. Moreover, it ignores all values of its codomain apart fromc.

Functions which do not confuse inputs are calledmonics (or injective functions)

and obey the following property:B A
foo is monic if, for every pair of functions

A C
h,koo , if f · h = f · k thenh = k, cf. diagram

B A
foo C

hoo
k

oo

(f is “cancellable on the left”).
It is easy to check that “the” identity function is monic,

id · h = id · k⇒ h = k

≡ { by (2.10)}
h = k⇒ h = k

≡ { predicate logic}
TRUE

and that any constant functionc is not monic:

c · h = c · k⇒ h = k

≡ { by (2.15)}
c = c⇒ h = k

≡ { function equality is reflexive}
TRUE⇒ h = k

≡ { predicate logic}
h = k

So the implication does not hold in general (only ifh = k).
Functions which do not ignore values of their codomain are called epics(or surjec-

tive functions) and obey the following property:A B
foo is epic if, for every pair of

2.7. ISOS 19

functions C A
h,koo , if h · f = k · f thenh = k, cf. diagram

C A
h

oo
koo

B
f

oo

(f is “cancellable on the right”).
As expected, identity functions are epic:

h · id = k · id⇒ h = k

≡ { by (2.10)}
h = k⇒ h = k

≡ { predicate logic}
TRUE

Exercise 2.2. Under what circumstances is a constant function epic? Justify.
2

2.7 Isos

A function B A
foo which is both monic and epic is said to beiso (an isomorphism, or

a bijective function). In this situation,f always has aconverse(or inverse) B
f◦

// A ,
which is such that

f · f◦ = idB ∧ f◦ · f = idA (2.16)

(i.e.f is invertible).
Isomorphisms are very important functions because they convert data from one “for-

mat”, sayA, to another format, sayB, without losing information. Sof and andf◦ are
faithful protocols between the two formatsA andB. Of course, these formats contain the
same “amount” of information, although the same data adoptsa different “shape” in each
of them. In mathematics, one says thatA is isomorphicto B and one writesA ∼= B to
express this fact.

Isomorphic data domains are regarded as “abstractly” the same. Note that, in general,
there is a wide range of isos between two isomorphic data domains. For instance, let

20 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

Weekday be the set of weekdays,

Weekday =

{Sunday,Monday, Tuesday,Wednesday, Thursday, Friday, Saturday}

and let symbol7 denote the set{1, 2, 3, 4, 5, 6, 7}, which is theinitial segmentof IN con-
taining exactly seven elements. The following functionf , which associates each weekday
with its “ordinal” number,

f : Weekday // 7

f Monday = 1

f Tuesday = 2

f Wednesday = 3

f Thursday = 4

f Friday = 5

f Saturday = 6

f Sunday = 7

is iso (guessf◦). Clearly,f d = i means “d is thei-th day of the week”. But note that

functiong d
def
= rem(f d, 7) + 1 is also an iso betweenWeekday and7. While f regards

Monday the first day of the week,g placesSunday in that position. Bothf andg are
witnesses of isomorphism

Weekday ∼= 7 (2.17)

Finally, note that all classes of functions referred to so far — constants, identities,
epics, monics and isos — are closed under composition, that is, the composition of two
constants is a constant, the composition of two epics is epic, etc.

2.8 Gluing functions which do not compose — prod-
ucts

Function composition has been presented above as the basis for gluing functions together
in order to build more complex functions. However, not everytwo functions can be glued
together by composition. For instance, functionsf : A Coo andg : B Coo do
not compose with each other because the domain of one of them is not the codomain of
the other. However, bothf andg share the same domainC. So, something we can do

2.8. GLUING FUNCTIONS WHICH DO NOT COMPOSE — PRODUCTS21

about gluingf andg together is to draw a diagram expressing this fact, something like

A B

C

f

__@@@@@@@ g

>>~~~~~~~

Becausef andg share the same domain, their outputs can be paired, that is, we may
write ordered pair(f c, g c) for eachc ∈ C. Such pairs belong to the Cartesian product of
A andB, that is, to the set

A×B
def
= {(a, b) | a ∈ A ∧ b ∈ B}

So we may think of the operation which pairs the outputs off andg as a new function
combinator〈f, g〉 defined as follows:

〈f, g〉 : C // A×B

〈f, g〉 c def
= (f c, g c)

(2.18)

Function combinator〈f, g〉 is pronounced “f split g” (or “pair f andg”) and can be
depicted by the following “block”, or “data flow” diagram:

c

-

-

f

g

-

-

f c

g c

Function〈f, g〉 keeps the information of bothf andg in the same way Cartesian product
A × B keeps the information ofA andB. So, in the same wayA data orB data can be
retrieved fromA×B data via the implicitprojectionsπ1 or π2,

A A×B
π1oo π2 // B (2.19)

defined by

π1(a, b) = a and π2(a, b) = b

f andg can be retrieved from〈f, g〉 via the same projections:

π1 · 〈f, g〉 = f and π2 · 〈f, g〉 = g (2.20)

22 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

This fact (or pair of facts) will be referred to as the×-cancellationproperty and is illus-
trated in the following diagram which puts things together:

A A×B
π1oo π2 // B

C

f

ccFFFFFFFFF
〈f,g〉

OO

g

;;wwwwwwwww

(2.21)

In summary, the type-rule associated to the “split” combinator is expressed by

A C
foo

B C
goo

A×B C
〈f,g〉oo

A split arises wherever two functions do not compose but share the same domain.
What about gluing two functions which fail such a requisite,e.g.

A C
foo

B D
goo

. . .?

The 〈f, g〉 split combination does not work any more. But a way to “approach” the do-
mains off andg, C andD respectively, is to regard them as targets of the projections π1

andπ2 of C ×D:

A A×B
π1oo π2 // B

C

f

OO

C ×D
π1oo π2 // D

g

OO

From this diagram〈f · π1, g · π2〉 arises

A A×B
π1oo π2 // B

C ×D

f ·π1

ccFFFFFFFFF g·π2

;;xxxxxxxxx
〈f ·π1,g·π2〉

OO

mappingC ×D to A ×B. It corresponds to the “parallel” application off andg which
is suggested by the following data-flow diagram:

2.8. GLUING FUNCTIONS WHICH DO NOT COMPOSE — PRODUCTS23

c

d

-

-

f

g

-

-

f c

g d

Functional combination〈f ·π1, g ·π2〉 appears very often and deserves special notation
— it will be expressed byf × g. So, by definition, we have

f × g
def
= 〈f · π1, g · π2〉 (2.22)

which is pronounced “product off andg” and has typing-rule

A C
foo

B D
goo

A×B C ×D
f×goo

(2.23)

Note the overloading of symbol “×”, which is used to denote both Cartesian product and
functional product. This choice of notation will be fully justified later on.

What is the interplay among functional combinatorsf · g (composition),〈f, g〉 (split)
andf×g (product) ? Composition andsplit relate to each other via the following property,
known as×-fusion:

A A×B
π1oo π2 // B

C

g

ccFFFFFFFFF
〈g,h〉

OO

h

;;wwwwwwwww

D

g·f

YY444444444444444
f

OO h·f

DD

〈g, h〉 · f = 〈g · f, h · f〉 (2.24)

This shows thatsplit is right-distributive with respect to composition. Left-distributivity
does not hold but there is something we can say aboutf · 〈g, h〉 in casef = i× j:

(i× j) · 〈g, h〉
= { by (2.22)}
〈i · π1, j · π2〉 · 〈g, h〉

= { by×-fusion (2.24)}

24 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

〈(i · π1) · 〈g, h〉, (j · π2) · 〈g, h〉〉
= { by (2.8)}
〈i · (π1 · 〈g, h〉), j · (π2 · 〈g, h〉)〉

= { by×-cancellation (2.20)}
〈i · g, j · h〉

The law we have just derived is known as×-absorption. (The intuition behind this ter-
minology is that “split absorbs×”, as a special kind of fusion.) It is a consequence of
×-fusion and×-cancellation and is depicted as follows:

A A×B
π1oo π2 // B

D

i

OO

D × E
π1oo π2 //

i×j

OO

E

j

OO

C

g

ccGGGGGGGGG
〈g,h〉

OO

h

;;wwwwwwwww

(i× j) · 〈g, h〉 = 〈i · g, j · h〉 (2.25)

This diagram provides us with two further results about products and projections which
can be easily justified:

i · π1 = π1 · (i× j) (2.26)

j · π2 = π2 · (i× j) (2.27)

Two special properties off × g are presented next. The first one expresses a kind of
“bi-distribution” of × with respect to composition:

(g · h)× (i · j) = (g × i) · (h× j) (2.28)

We will refer to this property as the×-functor property. The other property, which we
will refer to as the×-functor-id property, has to do with identity functions:

idA × idB = idA×B (2.29)

These two properties will be identified as thefunctorial propertiesof product. This choice
of terminology will be explained later on.

Let us finally analyse the particular situation in which asplit is built involving pro-
jectionsπ1 andπ2 only. These exhibit interesting properties, for instance〈π1, π2〉 = id.
This property is known as×-reflexionand is depicted as follows:

A A×B
π1oo π2 // B

A×B

π1

ccFFFFFFFFF
idA×B

OO

π2

;;xxxxxxxxx

〈π1, π2〉 = idA×B (2.30)

2.8. GLUING FUNCTIONS WHICH DO NOT COMPOSE — PRODUCTS25

What about〈π2, π1〉? This corresponds to a diagram

B B ×A
π1oo π2 // A

A×B

π2

ccFFFFFFFFF
〈π2,π1〉

OO

π1

;;xxxxxxxxx

which looks very much the same if submitted to a180o clockwise rotation (thusA and
B swap with each other). This suggests thatswap (the name we adopt for〈π2, π1〉) is its
own inverse, as can be checked easily as follows:

swap · swap

= { by definitionswap
def
= 〈π2, π1〉 }

〈π2, π1〉 · swap

= { by×-fusion (2.24)}
〈π2 · swap, π1 · swap〉

= { definition ofswap twice}
〈π2 · 〈π2, π1〉, π1 · 〈π2, π1〉〉

= { by×-cancellation (2.20)}
〈π1, π2〉

= { by×-reflexion (2.30)}
id

Therefore,swap is iso and establishes the following isomorphism

A×B ∼= B ×A (2.31)

which is known as thecommutative propertyof product.
The “product datatype”A×B is essential to information processing and is available in

virtually every programming language. In HASKELL one writes(A,B) to denoteA×B,
for A andB two predefined datatypes,fst to denoteπ1 andsnd to denoteπ2. In the C
programming language this datatype is called the “struct datatype”,

struct {
A first;
B second;

};

26 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

while in PASCAL it is called the “record datatype”:

record
first: A;
second: B

end;

Isomorphism (2.31) can be re-interpreted in this context asa guarantee thatone does not
lose (or gain) anything in swapping fields in record datatypes. C or PASCAL programmers
know also that record-field nesting has the same status, thatis to say that, for instance,
datatype

record
F: A;
S: record

F: B;
S: C;

end
end;

is abstractly the same as

record
F: record

F: A;
S: B

end;
S: C;

end;

In fact, this is another well-known isomorphism, known as the associative property
of product:

A× (B ×C) ∼= (A×B)× C (2.32)

This is established byA× (B × C) (A×B)×C
assocroo , which is pronounced “asso-

ciate to the right” and is defined by

assocr
def
= 〈π1 · π1, 〈π2 · π1, π2〉〉 (2.33)

Section A.0.1 in the appendix lists an extension to the HUGS Standard Prelude, called
Set.hs , which makes isomorphisms such asswap andassocr available. In this module,
the concrete syntax chosen for〈f, g〉 is split f g and the one chosen forf × g is f
>< g.

Exercise 2.3. Show thatassocr is iso by conjecturing its inverseassocl and proving that
functional equalityassocr · assocl = id holds.
2

Exercise 2.4. Use (2.22) to prove properties (2.28) and (2.29).
2

2.9. GLUING FUNCTIONS WHICH DO NOT COMPOSE — COPRODUCTS27

2.9 Gluing functions which do not compose — co-
products

Thesplit functional combinator arose in the previous section as a kind of glue for combin-
ing two functions which do not compose but share the same domain. The “dual” situation
of two non-composable functionsf : C Aoo andg : C Boo which however
share the same codomain is depicted in

A

f ��@
@@

@@
@@

B

g
~~~~

~~
~~

~

C

It is clear that the kind of glue we need in this case should make it possible to applyf in
case we are on the “A-side” or to applyg in case we are on the “B-side” of the diagram.
Let us write[ f, g ] to denote the new kind of combinator. Its codomain will beC. What
about its domain?

We need to describe the datatype which is “either anA or aB”. SinceA andB are
sets, we may think ofA ∪B as such a datatype. This works in caseA andB are disjoint
sets, but wherever the intersectionA ∩ B is non-empty it is undecidable whether a value
x ∈ A ∩ B is an “A-value” or a “B-value”. In the limit, if A = B thenA ∪ B = A =
B, that is to say, we have not invented a new datatype at all. These difficulties can be
circumvented by resorting todisjoint union:

A
i1 // A + B B

i2oo

The values ofA+B can be thought of as “copies” ofA or B values which are “stamped”
with different tags in order to guarantee that values which are simultaneously inA andB
do not get mixed up. The tagging functionsi1 andi2 are calledinjections:

i1 a = (t1, a) , i2 b = (t2, b) (2.34)

Knowing the exact values of tagst1 andt2 is not essential to understanding the concept
of a disjoint union. It suffices to know thati1 andi2 tag differently and consistently. For
instance, the following realizations ofA + B in the C programming language,

struct {
int tag; / * 1,2 * /
union {

A ifA;
B ifB;

} data;
};



28 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

or in PASCAL,

record
case

tag: integer
of x =

1: (P:A);
2: (S:B)

end;

adopt integer tags. In the HUGS Standard Prelude, which is based very closely on the
Standard Preludefor HASKELL 1.4., theA + B datatype is realized by

data Either a b = Left a | Right b

So,Left andRight can be thought of as the injectionsi1 andi2 in this realization.
At this level of abstraction, disjoint unionA + B is called thecoproductof A and

B, on top of which we define the new combinator[ f, g ] (pronounced “eitherf or g”) as
follows:

[ f, g ] : A + B // C

[ f, g ]x
def
=

{
x = i1 a ⇒ f a
x = i2 b ⇒ g b

(2.35)

As we did for products, we can express all this in a single diagram:

A
i1 //

f ##F
FFFFFFFF A + B

[ f,g ]

��

B
i2oo

g
{{wwwwwwwww

C

(2.36)

It is interesting to note how similar this diagram is to the one drawn for products — one
just has to reverse the arrows, replace projections by injections and thesplit arrow by
theeither one. This expresses the fact thatproductandcoproductaredual mathematical
constructs (compare withsine and cosine in trigonometry). This duality is of a great
conceptual economy because everything we can say about productA×B can be rephrased
to coproductA + B. For instance, we may introduce the sum of two functionsf + g as
the notion dual to productf × g:

f + g
def
= [ i1 · f, i2 · g ] (2.37)

The following list of+-laws provides eloquent evidence of this duality:



2.9. GLUING FUNCTIONS WHICH DO NOT COMPOSE — COPRODUCTS29

+-cancellation :

A
i1 //

g
##F

FFFFFFFF A + B

[ g,h ]

��

B
i2oo

h{{wwwwwwwww

C

[ g, h ] · i1 = g , [ g, h ] · i2 = h (2.38)

+-reflexion :

A
i1 //

i1 ##F
FF

FF
FF

FF
A + B

idA+B

��

B
i2oo

i2{{xx
xx

xx
xx

x

A + B

[ i1, i2 ] = idA+B (2.39)

+-fusion :

A
i1 //

g
##F

FFFFFFFF

f ·g

��4
44

44
44

44
44

44
44

A + B

[ g,h ]

��

B
i2oo

h{{wwwwwwwww

f ·h

��


























C

f

��
D

f · [ g, h ] = [ f · g, f · h ] (2.40)

+-absorption :

A
i1 //

i

��

A + B

i+j

��

B
i2oo

j

��
D

i1 //

g
##G

GGGGGGGG D + E

[ g,h ]

��

E
i2
oo

h{{wwwwwwwww

C

[ g, h ] · (i + j) = [ g · i, h · j ] (2.41)

+-functor :

(g · h) + (i · j) = (g + i) · (h + j) (2.42)

+-functor-id :

idA + idB = idA+B (2.43)



30 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

In summary, the typing-rules of theeitherandsumcombinators are as follows:

C A
foo

C B
goo

C A + B
[ f,g ]oo

C A
foo

D B
goo

C + D A + B
f+goo

(2.44)

Exercise 2.5. By analogy (duality) withswap, show that[ i2, i1 ] is its own inverse and
so that fact

A + B ∼= B + A (2.45)

holds.
2

Exercise 2.6. Dualize (2.33), that is, write the iso which witnesses fact

A + (B + C) ∼= (A + B) + C (2.46)

from right to left. Use theeither syntax available from theHUGS Standard Preludeto
encode this iso inHASKELL.
2

2.10 Mixing products and coproducts

Datatype constructionsA×B andA+B have been introduced above as devices required
for expressing the codomain ofsplits(A×B) or the domain ofeithers(A+B). Therefore,
a function mapping values of a coproduct (sayA+B) to values of a product (sayA′×B′)
can be expressed alternatively as aneitheror as asplit. In the first case, both components
of theeithercombinator aresplits. In the latter, both components of thesplit combinator
areeithers.

This exchange of format in defining such functions is known astheexchange law. It
states the functional equality which follows:

[ 〈f, g〉, 〈h, k〉 ] = 〈[ f, h ], [ g, k ]〉 (2.47)



2.10. MIXING PRODUCTS AND COPRODUCTS 31

It can be checked by type-inference that both the left-hand side and the right-hand side ex-

pressions of this equality have typeB ×D A + Coo , for B A
foo , D A

goo ,

B C
hoo and D C

koo .
An example of a function which is in the exchange-law format is isomorphism

A× (B + C) (A×B) + (A× C)
undistroo (2.48)

(pronounceundistr as “un-distribute-right”) which is defined by

undistr
def
= [ id× i1, id× i2 ] (2.49)

and witnesses the fact that product distributes through coproduct:

A× (B + C) ∼= (A×B) + (A× C) (2.50)

In this context, suppose that we know of three functionsD A
foo , E B

goo

and F C
hoo . By (2.44) we infer E + F B + C

g+hoo . Then, by (2.23) we infer

D × (E + F ) A× (B + C)
f×(g+h)oo (2.51)

So, it makes sense to combine products and sums of functions and the expressions which
denote such combinations have the same “shape” (or symbolicpattern) as the expressions
which denote their domain and range — the. . .× (· · ·+ · · ·) “shape” in this example. In
fact, if weabstractsuch a pattern via some symbol, sayF — that is, if we define

F(α, β, γ)
def
= α× (β + γ)

— then we can writeF(D,E,F ) F(A,B,C)
F(f,g,h)oo for (2.51).

This kind of abstraction works for every combination of products and coproducts. For
instance, if we now abstract the right-hand side of (2.48) via pattern

G(α, β, γ)
def
= (α× β) + (α× γ)

we haveG(f, g, h) = (f × g) + (f × h), a function which mapsG(A,B,C) = (A ×
B) + (A×C) ontoG(D,E,F ) = (D×E) + (D×F ). All this can be put in a diagram

F(A,B,C)

F(f,g,h)

��

G(A,B,C)
undistroo

G(f,g,h)

��
F(D,E,F ) G(D,E,F )



32 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

which unfolds to

A× (B + C)

f×(g+h)
��

(A×B) + (A× C)
undistroo

(f×g)+(f×h)
��

D × (E + F ) (D × E) + (D × F )

(2.52)

once theF andG patterns are instantiated. An interesting topic which stems from (com-
pleting) this diagram will be discussed in the next section.

Exercise 2.7. Apply theexchange lawto undistr.
2

Exercise 2.8. Complete the “?”s in diagram

?
[ x,y ]

����
��

��
��

id+id×f

��
? ?

[ k,g ]
oo

and then solve the implicit equation forx andy.
2

Exercise 2.9. Repeat exercise 2.8 with respect to diagram

?
h+〈i,j〉//

x+y
��=

==
==

==
= ?

id+id×f

��
?

2



2.11. NATURAL PROPERTIES 33

2.11 Natural properties

Let us resume discussion aboutundistr and the two other functions in diagram (2.52).
What about usingundistr itself to close this diagram, at the bottom? Note that definition
(2.49) works forD, E and F in the same way it does forA, B and C. (Indeed, the
particular choice of symbolsA, B andC in (2.48) was rather arbitrary.) Therefore, we
get:

A× (B + C)

f×(g+h)
��

(A×B) + (A× C)
undistroo

(f×g)+(f×h)
��

D × (E + F ) (D ×E) + (D × F )
undistr
oo

which expresses a very important property ofundistr:

(f × (g + h)) · undistr = undistr · ((f × g) + (f × h)) (2.53)

This is called thenatural property ofundistr. This kind of property (often called
free instead ofnatural) is not a privilege ofundistr. As a matter of fact, every function
interfacing patterns such asF or G above will exhibit its ownnatural property. Further-
more, we have already quotednatural properties without mentioning it. Recall (2.10), for
instance. This property (establishingid as theunit of composition) is, after all, thenatural
property ofid. In this case we haveF α = G α = α, as can be easily observed in diagram
(2.11).

In general,natural properties are described by diagrams in which two “copies” of the
operator of interest are drawn as horizontal arrows:

A

f

��

F A

F f

��

G A
φoo

G f

��
B F B G B

φ
oo

(F f) · φ = φ · (G f) (2.54)

Note thatf is universally quantified, that is to say, thenatural property holds for every
f : B Aoo .

Diagram (2.54) corresponds to unary patternsF andG. As we have seen withundistr,
other functions (g,h etc.) come into play for multiary patterns. A very important rôle will
be assigned throughout this book to theseF,G, etc.“shapes” or patterns which are shared
by pointfree functional expressions and by their domain andcodomain expressions. From
chapter 3 onwards we will refer to them by their proper name — “functor” — which
is standard in mathematics and computer science. Then we will also explain the names
assigned to properties such as, for instance, (2.28) or (2.42).



34 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

Exercise 2.10. Show that (2.26) and (2.27) arenaturalproperties. Dualize these proper-
ties.Hint : recall diagram (2.41).
2

Exercise 2.11. Establish thenaturalproperties of theswap (2.31) andassocr (2.33)
isomorphisms.
2

2.12 Universal properties

Functional constructs〈f, g〉 and[ f, g ] (and their derivativesf×g andf+g ) provide good
illustration about what is meant by aprogram combinatorin a compositional approach to
programming: the combinator is put forward equipped with a conciseset of properties
which enable programmers to transform programs, reason about them and perform useful
calculations. This raises aprogramming methodologywhich is scientific and stable.

Such properties bear standard names such ascancellation, reflexion, fusion, absorp-
tion etc.. Where do these come from? As a rule, for each combinator to bedefined one
has to define suitable constructions at “interface”-level2, e.g.A × B andA + B. These
are not chosen or invented at random: each is defined in a way such that the associated
combinator is uniquely defined. This is assured by a so-called universal propertyfrom
which the others can derived.

Take productA × B, for instance. Its universal property states that, for eachpair of

arrows A C
foo and B C

foo , there exists an arrowA×B C
〈f,g〉oo such that

k = 〈f, g〉 ⇔
{

π1 · k = f
π2 · k = g

(2.55)

holds — recall diagram (2.21) — for allA×B C
koo . This equivalence states that

〈f, g〉 is theuniquearrow satisfying the property on the right. In fact, read (2.55) in the⇒
direction and letk be〈f, g〉. Thenπ1 · 〈f, g〉 = f andπ2 · 〈f, g〉 = g will hold, meaning
that 〈f, g〉 effectively obeys the property on the right. In other words,we have derived

2In the current context,programs“are” functions and program-interfaces“are” the datatypes
involved in functional signatures.



2.12. UNIVERSAL PROPERTIES 35

×-cancellation (2.20). Reading (2.55) in the⇐ direction we understand that, if somek
satisfies such properties, then it “has to be” the same arrow as 〈f, g〉.

It is easy to see other properties of〈f, g〉 arising from (2.55). For instance, fork = id
we get×-reflexion (2.30),

id = 〈f, g〉 ⇔
{

π1 · id = f
π2 · id = g

≡ { by (2.10)}

id = 〈f, g〉 ⇔
{

π1 = f
π2 = g

≡ { by substitution off andg }
id = 〈π1, π2〉

and fork = 〈i, j〉 · h we get×-fusion (2.24):

〈i, j〉 · h = 〈f, g〉 ⇔
{

π1 · (〈i, j〉 · h) = f
π2 · (〈i, j〉 · h) = g

≡ { composition is associative (2.8)}

〈i, j〉 · h = 〈f, g〉 ⇔
{

(π1 · 〈i, j〉) · h = f
(π2 · 〈i, j〉) · h = g

≡ { by×-cancellation (just derived)}

〈i, j〉 · h = 〈f, g〉 ⇔
{

i · h = f
j · h = g

≡ { by substitution off andg }
〈i, j〉 · h = 〈i · h, j · h〉

It will take about the same effort to derivesplit structural equality

〈i, j〉 = 〈f, g〉 ⇔
{

i = f
j = g

(2.56)

from universal property (2.55) — just letk = 〈i, j〉.
Similar arguments can be built around coproduct’s universal property,

k = [ f, g ] ⇔
{

k · i1 = f
k · i2 = g

(2.57)



36 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

from which structural equality ofeithers can be inferred,

[ i, j ] = [ f, g ] ⇔
{

i = f
j = g

(2.58)

as well as the other properties we know about this combinator.

Exercise 2.12. Derive +-cancellation (2.38),+-reflexion (2.39) and+-fusion (2.40)
from universal property (2.57). Then derive theexchange law(2.47) from the universal
property of product (2.55) or coproduct (2.57).
2

2.13 Guards and McCarthy’s conditional

Most functional programming languages and notations caterfor pointwise conditional
expressions of the form

if (p x) then (g x) else (h x)

meaning {
p x ⇒ g x
¬(p x) ⇒ hx

for some given predicateBool A
poo , some “then”-function B A

goo and some

“else”-function B A
hoo . Bool is the primitive datatype containing truth valuesFALSE

andTRUE.
Can such expressions be written in the pointfree style? Theycan, provided we intro-

duce the so-called “McCarthy conditional” functional form

p→ g, h

which is defined by

p→ g, h
def
= [ g, h ] · p? (2.59)

a definition we can understand provided we know the meaning ofthe “p?” construct.

We call A + A A
p?oo a guard, or better, the guard associated to a given predicate



2.13. GUARDS AND MCCARTHY’S CONDITIONAL 37

Bool A
poo . Every predicatep gives birth to its own guardp? which, at point-level, is

defined as follows:

(p?)a =

{
p a ⇒ i1 a
¬(p a) ⇒ i2 a

(2.60)

In a sense, guardp? is more “informative” thanp alone: it provides information about the
outcome of testingp on some inputa, encoded in terms of the coproduct injections (i1 for
a true outcome andi2 for a falseoutcome, respectively) without losing the inputa itself.

The following fact, which we will refer to asMcCarthy’s conditional fusion law, is a
consequence of+-fusion (2.40):

f · (p→ g, h) = p→ f · g, f · h (2.61)

We shall introduce and define instances of predicatep as long as they are needed. A
particularly important assumption of our notation should,however, be mentioned at this

point: we assume that, for every datatypeA, the equality predicateBool A×A
=Aoo is

defined in a way which guarantees three basic properties: reflexivity (a =A a for every
a), transitivity (a =A b andb =A c impliesa =A c) and symmetry (a =A b iff b =A a).
SubscriptA in =A will be dropped wherever implicit in the context.

In HASKELL programming, the equality predicate for a type becomes available by
declaring the type as an instance of classEq, which exports equality predicate(==) .
This does not, however, guarantee the reflexive, transitiveand symmetry properties, which
need to be proved by dedicated mathematical arguments.

Exercise 2.13. Prove that the following equality between two conditional expressions

k(if p x then f x else hx, if p x then g x else i x)

= if p x then k(f x, g x) else k(hx, i x)

holds by rewriting it in the pointfree style (using the McCarthy’s conditional combinator)
and applying theexchange law(2.47), among others.
2

Exercise 2.14. Prove law (2.61).
2



38 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

Exercise 2.15. From (2.59) and property

p? · f = (f + f) · (p · f)? (2.62)

infer

(p→ f, g) · h = (p · h)→ (f · h), (g · h) (2.63)

2

2.14 Gluing functions which do not compose — ex-
ponentials

Now that we have made the distinction between the pointfree and pointwise functional
notations reasonably clear, it is instructive to revisit section 2.2 and identifyfunctional
application as the “bridge” between the pointfree and pointwise worlds.However, we
should say “a bridge” rather than “the bridge”, for in this section we enrich such an inter-
face with another “bridge” which is very relevant to programming.

Suppose we are given the task to combine two functionsB C ×A
foo and D A

goo .
It is clear that none of the combinationsf · g, 〈f, g〉 or [ f, g ] is well-typed. So,f andg
cannot be put together directly — they require some extra interfacing.

Note that〈f, g〉 would be well-defined in case theC component off ’s domain could
be somehow “ignored”. Suppose, in fact, that in some particular context the first argument
of f happens to be “irrelevant”, or to be frozen to somec ∈ C. It is easy to derive a new
function

fc : A // B

fc a
def
= f(c, a)

from f which combines nicely withg via thesplit combinator: 〈fc, g〉 is well-defined
and bears typeB ×D Aoo . For instance, suppose thatC = A andf is the equality

predicate= onA. Then Bool A
=coo is the “equal toc” predicate onA values:

=c a
def
= a = c (2.64)



2.14. GLUING FUNCTIONS WHICH DO NOT COMPOSE — EXPONENTIALS39

As another example, recall functiontwice (2.3) which could be defined as×2 using the
new notation.

However, we need to be more careful about what is meant byfc. Such as functional
application, expressionfc interfaces the pointfree and the pointwise levels — it involves

a function (f ) and a value (c). But, for B C ×A
foo , there is a major distinction

betweenf c and fc — while the former denotes a value of typeB, i.e. f c ∈ B, fc

denotes a function of typeB Aoo . We will say thatfc ∈ BA by introducing a new
datatype construct which we will refer to as theexponential:

BA def
= {g | g : B Aoo } (2.65)

There are strong reasons to adopt theBA notation to the detriment of the more obvious
B ← A or A→ B alternatives, as we shall see shortly.

TheBA exponential datatype is therefore inhabited by functions from A to B, that is
to say, functional declarationg : B Aoo means the same asg ∈ BA. And what do
we want functions for? We want to apply them. So it is natural to introduce theapply
operator

ap : B BA ×A
apoo

ap(f, a)
def
= f a

which applies a functionf to an argumenta.

Back to generic binary functionB C ×A
foo , let us now think of the operation

which, for everyc ∈ C, producesfc ∈ BA. This can be regarded as a function of
signatureBA Coo which expressesf as a kind ofC-indexed family of functions of

signature B Aoo . We will denote such a function byf (readf as “f transposed”).
Intuitively, we wantf andf to be related to each other by the following property:

f(c, a) = (f c)a (2.66)

Givenc anda, both expressions denote the same value. But, in a sense,f is more tolerant
thanf : while the latter is binary and requiresbotharguments(c, a) to become available
before application, the former is happy to be provided withc first and witha later on, if
actually required by the evaluation process.

Similarly toA×B andA + B, exponentialBA involves a universal property,

k = f ⇔ f = ap · (k × id) (2.67)

from which laws for cancellation, reflexion and fusion can bederived:



40 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

Exponentials cancellation :

BA BA ×A
ap // B

C

f

OO

C ×A

f×id

OO

f

;;wwwwwwwww

f = ap · (f × id) (2.68)

Exponentials reflexion :

BA BA ×A
ap // B

BA

id
BA

OO

BA ×A

id
BA×idA

OO

ap

;;wwwwwwwww

ap = idBA (2.69)

Exponentials fusion :

BA BA ×A
ap // B

C

g

OO

C ×A

g×id

OO
g

;;wwwwwwwww

D

f

OO

D ×A

f×id

OO g·(f×id)

DD																

g · (f × id) = g · f (2.70)

Note that the cancellation law is nothing but fact (2.66) written in the pointfree style.
Is there an absorption law for exponentials? The answer is affirmative but first we

need to introduce a new functional combinator which arises as the transpose off · ap in
the following diagram:

DA ×A
ap // D

BA ×A

f ·ap×id

OO

ap // B

f

OO

We shall denote this byfA and its type-rule is as follows:

C B
foo

CA BA
fA

oo



2.14. GLUING FUNCTIONS WHICH DO NOT COMPOSE — EXPONENTIALS41

It can be shown that, onceA and C B
foo are fixed,fA is the function which accepts

some input functionB A
goo as argument and produces functionf · g as result (see

exercise 2.23). SofA is the “compose withf ” functional combinator:

(fA)g
def
= f · g (2.71)

Now we are ready to understand the laws which follow:

Exponentials absorption :

DA DA ×A
ap // D

BA

fA

OO

BA ×A

fA×id

OO

ap // B

f

OO

C

g

OO

C ×A

g×id

OO
g

;;wwwwwwwwww

f · g = fA · g (2.72)

Exponentials-functor :

(g · h)A = gA · hA (2.73)

Exponentials-functor-id :

idA = id (2.74)

To conclude this section we need to explain why we have adopted the apparently
esotericBA notation for the “function fromA to B” data type. Let us introduce the
following operator

curryf
def
= f (2.75)

which maps a functionf to its transposef . This operator, which is very familiar to
functional programmers, maps functions in some function spaceBC×A to functions in
(BA)C . Its inverse (known as thêfunction) also exists. In the HUGS Standard Prelude
we find them declared as follows:

curry :: ((a,b) -> c) -> (a -> b -> c)
curry f x y = f (x,y)

uncurry :: (a -> b -> c) -> ((a,b) -> c)
uncurry f p = f (fst p) (snd p)



42 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

From (2.75) it is obvious see that writingf or curryf is a matter of taste, the latter being
more in the tradition of functional programming. For instance, the fusion law (2.70) can
be re-written as

curry (g · (f × id)) = curryg · f
and so on.

It is known from mathematics thatcurry and̂ are isos witnessing the following iso-
morphism which is at the core of the theory of functional programming:

BC×A ∼= (BA)
C

(2.76)

Fact (2.76) clearly resembles a well known equality concerning numeric exponentials,
bc×a = (ba)c. But other known facts about numeric exponentials,e.g.ab+c = ab × ac or
(b× c)a = ba × ca find their counterpart in functional exponentials. The counterpart of
the former,

AB+C ∼= AB ×AC (2.77)

arises from the uniqueness of theeither combination: every pair of functions(f, g) ∈
AB × AC leads to a unique function[ f, g ] ∈ AB+C and vice-versa, every function in
AB+C is theeitherof some function inAB and of another inAC .

The function exponentials counterpart of the second fact about numeric exponentials
above is

(B × C)A ∼= BA × CA (2.78)

This can be justified by a similar argument concerning the uniqueness of thesplit combi-
nator〈f, g〉.

What about other facts valid for numeric exponentials such asa0 = 1 and1a = 1? We
need to know what0 and1 mean as datatypes. Such elementary datatypes are presented
in the section which follows.

Exercise 2.16. Load moduleSet.hs (cf. section A.0.1) into theHUGS interpreter and
check the types assigned to the following functional expressions:

curry ap
\f -> ap . ( f >< id)
uncurry . curry

Which of these is functionally equivalent to theuncurry function and why? Which of
these are functionally equivalent to identity functions? Justify.
2



2.15. ELEMENTARY DATATYPES 43

2.15 Elementary datatypes

So far we have talked mostly about arbitrary datatypes represented by capital lettersA,
B, etc. (lowercasea, b, etc. in the HASKELL illustrations). We also mentionedIR, Bool

andIN and, in particular, the fact that we can associate to each natural numbern its initial
segmentn = {1, 2, . . . , n}. We extend this toIN0 by stating0 = {} and, forn > 0,
n + 1 = {n + 1} ∪ n.

Initial segments can be identified with enumerated types andare regarded as primitive
datatypes in our notation. We adopt the convention that primitive datatypes are written
in the sans seriffont and so, strictly speaking,n is distinct fromn: the latter denotes a
natural number while the former denotes a datatype.

Datatype 0

Among such enumerated types,0 is the smallest because it is empty. This is theVoid
datatype in HASKELL, which has no constructor at all. Datatype0 (which we tend to
write simply as0) may not seem very “useful” in practice but it is of theoretical interest.
For instance, it is easy to check that the following “obvious” properties hold:

A + 0 ∼= A (2.79)

A× 0 ∼= 0 (2.80)

Datatype 1

Next in the sequence of initial segments we find1, which is singleton set{1}. How useful
is this datatype? Note that every datatypeA containing exactly one element is isomorphic
to {1}, e.g.A = {NIL}, A = {0}, A = {1}, A = {FALSE}, etc.. We represent this class
of singleton types by1.

Recall that isomorphic datatypes have the same expressive power and so are “ab-
stractly identical”. So, the actual choice of inhabitant for datatype1 is irrelevant, and we
can replace any particular singleton set by another withoutlosing information. This is
evident from the following relevant facts involving1:

A× 1 ∼= A (2.81)

A0 ∼= 1 (2.82)

We can read (2.81) informally as follows: if the second component of a record (“struct”)
cannot change, then it is useless and can be ignored. Selector π1 is, in this context, an iso
mapping the left-hand side of (2.81) to its right-hand side.Its inverse is〈id, c〉 wherec
is a particular choice of inhabitant for datatype1. Concerning (2.82),A0 denotes the set
of all functions from the empty set to someA. What does (2.82) mean? It simply tells



44 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

us that there is only one function in such a set — the empty function mapping “no” value
at all. This fact confirms our choice of notation once again (compare witha0 = 1 in a
numeric context).

Next, we may wonder about facts

1A ∼= 1 (2.83)

A1 ∼= A (2.84)

which are the functional exponentiation counterparts of1a = 1 anda1 = a. Fact (2.83)
is valid: it means that there is only one function mappingA to some singleton set{c}
— the constant functionc. There is no room for another function in1A because only
c is available as output value. Fact (2.84) is also valid: all functions inA1 are (single
valued) constant functions and there are as many constant functions in such a set as there
are elements inA.

In summary, when referring to datatype1 we will mean an arbitrary singleton type,
and there is a unique iso (and its inverse) between two such singleton types. The HASKELL

representative of1 is datatype() , called theunit type, which contains exactly constructor
() . It may seem confusing to denote the type and its unique inhabitant by the same sym-
bol but it is not, since HASKELL keeps track of types and constructors in separate symbol
sets.

Finally, what can we say about1+A? Every functionB 1 + A
foo observing this

type is bound to be aneither [ b0, g ] for b0 ∈ B and B A
goo . This is very similar to

the handling of a pointer in C or PASCAL: we “pull a rope” and either we get nothing (1)
or we get something useful of typeB. In such a programming context “nothing” above
means a predefined valueNIL . This analogy supports our preference in the sequel forNIL

as canonical inhabitant of datatype1. In fact, we will refer to1 + A (or A + 1) as the
“pointer toA” datatype. This corresponds to theMaybe type constructor of the HUGS

Standard Prelude.

Datatype 2

Let us inspect the1 + 1 instance of the “pointer” construction just mentioned above. Any

observationB 1 + 1
foo can be decomposed in two constant functions:f = [ b1, b2 ].

Now suppose thatB = {b1, b2} (for b1 6= b2). Then1 + 1 ∼= B will hold, for whatever
choice of inhabitantsb1 andb2. So we are in a situation similar to1: we will use symbol2
to represent the abstract class of all suchBs containing exactly two elements. Therefore,
we can write:

1 + 1 ∼= 2



2.16. FINITARY PRODUCTS AND COPRODUCTS 45

Of course,Bool = {TRUE, FALSE} and initial segment2 = {1, 2} are in this abstract
class. In the sequel we will show some preference for the particular choice of inhabitants
b1 = TRUE andb2 = FALSE, which enables us to use symbol2 in places whereBool is
expected.

Exercise 2.17. RelateHASKELL expressions

either (split (const True) id) (split (const False) id)

and

\f->(f True, f False)

to the following isomorphisms involving generic elementary type2:

2×A ∼= A + A (2.85)

A×A ∼= A2 (2.86)

Apply theexchange law(2.47) to the first expression above.
2

2.16 Finitary products and coproducts

In section 2.8 it was suggested that product could be regarded as the abstraction behind
data-structuring primitives such asstruct in C or record in PASCAL. Similarly, co-
products were suggested in section 2.9 as abstract counterparts of C unions or PASCAL

variant records. For a finiteA, exponentialBA could be realized as anarray in any of
these languages. These analogies are captured in table 2.1.

In the same way Cstruct s andunion s may contain finitely many entries, as may
PASCAL (variant) records, productA×B extends to finitary productA1 × . . .×An, for
n ∈ IN, also denoted byΠn

i=1Ai, to which as many projectionsπi are associated as the
numbern of factors involved. Of course,splitsbecomen-ary as well

〈f1, . . . , fn〉 : A1 × . . .×An Boo

for fi : Ai Boo , i = 1, n.
Dually, coproductA + B is extensible to the finitary sumA1 + · · ·+ An, for n ∈ IN,

also denoted by
∑n

j=1 Aj, to which as many injectionsij are assigned as the numbern of
terms involved. Similarly,eithersbecomen-ary

[ f1, . . . , fn ] : A1 + . . . + An
// B

for fi : B Ai
oo , i = 1, n.



46 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

Abstract notation PASCAL C/C++ Description

A×B

record
P: A;
S: B

end;

struct {
A first;
B second;

};

Records

A + B

record
case

tag: integer
of x =

1: (P:A);
2: (S:B)

end;

struct {
int tag; / * 1,2 * /
union {

A ifA;
B ifB;

} data;
};

Variant records

BA array[A] of B B ...[A] Arrays
1 + A ˆA A * ... Pointers

Table 2.1: Abstract notation versus programming language data-structures.

Datatypen

Next after2, we may think of3 as representing the abstract class of all datatypes contain-
ing exactly three elements. Generalizing, we may think ofn as representing the abstract
class of all datatypes containing exactlyn elements. Of course, initial segmentn will
be in this abstract class. (Recall (2.17), for instance: both Weekday and7 are abstractly
represented by7.) Therefore,

n ∼= 1 + · · · + 1︸ ︷︷ ︸
n

and

A× . . . ×A︸ ︷︷ ︸
n

∼= An (2.87)

A + . . . + A︸ ︷︷ ︸
n

∼= n×A (2.88)

hold.

Exercise 2.18. On the basis of table 2.1, encodeundistr (2.49) in C or PASCAL.
Compare your code with theHASKELL pointfree and pointwise equivalents.
2



2.17. INITIAL AND TERMINAL DATATYPES 47

2.17 Initial and terminal datatypes

All properties studied for binarysplitsand binaryeithersextend to the finitary case. For
the particular situationn = 1, we will have 〈f〉 = [ f ] = f andπ1 = i1 = id, of
course. For the particular situationn = 0, finitary products “degenerate” to1 and finitary
coproducts “degenerate” to0. So diagrams (2.21) and (2.36) are reduced to

1 0

[ ]
��

C

〈〉

OO

C

The standard notation for the emptysplit 〈〉 is !C , where subscriptC can be omitted if
implicit in the context. By the way, this is precisely the only function in1C , recall (2.83).
Dually, the standard notation for the emptyeither [ ] is ?C , where subscriptC can also be
omitted. By the way, this is precisely the only function inC0, recall (2.82).

In summary, we may think of0 and1 as, in a sense, the “extremes” of the whole
datatype spectrum. For this reason they are calledinitial andterminal, respectively. We
conclude this subject with the presentation of their main properties which, as we have
said, are instances of properties we have stated for products and coproducts.

Initial datatype reflexion :

0

?0=id0

��
?0 = id0 (2.89)

Initial datatype fusion :

0

?A

��

?B

  @
@@

@@
@@

@

A
f

// B

f ·?A =?B (2.90)

Terminal datatype reflexion :

1

!1=id1

��
!1 = id1 (2.91)



48 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

Terminal datatype fusion :

1

A

!A

OO

B
f

oo

!B
``@@@@@@@@

!A · f =!B (2.92)

Exercise 2.19. Particularize theexchange law(2.47) to empty products and empty
coproducts,i.e.1 and0.
2

2.18 Sums and products in HASKELL

We conclude this chapter with an analysis of the main primitive available in HASKELL

for creating datatypes: thedata declaration. Suppose we declare

data CostumerId = P Int | CC Int

meaning to say that, for some company, a client is identified either by its passport number
or by its credit card number, if any. What does this piece of syntax precisely mean?

If we enquire the HUGS interpreterabout what it knows aboutCostumerId , the
reply will contain the following information:

Main> :i CostumerId
-- type constructor
data CostumerId

-- constructors:
P :: Int -> CostumerId
CC :: Int -> CostumerId

In general, letA andB be two known datatypes. Via declaration

data C = C1 A | C2 B (2.93)



2.18. SUMS AND PRODUCTS INHASKELL 49

one obtains from HUGS a new datatypeC equipped with constructorsC A
C1oo and

C B
C1oo , in fact the only ones available for constructing values ofC:

A

C1 ��@
@@

@@
@@

B

C2~~~~
~~

~~
~

C

This diagram leads to an obvious instance of coproduct diagram (2.36),

A
i1 //

C1 ##F
FFFFFFFF A + B

[ C1,C2 ]

��

B
i2oo

C2{{wwwwwwwww

C

describing that adata declaration in HASKELL means theeitherof its constructors.
Because there are no other means to buildC data, it follows thatC is isomorphic to

A+B. So[ C1, C2 ] has an inverse, sayinv, which is such thatinv·[ C1, C2 ] = id. How

do we calculateinv? Let us first think of the generic situation of a functionD C
foo

which observes datatypeC:

A
i1 //

C1 ##F
FFFFFFFF A + B

[ C1,C2 ]

��

B
i2oo

C2{{wwwwwwwww

C

f

��
D

This is an opportunity for+-fusion(2.40), whereby we obtain

f · [ C1, C2 ] = [ f · C1, f · C2 ]

Therefore, the observation will be fully described provided we explain howf behaves
with respect toC1 — cf. f · C1 — and with respect toC2 — cf. f · C2. This is what is
behind the typicalinductivestructure of pointwisef , which will be made of two and only
two clauses:

f : C // D

f(C1 a) = . . .

f(C2 b) = . . .



50 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

Let us use this in calculating the inverseinv of [ C1, C2 ]:

inv · [ C1, C2 ] = id

≡ { by +-fusion(2.40)}
[ inv · C1, inv · C2 ] = id

≡ { by +-reflexion(2.39)}
[ inv · C1, inv · C2 ] = [ i1, i2 ]

≡ { eitherstructural equality (2.58)}
inv · C1 = i1 ∧ inv · C2 = i2

Therefore:

inv : C // A + B

inv(C1 a) = i1 a

inv(C2 b) = i2 b

In summary,C1 is a “renaming” of injectioni1, C2 is a “renaming” of injectioni2 andC
is “renamed” replica ofA + B:

C A + B
[ C1,C2 ]oo

[ C1, C2 ] is called thealgebraof datatypeC and its inverseinv is called thecoalgebra
of C. The algebra contains the constructors ofC1 andC2 of type C, that is, it is used
to “build” C-values. In the opposite direction, co-algebrainv enables us to “destroy” or
observe values ofC:

C

inv
))∼= A + B

[ C1,C2 ]

hh

Algebra/coalgebras also arise about product datatypes. For instance, suppose that one
wishes to describe datatypePoint inhabited by pairs(x0, y0), (x1, y1) etc.of Cartesian
coordinates of a given type, sayA. Although A × A equipped with projectionsπ1, π2

“is” such a datatype, one may be interested in a suitably named replica ofA×A in which
points are built explicitly by some constructor (sayPoint) and observed by dedicated
selectors (sayx andy):

A A×A
π1oo π2 //

Point
��

A

Point

x

ccFFFFFFFFF y

;;xxxxxxxxx

(2.94)



2.19. EXERCISES 51

This rises an algebra (Point) and a coalgebra (〈x, y〉) for datatypePoint:

Point

〈x,y〉
**∼= A×A

Point

jj

In HASKELL one writes

data Point a = Point { x :: a, y :: a }

but be warned that HASKELL deliversPoint in curried form:

Point :: a -> a -> Point a

Finally, what is the “pointer”-equivalent in HASKELL? This corresponds toA = 1 in
(2.93) and to the following HASKELL declaration:

data C = C1 () | C2 B

Note that HASKELL allows for a more programming-oriented alternative in thiscase, in
which the unit type() is eliminated:

data C = C1 | C2 B

The difference is that hereC1 denotes an inhabitant ofC (and so a clausef(C1 a) = . . .

is rewritten tof C1 = . . .) while aboveC1 denotes a (constant) functionC 1
C1oo .

Isomorphism (2.84) helps in comparing these two alternative situations.

2.19 Exercises

Exercise 2.20. Let A andB be two disjoint datatypes, that is,A ∩ B = ∅ holds. Show
that isomorphism

A ∪B ∼= A + B (2.95)

holds. Hint : define A ∪B A + B
ioo as i = [ embA, embB ] for embA a = a and

embB b = b, and find its inverse. By the way, why didn’t we definei simply asi def
=

[ idA, idB ]?
2



52 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

Exercise 2.21. Let distr (read: ‘distribute right’) be the bijection which witnesses
isomorphismA×(B+C) ∼= A×B+A×C. Fill in the “. . . ”in the diagram which follows
so that it describes bijectiondistl (red: ‘distribute left’) which witnesses isomorphism
(B + C)×A ∼= B ×A + C ×A:

(B + C)×A
swap //

distl

22· · · distr // · · · ··· // B ×A + C ×A

2

Exercise 2.22. In the context of exercise 2.21, prove

[ g, h ]× f = [ g × f, h× f ] · distl (2.96)

knowing that

f × [ g, h ] = [ f × g, f × h ] · distr

holds.
2

Exercise 2.23. Show that(f · ap) g = f · g holds,cf. (2.71).
2

Exercise 2.24. Let C
const // CA be the function of exercise 2.1, that is,const c = cA.

Which fact is expressed by the following diagram featuringconst?

C
const //

f

��

CA

fA

��
B

const
// BA

Write it at point-level and describe it by your own words.
2



2.20. BIBLIOGRAPHY NOTES 53

Exercise 2.25. Establish the difference between the following two declarations in
HASKELL,

data D = D1 A | D2 B C
data E = E1 A | E2 (B,C)

for A, B andC any three predefined types. AreD andE isomorphic? If so, can you specify
and encode the corresponding isomorphism?
2

2.20 Bibliography notes

A few decades ago John Backus read, in his Turing Award Lecture, a revolutionary paper
[Bac78]. This paper proclaimed conventional command-oriented programming languages
obsolete because of their inefficiency arising from retaining, at a high-level, the so-called
“memory access bottleneck” of the underlying computation model — the well-known
von Neumannarchitecture. Alternatively, the (at the time already mature) functional pro-
grammingstyle was put forward for two main reasons. Firstly, becauseof its potential for
concurrent and parallel computation. Secondly — and Backusemphasis was really put
on this —, because of its strong algebraic basis.

Backusalgebra of (functional) programswas providential in alerting computer pro-
grammers that computer languages alone are insufficient, and that only languages which
exhibit analgebrafor reasoning about the objects they purport to describe will be useful
in the long run.

The impact of Backus first argument in the computing science and computer architec-
ture communities was considerable, in particular if assessed in quality rather than quantity
and in addition to the almost contemporarystructured programmingtrend3. By contrast,
his second argument for changing computer programming was by and large ignored, and
only the so-calledalgebra of programmingresearch minorities pursued in this direction.
However, the advances in this area throughout the last two decades are impressive and can
be fully appreciated by reading a textbook written relatively recently by Bird and de Moor

3Even the C programming language and the UNIX operating system, with their implicit func-
tional flavour, may be regarded as subtle outcomes of the “going functional” trend.



54 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

[BdM97]. A comprehensive review of the voluminous literature available in this area can
also be found in this book.

Although the need for a pointfree algebra of programming wasfirst identified by
Backus, perhaps influenced by Iverson’s APL growing popularity in the USA at that time,
the idea of reasoning and using mathematics to transform programs is much older and can
be traced to the times of McCarthy’s work on the foundations of computer programming
[McC63], of Floyd’s work on program meaning [Flo67] and of Paterson and Hewitt’s
comparative schematology[PH70]. Work of the so-calledprogram transformationschool
was already very expressive in the mid 1970s, see for instance references [BD77].

The mathematics adequate for the effective integration of these related but indepen-
dent lines of thought was provided by the categorial approach of Manes and Arbib com-
piled in a textbook [MA86] which has very strongly influencedthe last decade of 20th
century theoretical computer science.

A so-called MPC (“Mathematics of Program Construction”) community has been
among the most active in producing an integrated body of knowledge on the algebra of
programming which has found in functional programming an eloquent and paradigmatic
medium. Functional programming has a tradition of absorbing fresh results from theoret-
ical computer science, algebra and category theory. Languages such as HASKELL [Bir98]
have been competing to integrate the most recent developments and therefore are excellent
prototypingvehicles in courses on program calculation, as happens withthis book.



Chapter 3

Recursion in the Pointfree Style

How useful from a programmer’s point of view are the abstractconcepts presented in
the previous chapter? Recall that a table was presented — table 2.1 — which records an
analogy between abstract type notation and the corresponding data-structures available in
common, imperative languages.

This analogy is precisely our point of departure for extending the abstract notation
towards a most important field of programming:recursion.

3.1 Motivation

Let us consider a very common data-structure in programming: “linked-lists”. In PASCAL

one will write
L = N̂;
N = record

first: A;
next: N̂

end;

to specify such a data-structureL. This consists of a pointer to anode(N), where a node
is a record structure which puts some predefined typeA together with a pointer to another
node, and so on. In the C programming language, everyx ∈ L will be declared as

L x;

in the context of datatype definition

typedef struct N {
A first;

55



56 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

struct N * next;
} * L;

and so on.
What interests us in such “first year programming course” datatype declarations?

Records and pointers have already been dealt with in table 2.1. So we can use this table
to find the abstract version of datatypeL, by replacing pointers by the “1 + · · ·” notation
and records (structs) by the “. . . × . . .” notation:

{
L = 1 + N
N = A× (1 + N)

(3.1)

We obtain a system of two equations on unknownsL andN , in whichL’s dependence
onN can be removed by substitution:

{
L = 1 + N
N = A× (1 + N)

≡ { substitutingL for 1 + N in the second equation}
{

L = 1 + N
N = A× L

≡ { substitutingA× L for N in the first equation}
{

L = 1 + A× L
N = A× L

System (3.1) is thus equivalent to:
{

L = 1 + A× L
N = A× (1 + N)

(3.2)

Intuitively, L abstracts the “possibly empty” linked-list of elements of type A, while N
abstracts the “non-empty” linked-list of elements of typeA. Note thatL andN are inde-
pendent of each other, but also that each depends on itself. Can we solve these equations
in a way such that we obtain “solutions” forL andN , in the same way we do with school
equations such as, for instance,

x = 1 +
x

2
? (3.3)

Concerning this equation, let us recall how we would go aboutit in school mathemat-
ics:

x = 1 +
x

2



3.1. MOTIVATION 57

≡ { adding−x
2 to both sides of the equation}

x− x

2
= 1 +

x

2
− x

2

≡ { −x
2 cancelsx

2 }

x− x

2
= 1

≡ {multiplying both sides of the equation by2 etc. }
2× x− x = 2

≡ { subtraction}
x = 2

We very quickly get solutionx = 2. However, many steps were omitted from the
actual calculation. This unfolds into the longer sequence of more elementary steps which
follows, in which notationa− b abbreviatesa+ (−b) and a

b abbreviatesa× 1
b , for b 6= 0:

x = 1 +
x

2

≡ { adding−x
2 to both sides of the equation}

x− x

2
= (1 +

x

2
)− x

2

≡ { + is associative}

x− x

2
= 1 + (

x

2
− x

2
)

≡ { −x
2 is the additive inverse ofx2 }

x− x

2
= 1 + 0

≡ { 0 is the unit of addition}

x− x

2
= 1

≡ { multiplying both sides of the equation by2 }

2× (x− x

2
) = 2× 1

≡ { 1 is the unit of multiplication}

2× (x− x

2
) = 2

≡ { multiplication distributes over addition}



58 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

2× x− 2× x

2
= 2

≡ { 2 cancels its inverse12 }
2× x− 1× x = 2

≡ {multiplication distributes over addition}
(2− 1)× x = 2

≡ { 2− 1 = 1 and1 is the unit of multiplication}
x = 2

Back to (3.2), we would like to submit each of the equations,e.g.

L = 1 + A× L (3.4)

to a similar reasoning. Can we do it? The analogy which can be found between this
equation and (3.3) goes beyond pattern similarity. From chapter 2 we know that many
properties required in the reasoning above hold in the context of (3.4), provided the “=”
sign is replaced by the “∼=” sign, that of set-theoretical isomorphism. Recall that, for
instance,+ is associative (2.46),0 is the unit of addition (2.79),1 is the unit of multipli-
cation (2.81), multiplication distributes over addition (2.50)etc.Moreover, the first step
above assumed that addition is compatible (monotonic) withrespect to equality,

a = b
c = d

a + c = b + d

a fact which still holds when numeric equality gives place toisomorphism and numeric
addition gives place to coproduct:

A ∼= B
C ∼= D

A + C ∼= B + D

— recall (2.44) for isosf andg.
Unfortunately, the main steps in the reasoning above are concerned with two basic

cancellation properties

x + b = c ≡ x = c− b

x× b = c ≡ x =
c

b
(b 6= 0)

which hold about numbers but do not hold about datatypes. In fact, neither products nor



3.1. MOTIVATION 59

coproducts have arbitrary inverses1, and so we cannot “calculate by cancellation”. How
do we circumvent this limitation?

Just think of how we would have gone about (3.3) in case we didn’t know about the
cancellation properties: we would be bound to thex by 1 + x

2 substitution plus the other
properties. By performing such a substitution over and overagain we would obtain. . .

x = 1 +
x

2

≡ { x by 1 + x
2 substitution followed by simplification}

x = 1 +
1 + x

2

2
= 1 +

1

2
+

x

4

≡ { the same as above}

x = 1 +
1

2
+

1 + x
2

4
= 1 +

1

2
+

1

4
+

x

8

≡ { over and over again,n-times}
· · ·

≡ { simplification}

x =
n∑

i=0

1

2i
+

x

2n+1

≡ { sum ofn first terms of a geometric progression}

x = (2− 1

2n
) +

x

2n+1

≡ { let n→∞ }
x = (2− 0) + 0

≡ { simplification }
x = 2

Clearly, this is a much more complicated way of finding solution x = 2 for equation
(3.3). But we would have loved it in case it were the only knownway, and this is precisely
what happens with respect to (3.4). In this case we have:

L = 1 + A× L

≡ { substitution of1 + A× L for L }

1The initial and terminal datatypes do have inverses —0 is its own “additive inverse” and1 is
its own “multiplicative inverse” — but not all the others.



60 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

L = 1 + A× (1 + A× L)

≡ { distributive property (2.50)}
L ∼= 1 + A× 1 + A× (A× L)

≡ { unit of product (2.81) and associativity of product (2.32)}
L ∼= 1 + A + (A×A)× L

≡ { by (2.82), (2.84) and (2.87)}

L ∼= A0 + A1 + A2 × L

≡ { another substitution as above and similar simplifications}

L ∼= A0 + A1 + A2 + A3 × L

≡ { after(n + 1)-many similar steps}

L ∼=
n∑

i=0

Ai + An+1 × L

Bearing a largen in mind, let us deliberately (but temporarily) ignore termAn+1×L.
ThenL will be isomorphic to the sum ofn-many contributionsAi,

L ∼=
n∑

i=0

Ai

each of them consisting ofi-long tuples, orsequences, of values ofA. (Numberi is said
to be thelengthof any sequence inAi.) Such sequences will be denoted by enumerating
their elements between square brackets, for instance theempty sequence[ ] which is the
only inhabitant inA0, the two element sequence[a1, a2] which belongs toA2 provided
a1, a2 ∈ A, and so on. Note that all such contributions are mutually disjoint, that is,
Ai ∩Aj = ∅ whereveri 6= j. (In other words, a sequence of lengthi is never a sequence
of lengthj, for i 6= j.) If we join all contributionsAi into a single set, we obtain the set
of all finite sequencesonA, denoted byA⋆ and defined as follows:

A⋆ def
=

⋃

i≥0

Ai (3.5)

The intuition behind taking the limit in the numeric calculation above was that term
x

2n+1 was getting smaller and smaller asn went larger and larger and, “in the limit”, it
could be ignored. By analogy, taking a similar limit in the calculation just sketched above
will mean that, for a “sufficiently large”n, the sequences inAn are so long that it is very
unlikely that we will ever use them! So, forn→∞ we obtain

L ∼=
∞∑

i=0

Ai



3.2. INTRODUCING INDUCTIVE DATATYPES 61

Because
∑∞

i=0 Ai is isomorphic to
⋃∞

i=0 Ai (see exercise 2.20), we finally have:

L ∼= A⋆

All in all, we have obtainedA⋆ as a solution to equation (3.4). In other words, datatype
L is isomorphic to the datatype which contains all finite sequences of some predefined
datatypeA. This corresponds to the HASKELL [a] datatype, in general. Recall that
we started from the “linked-list datatype” expressed in PASCAL or C. In fact, wherever
the C programmer thinks of linked-lists, the HASKELL programmer will think of finite
sequences.

But, what does equation (3.4) mean in fact? IsA⋆ the only solution to this equation?
Back to the numeric field, we know of equations which have morethan one solution —
for instancex = x2+3

4 , which admits two solutions1 and3 —, which have no solution
at all — for instancex = x + 1 —, or which admit an infinite number of — for instance
x = x.

We will address these topics in the next section aboutinductivedatatypes and in chap-
ter 7, where the formal semantics of recursion will be made explicit. This is where the
“limit” constructions used informally in this section willbe shown to make sense.

3.2 Introducing inductive datatypes

DatatypeL as defined by (3.4) is said to berecursivebecauseL “recurs” in the definition
of L itself 2. From the discussion above, it is clear that set-theoretical equality “=” in this
equation should give place to set-theoretical isomorphism(“∼=”):

L ∼= 1 + A× L (3.6)

Which isomorphismL 1 + A× L
inoo do we expect to witness (3.4)? This will depend

on which particular solution to (3.4) we are thinking of. So far we have seen only one,
A⋆. By recalling the notion ofalgebraof a datatype (section 2.18), so we may rephrase
the question as: which algebra

A⋆ 1 + A×A⋆inoo

do we expect to witness the tautology which arises from (3.4)by replacing unknownL
with solutionA⋆, that is

A⋆ ∼= 1 + A×A⋆ ?

2By analogy, we may regard (3.3) as a “recursive definition” ofnumber2.



62 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

It will have to be of the formin = [ in1, in2 ] as depicted by the following diagram:

1
i1//

in1 %%J
JJJJJJJJJJ 1 + A×A⋆

in
��

A×A⋆i2oo

in2wwpppppppppppp

A⋆

(3.7)

Arrows in1 andin2 can be guessed rather intuitively:in1 = [ ], which will express
the “NIL pointer” by the empty sequence, atA⋆ level, andin2 = cons, wherecons is the
standard “left append” sequence constructor, which we for the moment introduce rather
informally as follows:

cons : A×A⋆ // A⋆

cons(a, [a1, . . . , an]) = [a, a1, . . . , an]
(3.8)

In a diagram:

1
i1//

[ ] %%J
JJJJJJJJJJ 1 + A×A⋆

[ [ ],cons ]

��

A×A⋆i2oo

cons
wwpppppppppppp

A⋆

(3.9)

Of course, forin to be iso it needs to have an inverse, which is not hard to guess,

out
def
= (! + 〈hd, tl〉) · (=[ ]?) (3.10)

where sequence operatorshd (head of a nonempty sequence) and tl (tail of a nonempty
sequence) are (again informally) described as follows:

hd : A⋆ // A
hd[a1, a2, . . . , an] = a1

(3.11)

tl : A⋆ // A⋆

tl [a1, a2, . . . , an] = [a2, . . . , an]
(3.12)

Showing thatin andout are each other inverses is not a hard task either:

in · out = id

≡ { definitions ofin andout }
[ [ ], cons ] · (! + 〈hd, tl〉) · (=[ ]?) = id

≡ { +-absorption (2.41) and (2.15)}



3.2. INTRODUCING INDUCTIVE DATATYPES 63

[ [ ], cons · 〈hd, tl〉 ] · (=[ ]?) = id

≡ { property of sequences:cons(hds, tl s) = s }
[ [ ], id ] · (=[ ]?) = id

≡ { going pointwise (2.60)}
{

=[ ] a ⇒ [ [ ], id ] (i1 a)

¬(=[ ] a) ⇒ [ [ ], id ] (i2 a)
= a

≡ { +-cancellation (2.38)}
{

=[ ] a ⇒ [ ] a

¬(=[ ] a) ⇒ id a
= a

≡ { a = [ ] in one case and identity function (2.9) in the other}
{

a = [ ] ⇒ a
¬(a = [ ]) ⇒ a

= a

≡ { property(p→ f, f) = f holds }
a = a

A comment on the particular choice of terminology above: symbol in suggests that
we are going inside, or constructing (synthesizing) valuesof A⋆; symbolout suggests that
we are going out, or destructing (analyzing) values ofA⋆. We shall often resort to this
duality in the sequel.

Are there more solutions to equation (3.6)? In trying to implement this equation, a
HASKELL programmer could have written, after the declaration of type A, the following
datatype declaration:

data L = Nil () | Cons (A,L)

which, as we have seen in section 2.18, can be written simply as

data L = Nil | Cons (A,L) (3.13)

and generates diagram

1
i1//

Nil
$$J

JJJJJJJJJJ 1 + A× L

in′

��

A× L
i2oo

Cons
xxqqqqqqqqqqqq

L

(3.14)

leading to algebrain′ = [ Nil, Cons ].



64 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

HASKELL seems to have generated another solution for the equation, which it calls
L. To avoid the inevitable confusion between this symbol denoting the newly created
datatype and symbolL in equation (3.6), which denotes a mathematical variable, let us
use symbolT to denote the former (T stands for “type”). This can be coped with very
simply by writingT instead ofL in (3.13):

data T = Nil | Cons (A,T) (3.15)

In order to makeT more explicit, we will writeinT instead ofin′.
Some questions are on demand at this point. First of all, whatis datatypeT? What

are its inhabitants? Next, isT 1 + A× T
inToo an iso or not?

HASKELL will help us to answer these questions. Suppose thatA is a primitive nu-
meric datatype, and that we addderiving Show to (3.15) so that we can “see” the
inhabitants of theT datatype. The information associated toT is thus:

Main> :i T
-- type constructor
data T

-- constructors:
Nil :: T
Cons :: (A,T) -> T

-- instances:
instance Show T
instance Eval T

By typing Nil

Main> Nil
Nil :: T

we confirm thatNil is itself an inhabitant ofT, and by typingCons

Main> Cons
<<function>> :: (A,T) -> T

we realize thatCons is not so (as expected), but it can be used to build such inhabitants,
for instance:

Main> Cons(1,Nil)
Cons (1,Nil) :: T



3.2. INTRODUCING INDUCTIVE DATATYPES 65

or

Main> Cons(2,Cons(1,Nil))
Cons (2,Cons (1,Nil)) :: T

etc.We conclude thatexpressionsinvolving Nil andCons are inhabitants of typeT. Are
these theonly ones? The answer isyesbecause, by design of the HASKELL language,
the constructors of typeT will remain fixed once its declaration is interpreted, that is,
no further constructor can be added toT. DoesinT have an inverse? Yes, its inverse is
coalgebra

outT : T // 1 + A× T

outT Nil = i1 NIL

outT(Cons(a, l)) = i2(a, l)

(3.16)

which can be straightforwardly encoded in HASKELL using theEither realization of+
(recall sections 2.9 and 2.18):

outT :: T -> Either () (A,T)
outT Nil = Left ()
outT (Cons(a,l)) = Right(a,l)

In summary, isomorphism

T

outT
**∼= 1 + A× T

inT

hh (3.17)

holds, where datatypeT is inhabited by symbolic expressions which we may visualize
very conveniently as trees, for instance

t

t
�

�
�

@
@

@t
�

�
�

@
@

@t t
1 Nil

Cons

2
Cons

picturing expressionCons(2, Cons(1, Nil)). Nil is the empty tree andCons may be



66 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

regarded as the operation which adds a new root and a new branch, saya, to a treet:

t
�

�
�

@
@

@
t

t
�

�
�

@
@

@
t

t
�

�
�

@
@

@tCons(a, ) =

Cons

a

The choice of symbolsT, Nil andCons was rather arbitrary in (3.15). Therefore, an
alternative declaration such as, for instance,

data U = Stop | Join (A,U) (3.18)

would have been perfectly acceptable, generating another solution for the equation under
algebra[ Stop, Join ]. It is easy to check that (3.18) is but a renaming ofNil to Stop and
of Cons to Join. Therefore, both datatypes are isomorphic, or “abstractlythe same”.

Indeed, any other datatypeX inductivelydefined by a constant and a binary construc-
tor acceptingA andX as parameters will be a solution to the equation. Because we are
just renaming symbols in a consistent way, all such solutions are abstractly the same. All
of them capture the abstract notion of alist of symbols.

We wrote “inductively” above because the set of all expressions (trees) which inhabit
the type is defined by induction. Such types are calledinductiveand we shall have a lot
more to say about them in chapter 7 .

Exercise 3.1. Obviously,

either (const []) (:)

does not work as aHASKELL realization of the mediating arrow in diagram (3.9). What
do you need to write instead?
2

3.3 Observing an inductive datatype

Suppose that one is asked to express a particularobservationof an inductive such asT

(3.15), that is, a function of signatureB T
foo for some target typeB. Suppose, for



3.3. OBSERVING AN INDUCTIVE DATATYPE 67

instance, thatA is IN0 (the set of all non-negative integers) and that we want to addall
elements which occur in aT-list. Of course, we have to ensure that addition is available
in IN0,

add : IN0 × IN0
// IN0

add(x, y)
def
= x + y

and that0 ∈ IN0 is a value denoting “the addition of nothing”. So constant arrow

IN0 1
0oo is available. Of course,add(0, x) = add(x, 0) = x holds, for allx ∈ IN0.

This property means thatIN0, together with operatoradd and constant0, forms amonoid,
a very important algebraic structure in computing which will be exploited intensively later
in this book. The following arrow “packaging”IN0, add and0,

IN0 1 + IN0 × IN0
[ 0,add ]oo (3.19)

is a convenient way to express such a structure. Combining this arrow with the algebra

T 1 + IN0 × T
inToo (3.20)

which definesT, and the functionf we want to define, the target of which isB = IN0, we
get the almost closed diagram which follows, in which only the dashed arrow is yet to be
filled in:

T

f

��

1 + IN0 × T
inToo

��
IN0 1 + IN0 × IN0

[ 0,add ]
oo

(3.21)

We know thatinT = [ Nil, Cons ]. A pattern for the missing arrow is not difficult to
guess: in the same wayf bridgesT andIN0 on the lefthand side, it will do the same job
on the righthand side. So pattern· · ·+ · · · × f comes to mind (recall section 2.10), where
the “· · ·” are very naturally filled in by identity functions. All in all, we obtain diagram

T

f

��

1 + IN0 × T
[ Nil,Cons ]oo

id+id×f

��
IN0 1 + IN0 × IN0

[ 0,add ]
oo

(3.22)

which pictures the following property off

f · [ Nil, Cons ] = [ 0, add ] · (id + id× f) (3.23)



68 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

and is easy to convert to pointwise notation:

f · [ Nil, Cons ] = [ 0, add ] · (id + id× f)

≡ { (2.40) on the lefthand side, (2.41) and identityid on the righthand side}
[ f ·Nil, f · Cons ] = [ 0, add · (id× f) ]

≡ { eitherstructural equality (2.58)}
{

f ·Nil = 0
f · Cons = add · (id× f)

≡ { going pointwise}
{

(f ·Nil)x = 0x
(f · Cons)(a, x) = (add · (id× f))(a, x)

≡ { composition (2.6), constant (2.12), product (2.22) and definition of add }
{

f Nil = 0
f(Cons(a, x)) = a + f x

Note that we could have usedoutT in diagram (3.21),

T
outT //

f

��

1 + IN0 × T

id+id×f

��
IN0 1 + IN0 × IN0

[ 0,add ]
oo

(3.24)

obtaining another version of thedefinitionof f ,

f = [ 0, add ] · (id + id× f) · outT (3.25)

which would lead to exactly the same pointwise recursive definition:

f = [ 0, add ] · (id + id× f) · outT

≡ { (2.41) and identityid on the righthand side}
f = [ 0, add · (id × f) ] · outT

≡ { going pointwise onoutT (3.16) }
{

f Nil = ([ 0, add · (id × f) ] · outT)Nil
f(Cons(a, x)) = ([ 0, add · (id× f) ] · outT)(a, x)

≡ { definition ofoutT (3.16)}



3.3. OBSERVING AN INDUCTIVE DATATYPE 69

{
f Nil = ([ 0, add · (id× f) ] · i1)Nil
f(Cons(a, x)) = ([ 0, add · (id× f) ] · i2)(a, x)

≡ { +-cancellation (2.38)}
{

f Nil = 0 Nil
f(Cons(a, x)) = (add · (id× f)) (a, x)

≡ { simplification }
{

f Nil = 0
f(Cons(a, x)) = a + f x

Pointwisef mirrors the structure of typeT in having has many definition clauses as
constructors inT. Such functions are said to be definedby induction onthe structure of
their input type. If we repeat this calculation forIN0

⋆ instead ofT, that is, for

out = (! + 〈hd, tl〉) · (=[ ]?)

— recall (3.10) — taking place ofoutT, we get a “more algorithmic” version off :

f = [ 0, add ] · (id + id× f) · (! + 〈hd, tl〉) · (=[ ]?)

≡ { +-functor (2.42), identity and×-absorption (2.25)}
f = [ 0, add ] · (! + 〈hd, f · tl〉) · (=[ ]?)

≡ { +-absorption (2.41) and constant0 }
f = [ 0, add · 〈hd, f · tl〉 ] · (=[ ]?)

≡ { going pointwise on guard=[ ]? (2.60) and simplifying}

f l =

{
l = [ ] ⇒ 0 l

¬(l = [ ]) ⇒ (add · 〈hd, f · tl〉) l

≡ { simplification }

f l =

{
l = [ ] ⇒ 0

¬(l = [ ]) ⇒ hdl + f(tl l)

The outcome of this calculation can be encoded in HASKELL syntax as

f l | l == [] = 0
| otherwise = head l + f (tail l)

or



70 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

f l = if l == []
then 0
else head l + f (tail l)

both requiring the equality predicate “==” and destructors “head ” and “tail ”.

3.4 Synthesizing an inductive datatype

The issue which concerns us in this section dualizes what we have just dealt with: in-
stead of analyzing orobservingan inductive type such asT (3.15), we want to be able to
synthesize (generate) particular inhabitants ofT. In other words, we want to be able to

specify functions with signatureB
f // T for some given source typeB. Let B = IN0

and suppose we wantf to generate, for a given natural numbern > 0, the list containing
all numbers less or equal ton in decreasing order

Cons(n,Cons(n− 1, Cons(. . . , Nil)))

or the empty listNil, in casen = 0.
Let us try and draw a diagram similar to (3.24) applicable to the new situation. In

trying to “re-use” this diagram, it is immediate that arrowf should be reversed. Bearing
duality in mind, we may feel tempted to reverse all arrows just to see what happens.
Identity functions are their own inverses, andinT takes the place ofoutT:

T 1 + IN0 × T
inToo

IN0

f

OO

// 1 + IN0 × IN0

id+id×f

OO

Interestingly enough, the bottom arrow is the one which is not obvious to reverse, meaning
that we have to “invent” a particular destructor ofIN0, say

IN0
g // 1 + IN0 × IN0

fitting in the diagram andgeneratingthe particular computational effect we have in mind.
Once we do this, a recursive definition forf will pop out immediately,

f = inT · (id + id× f) · g (3.26)

which is equivalent to:

f = [ Nil, Cons · (id× f) ] · g (3.27)



3.5. INTRODUCING (LIST) CATAS, ANAS AND HYLOS 71

Because we wantf 0 = Nil to hold,g (the actual generator of the computation) should
distinguish input0 from all the others. One thus decomposesg as follows,

IN0
=0?//

g

22IN0 + IN0
!+h // 1 + IN0 × IN0

leavingh to fill in. This will be asplit providing, on the lefthand side, for the value to be
Cons’ed to the output and, on the righthand side, for the “seed” tothe next recursive call.
Since we want the output values to be produced contiguously and in decreasing order, we
may defineh = 〈id, pred〉 where, forn > 0,

predn
def
= n− 1 (3.28)

computes thepredecessorof n. Altogether, we have synthesized

g = (! + 〈id, pred〉) · (=0?) (3.29)

Filling this in (3.27) we get

f = [ Nil, Cons · (id× f) ] · (! + 〈id, pred〉) · (=0?)

≡ { +-absorption (2.41) followed by×-absorption (2.25)etc.}
f = [ Nil, Cons · 〈id, f · pred〉 ] · (=0?)

≡ { going pointwise on guard=0? (2.60) and simplifying}

f n =

{
n = 0 ⇒ Nil
¬(n = 0) ⇒ Cons(n, f (n− 1))

which matches the function we had in mind:

f n | n == 0 = Nil
| otherwise = Cons(n,f(n-1))

We shall see briefly that the constructions of thef function adding up a list of num-
bers in the previous section and, in this section, of thef function generating a list of
numbers are very standard in algorithm design and can be broadly generalized. Let us
first introduce some standard terminology.

3.5 Introducing (list) catas, anas and hylos

Suppose that, back to section 3.3, we want tomultiply, rather than add, the elements
occurring in lists of typeT (3.15). How much of the program synthesis effort presented
there can be reused in the design of the new function?



72 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

It is intuitive that only the bottom arrowIN0 1 + IN0 × IN0
[ 0,add ]oo of diagram

(3.24) needs to be replaced, because this is the only place where we can specify that target
datatypeIN0 is now regarded as the carrier of another (multiplicative rather than additive)
monoidal structure,

IN0 1 + IN0 × IN0
[ 1,mul ]oo (3.30)

for mul(x, y)
def
= x y. We are saying that the argument list is now to be reduced by the

multiplication operator and that output value1 is expected as the result of “nothing left to
multiply”.

Moreover, in the previous section we might have wanted our number-list generator to
produce the list of even numbers smaller than a given number,in decreasing order (see
exercise 3.4). Intuition will once again help us in decidingthat only arrowg in (3.26)
needs to be updated.

The following diagrams generalize both constructions by leaving such bottom arrows
unspecified,

T
outT //

f

��

1 + IN0 × T

id+id×f

��
B 1 + IN0 ×Bg

oo

T 1 + IN0 × T
inToo

B

f

OO

g
// 1 + IN0 ×B

id+id×f

OO (3.31)

and express their duality (cf. the directions of the arrows). It so happens that, for each
of these diagrams,f is uniquely dependent on theg arrow, that is to say, each particular
instantiation ofg will determine the correspondingf . So bothgs can be regarded as
“seeds” or “genetic material” of thef functions they uniquely define3.

Following the standard terminology, we express these factsby writing f = (|g|) with
respect to the lefthand side diagram and by writingf = [(g)] with respect to the right-
hand side diagram. Read(|g|) as “theT-catamorphisminduced byg” and [(g)] as “the
T-anamorphisminduced byg”. This terminology is derived from the Greek wordsκατα
(cata) andανα (ana) meaning, respectively, “downwards” and “upwards” (compare with
the direction of thef arrow in each diagram). The exchange of parentheses “( )” and “[ ]”
in double parentheses “(| |)” and “[( )]” is aimed at expressing the duality of both concepts.

We shall have a lot to say about catamorphisms and anamorphisms of a given type
such asT. For the moment, it suffices to say that

• theT-catamorphism induced byB 1 + IN0 ×B
goo is the unique functionB T

(|g|)oo

3The theory which supports the statements of this paragraph will not be dealt with until chapter
7 .



3.5. INTRODUCING (LIST) CATAS, ANAS AND HYLOS 73

which obeys to property (or is defined by)

(|g|) = g · (id + id× (|g|)) · outT (3.32)

which is the same as

(|g|) · inT = g · (id + id× (|g|)) (3.33)

• given B
g // 1 + IN0 ×B theT-anamorphism induced byg is the unique func-

tion B
[(g)] // T which obeys to property (or is defined by)

[(g)] = inT · (id + id× [(g)]) · g (3.34)

From (3.31) it can be observed thatT can act as a mediator between anyT-anamorphism

and anyT-catamorphism, that is to say,B T
(|g|)oo composes withT C

[(h)]oo , for some

C
h // 1 + IN0 × C . In other words, aT-catamorphism call always observe (consume)

the output of aT-anamorphism. The latter produces a list ofIN0s which is consumed by
the former. This is depicted in the diagram which follows:

B 1 + IN0 ×B
goo

T

(|g|)

OO

1 + IN0 × T
inToo

id+id×(|g|)

OO

C

[(h)]

OO

h
// 1 + IN0 × C

id+id×[(h)]

OO

(3.35)

What can we say about the(|g|) · [(h)] composition? It is a function fromB to C which re-
sorts toT as anintermediatedata-structure and can be subject to the following calculation
(cf. outermost rectangle in (3.35)):

(|g|) · [(h)] = g · (id + id× (|g|)) · (id + id× [(h)]) · h
≡ { +-functor (2.42)}

(|g|) · [(h)] = g · ((id · id) + (id× (|g|)) · (id× [(h)])) · h
≡ { identity and×-functor (2.28)}

(|g|) · [(h)] = g · (id + id× (|g|) · [(h)]) · h



74 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

This calculation shows how to defineC B
(|g|)·[(h)]oo in one go, that is to say, doing

without any intermediate data-structure:

B 1 + IN0 ×B
goo

C

(|g|)·[(h)]

OO

h
// 1 + IN0 × C

id+id×(|g|)·[(h)]

OO (3.36)

As an example, let us see what comes out of(|g|) · [(h)] for h andg respectively given by
(3.29) and (3.30):

(|g|) · [(h)] = g · (id + id× (|g|) · [(h)]) · h
≡ { (|g|) · [(h)] abbreviated tof and instantiatingh andg }

f = [ 1,mul ] · (id + id× f) · (! + 〈id, pred〉) · (=0?)

≡ { +-functor (2.42) and identity}
f = [ 1,mul ] · (! + (id× f) · 〈id, pred〉) · (=0?)

≡ { ×-absorption (2.25) and identity}
f = [ 1,mul ] · (! + 〈id, f · pred〉) · (=0?)

≡ { +-absorption (2.41) and constant1 (2.15) }
f = [ 1,mul · 〈id, f · pred〉 ] · (=0?)

≡ { McCarthy conditional (2.59)}
f = (=0?)→ 1,mul · 〈id, f · pred〉

Going pointwise, we get — via (2.59) —

f 0 = [ 1,mul · 〈id, f · pred〉 ](i1 0)

= { +-cancellation (2.38)}
1 0

= { constant function (2.12)}
1

and

f(n + 1) = [ 1,mul · 〈id, f · pred〉 ](i2(n + 1))

= { +-cancellation (2.38)}



3.5. INTRODUCING (LIST) CATAS, ANAS AND HYLOS 75

mul · 〈id, f · pred〉(n + 1)

= { pointwise definitions ofsplit, identity, predecessor andmul }
(n + 1)× f n

In summary,f is but the well-known factorial function:
{

f 0 = 1
f(n + 1) = (n + 1)× f n

This result comes to no surprise if we look at diagram (3.35) for the particularg and
h we have considered above and recall a popular “definition” offactorial:

n! = n× (n − 1)× . . . × 1︸ ︷︷ ︸
n times

(3.37)

In fact, [(h)] n producesT-list

Cons(n,Cons(n− 1, . . . Cons(1, Nil)))

as an intermediate data-structure which is consumed by(|g|) , the effect of which is but the
“replacement” ofCons by× andNil by 1, therefore accomplishing (3.37) and realizing
the computation of factorial.

The moral of this example is that a function as simple as factorial can bedecomposed
into two components (producer/consumer functions) which share a common intermedi-
ate inductive datatype. The producer function is an anamorphism which “represents” or
produces a “view” of its input argument as a value of the intermediate datatype. The
consumer function is a catamorphism which reduces this intermediate data-structure and
produces the final result. Like factorial, many functions can be handsomely expressed by
a(|g|) · [(h)] composition for a suitable choice of the intermediate type,and ofg andh. The
intermediate data-structure is said to bevirtual in the sense that it only exists as a means
to induce the associated pattern of recursion and disappears by calculation.

The composition(|g|) · [(h)] of aT-catamorphism with aT-anamorphism is called aT-
hylomorphism4 and is denoted by[[g, h]]. Becauseg andh fully determine the behaviour
of the [[g, h]] function, they can be regarded as the “genes” of the functionthey define. As
we shall see, this analogy with biology will prove speciallyuseful for algorithm analysis
and classification.

Exercise 3.2. A way of computingn2, the square of a given natural numbern, is to
sum up then first odd numbers. In fact,12 = 1, 22 = 1 + 3, 32 = 1 + 3 + 5, etc.,
n2 = (2n − 1) + (n− 1)2. Following this hint, express function

sqn
def
= n2 (3.38)

4This terminology is derived from the Greek wordvλoσ (hylos) meaning “matter”.



76 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

as aT-hylomorphism and encode it inHASKELL.
2

Exercise 3.3. Write functionxn as aT-hylomorphism and encode it inHASKELL.
2

Exercise 3.4. The following function inHASKELL computes theT-sequence of all even
numbers less or equal ton:

f n = if n <= 1
then Nil
else Cons(m,f(m-2))

where m = if even n then n else n-1

Find its “genetic material”, that is, functiong such that f=[(g)] in

T 1 + IN0 × T
inToo

IN0

[(g)]

OO

g
// 1 + IN0 × IN0

id+id×[(g)]

OO

2

3.6 Inductive types more generally

So far we have focussed our attention exclusively to a particular inductive typeT (3.20)
— that of finite sequences of non-negative integers. This is,of course, of a very limited
scope. First, because one could think of finite sequences of other datatypes,e.g.Booleans
or many others. Second, because other datatypes such as trees, hash-tablesetc.exist which
our notation and method should be able to take into account.



3.7. FUNCTORS 77

Although a generic theory of arbitrary datatypes requires atheoretical elaboration
which cannot be explained at once, we can move a step further by taking the two obser-
vations above as starting points. We shall start from the latter in order to talk generically
about inductive types. Then we introduce parameterizationand functorial behaviour.

Suppose that, as a mere notational convention, we abbreviate every expression of the
form “1+ IN0× . . .” occurring in the previous section by “F . . .”, e.g.1+ IN0×B by F B,
e.g.1 + IN0 × T by F T

T

outT
((∼= F T

inT

gg (3.39)

etc.This is the same as introducing a datatype-level operator

F X
def
= 1 + IN0 ×X (3.40)

which maps every datatypeA into datatype1 + IN0 ×A. OperatorF captures the pattern
of recursion which is associated to so-called “right” lists(of non-negative integers), that

is, lists which grow to the right. The slightly different patternG X
def
= 1 + X × IN0 will

generate a different, although related, inductive type

X ∼= 1 + X × IN0 (3.41)

— that of so-called “left” lists (of non-negative integers). And it is not difficult to think of
the pattern which is merges both right and left lists and gives rise to bi-linear lists, better
known asbinary trees:

X ∼= 1 + X × IN0 ×X (3.42)

One may think of many other expressionsF X and guess the inductive datatype they

generate, for instanceHX
def
= IN0 + IN0 ×X generating non-empty lists of non-negative

integers (IN+
0 ). The general rule is that, given an inductive datatype definition of the form

X ∼= F X (3.43)

(also called a domain equation), its pattern of recursion iscaptured by a so-calledfunctor
F.

3.7 Functors

The concept of a functorF, borrowed from category theory, is a most generic and useful
device in programming5. As we have seen,F can be regarded as a datatype constructor

5The category theory practitioner must be warned of the fact that the wordfunctor is used here
in a too restrictive way. A proper (generic) definition of a functor will be provided later in this



78 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

which, given datatypeA, builds a more elaborate datatypeF A; given another datatype
B, builds a similarly elaborate datatypeF B; and so on. But what is more important
and has the most beneficial consequences is that, ifF is regarded as a functor, then its
data-structuring effect extends smoothly to functions in the following way: suppose that

B A
foo is a function which observesA into B, which are parameters ofF A andF B,

respectively. By definition, ifF is a functor thenF B F A
F foo exists for every suchf :

A

f

��

F A

F f

��
B F B

F f extendsf to F-structures and will, by definition, obey to two very basic properties: it
commutes with identity

F idA = id(F A) (3.44)

and with composition

F(g · h) = (F g) · (F h) (3.45)

Two simple examples of a functor follow:

• Identity functor: defineF X = X, for every datatypeX, andF f = f . Properties
(3.44) and (3.45) hold trivially just by removing symbolF wherever it occurs.

• Constant functors: for a givenC, defineF X = C (for all datatypesX) andF f =
idC , as expressed in the following diagram:

A

f

��

C

idC

��
B C

Properties (3.44) and (3.45) hold trivially again.

In the same way functions can be unary, binary,etc., we can have functors with more
than one argument. So we get binary functors (also calledbifunctors), ternary functors
etc.. Of course, properties (3.44) and (3.45) have to hold for every parameter of ann-ary
functor. For a binary functorB, for instance, equation (3.44) becomes

B (idA, idB) = idB (A,B) (3.46)

book.



3.8. POLYNOMIAL FUNCTORS 79

Data construction Universal construct Functor Description

A×B 〈f, g〉 f × g Product
A + B [ f, g ] f + g Coproduct

BA f fA Exponential

Table 3.1: Datatype constructions and associated operators.

and equation (3.45) becomes

B (g · h, i · j) = B (g, i) · B (h, j) (3.47)

Product and coproduct are typical examples of bifunctors. In the former case one
hasB (A,B) = A × B andB (f, g) = f × g — recall (2.22). Properties (2.29) and
(2.28) instantiate (3.46) and (3.47), respectively, and this explains why we called them
the functorial properties of product. In the latter case, one hasB (A,B) = A + B and
B (f, g) = f + g — recall (2.37) — and functorial properties (2.43) and (2.42). Finally,

exponentiation is a functorial construction too: assumingA, one hasF X
def
= XA and

F f
def
= f · ap and functorial properties (2.73) and (2.74). All this is summarized in table

3.1.
Such as functions, functors may compose with each other in the obvious way: the

composition ofF andG, denotedF · G, is defined by

(F · G)X
def
= F (G X) (3.48)

(F · G)f
def
= F (G f) (3.49)

3.8 Polynomial functors

We may put constant, product, coproduct and identity functors together to obtain so-called
polynomial functors, which are described by polynomial expressions, for instance

F X = 1 + A×X

— recall (3.6). A polynomial functor is either

• a constant functor or the identity functor, or

• the (finitary) product or coproduct (sum) of other polynomial functors, or

• the composition of other polynomial functors.



80 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

So the effect on arrows of a polynomial functor is computed inan easy and structured
way, for instance:

F f = (1 + A×X)f

= { sum of two functors whereA is a constant andX is a variable}
(1)f + (A×X)f

= { constant functor and product of two functors}
id1 + (A)f × (X)f

= { constant functor and identity functor}
id1 + idA × f

= { subscripts dropped for simplicity}
id + id× f

So,1 + A× f denotes the same asid1 + idA × f , or even the same asid + id× f if one
drops the subscripts.

It should be clear at this point that what was referred to in section 2.10 as a “symbolic
pattern” applicable to both datatypes and arrows is after all a functor in the mathematical
sense. The fact that the same polynomial expression is used to denote both the data
and the operators which structurally transform such data isof great conceptual economy
and practical application. For instance, once polynomial functor (3.40) is assumed, the
diagrams in (3.31) can be written as simply as

T
outT //

f

��

F T

F f

��
B F Bg

oo

T F T
inToo

B

f

OO

g
// F B

F f

OO (3.50)

It is useful to know that, thanks to the isomorphism laws studied in chapter 2, every
polynomial functorF may be put into the canonical form,

F X ∼= C0 + (C1 ×X) + (C2 ×X2) + · · ·+ (Cn ×Xn)
=

∑n
i=0 Ci ×Xi (3.51)

and thatNewton’s binomial formula

(A + B)n ∼=
n∑

p=0

nCp ×An−p ×Bp (3.52)



3.9. POLYNOMIAL INDUCTIVE TYPES 81

can be used in such conversions. These are performed up to isomorphism, that is to say,
after the conversion one gets a different but isomorphic datatype. Consider, for instance,
functor

F X
def
= A× (1 + X)2

(whereA is a constant datatype) and check the following reasoning:

F X = A× (1 + X)2

∼= { law (2.87) }
A× ((1 + X)× (1 + X))

∼= { law (2.50) }
A× ((1 + X)× 1 + (1 + X)×X))

∼= { laws (2.81), (2.31) and (2.50)}
A× ((1 + X) + (1×X + X ×X))

∼= { laws (2.81) and (2.87)}

A× ((1 + X) + (X + X2))

∼= { law (2.46) }

A× (1 + (X + X) + X2)

∼= { canonical form obtained via laws (2.50) and (2.88)}

A︸︷︷︸
C0

+ A× 2︸ ︷︷ ︸
C1

×X + A︸︷︷︸
C2

×X2

Exercise 3.5. Synthesize the isomorphismA + A× 2×X + A×X2 A× (1 + X2)
νoo

implicit in the above reasoning.
2

3.9 Polynomial inductive types

An inductive datatype is said to bepolynomialwherever its pattern of recursion is de-
scribed by a polynomial functor, that is to say, whereverF in equation (3.43) is polyno-
mial. For instance, datatypeT (3.20) is polynomial (n = 1) and its associated polynomial



82 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

functor is canonically defined with coefficientsC0 = 1 andC1 = IN0. For reasons that
will become apparent later on, we shall always imposeC0 6= 0 to hold in apolynomial
datatype expressed in canonical form.

Polynomial types are easy to encode in HASKELL wherever the associated functor is
in canonical polynomial form, that is, wherever one has

T ∼= ∑n
i=0 Ci × Ti

inT

ii (3.53)

Then we have
inT

def
= [ f1, . . . , fn ]

where, fori = 1, n, fi is an arrow of typeT Ci × Tioo . Sincen is finite, one may
expand exponentials according to (2.87) and encode this in HASKELL as follows:

data T = C0 |
C1 (C1,T) |
C2 (C2,(T,T)) |
... |
Cn (Cn,(T, ..., T))

Of course the choice of symbolCi to realize eachfi is arbitrary6. Several instances of
polynomial inductive types (in canonical form) will be mentioned in section 3.13. Section
3.17 will address the conversion between inductive datatypes induced by so-callednatural
transformations.

The concepts of catamorphism, anamorphism and hylomorphism introduced in sec-
tion 3.5 can be extended to arbitrary polynomial types. We devote the following sections
to explaining catamorphisms in the polynomial setting. Polynomial anamorphisms and
hylomorphisms will not be dealt with until chapter 7.

3.10 F-algebras andF-homomorphisms

Our interest in polynomial types is basically due to the factthat, for polynomialF, equa-
tion (3.43) always has a particularly interesting solutionwhich corresponds to our notion
of a recursive datatype.

6A more traditional (but less close to (3.53)) encoding will be

data T = C0 | C1 C1 T | C2 C2 T T | ... | Cn Cn T ... T (3.54)

delivering every constructor in curried form.



3.11. F-CATAMORPHISMS 83

In order to explain this, we need two notions which are easy tounderstand: first, that

of anF-algebra, which simply is any functionα of signatureA F A
αoo . A is called

the carrier of F-algebraα and contains the values whichα manipulates by computing
newA-values out of existing ones, according to theF-pattern (the “type” of the algebra).
As examples, consider[ 0, add ] (3.19) andinT (3.20), which are both algebras of type
F X = 1+ IN0×X. The type of an algebra clearly determines its form. For instance, any
algebraα of typeF X = 1+X×X will be of form [ α1, α2 ], whereα1 is a constant and
α2 is a binary operator. So monoids are algebras of this type7.

Secondly, we introduce the notion of anF-homomorphismwhich is but a function
observing a particularF-algebraα into anotherF-algebraβ:

A

f

��

F A

F f

��

αoo

B F B
β

oo

f · α = β · (F f) (3.55)

Clearly, f can be regarded as a structural translation betweenA andB, that is,A and
B have a similar structure8. Note that — thanks to (3.44) — identity functions are
always (trivial)F-homomorphisms and that — thanks to (3.45) — these homomorphisms
compose, that is, the composition of twoF-homomorphisms is anF-homomorphism.

3.11 F-catamorphisms

An F-algebra can be epic, monic or both, that is, iso. IsoF-algebras are particularly
relevant to our discussion because they describe solutionsto theX ∼= F X equation (3.43).
Moreover, for polynomialF a particular isoF-algebra always exists, which is denoted by

µF F µF
inoo and has special properties. First, its carrier is the smallest among the

carriers of other isoF-algebras, and this is why it is denoted byµF — µ for “minimal” 9.
Second, it is the so-calledinitial F-algebra. What does this mean?

It means that, for everyF-algebraα there exists one and only oneF-homomorphism
betweenin and α. This unique arrow mediatingin andα is therefore determined by
α itself, and is called theF-catamorphismgenerated byα. This construct, which was
introduced in 3.5, is in general denoted by(|α|)

F
:

7But not every algebra of this type is a monoid, since the type of an algebra only fixes its syntax
and does not impose any properties such as associativity,etc.

8Cf. homomorphism= homo(the same) +morphos(structure, shape).
9µF means the least fixpoint solution of equationX ∼= FX , as will be described in chapter 7 .



84 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

µF

f=(|α|)
F

��

F µF

F (|α|)
F

��

inoo

A F Aα
oo

(3.56)

We will drop theF subscript in(|α|)
F

wherever deducible from the context, and often call
α the “gene” of(|α|)

F
.

As happens withsplits, eithersand transposes, the uniqueness of the catamorphism
construct is captured by a universal property established in the class of allF-homomorphisms:

k = (|α|) ⇔ k · in = α · F k (3.57)

According to the experience gathered from section 2.12 onwards, a few properties can be
expected as consequences of (3.57). For instance, one may wonder about the “gene” of
the identity catamorphism. Just letk = id in (3.57) and see what happens:

id = (|α|)⇔ id · in = α · F id

= { identity (2.10) andF is a functor (3.44)}
id = (|α|)⇔ in = α · id

= { identity (2.10) once again}
id = (|α|)⇔ in = α

= { α replaced byin and simplifying }
id = (|in|)

Thus one finds out that the genetic material of the identity catamorphism is the initial
algebrain. Which is the same as establishing thereflection propertyof catamorphisms:

Cata-reflection :

µF

(|in|)
��

F µF

F (|in|)
��

inoo

µF F µF
in

oo

(|in|) = idµF (3.58)

In a more intuitive way, one might have observed that(|in|) is, by definition ofin, the
unique arrow mediatingµF and itself. But another arrow of the same type is already
known: the identityidµF. So these two arrows must be the same.

Another property following immediately from (3.57), fork = (|α|), is



3.11. F-CATAMORPHISMS 85

Cata-cancellation :

(|α|) · in = α · F (|α|) (3.59)

Becausein is iso, this law can be rephrased as follows

(|α|) = α · F (|α|) · out (3.60)

whereout denotes the inverse ofin:

µF

out
))∼= F µF

in

hh

Now, let f be F-homomorphism (3.55) betweenF-algebrasα andβ. How does it
relate to(|α|) and(|β|)? Note thatf · (|α|) is an arrow mediatingµF andB. But B is the
carrier ofβ and(|β|) is the unique arrow mediatingµF andB. So the two arrows are the
same:

Cata-fusion :

µF

(|α|)
��

F µF

F(|α|)

��

inoo

A

f

��

F Aα
oo

F f

��
B F B

β
oo

f · (|α|) = (|β|) if f · α = β · F f (3.61)

Of course, this law is also a consequence of the universal property, fork = f · (|α|):
f · (|α|) = (|β|) ⇔ (f · (|α|)) · in = β · F (f · (|α|))

⇔ { composition is associative andF is a functor (3.45)}
f · ((|α|) · in) = β · (F f) · (F (|α|))

⇔ { cata-cancellation (3.59)}
f · α · F (|α|) = β · F f · F (|α|)

⇔ { requiref to be aF-homomorphism (3.55)}
f · α · F (|α|) = f · α · F (|α|) ∧ f · α = β · F f

⇐ { simplify }
f · α = β · F f

The presentation of theabsorptionproperty of catamorphisms entails the very impor-
tant issue of parameterization and deserves to be treated ina separate section, as follows.



86 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

3.12 Parameterization and type functors

By analogy with what we have done aboutsplits(product),eithers(coproduct) and trans-
poses (exponential), we now look forward to identifyingF-catamorphisms which exhibit
functorial behaviour.

Suppose that one wishes to square all numbers which are members of lists of typeT
(3.20). It can be checked that

(|[ Nil, Cons · (sq× id) ]|) (3.62)

will do this for us, whereIN0 IN0
sqoo is given by (3.38). This catamorphism, which

converted to pointwise notation is nothing but functionh which follows
{

hNil = Nil
h(Cons(a, l)) = Cons(sqa, h l)

maps typeT to itself. This is becausesqmapsIN0 to IN0. Now suppose that, instead ofsq,

one would like to apply a given functionB IN0
foo (for someB other thanIN0) to all

elements of the argument list. It is easy to see that it suffices to replacef for sq in (3.62).
However, the output type no longer isT, but rather typeT′ ∼= 1 + B × T′.

TypesT andT′ are very close to each other. They share the same “shape” (recursive
pattern) and only differ with respect to the type of elements— IN0 in T andB in T′. This
suggests that these two types can be regarded as instances ofa more generic list datatype
List

List X ∼= 1 + X × List X

in=[ Nil,Cons ]

jj (3.63)

in which the type of elementsX is allowed to vary. Thus one hasT = List IN0 and
T′ = List B.

By inspection, it can be checked that, for everyB A
foo ,

(|[ Nil, Cons · (f × id) ]|) (3.64)

mapsList A to ListB. Moreover, forf = id one has:

(|[ Nil, Cons · (id× id) ]|)
= { by the×-functor-id property (2.29) and identity}

(|[ Nil, Cons ]|)
= { cata-reflection (3.58)}

id



3.12. PARAMETERIZATION AND TYPE FUNCTORS 87

Therefore, by defining

List f
def
= (|[ Nil, Cons · (f × id) ]|)

what we have just seen can be written thus:

List idA = idList A

This is nothing but law (3.44) forF replaced byList. Moreover, it will not be too difficult
to check that

List (g · f) = List g · List f

also holds —cf. (3.45). Altogether, this means thatList can be regarded as a functor.
In programming terminology one says thatList X (the “lists ofXs datatype”) ispara-

metricand that, by instantiating parameterX, one gets ground lists such as lists of inte-
gers, booleans,etc. The illustration above deepens one’s understanding of parameteri-
zation by identifying the functorial behaviour of the parametric datatype along with its
parameter instantiations.

All this can be broadly generalized and leads to what is commonly known by atype
functor. First of all, it should be clear that the generic format

T ∼= F T

adopted so far for the definition of an inductive type is not sufficiently detailed because
it does not provide a parametric view ofT. For simplicity, let us suppose (for the mo-
mement) that only one parameter is identified inT. Then we may factor this out viatype
variableX and write (overloading symbolT)

TX ∼= B(X,TX)

whereB is called the type’sbase functor. Binary functorB(X,Y ) is given this name
because it is the basis of the whole inductive type definition. By instantiation ofX one
obtainsF. In the example above,B (X,Y ) = 1 + X × Y and in factF Y = B (IN0, Y ) =
1 + IN0 × Y , recall (3.40). Moreover, one has

F f = B (id, f) (3.65)

and so everyF-homomorphism can be written in terms of the base-functor ofF, e.g.

f · α = β · B (id, f)

instead of (3.55).



88 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

TX will be referred to as thetype functorgenerated byB:

TX︸︷︷︸
type functor

∼= B(X,TX)︸ ︷︷ ︸
base functor

We proceed to the description of its functorial behaviour —T f — for a given B A
foo .

As far as typing rules are concerned, we shall have

B A
foo

TB TA
T foo

So we should be able to expressT f as aB (A, )-catamorphism(|g|):

A

f

��

TA

T f=(|g|)

��

B (A,TA)
inT Aoo

B (id,T f)
��

B TB B (A,TB)g
oo

As we know thatinTB is the standard constructor of values of typeTB, we may put it
into the diagram too:

A

f

��

TA

T f=(|g|)

��

B (A,TA)
inT Aoo

B (id,T f)
��

B TB B (A,TB)g
oo

B (B,TB)

inT B

eeJJJJJJJJJJ

The catamorphism’s geneg will be synthesized by filling the dashed arrow in the diagram
with the “obvious”B (f, id), whereby one gets

T f
def
= (|inTB · B (f, id)|) (3.66)

and a final diagram, whereinT A is abbreviated byinA (ibid. inT B by inB):

A

f

��

TA

T f=(|inB·B (f,id)|)

��

B (A,TA)
inAoo

B (id,T f)
��

B TB B (B,TB)
inB

oo B (A,TB)
B (f,id)
oo



3.12. PARAMETERIZATION AND TYPE FUNCTORS 89

Next, we proceed to derive the useful law ofcata-absorption

(|g|) · T f = (|g · B (f, id)|) (3.67)

as a consequence of the laws studied in section 3.11. Our target is to show that, for
k = (|g|) · T f in (3.57), one getsα = g · B (f, id):

(|g|) · T f = (|α|)
⇔ { type-functor definition (3.66)}

(|g|) · (|inB · B (f, id)|) = (|α|)
⇐ { cata-fusion (3.61)}

(|g|) · inB · B (f, id) = α · B (id, (|g|))
⇔ { cata-cancellation (3.59)}

g · B (id, (|g|)) · B (f, id) = α · B (id, (|g|))
⇔ { B is a bi-functor (3.47)}

g · B (id · f, (|g|) · id) = α · B (id, (|g|))
⇔ { id is natural (2.11)}

g · B (f · id, id · (|g|)) = α · B (id, (|g|))
⇔ { (3.47) again, this time from left to right}

g · B (f, id) · B (id, (|g|)) = α · B (id, (|g|))
⇐ { obvious }

g · B (f, id) = α

The following diagram pictures this property of catamorphisms:

A

f

��

TA

T f

��

B (A,TA)
inAoo

B (id,T f)
��

C TC

(|g|)

��

B (C,TC)
inC

oo

B (id,(|g|))
��

B (A,TC)
B (f,id)
oo

B (id,(|g|))
��

D B (C,D)g
oo B (A,D)

B (f,id)
oo

It remains to show that (3.66) indeed defines a functor. This can be verified by check-
ing properties (3.44) and (3.45) forF = T :



90 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

• Propertytype-functor-id , cf. (3.44):

T id

= { by definition (3.66)}
(|inB · B (id, id)|)

= { B is a bi-functor (3.46)}
(|inB · id|)

= { identity and cata-reflection (3.58)}
id

• Propertytype-functor, cf. (3.45) :

T (f · g)

= { by definition (3.66)}
(|inB · B (f · g, id)|)

= { id · id = id andB is a bi-functor (3.47)}
(|inB · B (f, id) · B (g, id)|)

= { cata-absorption (3.67)}
(|inB · B (f, id)|) · T g

= { again cata-absorption (3.67)}
(|inB|) · T f · T g

= { cata-reflection (3.58) followed by identity}
T f · T g

3.13 A catalogue of standard polynomial inductive
types

The following table contains a collection of standard polynomial inductive types and as-
sociated base type bi-functors, which are in canonical form(3.53). The table contains two
extra columns which may be used as bookmarks for equations (3.65) and (3.66), respec-



3.13. A CATALOGUE OF STANDARD POLYNOMIAL INDUCTIVE TYPES91

tively 10:

Description TX B (X,Y ) B (id, f) B (f, id)

“Right” Lists List X 1 + X × Y id + id× f id + f × id

“Left” Lists LList X 1 + Y ×X id + f × id id + id× f

Non-empty Lists NList X X + X × Y id + id× f f + f × id

Binary Trees BTree X 1 + X × Y 2 id + id× f2 id + f × id

“Leaf” Trees LTree X X + Y 2 id + f2 f + id

(3.68)

All type functorsT in this table are unary. In general, one may think of inductive
datatypes which exhibit more than one type parameter. Should n parameters be identified
in T, then this will be based on ann + 1-ary base functorB, cf.

T(X1, . . . ,Xn) ∼= B(X1, . . . ,Xn,T(X1, . . . ,Xn))

So, everyn + 1-ary polynomial functorB(X1, . . . ,Xn,Xn+1) can be identified as the
basis of an inductiven-ary type functor (the convention is to stick to the canonical form
and reserve the last variableXn+1 for the “recursive call”). While type bi-functors (n = 2)
are often found in programming, the situation in whichn > 2 is relatively rare. For
instance, the combination of leaf-trees with binary-treesin (3.68) leads to the so-called
“full tree” type bi-functor

Description T(X1,X2) B(X1,X2, Y ) B(id, id, f) B(f, g, id)

“Full” Trees FTree(X1,X2) X1 + X2 × Y 2 id + id× f2 f + g × id
(3.69)

As we shall see later on, these types are widely used in programming. In the actual
encoding of these types in HASKELL, exponentials are normally expanded to products
according to (2.87), see for instance

data BTree a = Empty | Node(a, (BTree a, BTree a))

Moreover, one may chose to curry the type constructors as in,e.g.

data BTree a = Empty | Node a (BTree a) (BTree a)

Exercise 3.6. Write as a catamorphisms

• the function which counts the number of elements of a non-empty list (typeNList

in (3.68)).

10Since(idA)2 = id(A2) one writesid2 for id in this table.



92 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

• the function which computes the maximum element of a binary-tree of natural num-
bers.

2

Exercise 3.7. Characterize the function which is defined by(|[ [], h ]|) for each of the
following definitions ofh:

h(x, (y1, y2)) = y1 ++ [x] ++ y2 (3.70)

h = ++ · (singl×++) (3.71)

h = ++ · (++× singl) · swap (3.72)

assumingsingla = [a]. Identify in (3.68) which datatypes are involved as base functors.
2

Exercise 3.8. Write as a catamorphism the function which computes thefrontierof a tree
of typeLTree (3.68), listed from left to right.
2

3.14 Functors and type functors in HASKELL

The concept of a (unary) functor is provided in HASKELL in the form of a particular class
exporting thefmap operator:

class Functor f where
fmap :: (a -> b) -> (f a -> f b)

So fmap g encodesF g once we declareF as an instance of classFunctor . The most
popular use offmap has to do with HASKELL lists, as allowed by declaration

instance Functor [] where
fmap f [] = []
fmap f (x:xs) = f x : fmap f xs



3.15. THE MUTUAL-RECURSION LAW 93

in language’sStandard Prelude.
In order to encode the type functors we have seen so far we haveto do the same

concerning their declaration. For instance, should we write

instance Functor BTree
where fmap f =

cataBTree ( inBTree . (id -|- (f >< id)) )

concerning the binary-tree datatype of (3.68) and assumingappropriate declarations of
cataBTree andinBTree , thenfmap is overloaded and used across such binary-trees.

Bi-functors can be added easily by writing

class BiFunctor f where
bmap :: (a -> b) -> (c -> d) -> (f a c -> f b d)

Exercise 3.9. Declare all datatypes in (3.68) inHASKELL notation and turn them into
HASKELL type functors, that is, definefmap in each case.
2

Exercise 3.10. Declare datatype (3.69) inHASKELL notation and turn it into an instance
of classBiFunctor.
2

3.15 The mutual-recursion law

The theory developed so far for building (and reasoning about) recursive functions doesn’t
cope with mutual recursion. As a matter of fact, the pattern of recursion of a given
cata(ana,hylo)morphism involves only the recursive function being defined, even though
more than once, in general, as dictated by the relevant base functor.

It turns out that rules for handling mutual recursion are surprisingly simple to calcu-
late. As motivation, recall section 2.10 where, by mixing products with coproducts, we
obtained a result — theexchange rule(2.47) — which stemmed from putting together the
two universal properties of product and coproduct, (2.55) and (2.57), respectively.



94 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

The question we want to address in this section is of the same brand: what can one
tell about catamorphisms which output pairs of values? By (2.55), such catamorphisms
are bound to besplits, as are the correspondinggenes:

T

(|〈h,k〉|)

��

F T

F (|〈h,k〉|)
��

inoo

A×B F (A×B)
〈h,k〉
oo

As we did for the exchange rule, we put (2.55) and the universal property of catamor-
phisms (3.57) against each other and calculate:

〈f, g〉 = (|〈h, k〉|)
≡ { cata-universal (3.57)}
〈f, g〉 · in = 〈h, k〉 · F 〈f, g〉

≡ { ×-fusion (2.24) twice}
〈f · in, g · in〉 = 〈h · F 〈f, g〉, k · F 〈f, g〉〉

≡ { (2.56) }

f · in = h · F 〈f, g〉 ∧ g · in = k · F 〈f, g〉
The rule thus obtained,

{
f · in = h · F 〈f, g〉
g · in = k · F 〈f, g〉 ≡ 〈f, g〉 = (|〈h, k〉|) (3.73)

is referred to as themutual recursion law(or as “Fokkinga’s law”) and is useful in com-
bining two mutually recursive functionsf andg

T

f

��

F T

F 〈f,g〉
��

inoo

A F (A×B)
h

oo

T

g

��

F T

F 〈f,g〉
��

inoo

B F (A×B)
k

oo

into a single catamorphism.
When applied from left to right, law (3.73) is surprisingly useful in optimizing recur-

sive functions in a way which saves redundant traversals of the input inductive typeT.
Let us take the Fibonacci function as example:

fib 0 = 1

fib 1 = 1

fib(n + 2) = fib(n + 1) + fib n



3.15. THE MUTUAL-RECURSION LAW 95

It can be shown thatfib is a hylomorphism of typeLTree (3.68),fib = [[count, fibd]], for
count = [ 1, add ], add(x, y) = x + y andfibd n = if n < 2 then i1Nil else i2(n −
1, n − 2). This hylo-factorization offib tells its internal algorithmic structure: thedivide
step[(fibd)] builds a tree whose number of leaves is a Fibonacci number; theconquer step
(|count|) just counts such leaves.

There is, of course, much re-calculation in this hylomorphism. Can we improve its
performance? The clue is to regard the two instances offib in the recursive branch as
mutually recursive over the natural numbers. This clue is suggested not only byfib
having two base cases (so, perhaps it hides two functions) but also by the lookaheadn+2
in the recursive clause.

We start by defining a function which reduces such a lookaheadby 1,

f n = fib(n + 1)

Clearly,f(n + 1) = fib(n + 2) = f n + fib n andf 0 = fib 1 = 1. Puttingf andfib
togther,

f 0 = 1

f(n + 1) = f n + fib n

fib 0 = 1

fib(n + 1) = f n

we obtain two mutually recursive functions over the naturalnumbers (IN0) which trans-
form into pointfree equalities

f · [ 0, suc ] = [ 1, add · 〈f, fib〉 ]
fib · [ 0, suc ] = [ 1, f ]

over

IN0

**∼=
1 + IN0︸ ︷︷ ︸

F IN0

in=[ 0,suc ]

hh (3.74)

Reverse+-absorption (2.41) will further enable us to rewrite the above into

f · in = [ 1, add ] · F 〈f, fib〉
fib · in = [ 1, π1 ] · F 〈f, fib〉

thus bringing functorF f = id + f explicit and preparing for mutual recursion removal:

f · in = [ 1, add ] · F 〈f, fib〉
fib · in = [ 1, π1 ] · F 〈f, fib〉



96 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

≡ { (3.73) }

〈f, fib〉 = (|〈[ 1, add ], [ 1, π1 ]〉|)
≡ { exchange law (2.47)}

〈f, fib〉 = (|[ 〈1, 1〉, 〈add, π1〉 ]|)
≡ { going pointwise and denoting〈f, fib〉 by fib′ }

{
fib′ 0 = (1, 1)
fib′ (n + 1) = (x + y, x) where (x, y) = fib′ n

Sincefib = π2 · fib′ we easily recoverfib from fib′ and obtain the intended linear
version of Fibonacci (encoded in Haskell):

fib n = y where (x,y) = fib’ n
fib’ 0 = (1,1)
fib’ (n+1) = (x+y,x)

where (x,y) = fib’ n

This version offib is actually the semantics of the “for-loop” one would write in an
imperative language which would initialize two global variablesx, y := 1, 1, loop over
assignmentx, y := x + y, x and yield the result iny. In the C programming language,
one would write

int fib(int n)
{
int x=1; int y=1; int i;
for (i=1;i<=n;i++) {int a=x; x=x+y; y=a;}
return y;
};

where the extra variablea is required for ensuring thatsimultaneousassignmentx, y :=
x + y, x takes place in a sequential way.

Our intuition above is confirmed by observing that allIN0 catamorphisms are of shape
(|[ k, g ]|), and that(|[ k, g ]|)n = gnk, wheregn is then-th iteration ofg, that is,g0 = id
andgn+1 = g · gn. Sog is the body of a “for-loop” which repeats itselfn-times, starting
with initial valuek.

In a sense, the mutual recursion law gives us a hint on how global variables “are born”
in computer programs, out of the maths definitions themselves. Quite often more that two
such variables are required in linearizing hylomorphisms by mutual recursion. Let us see
an example. The question is:how many squares can one draw on an×n-tiled wall? The



3.15. THE MUTUAL-RECURSION LAW 97

answer is given by function

ns n
def
=

∑

i=1,n

i2

that is,

ns 0 = 0

ns(n + 1) = (n + 1)2 + ns n

in Haskell. However, this hylomorphism is inefficient because each iteration involves
another hylomorphism computing square numbers.

One way of improvingns is to introduce functionbnm n
def
= (n + 1)2 and express

this over (3.74),

bnm 0 = 1

bnm(n + 1) = 2n + 3 + bnm n

hoping to blendns with bnm using the mutual recursion law. However, the same problem

arises inbnm itself, which now depends on term2n + 3. We inventlin n
def
= 2n + 3 and

repeat the process, thus obtaining:

lin 0 = 3

lin(n + 1) = 2 + lin n

By redefining

bnm′ 0 = 1

bnm′(n + 1) = lin n + bnm′ n

ns′ 0 = 0

ns′(n + 1) = bnm′ n + ns′ n

we obtain three functions —ns′, bnm′ andlin — mutually recursive over the polynomial
baseF g = id + g of the natural numbers.

Exercise 3.11 below shows how to extend (3.73) to three mutually recursive functions
(3.75). (From this it is easy to extend it further to then-ary case.) It is routine work to
show that, by application of (3.75) to the above three functions, one obtains the linear
version ofns which follows:



98 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

ns’’ n = let (a,b,c) = aux n in a
where

aux 0 = (0,1,3)
aux(n+1) = let (a,b,c) = aux n

in (a+b,b+c,2+c)

In retrospect, note that (in general) not every system ofn mutually recursive functions





f1 = φ1(f1, . . . , fn)
...
fn = φn(f1, . . . , fn)

involving n functions andn functional combinatorsφ1, . . . , φn can be handled by a suit-
ably extended version of (3.73). This only happens if allfi have the same “shape”, that
is, if they share the same base functorF.

Exercise 3.11. Show that law (3.73) generalizes to more than two mutually recursive
functions, in this case three:





f · in = h · F 〈f, 〈g, j〉〉
g · in = k · F 〈f, 〈g, j〉〉
j · in = l · F 〈f, 〈g, j〉〉

≡ 〈f, 〈g, j〉〉 = (|〈h, 〈k, l〉〉|) (3.75)

2

Exercise 3.12. The exponential functionex : IR → IR (where “e” denotes Euler’s
number) can be defined in several ways, one being the calculation of Taylor series:

ex =
∞∑

n=0

xn

n!
(3.76)

The following function, in Haskell,

exp :: Double -> Integer -> Double
exp x 0 = 1
exp x (n+1) = xˆ(n+1) / fac (n+1) + (exp x n)

computes an approximation ofex, where the second parameter tells how many terms to
compute. For instance, whileexp 1 1 = 2.0, exp 1 10 yields2.7182818011463845.



3.15. THE MUTUAL-RECURSION LAW 99

Functionexp x n performs badly forn larger and larger: whileexp 1 100 runs instan-
taneously,exp 1 1000 takes around 9 seconds,exp 1 2000 takes circa 33 seconds, and so
on.

Decomposeexp into mutually recursive functions so as to apply (3.75) and obtain the
following linear version:

exp x n = let (e,b,c) = aux x n
in e where

aux x 0 = (1,2,x)
aux x (n+1) = let (e,s,h) = aux x n

in (e+h,s+1,(x/s) * h)

2

Exercise 3.13. From the following basic properties of addition and multiplication,

a ∗ 0 = 0 (3.77)

a ∗ 1 = a (3.78)

a ∗ (b + c) = a ∗ b + a ∗ c (3.79)

show thata ∗ n is the “for-loop” (a+)n 0.
2

Exercise 3.14. Show that, for alln ∈ IN0, n = sucn0. Hint: use cata-reflexion (3.58).
2

As example of application of (3.73) forT other thanIN0, consider the following re-
cursive predicate which checks whether a (non-empty) list is ordered,

ord : A+ // 2
ord [a] = TRUE

ord (cons(a, l)) = a ≥ (listMax l) ∧ (ord l)



100 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

where≥ is assumed to be a total order on datatypeA and

listMax = (|[ id,max ]|) (3.80)

computes the greatest element of a given list ofAs:

A+

listMax
��

A + A×A+

id+id×listMax

��

[ singl,cons ]
oo

A A + A×A
[ id,max ]

oo

(In the diagram,singla = [a].)
Predicateord is not a catamorphism because of the presence oflistMax l in the

recursive branch. However, the following diagram depicting ord

A+

ord

��

A + A×A+

id+id×〈listMax,ord〉
��

[ singl,cons ]oo

2 A + A× (A× 2)
[ TRUE,α ]

oo

(whereα(a, (m, b))
def
= a ≥ m ∧ b) suggests the possibility of using the mutual recursion

law. One only has to find a way of lettinglistMax depend also onord, which isn’t

difficult: for any A+
g // B , one has

A+

listMax

��

A + A×A+

id+id×〈listMax,g〉
��

[ singl,cons ]oo

A A + A× (A×B)
[ id,max·(id×π1) ]

oo

where the extra presence ofg is cancelled by projectionπ1.
ForB = 2 andg = ord we are in position to apply Fokkinga’s law and obtain:

〈listMax, ord〉 = (|〈[ id,max · (id× π1) ], [ TRUE, α ]〉|)
= { exchange law(2.47)}

(|[ 〈id, TRUE〉, 〈max · (id× π1), α〉 ]|)
Of course,ord = π2 · 〈listMax, ord〉. By denoting the above synthesized catamorphism
by aux, we end up with the following version oford:

ord l = let (a, b) = aux l
in b



3.16. “BANANA-SPLIT”: A COROLLARY OF THE MUTUAL-RECURSIONLAW101

where

aux : A+ // A× 2
aux [a] = (a, TRUE)
aux (cons(a, l)) = let (m, b) = aux l

in (max(a,m), (a > m ∧ b))

3.16 “Banana-split”: a corollary of the mutual-recursion
law

Let h = i · F π1 andk = j · F π2 in (3.73). Then

f · in = (i · F π1) · F 〈f, g〉
≡ { composition is associative andF is a functor}

f · in = i · F (π1 · 〈f, g〉)
≡ { by×-cancellation (2.20)}

f · in = i · F f

≡ { by cata-cancellation}
f = (|i|)

Similarly, fromk = j · F π2 we get

g = (|j|)

Then, from (3.73), we get

〈(|i|), (|j|)〉 = (|〈i · F π1, j · F π2〉|)

that is

〈(|i|), (|j|)〉 = (|(i× j) · 〈F π1,F π2〉|) (3.81)

by (reverse)×-absorption (2.25).
This law provides us with a very useful tool for “parallel loop” inter-combination:

“loops” (|i|) and(|j|) are fused together into a single “loop”(|(i × j) · 〈F π1,F π2〉|). The
need for this kind of calculation arises very often. Consider, for instance, the function
which computes the average of a non-empty list of natural numbers,

average
def
= (/) · 〈sum, length〉 (3.82)



102 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

wheresum andlength are the expectedIN+ catamorphisms:

sum = (|[ id,+ ]|)
length = (|[ 1, succ · π2 ]|)

As defined by (3.82), functionaverage performs two independent traversals of the argu-
ment list before division(/) takes place. Banana-split will fuse such two traversals into a
single one (see functionaux below), thus leading to a function which will run ”twice as
fast”:

average l = x/y
where (x, y) = aux l

aux[a] = (a, 1)
aux(cons(a, l)) = (a + x, y + 1)

where (x, y) = aux l

(3.83)

Exercise 3.15. Calculate (3.83) from (3.82). Which of these two versions ofthe same
function is easier to understand?
2

3.17 Inductive datatype isomorphism

not yet available

3.18 Bibliography notes

It is often the case that the expressive power of a particularprogramming language or
paradigm is counter-productive in the sense that too much freedom is given to program-
mers. Sooner or later, these will end up writing unintelligible (authorship dependent) code
which will become a burden to whom has to maintain it. Such hasbeen the case of imper-
ative programming in the past (inc. assembly code), where the unrestricted use ofgoto
instructions eventually gave place toif-then-else , while andrepeat structured
programming constructs.

A similar trend has been observed over the last decades at a higher programming
level: arbitrary recursion and/or (side) effects have beenconsidered harmful in functional
programming. Instead, programmers have been invited to structure their code around



3.18. BIBLIOGRAPHY NOTES 103

generic program devices such as eg.fold/unfold combinators, which bring discipline to
recursion. One witnesses progress in the sense that the lossof freedom is balanced by the
increase of formal semantics and the availability of program calculi.

Such disciplined programming combinators have been extended from list-processing
to other inductive structures thanks to one of the most significant advances in program-
ming theory over the last decade: the so-calledfunctorial approach to datatypes which
originated mainly from [MA86], was popularized by [Mal90] and reached textbook for-
mat in [BdM97]. A comfortable basis for exploitingpolymorphism[Wad89], the “datatypes
as functors” moto has proved beneficial at a higher level of abstraction, giving birth to
polytypism[JJ96].

The literature onanas, catasandhylosis vast (see eg. [MH95], [JJ98], [GHA01]) and
it is part of a broader discipline which has become known as the mathematics of program
construction[Bac04]. This chapter provides an introduction to such as discipline. Only
the calculus of catamorphisms is presented. The corresponding theory of anamorphisms
and hylomorphisms demands further mathematical machineryand will won’t be dealt
with before chapters 5 and 7. The results on mutual recursionpresented in this chapter
were pionered by Maarten Fokkinga [Fok92].



104 CHAPTER 3. RECURSION IN THE POINTFREE STYLE



Chapter 4

Why Monads Matter

In this chapter we present a powerful device in state-of-the-art programming, that of a
monad. The monad concept is nowadays of primary importance in computing science
because it makes it possible to describe computational effects as disparate as input/output,
comprehension notation, state variable updating, contextdependence, partial behaviour
etc. in an elegant and uniform way.

Our motivation to this concept will start from a well-known problem in functional
programming (and computing as a whole) — that of coping with undefined computations.

4.1 Partial functions

Consider theIR to IR function

g x
def
= 1/x

Clearly,g is undefined forx = 0 becauseg 0 = 1/0 is so big a real number that it cannot
be properly evaluated. In fact, the HASKELL output forg 0 = 1/0 is just “panic”:

Main> g 0

Program error: {primDivDouble 1.0 0.0}

Main>

Functions such asg above are calledpartial functionsbecause they cannot be applied
to all of their inputs (i.e., they diverge for some of their inputs). Partial functions are
very common in mathematics or programming — for other examples think ofe.g. list-
processing functionshead andtail .

105



106 CHAPTER 4. WHY MONADS MATTER

Panic is very dangerous in programming. In order to avoid this kind of behaviour
one has two alternatives, either ensuring that every call tog x is protected— i.e., the
contexts which wrap up such calls ensurepre-conditionx 6= 0, or oneraisesexceptions,
i.e. explicit error values. In the former case, mathematical proofs need to be carried out
in order to guaranteesafety(that is,pre-conditioncompliance). The overall effect is to
restrict the domain of the partial function. In the latter case one goes the other way
round, by extending the co-domain (vulg. range) of the function so that it accommodates
exceptional outputs. In this way one might define, in HASKELL:

data ExtReal = Ok Real | Error

and then redefine

g :: Real -> ExtReal
g 0 = Error
g n = Ok 1/n

In general, one might define parametric type

data Ext a = Ok a | Error

in order to extend an arbitrary data typea with its (polymorphic) exception (or error
value). Clearly, one has

Ext A ∼= MaybeA ∼= 1 + A

So, in abstract terms, one may regard aspartial every function of signature

1 + A B
goo

for someA andB 1.

4.2 Putting partial functions together

Do partial functions compose? Their types won’t match in general:

1 + B A
goo

1 + C B
foo

1In conventional programming, every function delivering apointeras result — as ine.g.the C
programming language — can be regarded as one of these functions.



4.2. PUTTING PARTIAL FUNCTIONS TOGETHER 107

Clearly, we have to extendf — which is itself a partial function — to somef ′ able to
accept arguments from1 + B:

1

...

����
��

��
��

��
��

��
��

i1
��

1 + B

f ′
zzttttttttt

A
goo

1 + C B

i2

OO

f
oo

The most “obvious” instance of the ellipsis (. . .) in the diagram above isi1 and this
corresponds to what is calledstrict composition: an exception produced by theproducer
functiong is propagated to the output of theconsumerfunctionf :

f • g
def
= [ i1, f ] · g (4.1)

Expressed in terms ofExt , composite functionf • g works as follows:

(f • g)a = f ′(g a)

where

f ′Error = Error

f ′ (Okb) = f b

Altogether, we have the following Haskell expression for the meaning off • g:

\a -> f’ (g a)
where f’ Error = Error

f’ (Ok b) = f b

Note that the adopted extension off can be decomposed — by reverse+-absorption
(2.41) — into

f ′ = [ i1, id ] · (id + f)

as displayed in diagram

1 + (1 + C)

[ i1,id ]
��

1 + B
id+foo A

goo

1 + C B
foo



108 CHAPTER 4. WHY MONADS MATTER

All in all, we have the following version of (4.1):

f • g
def
= [ i1, id ] · (id + f) · g

Does this functional composition scheme have a unit, that is, is there au such that

f • u = f = u • f (4.2)

holds? Clearly, if it exists, it must bear type1 + A A
uoo . Let ussolve(4.2) foru:

f • u = f = u • f

≡ { substitution}
[ i1, f ] · u = f = [ i1, u ] · f

⇐ { let u = i2 }
[ i1, f ] · i2 = f = [ i1, i2 ] · f ∧ u = i2

≡ { by +-cancellation (2.38) and+-reflection (2.39)}
f = f = id · f ∧ u = i2

⇐ { identity }
u = i2

4.3 Lists

In contrast to partial functions, which can produce no output, let us now consider functions
which delivertoo manyoutputs, for instance, lists of output values:

B⋆ A
goo

C⋆ B
foo

Functionsf andg do not compose but once again one can think of extending the consumer
function (f ) by mapping it along the output of the producer function (g):

(C⋆)⋆
B⋆

f⋆

oo

C⋆ B
foo



4.4. MONADS 109

To complete the process, one has toflattenthe nested-sequence output in(C⋆)⋆ via the ob-

vious list-catamorphismC⋆ (C⋆)⋆
concatoo , whereconcat

def
= (|[ [ ],++ ]|). In sum-

mary:

f • g
def
= concat · f⋆ · g (4.3)

as captured in the following diagram:

(C⋆)⋆

concat

��

B⋆
f⋆

oo A
goo

C⋆ B
foo

Exercise 4.1. Show thatsingl (recall exercise 3.7) is the unitu of • in the context of
(4.3).
2

Exercise 4.2. Encode inHASKELL a pointwise version of (4.3).Hint : first apply (list)
cata-absorption (3.67).
2

4.4 Monads

Both function composition schemes (4.1) and (4.3) above share the same polytypic pat-
tern: the output of the producer function is “F-times” more elaborate than the input of the
consumer function, whereF is some parametric datatype —F X = 1+X in case of (4.1),
andF X = X⋆ in case of (4.3). Then a composition scheme is devised for such functions,
which is displayed in

F(F C)

µ

��

F B
F foo A

goo

F C B
foo



110 CHAPTER 4. WHY MONADS MATTER

and is given by

f • g
def
= µ · F f · g (4.4)

where F A F2 A
µoo is a suitable polymorphic function. Together with a unit function

F A A
uoo andµ, datatypeF will form a so-calledmonadtype, of which1 + and

( )⋆ are the two examples seen above.
Arrow µ · F f is called theextensionof f . Functionsµ andu are referred to as the

monad’smultiplication andunit, respectively. The monadic composition scheme (4.4) is
calledKleisli composition.

A monadic arrow FB A
foo conveys the idea of a function which produces an

output of “type” B “wrapped byF”, where datatypeF describes some kind of (compu-

tational) “effect”. The monad’s unitFB B
uoo is a primitive monadic arrow which

produces (i.e.promotes, injects, wraps) datatogether withsuch an effect.
The monad concept is nowadays of primary importance in computing science because

it makes it possible to describe computational effects as disparate as input/output, state
variable updating, context dependence, partial behaviour(seen above)etc. in an elegant
and uniform way. Moreover, the monad’s operators exhibit notable properties which make
it possible toreasonabout such computational effects.

The remainder of this section is devoted to such properties.First of all, the properties
implicit in the following diagrams will berequiredfor F to be regarded as a monad:

Multiplication :

F2 A

µ

��

F3 A

F µ

��

µoo

F A F2 Aµ
oo

µ · µ = µ · F µ (4.5)

Unit :

F2 A

µ

��

F A
uoo

F u
��id{{xx

xx
xx

xx
x

F A F2 Aµ
oo

µ · u = µ · F u = id (4.6)

Simple but beautiful symmetries apparent in these diagramsmake it easy to memorize
their laws and check them for particular cases. For instance, for the(1 + ) monad, law
(4.6) will read as follows:

[ i1, id ] · i2 = [ i1, id ] · (id + i2) = id



4.4. MONADS 111

These equalities are easy to check.
In laws (4.5) and (4.6), the different instances ofµ andu are differently typed, as

these are polymorphic and exhibit natural properties:

µ-natural :

A

f

��

F A

F f

��

F2 A
µoo

F2 f
��

B F B F2 Bµ
oo

F f · µ = µ · F2 f (4.7)

u-natural :

A

f

��

F A

F f

��

A
uoo

f

��
B F B Bu

oo

F f · u = u · f (4.8)

The simplest of all monads is theidentity monadF X
def
= X, which is such that

µ = id, u = id andf • g = f · g. So — in a sense — one may be think of all the
functional discipline studied so far as a particular case ofa wider discipline in which an
arbitrary monad is present.

4.4.1 Properties involving (Kleisli) composition

The following properties arise from the definitions and monadic properties presented
above:

f • (g • h) = (f • g) • h (4.9)

u • f = f = f • u (4.10)

(f • g) · h = f • (g · h) (4.11)

(f · g) • h = f • (F g · h) (4.12)

id • id = µ (4.13)

Properties (4.9) and (4.10) are the monadic counterparts of, respectively, (2.8) and (2.10),
meaning that monadic composition preserves the propertiesof normal functional compo-
sition. In fact, for the identity monad, these properties coincide with each other.

Above we have shown that property (4.10) holds for the list monad, recall (4.2). A
general proof can be produced similarly. We select property(4.9) as an illustration of the



112 CHAPTER 4. WHY MONADS MATTER

rôle of the monadic properties:

f • (g • h)

= { definition (4.4) twice}
µ · F f · (µ · F g · h)

= { µ is natural (4.7)}
µ · µ · F(F f) · F g · h

= { functorF }
µ · µ · F(F f · g) · h

= { definition (4.4)}
µ · (F f · g) • h

= { definition (4.4)}
(f • g) • h

Exercise 4.3. Check the other laws above.
2

4.5 Monadic application (binding)

The monadic extension of functional applicationap (2.67) is another operatorap′ which
is intended to be “tolerant” in face of anyF’ed argumentx:

(F B)A × F A
ap′ // B

ap′(f, x) = f ′ x = (µ · F f)x
(4.14)

If in curry/flipped format, monadic application is calledbindingand denoted by sym-
bol “>>=”, looking very much like postfix functional application,

((F B)A)F A >>= // F B (4.15)

that is:

x >>= f
def
= (µ · F f)x (4.16)



4.6. SEQUENCING AND THEDO-NOTATION 113

This operator will exhibit properties arising from its definition and the basic monadic
properties,e.g.

x >>= u

≡ { definition (4.16)}
(µ · F u)x

≡ { law (4.6) }
(id)x

≡ { identity function}
x

At pointwise level, one may chain monadic compositions fromleft to right,e.g.

(((x >>= f1) >>= f2) >>= . . . fn−1) >>= fn

for functions A
f1 // F B1 , B1

f2 // F B2 , . . . Bn−1
fn // F Bn .

4.6 Sequencing and thedo-notation

Given two monadic valuesx andy, it becomes possible to “sequence” them, thus obtain-
ing another of such value, by defining the following operator:

x >> y
def
= x >>= y (4.17)

For instance, within the finite-list monad, one has

[1, 2] >> [3, 4] = (concat · [3, 4]⋆)[1, 2] = concat[[3, 4], [3, 4]] = [3, 4, 3, 4]

Because this operator is associative (prove this as an exercise), one may iterate it to
more than two arguments and write, for instance,

x1 >> x2 >> . . . >> xn

This leads to the populardo notation, which is another piece of (pointwise) notation
which makes sense in a monadic context:

do x1;x2; . . . ;xn
def
= x1 >> do x2; . . . ;xn

for n ≥ 1. Forn = 1 one trivially has

do x1
def
= x1



114 CHAPTER 4. WHY MONADS MATTER

4.7 Generators and comprehensions

Thedo-notation accepts a variant in which the arguments of the>> operator are “genera-
tors” of the form

a← x (4.18)

where, fora of typeA, x is an inhabitant of monadic typeF A. One may regarda← x as
meaning “leta be taken fromx”. Then thedo-notation extends as follows:

do a← x1;x2; . . . ;xn
def
= x1 >>= λa.(do x2; . . . ;xn) (4.19)

Of course, we should now allow for thexi to range over terms involving variablea. For
instance (again in the list-monad), by writing

do a← [1, 2, 3]; [a2] (4.20)

we mean

[1, 2, 3] >>= λa.[a2]

= concat((λa.[a2])
⋆
[1, 2, 3])

= concat[[1], [4], [9]]

= [1, 4, 9]

The analogy with classical set-theoretic ZF-notation, whereby one might write{a2 |
a ∈ {1, 2, 3}} to describe the set of the first three perfect squares, calls for the following
notation,

[ a2 | a← [1, 2, 3] ] (4.21)

as a “shorthand” of (4.20). This is an instance of the so-called comprehensionnotation,
which can be defined in general as follows:

[ e | a1← x1, . . . , an← xn ] = do a1← x1; . . . ; an← xn;u(e) (4.22)

Alternatively, comprehensions can be defined as follows, wherep, q stand for arbitrary
generators:

[t] = u t (4.23)

[ f x | x← l ] = (F f)l (4.24)

[ t | p, q ] = µ[ [ t | q ] | p ] (4.25)

Note, however, that comprehensions are not restricted to lists or sets — they can be
defined for any monadF.



4.8. MONADS IN HASKELL 115

4.8 Monads in HASKELL

In theStandard Preludefor HASKELL, one finds the following minimal definition of the
Monad class,

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

wherereturn refers to the unit ofm, on top of which the “sequence” operator

(>>) :: m a -> m b -> m b
fail :: String -> m a

is defined by

p >> q = p >>= \ _ -> q

as expected. This class is instantiated for finite sequences([] ), Maybe andIO .
Theµ multiplication operator is functionjoin in moduleMonad.hs :

join :: (Monad m) => m (m a) -> m a
join x = x >>= id

This is easily justified:

join x = x >>= id (4.26)

= { definition (4.16)}
(µ · F id)x

= { functors commute with identity (3.44)}
(µ · id)x

= { law (2.10)}
µ x

In Mpi.hs we define (Kleisli) monadic composition in terms of the binding operator:

(.!) :: Monad a => (b -> a c) -> (d -> a b) -> d -> a c
(f .! g) a = (g a) >>= f



116 CHAPTER 4. WHY MONADS MATTER

4.8.1 Monadic I/O

IO, a parametric datatype whose inhabitants are special values calledactionsor com-
mands, is a most relevant monad. Actions perform the interconnection between HASKELL

and the environment (file system, operating system). For instance,getLine :: IO String
is a particular action. ParameterString refers to the fact that this action “delivers” —
or extracts — a string from the environent. This meaning is clearly conveyed by the type
String assigned to symboll in

do l← getLine; . . . l . . .

which is consistent with typing rule for generators (4.18).Sequencing corresponds to the
“;” syntax in most programming languages (e.g. C) and thedo-notation is particulary
intuitive in the IO-context.

Examples of functions delivering actions are

FilePath
readF ile // IOString

and

Char
putChar // IO()

— both produce I/O commands as result.
As is to be expected, the implementation of theIO monad in HASKELL — avail-

able from theStandard Prelude— is not totally visible, for it is bound to deal with the
intrincacies of the underlying machine:

instance Monad IO where
(>>=) = primbindIO
return = primretIO

Rather interesting is the wayIO is regarded as a functor:

fmap f x = x >>= (return . f)

This goes the other way round, the monadic structure “helping” in defining the functor
structure, everything consistent with the underlying theory:

x >>= (u · f) = (µ · IO(u · f))x

= { functors commute with composition}
(µ · IOu · IO f)x

= { law (4.6) forF = IO }
(IO f)x

= { definition offmap }
(fmap f)x



4.9. THE STATE MONAD 117

For enjoyable reading on monadic input/output in HASKELL see [Hud00], chapter 18.

Exercise 4.4. Use thedo-notation and the comprehension notation to output the follow-
ing truth-table, inHASKELL:

p / q False True

False False False
True False True

2

Exercise 4.5. Extend theMaybe monad to the following “error message” exception
handling datatype:

data Error a = Err String | Ok a deriving Show

In case of several error messages issued in ado sequence, how many turn up on the
screen? Which ones?
2

4.9 The state monad

NB: this section is still very drafty

The so-calledstate monadis a monad whose inhabitants are state-transitions encoding a
particular brand of state-based automaton known asMealy machine. Given a setA (input
alphabet), a setB (output alphabet) and a set of statesS, a deterministic Mealy machine
(DMM) is specified by a transition function of type

A× S
δ // B × S (4.27)

Wherever(b, s′) = δ(a, s), we say that the machine has transition

s
a|b // s′



118 CHAPTER 4. WHY MONADS MATTER

and refer tos as thebefore state, and tos′ as theafter state.
It is clear from (4.27) thatδ can be expressed as thesplit of two functionsf andg,

δ = 〈f, g〉, as depicted in the following diagram:

g

f
a

s

b = f(a, s)

s′ = g(a, s)

-

-

�
�
�

�
�S

-
p

-p -

(4.28)

The information recorded in the state of a DMM is either meaningless to the user of
the machine (as in eg. the case of states represented by numbers) or too complex to be
handled explicitly (as is the case of eg. the data kept in a large database). So, it is con-
venient toabstractfrom it. Such an abstraction leads to thestate monadin the following
way: recalling (2.75), we simplycurry δ

A
δ //

(B × S)S︸ ︷︷ ︸
(St S) B

(4.29)

thus “shifting” the input state to the output. In this way,δ a is a function capturing all
state-transitions (and corresponding outputs) for inputa. For instance, the function which
appendsa new element to the back of a queue,

enq(a, s)
def
= s ++ [a]

can be converted into a DMM by adding to it a dummy output of type 1 and then trans-
posing:

enqueue : A→ (1× S)S

enqueue a
def
= 〈!, (++[a])〉 (4.30)

Action enqueue performsenq on the state while acknowledging it by issuing an output
of type1.



4.9. THE STATE MONAD 119

Unit and multiplication. Let us show that

(St S) A ∼= (A× S)S (4.31)

forms a monad. As we shall see, the fact that thevaluesof this monad are functions
brings the theory of exponentiation to the forefront. (Thusa review of section 2.14 is
recommended.) Notation̂f will be used to abbreviateuncurry f . Thus the following
variant of universal law (2.67),

k̂ = f ⇔ f = ap · (k × id) (4.32)

whose cancellation

k̂ = ap · (k × id) (4.33)

is written pointwise as follows:

k̂(c, a) = (k c)a (4.34)

First of all, what is the functor behind (4.31)? Fixing the state spaceS, we obtain

FX
def
= (X × S)S (4.35)

on objects and

Ff
def
= (f × id)S (4.36)

on functions, where( )S is the exponential functor (2.71).
The unit of this monad is the transpose of the simplest of all Mealy machines — the

identity:

u : A→ (A× S)S

u = id
(4.37)

Let us see what this means:

u = id

≡ { (2.67) }
ap · (u× id) = id

≡ { introducing variables}
ap(u a, s) = (a, s)

≡ { definition ofa }
(u a)s = (a, s)



120 CHAPTER 4. WHY MONADS MATTER

From the type ofµ, for this monad,

((A× S)S × S)
S µ // (A× S)S

one figures outµ = xS (recalling the exponential functor as defined by (2.71)) forx

of type ((A× S)S × S)
x // (A× S) . This, on its turn, is easily recognized as an

instance of theap polymorphic function (2.67), which is such thatap = îd, recall (2.69).
Altogether, we define

µ = apS (4.38)

Let us check the meaning ofµ by applying it to an action expressed as in diagram
(2.75):

µ〈f, g〉 = apS〈f, g〉
≡ { (2.71) }

µ〈f, g〉 = ap · 〈f, g〉
≡ { extensional equality (2.5)}

µ〈f, g〉s = ap(f s, g s)

≡ { definition ofap }
µ〈f, g〉s = (f s)(g s)

We find out thatµ “unnests” the action insidef by applying it to the state delivered byg.

Checking the monadic laws. The calculation of (4.6) is made in two parts, checking
µ · u = id first,

µ · u
= { definitions}

apS · id
= { exponentials absorption (2.72)}

ap · id
= { reflection (2.69)}

id



4.9. THE STATE MONAD 121

and then checkingµ · (Fu) = id:

µ · (Fu)

= { (4.38,4.36)}

apS · (id× id)S

= { functor }

(ap · (id× id))S

= { cancellation (2.68)}

idS

= { functor }
id

The proof of (4.5) is also not difficult once supported by the laws of exponentials.

Kleisli composition. Let us calculatef • g for this monad:

f • g

= { (4.4) }
µ · F f · g

= { (4.38) ; (4.36)}

apS · (f × id)S · g
= { ( )S is a functor }

(ap · (f × id))S · g
= { (4.32) }

f̂S · g
= { cancellation}

f̂S · ĝ
= { absorption (2.72)}

f̂ · ĝ

In summary, we have:

f • g = f̂ · ĝ (4.39)



122 CHAPTER 4. WHY MONADS MATTER

Let us use this in calculating law

pop • push = u (4.40)

wherepush andpop are such that

push : A→ (1× S)S

p̂ush
def
= 〈!, :̂〉 (4.41)

pop : 1→ (A× S)S

p̂op
def
= 〈head, tail〉 · π2

(4.42)

for S the datatype of finite lists. We reason:

pop • push

= { (4.39) }

p̂op · p̂ush

= { (4.41, 4.42)}

〈head, tail〉 · π2 · 〈!, (̂:)〉
= { (2.20, 2.24)}

〈head, tail〉 · (̂:)
= { out · in = id (lists) }

id

= { (4.37) }
u

Bind. The effect of binding a state transitionx to a state-monadic functionh is calcu-
lated in a similar way:

x >>= h

= { (4.16) }
(µ · Fh)x

= { (4.38) and (4.36)}

(apS · (h× id)S)x

= { ( )S is a functor }



4.9. THE STATE MONAD 123

(ap · (h× id))Sx

= { cancellation (4.33)}

ĥSx

= { exponential functor (2.71)}

ĥ · x

Let us unfoldĥ · x by splittingx into its components two componentsf andg:

〈f, g〉>>= h = ĥ · 〈f, g〉
≡ { go pointwise}

(〈f, g〉>>= h)s = ĥ(〈f, g〉s)
≡ { (2.18) }

(〈f, g〉>>= h)s = ĥ(f s, g s)

≡ { (4.34) }

(〈f, g〉>>= h)s = h(f s)(g s)

In summary, for a given “before state”s, g s is the intermediate state upon whichf s runs
and yields the output and (final) “after state”.

Two prototypical inhabitants of the state monad: get and put. These generic
actions are defined as follows, in the PF-style:

get
def
= 〈id, id〉 (4.43)

put
def
= 〈!, π1〉 (4.44)

Action g retrieves the data stored in the state whileput (which can also be written

put s = modify(s) (4.45)

where

modify f
def
= 〈!, f〉 (4.46)

updates the state via state-to-state functionf ) stores a particular value in the state.
The following is an example, in Haskell, of the standard use of get/put in managing

context data, in this case a counter. The function decorateseach node of aBTree (recall
this datatype from page 91) with its position in the tree:



124 CHAPTER 4. WHY MONADS MATTER

decBTree Empty = return Empty
decBTree (Node (a,(t1,t2))) =

do n <- get ;
put(n+1) ;
l <- decBTree t1 ;
r <- decBTree t2 ;
return (Node((a,n),(l,r)))

4.10 Bibliography notes

The use of monads in computer science started with Moggi [Mog89], who had the idea
that monads should supply the extra semantic information needed to implement the lambda-
calculus theory. Haskell [Jon03] is among the computer languages which make systematic
use of monads for implementing effects and imperative constructs in an otherwise purely
functional language.

Category theorists invented monads in the 1960’s to concisely express certain aspects
of universal algebra. Functional programmers invented list comprehensions in the 1970’s
to concisely express certain programs involving lists. Philip Wadler [Wad89] made a
great contribution in the field by showing that list comprehensions could be generalised
to arbitrary monads and unify with imperative “do”-notation in case of the monad which
explains imperative computations.

Monads are nowadays an essential feature of functional programming and are used in
fields as diverse as language parsing [HM93], component-oriented programming [Bar01],
strategic programming [LV03] and multimedia [Hud00].



Part II

Moving Away From (Pure)
Functions

125





Bibliography

[ABH+92] C. Aarts, R.C. Backhouse, P. Hoogendijk, E.Voermans, and J. van der
Woude. A relational theory of datatypes, December 1992. Available from
www.cs.nott.ac.uk/˜rcb .

[Bac78] J. Backus. Can programming be liberated from the vonNeumann style? a
functional style and its algebra of programs.CACM, 21(8):613–639, August
1978.

[Bac04] R.C. Backhouse.Mathematics of Program Construction. Univ. of Notting-
ham, 2004. Draft of book in preparation. 608 pages.

[Bar01] L.S. Barbosa.Components as Coalgebras. University of Minho, December
2001. Ph. D. thesis.

[BD77] R.M. Burstall and J. Darlington. A transformation system for developing
recursive programs.JACM, 24(1):44–67, January 1977.

[BdM97] R. Bird and O. de Moor. Algebra of Programming. Series in Computer
Science. Prentice-Hall International, 1997. C.A.R. Hoare, series editor.

[Bir98] R. Bird. Introduction to Functional Programming. Series in Computer Sci-
ence. Prentice-Hall International, 2nd edition, 1998. C.A.R. Hoare, series
editor.

[Flo67] R.W. Floyd. Assigning meanings to programs. In J.T.Schwartz, editor,Math-
ematical Aspects of Computer Science, volume 19, pages 19–32. American
Mathematical Society, 1967. Proc. Symposia in Applied Mathematics.

[Fok92] M.M. Fokkinga.Law and Order in Algorithmics. PhD thesis, University of
Twente, Dept INF, Enschede, The Netherlands, 1992.

[GHA01] Jeremy Gibbons, Graham Hutton, and Thorsten Altenkirch. When is a func-
tion a fold or an unfold?, 2001. WGP, July 2001 (slides).

283



284 BIBLIOGRAPHY

[Gof84] J. Le Goff. Calend́ario, volume I, chapter 8, pages 260–292. I.N.-C.M.,
1984. EINAUDI Encyclopedia (Portuguese translation).

[HM93] Graham Hutton and Erik Meijer. Monadic parsing in Haskell. Journal of
Functional Programming, 8(4), 1993.

[Hud00] P. Hudak.The Haskell School of Expression - Learning Functional Program-
ming Through Multimedia. Cambridge University Press, 1st edition, 2000.
ISBN 0-521-64408-9.

[JJ96] J. Jeuring and P. Jansson. Polytypic programming. InAdvanced Functional
Programming, number 1129 in LNCS, pages 68–114. Springer, 1996.

[JJ98] P. Jansson and J. Jeuring. Polylib — a library of polytypic functions. In
Workshop on Generic Programming (WGP’98), Marstrand, Sweden, 1998.

[Jon03] S.L. Peyton Jones.Haskell 98 Language and Libraries. Cambridge Univer-
sity Press, Cambridge, UK, 2003. Also published as a SpecialIssue of the
Journal of Functional Programming, 13(1) Jan. 2003.

[LV03] R. Lämmel and J. Visser. A Strafunski Application Letter. In V. Dahl and
P.L. Wadler, editors,Proc. of Practical Aspects of Declarative Programming
(PADL’03), volume 2562 ofLNCS, pages 357–375. Springer-Verlag, January
2003.

[MA86] E.G. Manes and M.A. Arbib. Algebraic Approaches to Program Seman-
tics. Texts and Monographs in Computer Science. Springer-Verlag, 1986.
D. Gries, series editor.

[Mal90] G. Malcolm. Data structures and program transformation. Science of Com-
puter Programming, 14:255–279, 1990.

[McC63] J. McCarthy. Towards a mathematical science of computation. In C.M. Pop-
plewell, editor,Proc. of IFIP 62, pages 21–28, Amsterdam-London, 1963.
North-Holland Pub. Company.

[MH95] E. Meijer and G. Hutton. Bananas in space: Extending fold and unfold to
exponential types. In S. Peyton Jones, editor,Proceedings of Functional
Programming Languages and Computer Architecture (FPCA95), 1995.

[Mog89] Eugenio Moggi. Computational lambda-calculus andmonads. InProceed-
ings 4th Annual IEEE Symp. on Logic in Computer Science, LICS’89, Pacific
Grove, CA, USA, 5–8 June 1989, pages 14–23. IEEE Computer Society Press,
Washington, DC, 1989.



BIBLIOGRAPHY 285

[NR69] P. Naur and B. Randell, editors.Software Engineering: Report on a confer-
ence sponsored by the NATO SCIENCE COMMITTEE, Garmisch, Germany,
7th to 11th October 1968. Scientific Affairs Division, NATO, 1969.

[Oli08a] J.N. Oliveira. Extended static checking by calculation using the pointfree
transform, 2008. Tutorial paper (56 p.) accepted for publication by Springer-
Verlag, LNCS series.

[Oli08b] J.N. Oliveira.Transforming Data by Calculation. In GTTSE’07, volume 5235
of LNCS, pages 134–195. Springer, 2008.

[OR06] J.N. Oliveira and C.J. Rodrigues. Pointfree factorization of operation refine-
ment. InFM’06, volume 4085 ofLNCS, pages 236–251. Springer-Verlag,
2006.

[PH70] M.S. Paterson and C.E. Hewitt. Comparative schematology. In Project MAC
Conference on Concurrent Systems and Parallel Computation, pages 119–
127, August 1970.

[Wad89] P.L. Wadler. Theorems for free! In4th International Symposium on Func-
tional Programming Languages and Computer Architecture, pages 347–359,
London, Sep. 1989. ACM.


