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Preamble

This textbook in preparation has arisen from the authosgaech and teaching
experience. Its main aim is to provide software practitisneith a calculational
approach to the design of software artifacts ranging framp# algorithms and
functions to the specification and realization of informatsystems. Put in other
words, the book invites software designers to raise staisdand adopt mature
development techniques found in other engineering dis&p] which (as a rule)
are rooted on a sound mathematical basis so as to enableaatgedasoning.

It is interesting to note that while coining the phrasdtware engineeringn
the 1960s, our colleagues of the time were already promisiiatp high quality
standards. The terminology seems to date from the Garmiggdi©Nonference
in 1968, from whose report [NR69] the following excerpt istgd:

In late 1967 the Study Group recommended the holding of aingidon-
ference on Software Engineering. The phrase ‘softwarenemsging’ was
deliberately chosen as being provocative, in implying teechfor software
manufacture to be based on the types of theoretical foumasitaind practi-
cal disciplines, that are traditional in the establishedabches of engineer-

ing.

Provocative or not, the need for sound theoretical foundathas clearly been un-
der concern since the very beginning of the discipline. H@axehow “scientific”
do such foundations turn out to be, now that four decades $iace elapsed?

Ten years ago, Richard Bird and Oege de Moore publishedlzaek{BdM97]
in whose preface C.A.R. Hoare writes:

Programming notation can be expressed bgrinulee and equations(...)
which share theeleganceof those which underliphysicsand chemistryor
any other branch of basic science”.

The formulee and equations mentioned in this quotation awetbf the discipline
known as theé\lgebra of ProgrammingMany others have contributed to this body

1



2 LIST OF EXERCISES

of knowledge, notably Roland Backhouse and his colleagu&snalhoven and
Nottingham, see eg. [ABH92] and [Bac04], among many others. Unfortunately,
both of these references are still unpublished.

When the author of this draft textbook decided to teAtdiebra of Program-
ming to 2nd year students of the Minho degrees in computer scidyazk to
1998, he found [BdM97] too difficult for the students to fallomainly because
of its explicit categorial (allegorical) flavour. So he dimil to start writing slides
and notes helping the students to read the book. Eventsaityy notes became
chapters 2 to 4 of the current version of the monograph. Theegarocedure
was taken when teaching the relational approach of [BdM®7}h and 5th year
students (today at master level).

This draft book is by and large incomplete, most chaptersgsiill in slide
form. Such chapters are omitted from the current print-out.

Braga, University of Minho, December 2008

José N. Oliveira
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Chapter 2

An Introduction to Pointfree
Programming

Everybody is familiar with the concept offanctionsince the school desk. The functional
intuition traverses mathematics from end to end becausssiatsolid semantics rooted on
a well-known mathematical system — the class of “all” sets set-theoretical functions.

Functional programming literally means “programming wftimctions”. Program-
ming languages such asdp or HASKELL allow us to program with functions. However,
the functional intuition is far more reaching than prodgctode which runs on a com-
puter. Since the pioneering work of John McCarthy — the itwenf LiSP — in the
early 1960s, one knows that other branches of programmingoeastructured, or ex-
pressed functionally. The idea of producing programgdéigulation that is to say, that
of calculating efficient programs out of abstract, ineffitienes has a long tradition in
functional programming.

This book is structured around the idea that functional ogning can be used as
a basis for teaching programming as a whole, from the suocéssctionn — n + 1to
large information system design.

This chapter provides a light-weight introduction to thedty of functional program-
ming. Its emphasis is on explaining how to construct newtions out of other functions
using a minimal set of predefined functional combinatorsis Téads to a programming
style which ispoint freein the sense that function descriptions dispense with bhasa
(definition pointg.

Many technical issues are deliberately ignored and defdodater chapters. Most
programming examples will be provided in thenskELL functional programming lan-
guage. Appendix A includes the listings of somaskeLL modules which complement
the HuGs Standard Preludéwhich is based very closely on tt&tandard Preluddor
HAskELL 1.4.) and help to “animate” the main concepts introducethime¢hapter.

11



12 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

2.1 Introducing functions and types
The definition of a function
f: A—=B (2.1)

can be regarded as a kind of “process” abstraction: it isackbox” which produces an
output once it is supplied with an input:

z(e A) — f — fx(€ B)

From another viewpointf can be regarded as a kind of “contract”: it commits itself
to producing aB-value provided it is supplied with ad-value. How is such a value
produced? In many situations one wishes to ignore it becaneds justusingfunction
f- In others, however, one may want to inspect the internateefblack box” in order
to know the function’ssomputation rule For instance,

succ N——N

def
sucen = n+1

expresses the computation rule of fuecessofunction — the functiorsuccwhich finds
“the next natural number” — in terms of natural number additand of natural number
1. What we above meant by a “contract” corresponds tosigaatureof the function,
which is expressed by arroy —— IN in the case osuccand which, by the way, can

be shared by other functions.g. sgn def 2,

In programming terminology one says tlsaiccandsghave the same “type”. Types
play a prominent réle in functional programming (as theyrdather programming paradigms).
Informally, they provide the “glue”, or interfacing mataki for putting functions to-
gether to obtain more complex functions. Formally, a “tyfpecking” discipline can
be expressed in terms of compositional rules which checkufational expression well-
formedness.

It has become standard to use arrows to denote functiontsigiseor function types,
recall (2.1). In this book the following variants will be wuseterchangeably to denote
the fact that functiory accepts arguments of typeand produces results of tygg: f :
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B<—A,f: A—B, B <f—A or A —f>B . This corresponds to writinfy

a -> b inthe HAsSKELL functional programming language, where type variables
are denoted by lowercase lettes.will be referred to as thdomainof f and B will be
referred to as theodomainof f. Both A and B are symbols which denote sets of values,
very often calledypes

2.2 Functional application

What do we want functions for? If we ask this question to a mgs or engineer the
answer is very likely to be: one wants functions for modelland reasoning about the
behaviour of real things.

For instance, functiodistance: = 60 x ¢ could be written by a school physics student
to model the distance (in, say, kilometers) a car will driper(hour) at average speed
60km/hour. When questioned about how far the car has gone in 2.5 hawats asmodel
provides an immediate answer: just evaludigtance2.5 to obtain150km.

So we get a naive purpose of functions: we want them tagmied to arguments
in order to obtain results. Functionapplicationis denoted by juxtapositiorg.g. f a

for B S A anda € A, and associates to the leff:z y denoteq f x) y rather than

f(zy).

2.3 Functional equality and composition

Application is not everything we want to do with functionsery soon our physics student
will be able to talk about properties of tldéstancemodel, for instance that property

distance2 x t) = 2 x (distancet) (2.2)

holds. Later on, we could learn from her or him that the samggty can be restated as
distance(twicet) = twice(distancet), by introducing functioriwicez 49 % z. Oreven

simply as
distance twice = twice- distance (2.3)

where “” denotes function-arrow chaining, as suggested by drawing

R WICe B (2.4)
distancei ldistance

R=——R
twice
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where both space and time are modelled by real numbers.

This trivial example illustrates some relevant facets @f thinctional programming
paradigm. Which version of the property presented abovbagér'? the version explic-
itly mentioning variablet and requiring parentheses (2.2)? the version hiding Variab
but resorting to functionwice (2.3)? or even drawing (2.4)?

Expression (2.3) is clearly more compact than (2.2). Thadtfer notation economy
and compactness is well-known throughout the history oheragtics. In the 16th cen-
tury, for instance, algebrists would wril®.cup.18.ced.27.cop.17 for what is nowadays
written as12z3 + 1822 + 2724 17. We may find suclsyncopateahotation odd, but should
not forget that at its time it was replacing even more obsexpFession denotations.

Why do people look for compact notations? A compact notabéaus to shorter
documents (less lines of code in programming) in which pasgtere easier to identify
and to reason about. Properties can be stated in clearfeHjre long equations which
are easy to memorize. And diagrams such as (2.4) can be damilyn which enable us
to visualize maths in a graphical format.

Some people will argue that such compact “pointfree” notafthat is, the notation
which hides variables, or function “definition points”) @atcryptic to be useful as a prac-
tical programming medium. In fact, pointfree programmiagduages such as Iverson’s
APL or Backus’ FP have been more respected than loved by thegonogers community.
Virtually all commercial programming languages requiréates and so implement the
more traditional “pointwise” notation.

Throughout this book we will adopt both, depending upon thetext. Our chosen
programming medium — WSKELL — blends the pointwise and pointfree programming
styles in a quite successful way. In order to switch from anéhe other, we need two
“bridges”: one lifting equality to the functional level atige other lifting application.

Concerning equality, note that the=" sign in (2.2) differs from that in (2.3): while
the former states that two real numbers are the same nunhigelatter states that two

R <— R functions are the same function. Formally, we will say thed functions
f,g: B<=—— A are equal if they agree at pointwise-level, that is

f=g iff Va:a€A: fa = ga) (2.5)

where=p denotes equality aB-level.
Concerning application, the pointfree style replaces ith®y more generic concept
of functionalcompositionsuggested by function-arrow chaining: wherever two fuondi

are such that the target type of one of them, @yg— A isthe same as the source type

of the other, sayC L B , then another function can be definad,<f'—g A —called
thecompositiorof f andg, or “f afterg” — which “glues” f andg together:

(f-9)a © f(ga) (2.6)
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This situation is pictured by the following arrow-diagram

B<2—4 2.7)
|
C
or by block-diagram
ga
a — 9 o f(ga)

Therefore, the type-rule associated to functional contipmstan be expressed as follows:

B<l—c

c<2-4

B<lL 4
Composition is certainly the most basic of all functionahtmnators. It is the first
kind of “glue” which comes to mind when programmers need tmloime, or chain func-

tions (or processes) to obtain more elaborate functiongr@resses). This is because
of one of its most relevant properties,

(f-9)-h = f-(g-h) (2.8)
which shares the pattern of, for instance
(a+b)+c = a+(b+c)

and so is called thassociativeproperty of composition. This enables us to move paren-
theses around in pointfree expressions involving funeficempositions, or even to omit
them, for instance by writing-g- -7 as an abbreviation df /- g)-h)-4, or of (f-(g-h))-1,
orof f-((¢g-h)-1), etc.For a chain of--many function compositions the notation”_, f;

will be acceptable as abbreviation fif- - - - - f,,.

it even has a place in script languages such mst$, wheref | g is the shell counterpart
of g - f, for appropriate “processeg”’andg.
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2.4 ldentity functions

How free are we to fulfill the “give me ad and | will give you aB” contract of equation

(2.2)? In general, the choice gfis not unique. Som¢'s will do as little as possible
while others will laboriously compute non-trivial outputé\t one of the extremes, we
find functions which “do nothing” for us, that is, the addeslue of their output when
compared to their input amounts to nothing:

fa=a
In this caseB = A, of course, and' is said to be théentity function onA:

idy @ A=—A
. def (2.9)
idaa = a
Note that every typeX “has” its identityidx. Subscripts will be omitted wherever

implicit in the context. For instance, the arrow notatipn<—<— I\ saves us from writing
id, etc. So, we will often refer to “the” identity function ratherah to “an” identity
function.

How useful are identity functions? At first sight, they lo@irfy uninteresting. But
the interplay between composition and identity, captunethb following equation,

frid=id-f=Ff (2.10)
will be appreciated later on. This property shares the patg for instance,
a+0=04+a=a
This is why we say thatd is theunit of composition. In a diagram, (2.10) looks like this:

A< 4 (2.11)

1

BTB

Note the graphical analogy of diagrams (2.4) and (2.11)gfaias of this kind are very
common and express important properties of functions, ashalt see further on.

2.5 Constant functions

Opposite to the identity functions, which do not lose anginfation, we find functions
which lose all (or almost all) information. Regardless afithinput, the output of these
functions is always the same value.



2.6. MONICS AND EPICS 17

Let C be a nonempty data domain and let and C. Then we define theverywhere
¢ function as follows, for arbitranA:

def (2.12)

c-f = ¢ (2.13)

and is depicted by a diagram similar to (2.11):

o<t

A
al s

C<£—B

(2.14)

Note that, strictly speaking, symbeldenotes two different functions in diagram (2.14):
one, which we should have writteny, accepts inputs froml while the other, which we
should have writterz, accepts inputs froni:

cgf = ca (2.15)

This property will be referred to as the constéunion property.
As with identity functions, subscripts will be omitted wieger implicit in the context.

Exercise 2.1. TheHuGs Standard Preludprovides for constant functions: you write
const c for ¢. Check thaHuGs assigns the same type to expressibns const ¢
andconst (f c), for everyf andc. What else can you say about these functional
expressions? Justify.

O

2.6 Monics and epics

Identity functions and constant functions are the limitrg®iof the functional spectrum
with respect to information preservation. All the otherdtions are in between: they lose
“some” information, which is regarded as uninteresting Jome reason. This remark
supports the following aphorism about a facet of functigmagramming: it is theart
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of transforming or losing information in a controlled ancegise way. That is to say,
the art of constructing the exact observation of data whishitii a particular context or
requirement.

How do functions lose information? Basically in two diffatevays: they may be
“blind” enough to confuse different inputs, by mapping thento the same output, or
they may ignore values of their codomain. For instare@mnfusesall inputs by mapping
them all ontac. Moreover, it ignores all values of its codomain apart fram

Functions which do not confuse inputs are calfednics (or injective functions)

and obey the following property: B S A is monicif, for every pair of functions

Aﬂc,iff~h:f-kthenh:k:,cf.diagram
h
B<f—A<<k:C

(f is “cancellable on the left").
It is easy to check that “the” identity function is monic,

id-h=id-k=h=k

= { by (2.10)}
h=k=h=k

= { predicate logic
TRUE

and that any constant functieris not monic:

c-h=c-k=h=k
{ by (2.15)}
c=c=>h=k

= { function equality is reflexive
TRUE=h =k
{ predicate logic

h=k

So the implication does not hold in general (onlyif k).
Functions which do not ignore values of their codomain atled&pics(or surjec-

tive functions) and obey the following property4 S B is epicif, for every pair of
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functions C B A,ifh-f=k-fthenh =k, cf. diagram

k
C=—A~<~—8B
h

!

(f is “cancellable on the right”).
As expected, identity functions are epic:

h-id=k-id=h=k

= { by (2.10)}
h=k=h=k

= { predicate logic
TRUE

Exercise 2.2. Under what circumstances is a constant function epic? fjusti
O

2.7 Isos

A function B L A which is both monic and epic is said to ise (an isomorphism, or
a bijective function). In this situatiory, always has @onverse(or inversg B AN A,
which is such that

Fofo=idg A f°-f=ida (2.16)

(i.e. f isinvertible).

Isomorphisms are very important functions because theyerbdata from one “for-
mat”, say A, to another format, sag, without losing information. Sg and andf° are
faithful protocols between the two formatisand B. Of course, these formats contain the
same “amount” of information, although the same data adepifferent “shape” in each
of them. In mathematics, one says thats isomorphicto B and one writesA = B to
express this fact.

Isomorphic data domains are regarded as “abstractly” time s&lote that, in general,
there is a wide range of isos between two isomorphic data oh@md-or instance, let
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Weekday be the set of weekdays,

Weekday =
{Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday}

and let symboF denote the sefl, 2, 3,4, 5,6, 7}, which is theinitial segmentof N con-
taining exactly seven elements. The following functjgrwhich associates each weekday
with its “ordinal” number,

f : Weekday ——7
fMonday =1
fTuesday = 2
fWednesday = 3
fThursday = 4

f Friday =5
fSaturday = 6
fSunday =7

is iso (guessf©). Clearly, f d = i means { is thei-th day of the week”. But note that
functiong d def rem(fd,7) + 1is also an iso betweeWeekday and7. While f regards

Monday the first day of the weeky placesSunday in that position. Bothf andg are
witnesses of isomorphism

Weekday = 7 (2.17)

Finally, note that all classes of functions referred to sofaconstants, identities,
epics, monics and isos — are closed under composition, sh#té composition of two
constants is a constant, the composition of two epics is efiic

2.8 Gluing functions which do not compose — prod-
ucts

Function composition has been presented above as the bagisihg functions together
in order to build more complex functions. However, not evgrg functions can be glued
together by composition. For instance, functighs A<— C andg: B<— (C do

not compose with each other because the domain of one of theot the codomain of
the other. However, botli andg share the same domafil. So, something we can do
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about gluingf andg together is to draw a diagram expressing this fact, somgiika

A\C/B

Becausef andg share the same domain, their outputs can be paired, that isjay
write ordered paif f ¢, g ¢) for eachec € C'. Such pairs belong to the Cartesian product of
A andB, that is, to the set

AxB ¥ {(a,b)|ac ANbe B}

So we may think of the operation which pairs the outputy @indg as a new function
combinator(f, g) defined as follows:

(f.9) : C—=AxB
(fg)e € (fego)

Function combinato( f, g) is pronounced f split g” (or “pair f andg”) and can be
depicted by the following “block”, or “data flow” diagram:

(2.18)

[ 1rfc

Function(f, g) keeps the information of botfi andg in the same way Cartesian product
A x B keeps the information ofi and B. So, in the same wayl data orB data can be
retrieved fromA x B data via the implicifprojectionsm or mo,

A< AxB>—=B (2.19)
defined by
m1(a,b) =a and my(a,b) =b
f andg can be retrieved fronif, ¢g) via the same projections:

- (f,g) =/ and m-(f,9) =g (2.20)
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This fact (or pair of facts) will be referred to as tlecancellationproperty and is illus-
trated in the following diagram which puts things together:

A< 4xB2>p (2.21)
; <f,g>T /
C

In summary, the type-rule associated to the “split” comtuing expressed by

BN

1<l
B¢

Ax B o

A split arises wherever two functions do not compose but share the samain.
What about gluing two functions which fail such a requisgey.

A<l ¢
B<2-D
;

The (f, g) split combination does not work any more. But a way to “approack”db-
mains of f andg, C' and D respectively, is to regard them as targets of the projestign
andm, of C' x D:

A< AxB2-p
] g
C<0cxD2sD

From this diagran{f - m1, g - m2) arises

A<—AXxB——B
<f77'rrl 7TQ>T g2
CxD

mappingC x D to A x B. It corresponds to the “parallel” application ffandg which
is suggested by the following data-flow diagram:
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c —» f — fc

d — g —gd

Functional combinatiolif -m1, g-m2) appears very often and deserves special notation
— it will be expressed by x g. So, by definition, we have

fxg € (fom,g-m) (2.22)

which is pronounced “product gf andg” and has typing-rule

a<l ¢
5= 1 (2.23)

AXB&CXD

Note the overloading of symbolX”, which is used to denote both Cartesian product and
functional product. This choice of notation will be fullystified later on.

What is the interplay among functional combinatgrsy (composition),( f, g) (split)
andf x g (product) ? Composition argplit relate to each other via the following property,
known asx-fusion

B——=DB (gl f={g9-f,h-f) (2.24)

This shows thasplit is right-distributive with respect to composition. Lefstibutivity
does not hold but there is something we can say afjedy, h) in casef =i x j:
(i xj)-(g,h)
= { by (2.22)}
(i-m1,7m2)-(g,h)
= { by x-fusion (2.24)}
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((@-m1)- (g, h), (G- m2) - (g,h))
{ by (2.8)}

(i (m- (g, ), 5~ (w2 (g, 1))
{ by x-cancellation (2.20}

(i-9,5h)

The law we have just derived is known asabsorption (The intuition behind this ter-
minology is that Split absorbsx”, as a special kind of fusion.) It is a consequence of
x -fusion andx-cancellation and is depicted as follows:

I

D~"DxEZ2sE
W)T/
C

This diagram provides us with two further results about potsl and projections which
can be easily justified:

iom = 7T1'(i><j) (226)

j~7‘('2 = WQ-(in) (227)

Two special properties of x g are presented next. The first one expresses a kind of
“bi-distribution” of x with respect to composition:
(g-h)x(i-5) = (gxi)-(hx]) (2.28)

We will refer to this property as the-functor property The other property, which we
will refer to as thex-functor-id property has to do with identity functions:

ida X idg = idaxp (2.29)

These two properties will be identified as factorial propertiesof product. This choice
of terminology will be explained later on.

Let us finally analyse the particular situation in whickgit is built involving pro-
jectionsm; andm, only. These exhibit interesting properties, for instageg 7o) = id.
This property is known as -reflexionand is depicted as follows:

A< AxBZ>B  (m,m) =idixp (2.30)

Sl oL

Ax B
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What about{r,, 7r1)? This corresponds to a diagram

B<BxAZ2s4g

}’Qv\ﬂl)

AxB

—_—

T

which looks very much the same if submitted ta89° clockwise rotation (thusi and
B swap with each other). This suggests that:p (the name we adopt fdprs, 71)) is its
own inverse, as can be checked easily as follows:

swap - swap

{ by definitionswap %ef (g, 1) }

(w9, 1) - SWap
{ by x-fusion (2.24)}

(79 - swap, w1 - swap)

{ definition of swap twice }

(m2 - (w2, m1), 71 - (T2, 71))

{ by x-cancellation (2.20}

(1, m2)

{ by x-reflexion (2.30)}

id
Therefore,swap is iso and establishes the following isomorphism
AxB = BxA (2.31)

which is known as theommutative propertgf product.

The “product datatypeXl x B is essential to information processing and is available in
virtually every programming language. ImldKELL one writeg(A,B) to denoteA x B,
for A and B two predefined datatypefst to denoter; andsnd to denoter,. Inthe C
programming language this datatype is called the “strutztype”,

struct  {
A first;
B second;
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while in PascAL itis called the “record datatype”:

record
first:  A;
second: B
end;

Isomorphism (2.31) can be re-interpreted in this context gearantee thame does not
lose (or gain) anything in swapping fields in record dataty@ or PRSCAL programmers
know also that record-field nesting has the same statusisthatsay that, for instance,
datatype

record record
F. A F: record
S: record F: A
F: B; is abstractly the same as S: B
S: C; end;
end S: C;
end; end,

In fact, this is another well-known isomorphism, known as d@ssociative property
of product:

Ax(BxC) = (AxB)xC (2.32)

This is established by x (B x C) <> (A x B) x C , which is pronounced “asso-
ciate to the right” and is defined by

assocr & (1 - 1, {2 - W1, 7)) (2.33)

Section A.0.1 in the appendix lists an extension to thesH Standard Preludealled
Set.hs , which makes isomorphisms suchsasap andassocr available. In this module,

the concrete syntax chosen fgf, g) is split f g and the one chosen fgr x g is f
>< g.

Exercise 2.3. Show thatissocr is iso by conjecturing its inversessocl and proving that
functional equalityassocr - assocl = id holds.
O

Exercise 2.4. Use (2.22) to prove properties (2.28) and (2.29).
O
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2.9 Gluing functions which do not compose — co-
products

Thesplit functional combinator arose in the previous section as@défiglue for combin-
ing two functions which do not compose but share the same idomke “dual” situation
of two non-composable functions: ¢ <—— A andg : ¢ =—— B which however
share the same codomain is depicted in

AXC%B

It is clear that the kind of glue we need in this case shouldemigiossible to apply in
case we are on thedtside” or to applyg in case we are on theB-side” of the diagram.
Let us write[ f, g | to denote the new kind of combinator. Its codomain willeWhat
about its domain?

We need to describe the datatype which is “eitherdaor a B”. Since A and B are
sets, we may think oA U B as such a datatype. This works in casand B are disjoint
sets, but wherever the intersectidm B is non-empty it is undecidable whether a value
x € AN Bis an “A-value” or a “B-value”. In the limit, if A = BthenAUu B = A =
B, that is to say, we have not invented a new datatype at all sédéficulties can be
circumvented by resorting isjoint union

A—"2a+BE B

The values ofd + B can be thought of as “copies” &f or B values which are “stamped”
with different tags in order to guarantee that values whiehsimultaneously iMl and B
do not get mixed up. The tagging functioisandi, are callednjections

i1a= (th a) , iob= (tg, b) (2.34)

Knowing the exact values of tags andt, is not essential to understanding the concept
of a disjoint union. It suffices to know that andi, tag differently and consistently. For
instance, the following realizations df + B in the C programming language,

struct  {
int tag; / * 1,2 */
union {
A ifA;
B ifB;
} data;
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orin PASCAL,
record
case
tag: integer
of x =
1. (P:A);
2: (S:B)
end;

adopt integer tags. In theuts Standard Preludavhich is based very closely on the
Standard Preludéor HASKELL 1.4., theA + B datatype is realized by

data Either a b = Left a | Right b

So,Left andRight can be thought of as the injectiofisandi, in this realization.

At this level of abstraction, disjoint uniod + B is called thecoproductof A and
B, on top of which we define the new combinafqf, g | (pronounced “eithef or ¢") as
follows:

[f,9] + A+B——C
def r=1i1a = fa (2.35)
[frg]e = {.%':izb = gb

As we did for products, we can express all this in a singleraiag

A—SA+BL2 B (2.36)
\\ l[fyg g
C

It is interesting to note how similar this diagram is to theeamawn for products — one
just has to reverse the arrows, replace projections bytiojec and thesplit arrow by
theeither one. This expresses the fact tipavpductandcoproductaredual mathematical
constructs (compare withine and cosinein trigonometry). This duality is of a great
conceptual economy because everything we can say aboutqbrdet B can be rephrased
to coproduct4 + B. For instance, we may introduce the sum of two functigns g as

the notion dual to producf x g:
def . .
f+g = Tl fiz-g] (2.37)

The following list of +--laws provides eloquent evidence of this duality:
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+-cancellation :

+-absorption :
p—
D

A+BZ B

S

— L D+E~—E

2
x[%

C

<

+-functor :

+-functor-id :

[g;h]-i1=g,[gh] -da=h (2.38)

[i1,i2 ] = idayB (2.39)
f-lghl=[f 9 f h] (2.40)
[g,h]-(i+j)=1[g-ih-7j] (2.41)

(g-h)+@-j3)=(g+i)-(h+j) (2.42)

ida +idp = idasp (2.43)
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In summary, the typing-rules of tr@therandsumcombinators are as follows:

o<l 4 o<l 4
c<2_p pD<l_p (2.44)
cll iy cipd 41

Exercise 2.5. By analogy (duality) witiswap, show thaf io, ¢; | is its own inverse and
so that fact

A+B =~ B+ A (2.45)
holds.

Exercise 2.6. Dualize (2.33), that is, write the iso which witnesses fact
A+(B+C) =2 (A+B)+C (2.46)

from right to left. Use thei t her syntax available from theluGs Standard Prelud®
encode this iso itHASKELL.
O

2.10 Mixing products and coproducts

Datatype constructiond x B andA + B have been introduced above as devices required
for expressing the codomain glits (A x B) or the domain oéithers(A+ B). Therefore,
a function mapping values of a coproduct (shy B) to values of a product (sa¥’ x B’)
can be expressed alternatively asegtheror as asplit. In the first case, both components
of the either combinator aresplits In the latter, both components of teplit combinator
areeithers

This exchange of format in defining such functions is knowthagxchange lawlt
states the functional equality which follows:

[(f:9), (k)] = ([f;h][g,k]) (2.47)



2.10. MIXING PRODUCTS AND COPRODUCTS 31

It can be checked by type-inference that both the left-h#eland the right-hand side ex-
pressions of this equality have typg x D<—— A+ C ,for B SRS A, D<2—4,
B<"_¢c and D=t (.

An example of a function which is in the exchange-law fornsesomorphism

Ax (B+C)<2ds" (4% B)+ (A xC) (2.48)
(pronounceundistr as “un-distribute-right”) which is defined by
undistr < [id x i1, id x iz ] (2.49)
and witnesses the fact that product distributes throughochyet:

Ax(B4+C) =2 (AxB)+(Ax(O) (2.50)

In this context, suppose that we know of three functiopsé A, E<L-B

and F<l— C . By (2.44) we infer £ + Fﬂ B+ C . Then, by (2.23) we infer

Ix(

Dx (E+F) <Y _ 4 (B+0) (2.51)

So, it makes sense to combine products and sums of functiwhtha expressions which
denote such combinations have the same “shape” (or symmtliern) as the expressions
which denote their domain and range — thex (--- + - - -) “shape” in this example. In
fact, if we abstractsuch a pattern via some symbol, day— that is, if we define

Fla.8,7) € ax(8+7)

— then we can writeF (D, E, F) ek F(A, B,C) for (2.51).
This kind of abstraction works for every combination of puots and coproducts. For
instance, if we now abstract the right-hand side of (2.48)péttern

G(a,8,7) ' (axB)+(axn)

we haveG(f,g,h) = (f x g) + (f x h), a function which map&(A4, B,C) = (A x
B)+ (AxC)ontoG(D,E,F) = (D x E)+ (D x F). All this can be put in a diagram
F(A, B,C) 9 G(4, B,C)
F(f)QJL)l lG(f»ng)
F(D,E, F) G(D,E,F)
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which unfolds to

Ax (B+C) 24 (A« B)+ (A x C) (2.52)
fX(ngh)l l(fxy)ﬂth)
Dx(E+F) (DX E)+ (D x F)

once theF andG patterns are instantiated. An interesting topic which stéom (com-
pleting) this diagram will be discussed in the next section.

Exercise 2.7. Apply theexchange lavio undistr.
O

Exercise 2.8. Complete the “?"s in diagram

?
[E’y lid-&-idxf

i

" kgl

and then solve the implicit equation forandy.
O

Exercise 2.9. Repeat exercise 2.8 with respect to diagram

hA-(i,j
o <]>?

x;& lid-&-idx ¥

?
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2.11 Natural properties

Let us resume discussion abautdistr and the two other functions in diagram (2.52).
What about usingindistr itself to close this diagram, at the bottom? Note that dédimit
(2.49) works forD, E and F' in the same way it does fad, B andC. (Indeed, the
particular choice of symbold, B andC in (2.48) was rather arbitrary.) Therefore, we
get:

Ax (B+C)“24 (A x B) 4+ (A x C)
fX(g+h)l l(fxg)Jr(th)
Dx(E+F)<— (DxE)+ (D xF)

undistr

which expresses a very important propertyuafiistr:
(f x (g+h)) -undistr = wundistr-((f x g) + (f x h)) (2.53)

This is called thenatural property ofundistr. This kind of property (often called
freeinstead ofnatural) is not a privilege ofundistr. As a matter of fact, every function
interfacing patterns such &sor G above will exhibit its owrnatural property. Further-
more, we have already quotedtural properties without mentioning it. Recall (2.10), for
instance. This property (establishifigjas theunit of composition) is, after all, theatural
property ofid. In this case we havea = G a = «, as can be easily observed in diagram
(2.11).

In generalnatural properties are described by diagrams in which two “copié¢she
operator of interest are drawn as horizontal arrows:

A FA<2—GA  (Ff) 6=0-(Gf) (2.54)
Do
B FBTGB

Note thatf is universally quantified, that is to say, thatural property holds for every
f: B=—A.

Diagram (2.54) corresponds to unary pattdrandG. As we have seen witlindistr,
other functions ¢, etc) come into play for multiary patterns. A very importante@vill
be assigned throughout this book to thésg, etc.“shapes” or patterns which are shared
by pointfree functional expressions and by their domain@ubmain expressions. From
chapter 3 onwards we will refer to them by their proper name fancétor” — which
is standard in mathematics and computer science. Then walsgl explain the names
assigned to properties such as, for instance, (2.28) a2)2.4
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Exercise 2.10. Show that (2.26) and (2.27) areturalproperties. Dualize these proper-
ties. Hint: recall diagram (2.41).
O

Exercise 2.11. Establish thenaturalproperties of theswap (2.31) andassocr (2.33)
isomorphisms.
O

2.12 Universal properties

Functional construct§f, g) and] f, g | (and their derivativeg x g and f+g¢ ) provide good
illustration about what is meant bypgiogram combinatoin a compositional approach to
programming: the combinator is put forward equipped wittoaciseset of properties
which enable programmers to transform programs, reasaut #tem and perform useful
calculations. This raisesmgogramming methodologwhich is scientific and stable.

Such properties bear standard names suataasellation reflexion fusion absorp-
tion etc. Where do these come from? As a rule, for each combinator tiefieed one
has to define suitable constructions at “interface”-léyel.g. A x B and A + B. These
are not chosen or invented at random: each is defined in a vadytBat the associated
combinator is uniquely defined. This is assured by a sodalléversal propertyfrom
which the others can derived.

Take productd x B, for instance. Its universal property states that, for gzaih of

arrows A S C and B <f— C , there exists an arrowd x B M C such that

7T1'k‘:f

k=g (2.55)

k=(fg9) < {

holds — recall diagram (2.21) — for ald x B ¢ . This equivalence states that
(f, g) is theuniquearrow satisfying the property on the right. In fact, rea®%}.in the=
direction and lek be (f, g). Thenm - (f,g) = f andmy - (f, g) = g will hold, meaning
that (f, g) effectively obeys the property on the right. In other worde, have derived

2In the current contexprograms-“are” functions and prograrmterfaces‘are” the datatypes
involved in functional signatures.
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x-cancellation (2.20). Reading (2.55) in tke direction we understand that, if sorke
satisfies such properties, then it “has to be” the same arsqw, a).

Itis easy to see other properties(gf ¢) arising from (2.55). For instance, fér= id
we getx-reflexion (2.30),

=g e T
= { by (2.10)}

. m=f

Zd—<f,g><:>{ o —

= { by substitution off andg }

id = <Tl'1, 7'l’2>
and fork = (i, ) - h we getx-fusion (2.24):

. me () ) =
<’79>'h—<f’g>‘:*{ ma- ((i.4) ) = g

{ composition is associative (2.8)

S (m1-(i,4)) -h=f
<%J>'h<fa9>@{ (m2-{i,j)) h=g

{ by x-cancellation (just derived}

Z'h:f
Jj-h=g

<i,j>-h—<f,g>@{

{ by substitution off andg }

It will take about the same effort to derigplit structural equality
.. 1=
(i,5) =(f,9) & { i :£ (2.56)

from universal property (2.55) — just lét= (i, j).
Similar arguments can be built around coproduct’s univgmszperty,

k=1fg] & {21;1; (2.57)
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from which structural equality ofithers can be inferred,
. i=f
nwil=1/, & ) 2.58
[i,7]=1/.9] { i=g (2.58)
as well as the other properties we know about this combinator

Exercise 2.12. Derive +-cancellation (2.38)+-reflexion (2.39) and-fusion (2.40)
from universal property (2.57). Then derive tbechange law2.47) from the universal
property of product (2.55) or coproduct (2.57).

O

2.13 Guards and McCarthy’s conditional

Most functional programming languages and notations datepointwise conditional
expressions of the form

if (px) then (gx) else (hx)

meaning
pr = gz
-(px) = hz
for some given predicateBool < 4, some “then’-function B <2— 4 and some
“else”-function B <"— A . Bool is the primitive datatype containing truth values Se
andTRUE.
Can such expressions be written in the pointfree style? Thayprovided we intro-
duce the so-called “McCarthy conditional” functional form
p—gh
which is defined by

p—gh € [gh] p? (2.59)

a definition we can understand provided we know the meanindpef'p?” construct.

)
Wecall A+ A<2— A a guard, or better, the guard associated to a given predicate
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Bool<—— A . Every predicate gives birth to its own guargd? which, at point-level, is
defined as follows:
pa = 11a
? = . 2.60

(p?)a { (pa) = ira (2.60)
In a sense, guarg? is more “informative” tharp alone: it provides information about the
outcome of testing on some input;,, encoded in terms of the coproduct injectiofsfor
atrue outcome and, for afalseoutcome, respectively) without losing the inpuitself.

The following fact, which we will refer to abcCarthy’s conditional fusion lawis a
consequence cf-fusion (2.40):

f-lb—gh) = p—=f-9.fh (2.61)

We shall introduce and define instances of predipads long as they are needed. A
particularly important assumption of our notation shotidwever, be mentioned at this

point: we assume that, for every datatypethe equality predicatdBool <> A x A is
defined in a way which guarantees three basic propertiegxigfly (a =4 a for every
a), transitivity (@ =4 b andb =4 cimpliesa =4 ¢) and symmetryd =4 b iff b =4 a).
Subscriptd in =4 will be dropped wherever implicit in the context.

In HASKELL programming, the equality predicate for a type becomedadlai by
declaring the type as an instance of cl&g which exports equality predicale=) .
This does not, however, guarantee the reflexive, trangitidesymmetry properties, which
need to be proved by dedicated mathematical arguments.

Exercise 2.13. Prove that the following equality between two conditiongdressions

k(if px then fx else hx,if px then gx else ix)
= if px then k(fx,gz) else k(hz,ix)

holds by rewriting it in the pointfree style (using the Mc@wst's conditional combinator)
and applying theexchange law2.47), among others.
O

Exercise 2.14. Prove law (2.61).
O
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Exercise 2.15. From (2.59) and property

pr-f = (F+f)--f)? (2.62)

infer

(p—f,9)-h = (p-h)—(f-h),(g-h) (2.63)

2.14 Gluing functions which do not compose — ex-
ponentials

Now that we have made the distinction between the pointfrekpintwise functional
notations reasonably clear, it is instructive to revisittem 2.2 and identifyfunctional
application as the “bridge” between the pointfree and pointwise worldewever, we
should say “a bridge” rather than “the bridge”, for in thissen we enrich such an inter-
face with another “bridge” which is very relevant to prograing.

Suppose we are given the task to combine two functianf— CxAandD<2— 4.
It is clear that none of the combinatioifs g, (f,g) or [ f, g ] is well-typed. Sof andg
cannot be put together directly — they require some extexfating.

Note that(f, g) would be well-defined in case tlt¢ component off’s domain could
be somehow “ignored”. Suppose, in fact, that in some pdai@ontext the first argument
of f happens to be “irrelevant”, or to be frozen to some C. It is easy to derive a new
function

fc : A——=B
def

fea = f(c,a)

from f which combines nicely witty via the split combinator: (f., g) is well-defined
and bears typeB x D =<—— A . For instance, suppose that= A and f is the equality

predicate= on A. Then Bool <—— A is the “equal ta:” predicate onA values:

= a6 = a=c (2.64)
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As another example, recall functignice (2.3) which could be defined as, using the
new notation.

However, we need to be more careful about what is mearft bguch as functional
application, expressioffi. interfaces the pointfree and the pointwise levels — it ixesl

a function (f) and a value ). But, for B<f—C x A, there is a major distinction
betweenf ¢ and f. — while the former denotes a value of tygg i.e. fc € B, f.
denotes a function of typgz <—— A . We will say thatf, € B4 by introducing a new
datatype construct which we will refer to as #wgonential

def
BA = {g|lg: B=—A} (2.65)

There are strong reasons to adopt B notation to the detriment of the more obvious
B — Aor A — B alternatives, as we shall see shortly.

The B# exponential datatype is therefore inhabited by functisomfA to B, that is
to say, functional declaratiop: B <—— A means the same gsc B+. And what do

we want functions for? We want to apply them. So it is natupaihtroduce theapply
operator

ap: B<2—BAy 4
def

ap(f,a) = fa

which applies a functiotf to an argumend.

Back to generic binary functions L C x A, let us now think of the operation
which, for everyc € C, producesf. € B“4. This can be regarded as a function of
signhature pA <——— (' which expresseg as a kind ofC-indexed family of functions of
signature B <—— A . We will denote such a function by (read f as “f transposed”).
Intuitively, we wantf and f to be related to each other by the following property:

fle,a) = (fo)a (2.66)

Givenc anda, both expressions denote the same value. But, in a s¢msejore tolerant
than f: while the latter is binary and requiré®th argumentgc, a) to become available
before application, the former is happy to be provided withist and witha later on, if
actually required by the evaluation process.

Similarly to A x B andA + B, exponentialB“ involves a universal property,

k=F o f=ap-(kxid (2.67)

from which laws for cancellation, reflexion and fusion cardeeved:



40 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

Exponentials cancellation :

BA BAx AL —~B f=ap- (F x id) (2.68)
1l A
C CxA

Exponentials reflexion :

BA BAx A% —B ap = idga (2.69)
idBAT idBA XidAT wp
BA BAx A

Exponentials fusion :

BA BAx AL —~B g (fxid)=g-f (2.70)
Tl

¢ CxA g-(fxid)

fT fxidT

D Dx A

Note that the cancellation law is nothing but fact (2.66)tteri in the pointfree style.

Is there an absorption law for exponentials? The answeffisnative but first we
need to introduce a new functional combinator which arisetha transpose of - ap in
the following diagram:

DAx A% =D

mxidT f]

BAx AT—B
We shall denote this by and its type-rule is as follows:

C<—f B
CALBA
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It can be shown that, onc& and C P B are fixed,f* is the function which accepts

some input functionB <2 4 as argument and produces functifn g as result (see
exercise 2.23). S¢* is the “compose withf” functional combinator:

(g € feg (2.71)

Now we are ready to understand the laws which follow:

Exponentials absorption :

DA DAx AZ—D Fg=f*7g (2.72)
fAT foidT fT

BA BAx AZX—~B

e

g gxid

C Cx A

Exponentials-functor :

(9-h)A =g hA (2.73)

Exponentials-functor-id :
id4 = id (2.74)

To conclude this section we need to explain why we have adoiie apparently
esotericB4 notation for the “function fromA to B” data type. Let us introduce the
following operator

cury f ¥ 7 (2.75)
which maps a functiory to its transposef. This operator, which is very familiar to
functional programmers, maps functions in some functicece®B“ >4 to functions in
(BAC. lts inverse (known as thdunction) also exists. In the bics Standard Prelude
we find them declared as follows:

curry w((ab) >c)>@->b ->¢0
curry f X y = f (xy)
uncurry T (@a-=>>b->c¢c -> (@ab) -> ¢

uncurry f p = f (fst p) (snd p)
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From (2.75) it is obvious see that writinfjor curry f is a matter of taste, the latter being
more in the tradition of functional programming. For ingtanthe fusion law (2.70) can
be re-written as

curry (g - (f x id)) = curryg - f

and so on.
It is known from mathematics thaurry and™are isos witnessing the following iso-
morphism which is at the core of the theory of functional pemgming:
c
)

BO*4A ~ (B4 (2.76)

Fact (2.76) clearly resembles a well known equality concgrmumeric exponentials,
bexe = (b%)°. But other known facts about numeric exponentialg, a®*¢ = a® x a¢ or
(b x ¢)* = b* x ¢ find their counterpart in functional exponentials. The deypart of
the former,

ABTC >~ 4B x AC (2.77)

arises from the uniqueness of te#her combination: every pair of functiongf, g) €
AB x AC leads to a unique functionf,g] € AB¢ and vice-versa, every function in
AB+C is theeither of some function ind? and of another iM“.

The function exponentials counterpart of the second fastiabumeric exponentials
above is

(B x )"~ BAxcA (2.78)

This can be justified by a similar argument concerning thquemess of theplit combi-
nator(f, g).

What about other facts valid for numeric exponentials sseifa= 1 and1¢ = 1? We
need to know what and1 mean as datatypes. Such elementary datatypes are presented
in the section which follows.

Exercise 2.16. Load moduleSet . hs (cf. section A.0.1) into théluGsinterpreter and
check the types assigned to the following functional esmas:

curry ap
\f->ap . (f><id)
uncurry . curry

Which of these is functionally equivalent to tiecur r y function and why? Which of

these are functionally equivalent to identity functionstify.
O
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2.15 Elementary datatypes

So far we have talked mostly about arbitrary datatypes septed by capital letterd,
B, etc. (lowercasea, b, etc.in the HASKELL illustrations). We also mentiondl, Bool
andN and, in particular, the fact that we can associate to eachalatumbenm its initial
segmenh = {1,2,...,n}. We extend this td\, by stating0 = {} and, forn > 0,
n+1l={n+1}Un.

Initial segments can be identified with enumerated typesaaadegarded as primitive
datatypes in our notation. We adopt the convention thatipviendatatypes are written
in the sans seriffont and so, strictly speaking, is distinct fromn: the latter denotes a
natural number while the former denotes a datatype.

Datatype O

Among such enumerated typdsis the smallest because it is empty. This is Yad
datatype in FAskELL, which has no constructor at all. Datatypgwhich we tend to
write simply as0) may not seem very “useful” in practice but it is of theoratimterest.
For instance, it is easy to check that the following “obviopioperties hold:

1

A+0 A (2.79)
Ax0 = 0 (2.80)

Datatype 1

Next in the sequence of initial segments we flpgvhich is singleton sefl}. How useful

is this datatype? Note that every datatypeontaining exactly one element is isomorphic
to{1},e.g.A={NIL}, A = {0}, A = {1}, A = {FALSE}, etc. We represent this class
of singleton types by.

Recall that isomorphic datatypes have the same expressiverpand so are “ab-
stractly identical”. So, the actual choice of inhabitantdatatypel is irrelevant, and we
can replace any particular singleton set by another withagibg information. This is
evident from the following relevant facts involving

Ax1 A (2.81)
A0~ g (2.82)

1%

We can read (2.81) informally as follows: if the second comgrd of a record (“struct”)
cannot change, then it is useless and can be ignored. Setedy in this context, an iso
mapping the left-hand side of (2.81) to its right-hand sitds.inverse is(id, c¢) wherec

is a particular choice of inhabitant for datatypeConcerning (2.82)A° denotes the set
of all functions from the empty set to some What does (2.82) mean? It simply tells
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us that there is only one function in such a set — the emptytimmenapping “no” value
at all. This fact confirms our choice of notation once agawn(pare witha® = 1 in a
numeric context).

Next, we may wonder about facts

M~ 1 (2.83)
A = oA (2.84)

which are the functional exponentiation counterpart$“of= 1 anda! = a. Fact (2.83)
is valid: it means that there is only one function mappitigo some singleton sdic}
— the constant functiom. There is no room for another function i because only
c is available as output value. Fact (2.84) is also valid: wfictions inA' are (single
valued) constant functions and there are as many constactidas in such a set as there
are elements .

In summary, when referring to datatypene will mean an arbitrary singleton type,
and there is a unique iso (and its inverse) between two soglesdn types. The BSKELL
representative of is datatype) , called theunit type which contains exactly constructor
() . It may seem confusing to denote the type and its unique itdrtby the same sym-
bol but it is not, since MSKELL keeps track of types and constructors in separate symbol

sets.

Finally, what can we say abolit- A? Every function B SN 1+ A observing this

type is bound to be aeither [ by, g | for by € B and B <L A.Thisis very similar to
the handling of a pointer in C oraRBcAL: we “pull a rope” and either we get nothing)(
or we get something useful of typ@. In such a programming context “nothing” above
means a predefined valueL . This analogy supports our preference in the sequeliffior
as canonical inhabitant of datatype In fact, we will refer tol + A (or A + 1) as the
“pointer to A” datatype. This corresponds to thMaybe type constructor of the Hics
Standard Prelude

Datatype 2

Let us inspect the + 1 instance of the “pointer” construction just mentioned ahodny

observation B L +1 can be decomposed in two constant functiofiss [ by, by |.
Now suppose thaB = {b1, b2} (for by # b2). Thenl + 1 = B will hold, for whatever
choice of inhabitants; andb,. So we are in a situation similar fo we will use symboP

to represent the abstract class of all siihcontaining exactly two elements. Therefore,
we can write:

1+1 =2 2
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Of course,Bool = {TRUE, FALSE} and initial segmen® = {1,2} are in this abstract
class. In the sequel we will show some preference for thécpdat choice of inhabitants
b1 = TRUE andby = FALSE, which enables us to use symkin places wherdool is
expected.
Exercise 2.17. RelateHASKELL expressions

either (split (const True) id) (split (const False) id)
and

\f->(f True, f False)
to the following isomorphisms involving generic elemeytgpe?2:

2xA =2 A+ A (2.85)
Ax A = A? (2.86)
Apply theexchange law2.47) to the first expression above.

O

2.16 Finitary products and coproducts

In section 2.8 it was suggested that product could be redaaddhe abstraction behind
data-structuring primitives such aruct in C orrecord in PASCAL. Similarly, co-
products were suggested in section 2.9 as abstract coartteqd C unions or RSCAL
variant records. For a finitd, exponentialB4 could be realized as aarray in any of
these languages. These analogies are captured in table 2.1.

In the same way Gtruct s andunion s may contain finitely many entries, as may
PascaAL (variant) records, product x B extends to finitary product; x ... x A,, for
n € N, also denoted byI?_; A;, to which as many projections; are associated as the
numbern of factors involved. Of coursesplitsbecomen-ary as well

<f17~~-7fn>: AlX...XAn<—B

forf;: A, =— B,i=1,n.

Dually, coproductd + B is extensible to the finitary sumd; + - - - + A, forn € N,
also denoted by~ A;, to which as many injectiong are assigned as the numbeof
terms involved. Similarlygithersbecomen-ary

[fiooooifnl: A4+ .+ 4, —=B
for fi: B<—A;,i=1,n.
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[ Abstract notation | PASCAL C/C++ | Description ||
record struct  {
P: A; A first;
AXx B s B B second: Records
end; };
record struct  {
case int tag; / x 1,2 */
tag: integer union { )
A+ B of x = A ifA; Variant records
1. (P:A); B ifB;
2: (SB) } data;
end; }
B4 array[A] of B B ..[A] Arrays
1+ A A A ... Pointers

Table 2.1: Abstract notation versus programming languadge-structures.

Datatypen

Next after2, we may think of3 as representing the abstract class of all datatypes centain
ing exactly three elements. Generalizing, we may think @ representing the abstract

class of all datatypes containing exactlyelements. Of course, initial segmentwill
be in this abstract class. (Recall (2.17), for instanceh Mé¢éekday and7 are abstractly
represented by.) Therefore,

n 2 1+4---+1

————
and
Ax...xA =2 A" (2.87)
————
A+...+A =2 nx A (2.88)
| ——
hold.

Exercise 2.18. On the basis of table 2.1, encodmdistr (2.49) in C or PASCAL.
Compare your code with theAaSKELL pointfree and pointwise equivalents.
O
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2.17 Initial and terminal datatypes

All properties studied for binargplits and binaryeithersextend to the finitary case. For
the particular situatiom = 1, we will have(f) = [ f] = f andm; = iy = id, of
course. For the particular situatien= 0, finitary products “degenerate” toand finitary
coproducts “degenerate” t So diagrams (2.21) and (2.36) are reduced to

0
4
C

C

The standard notation for the empplit () is !, where subscripC can be omitted if
implicit in the context. By the way, this is precisely the pfiinction in1¢, recall (2.83).
Dually, the standard notation for the emgtgher| | is 7, where subscripf’ can also be
omitted. By the way, this is precisely the only functionGfi, recall (2.82).

In summary, we may think of and1 as, in a sense, the “extremes” of the whole
datatype spectrum. For this reason they are caigidl andterminal respectively. We
conclude this subject with the presentation of their maipprties which, as we have
said, are instances of properties we have stated for pre@dnct coproducts.

Initial datatype reflexion :
20=ido

)

0 70 = idy (2.89)

Initial datatype fusion :

0
?Alyi
A

%B

f

F24 =5 (2.90)

Terminal datatype reflexion :

11 =idy

)

1 L = id, (2.91)
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Terminal datatype fusion :

e

<~—B

f

- f=lp (2.92)

Exercise 2.19. Particularize theexchange law(2.47) to empty products and empty
coproductsj.e. 1 andO.
O

2.18 Sums and products in FASKELL

We conclude this chapter with an analysis of the main primitivailable in FASKELL
for creating datatypes: thdata declaration. Suppose we declare

data Costumerld = P Int | CC Int

meaning to say that, for some company, a client is identifignkieby its passport number
or by its credit card number, if any. What does this piece afay precisely mean?

If we enquire the WIGS interpreterabout what it knows abouostumerld |, the
reply will contain the following information:

Main> :i Costumerld
-- type constructor
data Costumerld

-- constructors:
P : Int -> Costumerld
CC : Int -> Costumerld

In general, letd and B be two known datatypes. Via declaration

data C = C1 A | C2 B (2.93)
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one obtains from HGs a new datatyp&” equipped with constructorg” <L 4 and
c<< B , in fact the only ones available for constructing valueg’of

A B

S

C

5

This diagram leads to an obvious instance of coproduct dind®.36),

i1 12

A— B<—R8

N

C

SN

describing that @lata declaration in FASKELL means theither of its constructors.
Because there are no other means to bdildata, it follows thatC is isomorphic to
A+B. So[ C1,C2 ] has an inverse, sayv, which is such thatnv-[ C1,C2 | = id. How

do we calculaténv? Let us first think of the generic situation of a functign < C
which observes datatypé:

i1 12

A—A+B~<—20R
&l[m 2
C
lf
D

This is an opportunity for--fusion(2.40), whereby we obtain
f-revez2] = [f-C1f-C2]

Therefore, the observation will be fully described proddee explain howf behaves

with respect taC'1 — cf. f - C'1 — and with respect t6'2 — cf. f - C'2. This is what is

behind the typicainductivestructure of pointwise, which will be made of two and only
two clauses:

f:C—=D
f(Cla)=...
f(C2b) = ...
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Let us use this in calculating the inversev of [ C1,C2 |:
inv-[C1,02] =id
= { by +-fusion(2.40) }
[inv-Cl,inv-C2] =1id
{ by +-reflexion(2.39) }
[inv-Cl,inv-C2] = [i1,i2]
{ either structural equality (2.58)}

inv-Cl =141 Ninv - C2 = iy
Therefore:

inv: C——A+B

inv(Cla) =11 a

inv(C2b) =i2b
In summaryC1 is a “renaming” of injection;, C2 is a “renaming” of injectioni, andC
is “renamed” replica oA + B:

[C1,02]

A+ B

[C1,C2] is called thealgebraof datatypeC and its inversenuv is called thecoalgebra
of C. The algebra contains the constructors’tdif and C2 of type C, that is, it is used
to “build” C-values. In the opposite direction, co-algebwa enables us to “destroy” or
observe values af":

inv

c A+ B

:

[C1,02]

Algebra/coalgebras also arise about product datatypes.in@ance, suppose that one
wishes to describe datatygévint inhabited by pairgzg, yo), (z1,y1) etc.of Cartesian
coordinates of a given type, say. Although A x A equipped with projectiong, m
“is” such a datatype, one may be interested in a suitably daewlica ofA x A in which
points are built explicitly by some constructor (s&pint) and observed by dedicated
selectors (say andy):

A< Ax A4 (2.94)

S

Point
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This rises an algebra?pint) and a coalgebra, y)) for datatypePoint:

(z,y)

In HASKELL one writes

data Point a = Point { x :: a, y : a}

but be warned that lWskeLL deliversPoint in curried form:
Point :: a -> a -> Point a

Finally, what is the “pointer”-equivalent in ABKELL? This corresponds td = 1 in
(2.93) and to the following HsKELL declaration:

data C =Cl ()| C2 B

Note that FhskELL allows for a more programming-oriented alternative in tiase, in
which the unit typg) is eliminated:

data C = C1 | C2 B

The difference is that hei@1 denotes an inhabitant 6t (and so a claus¢(Cla) = ...

is rewritten tof C'1 = ...) while aboveC1 denotes a (constant) functiog <<% 1 .
Isomorphism (2.84) helps in comparing these two altereagituations.

2.19 Exercises

Exercise 2.20. Let A and B be two disjoint datatypes, that ig, " B = () holds. Show
that isomorphism

AUB =~ A+B (2.95)

holds. Hint: define A U B<i—A+ B asi = [emby,embp ] for emby a = a and

embgb = b, and find its inverse. By the way, why didn't we defir@mply asi def

[ida,idp ]?
O




52 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

Exercise 2.21. Let distr (read: ‘distribute right) be the bijection which witnesses
isomorphismd x (B+C) = Ax B+ AxC'. Fillinthe “....”in the diagram which follows
so that it describes bijectiodist! (red: ‘distribute left’) which withesses isomorphism
(B+CO)x A2 BxA+Cx A:

(B4+C)x AN dist - p AL COxA
"
distl

Exercise 2.22. In the context of exercise 2.21, prove

[g.h]xf = [gxf hxf]-distl (2.96)
knowing that

fxlgh] = [fxg,fxh]-distr
holds.
O

Exercise 2.23. Show that f - ap) g = f - g holds,cf. (2.71).
O

const

Exercise 2.24. Let ¢ ——= ¢4 be the function of exercise 2.1, thatisnst c = c4.
Which fact is expressed by the following diagram featurimgst?

C const CA

fl |

BA

_—
const

Write it at point-level and describe it by your own words.
O
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Exercise 2.25. Establish the difference between the following two detians in
HASKELL,

data D
data E

DIA|D2BC
El A | E2 (B,C)

for A, BandCany three predefined types. Albeand ' isomorphic? If so, can you specify
and encode the corresponding isomorphism?
O

2.20 Bibliography notes

A few decades ago John Backus read, in his Turing Award Lecturevolutionary paper
[Bac78]. This paper proclaimed conventional commandrbeig programming languages
obsolete because of their inefficiency arising from retajniat a high-level, the so-called
“memory access bottleneck” of the underlying computatioodet — the well-known
von Neumanmrchitecture. Alternatively, the (at the time already maYfunctional pro-
grammingstyle was put forward for two main reasons. Firstly, becanises potential for
concurrent and parallel computation. Secondly — and Baekoghasis was really put
on this —, because of its strong algebraic basis.

Backusalgebra of (functional) programs/as providential in alerting computer pro-
grammers that computer languages alone are insufficiedtthar only languages which
exhibit analgebrafor reasoning about the objects they purport to describebeiliseful
in the long run.

The impact of Backus first argument in the computing sciemckcamputer architec-
ture communities was considerable, in particular if assBsquality rather than quantity
and in addition to the almost contemporatyuctured programmingrend®. By contrast,
his second argument for changing computer programming wasd large ignored, and
only the so-calledilgebra of programmingesearch minorities pursued in this direction.
However, the advances in this area throughout the last tead#es are impressive and can
be fully appreciated by reading a textbook written reldyivecently by Bird and de Moor

3Even the C programming language and the/xJ operating system, with their implicit func-
tional flavour, may be regarded as subtle outcomes of thentpluinctional” trend.



54 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

[BAM97]. A comprehensive review of the voluminous liter&@vailable in this area can
also be found in this book.

Although the need for a pointfree algebra of programming firzs identified by
Backus, perhaps influenced by Iverson’slAgrowing popularity in the USA at that time,
the idea of reasoning and using mathematics to transforgrgmes is much older and can
be traced to the times of McCarthy’s work on the foundatiohsomputer programming
[McC63], of Floyd's work on program meaning [Flo67] and oft€taon and Hewitt's
comparative schematolodlH70]. Work of the so-callegrogram transformatiorschool
was already very expressive in the mid 1970s, see for insteeferences [BD77].

The mathematics adequate for the effective integratiomede related but indepen-
dent lines of thought was provided by the categorial apgraddianes and Arbib com-
piled in a textbook [MA86] which has very strongly influencte last decade of 20th
century theoretical computer science.

A so-called MPC (“Mathematics of Program Construction”yrcounity has been
among the most active in producing an integrated body of kedge on the algebra of
programming which has found in functional programming ageént and paradigmatic
medium. Functional programming has a tradition of absarffiesh results from theoret-
ical computer science, algebra and category theory. Layggusuch as KSKELL [Bir98]
have been competing to integrate the most recent develdpraed therefore are excellent
prototypingvehicles in courses on program calculation, as happensthvitivook.



Chapter 3

Recursion in the Pointfree Style

How useful from a programmer’s point of view are the absticepts presented in
the previous chapter? Recall that a table was presented le-2db— which records an
analogy between abstract type notation and the correspgidita-structures available in
common, imperative languages.

This analogy is precisely our point of departure for extagdihe abstract notation
towards a most important field of programmingcursion

3.1 Motivation

Let us consider a very common data-structure in programmilimied-lists”. In PASCAL
one will write

a

L = N;
N = record
first:  A;
next: N
end;

to specify such a data-structulce This consists of a pointer toraode(N), where a node
is a record structure which puts some predefined #/pegether with a pointer to another
node, and so on. In the C programming language, everyl will be declared as

L x;
in the context of datatype definition

typedef struct N {
A first;

55
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struct N * next;
}oxL

and so on.

What interests us in such “first year programming courseatgtpe declarations?
Records and pointers have already been dealt with in tableSh we can use this table
to find the abstract version of datatypeby replacing pointers by thel“+ - - -” notation
and recordsdtructg by the “ .. x ..."” notation:

{L = 1+N

N = Ax(1+N) (3.1)

We obtain a system of two equations on unknowremd N, in which L's dependence
on N can be removed by substitution:

L = 1+N
N = Ax(1+N)
= { substitutingL for 1 + NN in the second equatioh

L = 1+N
N = AxL

{ substitutingA x L for N in the first equatior}

L = 1+AxL
N = AxL

System (3.1) is thus equivalent to:

(3.2)

L = 1+4AxL
N = Ax(1+N)

Intuitively, L abstracts the “possibly empty” linked-list of elementsygde A, while N
abstracts the “non-empty” linked-list of elements of typeNote thatZ and N are inde-
pendent of each other, but also that each depends on itseifWe€ solve these equations
in a way such that we obtain “solutions” férand NV, in the same way we do with school
equations such as, for instance,

x:1+§ ? (3.3)

Concerning this equation, let us recall how we would go aliontschool mathemat-
ics:

T
:]_ —
x +2
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{ adding— £ to both sides of the equatign

1+.27 X
T— == - — =
2 2 2
= { =5 cancels? }
X
r——=1
2

{ multiplying both sides of the equation Byetc. }

2xx—x=2
{ subtraction}

r =2

We very quickly get solutiom: = 2. However, many steps were omitted from the
actual calculation. This unfolds into the longer sequerficeare elementary steps which
follows, in which notatior: — b abbreviates, + (—b) and$ abbreviates, x ¢, for b # 0:

142
r = -
2

{ adding— 3 to both sides of the equatign

xr s X
1+
rog=0+3)-3

{ + is associative

x €T

T
—Z =1 - _Z
rog=itG o)
= { —% is the additive inverse of }
T
—==1+0
x 5 +
= { 0is the unit of addition}
T
—Z =1
T3

{ multiplying both sides of the equation By}

2><(xfg):2><1

{ 1is the unit of multiplication}

x
2x(z—=)=2
(x=3)

{ multiplication distributes over additioh
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INT—2x =9
2

{ 2 cancels its inversé }

2Xr—1xx=2

{ multiplication distributes over additiop

2-1)xaz=2

{2 —1=1andl is the unit of multiplication}

T =2
Back to (3.2), we would like to submit each of the equatiang,
L = 1+AxL (3.4)

to a similar reasoning. Can we do it? The analogy which canobhad between this
equation and (3.3) goes beyond pattern similarity. Fronpteha2 we know that many
properties required in the reasoning above hold in the gbiofe(3.4), provided the “="
sign is replaced by the=” sign, that of set-theoretical isomorphism. Recall that, f
instance+ is associative (2.46)) is the unit of addition (2.79)1 is the unit of multipli-
cation (2.81), multiplication distributes over additidh%0) etc. Moreover, the first step
above assumed that addition is compatible (monotonic) respect to equality,

a = b
c = d
at+c = b+d

a fact which still holds when numeric equality gives placesmmorphism and numeric
addition gives place to coproduct:

B

D
B+D

A
C
A+C

| 111

—recall (2.44) for isog andg.
Unfortunately, the main steps in the reasoning above areecnad with two basic
cancellation properties

z+b=c = z=c—-b
rxb=c = x:g (b+#0)

which hold about numbers but do not hold about datatypesadt heither products nor
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coproducts have arbitrary inversksand so we cannot “calculate by cancellation”. How
do we circumvent this limitation?

Just think of how we would have gone about (3.3) in case we'tdkthow about the
cancellation propertieswe would be bound to the by 1 + 5 substitution plus the other
properties. By performing such a substitution over and again we would obtain. ..

x
:1 —
x +2
= { x by 1 4  substitution followed by simplification
1+ % 1 =z
=14+ —2 _14+-_4+Z
T + 5 +2+4
= { the same as above
1 1+2 1 1 =z
=1+ = 2 —14+-4+24Z
x +2+ 1 +2+4+8

{ over and over agaim-times}

{ simplification}

T
x:Z§+27L+1

n
=0

{ sum ofn first terms of a geometric progressign

m:(2—2in)+2n€_1
= {letn — oo}
r=(2-0)40
= { simplification }

T =2

Clearly, this is a much more complicated way of finding saluti: = 2 for equation
(3.3). But we would have loved it in case it were the only knaway, and this is precisely
what happens with respect to (3.4). In this case we have:

L=14+AXxL
= { substitution oft + A x L for L }

1The initial and terminal datatypes do have inverse$ is-its own “additive inverse” and is
its own “multiplicative inverse” — but not all the others.
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L=1+Ax(1+AxL)
{ distributive property (2.50)
L1+ Ax1+Ax(AxL)
{ unit of product (2.81) and associativity of product (2.32)
L=1+A+(AxA)xL
{ by (2.82), (2.84) and (2.87)
LA+ A '+ A2 x L
{ another substitution as above and similar simplificatipns

LA+ A'+ A2+ A3 L
= { after(n + 1)-many similar step$

n
LY A+ A" x L
=0
Bearing a large: in mind, let us deliberately (but temporarily) ignore teAfi™! x L.
Then L will be isomorphic to the sum of-many contributionsA?,

L=y A
=0

each of them consisting @flong tuples, osequencef values ofA. (Number; is said

to be thelengthof any sequence ir’.) Such sequences will be denoted by enumerating
their elements between square brackets, for instancentipty sequencg which is the
only inhabitant inA°, the two element sequende;, as] which belongs taA? provided
ai,a2 € A, and so on. Note that all such contributions are mutualljoulis that is,
AN A7 = () whereveri # j. (In other words, a sequence of lengtis never a sequence
of length 3, for i # j.) If we join all contributionsA’ into a single set, we obtain the set
of all finite sequencesn A, denoted by4d* and defined as follows:

A a (3.5)
i>0
The intuition behind taking the limit in the numeric caldita above was that term
sner Was getting smaller and smaller asvent larger and larger and, “in the limit”, it
could be ignored. By analogy, taking a similar limit in théocgation just sketched above
will mean that, for a “sufficiently largeh, the sequences iA™ are so long that it is very
unlikely that we will ever use them! So, far— oo we obtain

L = iAi
=0
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Because& _°, A’ is isomorphic td J°, A (see exercise 2.20), we finally have:

Allin all, we have obtainedi* as a solution to equation (3.4). In other words, datatype
L is isomorphic to the datatype which contains all finite seges of some predefined
datatypeA. This corresponds to the A$KELL [a] datatype, in general. Recall that
we started from the “linked-list datatype” expressed As@AL or C. In fact, wherever
the C programmer thinks of linked-lists, theaBIKELL programmer will think of finite
sequences.

But, what does equation (3.4) mean in fact4fsthe only solution to this equation?
Back to the numeric field, we know of equations which have ntlba& one solution —
for instancer = '73213, which admits two solutiong and3 —, which have no solution
at all — for instancer = = + 1 —, or which admit an infinite number of — for instance
Tr=2.

We will address these topics in the next section abmlictivedatatypes and in chap-
ter 7, where the formal semantics of recursion will be magsdiex This is where the
“limit” constructions used informally in this section whle shown to make sense.

3.2 Introducing inductive datatypes

DatatypeL as defined by (3.4) is said to becursivebecausd. “recurs” in the definition
of L itself 2. From the discussion above, it is clear that set-theolegigaality “=" in this
equation should give place to set-theoretical isomorplffsHi):

L =2 14AXL (3.6)

Which isomorphismz, <“— 1 + A x L do we expect to witness (3.4)? This will depend
on which particular solution to (3.4) we are thinking of. %o fve have seen only one,
A*. By recalling the notion ofilgebraof a datatype (section 2.18), so we may rephrase
the question as: which algebra

A <"1 4 A x A

do we expect to witness the tautology which arises from (By)eplacing unknowr’,
with solution A*, that is

A =2 14+ AxA* ?

2By analogy, we may regard (3.3) as a “recursive definitioniamber2.
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It will have to be of the formn = [inq,ing ] as depicted by the following diagram:

1— 214 Ax A*L— Ax A (3.7)
wmi m2
A*
Arrows in; anding can be guessed rather intuitiveliz; = [], which will express

the “NIL pointer” by the empty sequence, 4t level, andin, = cons, wherecons is the
standard “left append” sequence constructor, which wehHemhoment introduce rather
informally as follows:

cons: A x A* ——= A*

cons(a,lai,...,an)) = [a,a1,...,a,) (3.8)
In a diagram:
1—21 4 Ax A< A x A (3.9)
[ [],cons
A‘k

Of course, forin to be iso it needs to have an inverse, which is not hard to guess

out (14 (hd 1)) - (=,7) (3.10)

where sequence operatdrd (head of a nonempty sequeh@ndtl (tail of a nonempty
sequenceare (again informally) described as follows:

hd: Ax——= A4

hd[a17a27"'7an] = a (311)
th: A —— A*
t[a1,as, ... an] = [az, .., an] (3.12)

Showing thatin andout are each other inverses is not a hard task either:
n - out =id

{ definitions ofin andout }
[[],cons |- (! +(hd,tl)) - (=[,7) = id

{ +-absorption (2.41) and (2.15)
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[u, cons - (hdtl) ] - (:H?) =id

{ property of sequencesons(hds,tls) = s }
[[],id]- (=[)?) =id
= { going pointwise (2.60)}

{ (:[]a = [[],id] (i1 a)

L =a

=1 a) = [[lid](i2a)

{ +-cancellation (2.38)}

{ =[] @ = []a

ﬁ(:[] a) =4 Ela
{a=

[]in one case and identity function (2.9) in the other

{ a=[] = a o
“@=[)) = a
= { property(p — f, f) = f holds }

A comment on the particular choice of terminology above: sghin suggests that
we are going inside, or constructing (synthesizing) vaafe$*; symbolout suggests that
we are going out, or destructing (analyzing) valuesiof We shall often resort to this
duality in the sequel.

Are there more solutions to equation (3.6)? In trying to iempént this equation, a
HASKELL programmer could have written, after the declaration oétgpthe following
datatype declaration:

data L = Nil () | Cons (A,L)
which, as we have seen in section 2.18, can be written singply a
data L = Nil | Cons (A,L) (3.13)

and generates diagram

1— 214 AX L2 AxL (3.14)

s !
ﬁ ll%

L

leading to algebran’ = [ Nil, Cons].
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HASKELL seems to have generated another solution for the equatkinh it calls
L. To avoid the inevitable confusion between this symbol tiegothe newly created
datatype and symbdl in equation (3.6), which denotes a mathematical variableys
use symbolT to denote the formerT{ stands for “type”). This can be coped with very
simply by writing T instead ofL in (3.13):

data T = Nil | Cons (A,T) (3.15)

In order to makel more explicit, we will writeint instead ofin’.
Some questions are on demand at this point. First of all, vehdatatypeT? What

are its inhabitants? Next, i§ <—— 14+ A x T an iso or not?

HAsSKELL will help us to answer these questions. Suppose ghata primitive nu-
meric datatype, and that we adériving Show to (3.15) so that we can “see” the
inhabitants of th& datatype. The information associatedlt@s thus:

Main> i T
-- type constructor
data T

-- constructors:
Nil = T
Cons = (AT) > T

-- instances:
instance Show T
instance Eval T

By typing Nil

Main> Nil
Nil = T

we confirm thatVil is itself an inhabitant off, and by typingCons

Main> Cons
<<function>> :: (A T) > T

we realize thaC'ons is not so (as expected), but it can be used to build such itdrdbj
for instance:

Main> Cons(1,Nil)
Cons (1,Nil) == T
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or

Main> Cons(2,Cons(1,Nil))
Cons (2,Cons (L,Nil)) == T

etc.We conclude thagxpressioninvolving Nil andCons are inhabitants of typ&. Are
these theonly ones? The answer igesbecause, by design of theaAdKELL language,
the constructors of typ& will remain fixed once its declaration is interpreted, that i
no further constructor can be addedTto Doesint have an inverse? Yes, its inverse is
coalgebra

outt: T—=1+AxT
outt Nil = i1 NIL (3.16)
outt(Cons(a,l)) = iz(a,l)

which can be straightforwardly encoded im8KELL using theEither realization of+
(recall sections 2.9 and 2.18):

outT :: T -> Either () (AT)
outT Nil = Left ()
outT (Cons(a,l)) = Right(a,l)

In summary, isomorphism

T =~ 1+AxT (3.17)
\—//

holds, where datatyp& is inhabited by symbolic expressions which we may visualize
very conveniently as trees, for instance

Cons

Cons

1 Nil

picturing expressiorC'ons(2, Cons(1, Nil)). Nil is the empty tree and'ons may be
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regarded as the operation which adds a new root and a newhbisae:, to a treet:

Cons(a, # ) = .

The choice of symbol$, Nil andCons was rather arbitrary in (3.15). Therefore, an
alternative declaration such as, for instance,

Cons

data U = Stop | Join (A,U) (3.18)

would have been perfectly acceptable, generating anotietian for the equation under
algebrd] Stop, Join |. It is easy to check that (3.18) is but a renaming\vat to Stop and
of Cons to Join. Therefore, both datatypes are isomorphic, or “abstrahysame”.
Indeed, any other datatype inductivelydefined by a constant and a binary construc-
tor acceptingd and X as parameters will be a solution to the equation. Becauseaave a
just renaming symbols in a consistent way, all such solstame abstractly the same. All
of them capture the abstract notion dfsi of symbols.
We wrote “inductively” above because the set of all exp@ssitrees) which inhabit
the type is defined by induction. Such types are calheldictiveand we shall have a lot
more to say about them in chapter 7.

Exercise 3.1. Obviously,
either (const []) ()

does not work as &lASKELL realization of the mediating arrow in diagram (3.9). What
do you need to write instead?
O

3.3 Observing an inductive datatype

Suppose that one is asked to express a particldaervationof an inductive such as

(3.15), that is, a function of signatur® S T for some target typd3. Suppose, for
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instance, thatd is Ny (the set of all non-negative integers) and that we want toaddd
elements which occur in @-list. Of course, we have to ensure that addition is avaglabl
in N,

add : Ng x Ng ——=Ng

add(z,y) < z +y

and that0 € Ny is a value denoting “the addition of nothing”. So constanmbar

No 2 1 is available. Of courseidd(0, z) = add(x,0) = z holds, for allz € No.
This property means thi#, together with operatardd and constand, forms amonoid
a very important algebraic structure in computing whicH tél exploited intensively later
in this book. The following arrow “packagindN, add ando,

[0,add |

No 1+ No x No (3.19)

is a convenient way to express such a structure. Combiniagitrow with the algebra

T 14 NgxT (3.20)

which definesT, and the functiory we want to define, the target of whichlis= Ny, we
get the almost closed diagram which follows, in which onky ttashed arrow is yet to be
filled in:

in-r

T 14+ NgxT (3.21)
fl

\
Ng 14+ INg x Ng

[Q,add ]

We know thatint = [ Nil,Cons]. A pattern for the missing arrow is not difficult to
guess: in the same waglybridgesT andINy on the lefthand side, it will do the same job
on the righthand side. So pattern + - - - x f comes to mind (recall section 2.10), where

the “ - ." are very naturally filled in by identity functions. All in Biwe obtain diagram
il,Cons
T [NdCons] 4 N x T (3.22)
f l lidJridx f
No Oadd] 14+ INg x INg

which pictures the following property of
f-[Nil,Cons] = [0,add]- (id+1id x f) (3.23)
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and is easy to convert to pointwise notation:
f-[Nil,Cons] =1[0,add] - (id + id x f)

{ (2.40) on the lefthand side, (2.41) and identityon the righthand side
[f-Nil,f-Cons]=1[0,add - (id x f)]

{ either structural equality (2.58)}

f-Nil=0
f-Cons=add- (id x f)

= { going pointwise}

{ (f Nil)z =0z
(f-Cons)(a,z) = (add - (id x f))(a,x)

= { composition (2.6), constant (2.12), product (2.22) anchitedn of add }

FNil =0
f(Cons(a,x)) =a+ fx

Note that we could have usedtt in diagram (3.21),

outT

T— 1+ Ny xT (3.24)
fl lid—l—idxf
INg [Gadd ] 1+ Ng x Ny

obtaining another version of thiefinitionof f,
f = [0,add]- (id+id x f) - outt (3.25)
which would lead to exactly the same pointwise recursivenitefi:
f=10,add]- (id +id x f) - outt
{ (2.41) and identityid on the righthand side
f=10,add- (id x f)]- outt
{ going pointwise omutT (3.16) }

fNil = ([0,add - (id x f)] - outt)Nil
f(Cons(a,x)) = ([0,add - (id x f)] - outt)(a,x)

{ definition ofout (3.16) }



3.3. OBSERVING AN INDUCTIVE DATATYPE 69

fNil = ([0,add - (id x f)]-i1)Nil
f(Cons(a,x)) = ([0,add - (id x f)]-i2)(a,x)

{ +-cancellation (2.38)}

{fNu_ONu
f(Cons(a,x)) = (add - (id x f)) (a,x)

{ simplification }

FNil=0
f(Cons(a,z))=a+ fx

Pointwise f mirrors the structure of typ& in having has many definition clauses as
constructors inl. Such functions are said to be defirlgdinduction orthe structure of
their input type. If we repeat this calculation fbip* instead ofT, that is, for

out = (! + (hd,tl)) - (=17)
— recall (3.10) — taking place afutT, we get a “more algorithmic” version gf.
f=10,add]- (id +id x f)- (! + (hd,tl)) - (=17)
{ +-functor (2.42), identity anck-absorption (2.25)}
f=10,add]- ("4 (hd, f-t)) - (=7)
{ +-absorption (2.41) and constaht}
{ going pointwise on guare-(;? (2.60) and simplifying }

- =[] = 0l
FU=Y 2a=1)) = (add-(hd,f-t1))i

{ simplification }

Fl= =[] = 0
] =(=1[]) = hdl+ f(tl)
The outcome of this calculation can be encoded AsKELL syntax as

fl]l=1] =0
| otherwise = head | + f (tail I)

or
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fl=ifl==1
then 0
else head | + f (tail 1)

”

both requiring the equality predicate=” and destructorstiead ” and “tail

3.4 Synthesizing an inductive datatype

The issue which concerns us in this section dualizes whatawve fust dealt with: in-
stead of analyzing asbservingan inductive type such aB (3.15), we want to be able to
synthesize (generate) particular inhabitantd ofin other words, we want to be able to

specify functions with signatures . T for some given source typg. Let B = Ny
and suppose we warftto generate, for a given natural number- 0, the list containing
all numbers less or equal toin decreasing order

Cons(n,Cons(n — 1,Cons(...,Nil)))

or the empty listVil, in casen = 0.

Let us try and draw a diagram similar to (3.24) applicableht® new situation. In
trying to “re-use” this diagram, it is immediate that arrgvshould be reversed. Bearing
duality in mind, we may feel tempted to reverse all arrows jossee what happens.
Identity functions are their own inverses, amd- takes the place afut:

in-r

T 1+NoxT
fT Tid+id><f
IN() ......................... > 1 —+ lNO X |NO

Interestingly enough, the bottom arrow is the one which {boious to reverse, meaning
that we have to “invent” a particular destructorlgf, say

No —2= 1+ Ng x Ny

fitting in the diagram andeneratingthe particular computational effect we have in mind.
Once we do this, a recursive definition fémill pop out immediately,

f = int-(id+idx f)-g (3.26)
which is equivalent to:

f = [Nil,Cons-(idx f)]-g (3.27)
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Because we wanf 0 = Nil to hold, g (the actual generator of the computation) should
distinguish input from all the others. One thus decompogess follows,

No —2 N + Ng —H2 14 Ny x N,
\/

g

leavingh to fill in. This will be asplit providing, on the lefthand side, for the value to be
Cons’ed to the output and, on the righthand side, for the “seedhéonext recursive call.
Since we want the output values to be produced contiguoumslyredecreasing order, we
may defineh = (id, pred) where, forn > 0,

predn et 1 (3.28)

computes th@redecessoof n. Altogether, we have synthesized
g = (+(id.pred) - (=?) (3.29)
Filling this in (3.27) we get
f=1[Nil,Cons - (id x f)]- (! + (id, pred)) - (=0?)
{ +-absorption (2.41) followed by -absorption (2.25¢tc. }
f=1Nil, Cons - (id, f - pred) | - (=0?)
{ going pointwise on guare,? (2.60) and simplifying }

fn:{ _‘(n:O = Nil

n=0) = Cons(n,f(n—1))
which matches the function we had in mind:

fn|n== = Nil
| otherwise = Cons(n,f(n-1))

We shall see briefly that the constructions of ghiunction adding up a list of num-
bers in the previous section and, in this section, of fhieinction generating a list of
numbers are very standard in algorithm design and can bellgrganeralized. Let us
first introduce some standard terminology.

3.5 Introducing (list) catas, anas and hylos

Suppose that, back to section 3.3, we wantroltiply, rather than add, the elements
occurring in lists of typeT (3.15). How much of the program synthesis effort presented
there can be reused in the design of the new function?
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.. . [ 0,add ] .
It is intuitive that only the bottom arrowiN, 1+ Ny x Ny of diagram

(3.24) needs to be replaced, because this is the only plagewle can specify that target
datatypelNg is now regarded as the carrier of another (multiplicativhenthan additive)
monoidal structure,

[ Lmul ]

Nog<————1+4+ Ny x Ny (3.30)

for mul(z,y) def y. We are saying that the argument list is now to be reduced édy th
multiplication operator and that output valliés expected as the result of “nothing left to
multiply”.

Moreover, in the previous section we might have wanted oorbyer-list generator to
produce the list of even numbers smaller than a given nunibelecreasing order (see
exercise 3.4). Intuition will once again help us in decidihgt only arrowg in (3.26)
needs to be updated.

The following diagrams generalize both constructions lyiteg such bottom arrows
unspecified,

T— 2 Ny xT T—" 14NyxT (331
fl lz‘d—i—idx ¥ fT Wid-i-idx ¥
B 1+Np x B B 1+Ngx B

9 g

and express their dualitcf; the directions of the arrows). It so happens that, for each
of these diagramsf, is uniquely dependent on thearrow, that is to say, each particular
instantiation ofg will determine the correspondingi. So bothgs can be regarded as
“seeds” or “genetic material” of th¢ functions they uniquely define

Following the standard terminology, we express these factsriting f = (|g) with
respect to the lefthand side diagram and by writjhg= [(¢)] with respect to the right-
hand side diagram. Redd) as “the T-catamorphisnminduced byg” and [g) as “the
T-anamorphisminduced byg”. This terminology is derived from the Greek words T«
(cata) andvva (@ana) meaning, respectively, “downwards” and “upwardghipare with
the direction of thef arrow in each diagram). The exchange of parenthesgsahd “[ |
in double parentheseg )" and “[ ]” is aimed at expressing the duality of both concepts.

We shall have a lot to say about catamorphisms and anamorpliga given type
such asT. For the moment, it suffices to say that

e theT-catamorphism induced byg <2— 1 + Ny x B is the unique function3 Sl T

3The theory which supports the statements of this paragraphavbe dealt with until chapter
7.
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which obeys to property (or is defined by)

(g = g-(id+id x (g)) - outt (3.32)

which is the same as

lg) -int = g-(id+id x (g]) (3.33)

e given B > 14+NyxB the T-anamorphism induced hyis the unique func-

tion B Lol T which obeys to property (or is defined by)

(9] = int-(id+idx[g))-g (3.34)

From (3.31) it can be observed thiatan act as a mediator between drgnamorphism

and anyT-catamorphism, that is to say A T composes withT o C , forsome

c—ls14 Ny x C . In other words, & -catamorphism call always observe (consume)
the output of ar-anamorphism. The latter produces a list\yfs which is consumed by
the former. This is depicted in the diagram which follows:

g

B 1+ Nox B (3.35)
qg)T Tz‘dﬂ‘dxqg\)

T T 14N xT
[(h)]T Tid-ﬁ-idx[(h)]

C 14Ny x C

h

What can we say about ttig|) - [ 2] composition? It is a function from® to C' which re-
sorts toT as arnintermediatedata-structure and can be subject to the following calmriat
(cf. outermost rectangle in (3.35)):

(gD - (h)] = g- (id +id x (g)) - (id +id x [(h]]) - A
{ +-functor (2.42) }

(gD - (R) = g - ((id - id) + (id x (g])) - (id x [(h])) - h
{ identity andx-functor (2.28) }

(gD - (n)] = g - (id +id x (g) - (P)) - 1
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This calculation shows how to defing' UL O

without any intermediate data-structure:

B in one go, that is to say, doing

B . _14+NoxB (3.36)
GgD-[(h)]T Tz’dﬂ'dxqgv[(h)]
C 1+ Ny xC

h

As an example, let us see what comes outgf - [(»] for h andg respectively given by
(3.29) and (3.30):
(gD - (h) = g - (id +id x (g]) - [(R]) - h

{ (g - [h) abbreviated tg" and instantiating: andg }
f=[Lmul]-(id+idx f)- (! + (id, pred) - (=o?)

{ +-functor (2.42) and identity}
f=1Lmul]-('+ (id x [) - (id, pred)) - (=0?)
= { x-absorption (2.25) and identity
f=1Lmul]-('+ (id, f - pred) - (=07)

{ +-absorption (2.41) and constan{2.15) }
f=11mul-(id, f-pred |- (=o?)

{ McCarthy conditional (2.59)}
f= (:0?) — 1,mul - <7’da [ pr6d>

Going pointwise, we get — via (2.59) —

FO = [1,mul- (id, f - pred) | (i1 0)
= { +-cancellation (2.38)}
10
= { constant function (2.12}
1
and
fn+1) = [L,mul- (id,f-pred ](iz(n + 1))

= { +-cancellation (2.38)}
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mul - (id, f - pred)(n + 1)
= { pointwise definitions o$plit, identity, predecessor andul }
(n+1)x fn

In summary,f is but the well-known factorial function:

fo=1
fln+1)=(m+1)xfn

This result comes to no surprise if we look at diagram (3.85}te particulaty and
h we have considered above and recall a popular “definitiorfactorial:

nl = nxnh-1)x...x1 (3.37)

n times

In fact, [(h)] n producesT -list
Cons(n,Cons(n—1,...Cons(1, Nil)))

as an intermediate data-structure which is consumefdpythe effect of which is but the
“replacement” ofCons by x andNil by 1, therefore accomplishing (3.37) and realizing
the computation of factorial.

The moral of this example is that a function as simple as fadtoan bedecomposed
into two components (producer/consumer functions) whitdres a common intermedi-
ate inductive datatype. The producer function is an anahiempwhich “represents” or
produces a “view” of its input argument as a value of the miediate datatype. The
consumer function is a catamorphism which reduces thisnmgdiate data-structure and
produces the final result. Like factorial, many functiona ba handsomely expressed by
a(g) - [[h) composition for a suitable choice of the intermediate tgpel ofg andh. The
intermediate data-structure is said toysdual in the sense that it only exists as a means
to induce the associated pattern of recursion and disappgaralculation.

The compositior{g|) - [(») of a T-catamorphism with &-anamorphism is called &-
hylomorphisnf and is denoted bfjg, h]. Becausey andh fully determine the behaviour
of the [g, h] function, they can be regarded as the “genes” of the funttien define. As
we shall see, this analogy with biology will prove specialseful for algorithm analysis
and classification.

Exercise 3.2. A way of computing:?, the square of a given natural number is to
sum up then first odd numbers. In facti? = 1,22 =1+ 3,32 = 1+ 3 + 5, etc,
n? = (2n — 1) + (n — 1)2. Following this hint, express function

sqn & 2 (3.38)

4This terminology is derived from the Greek wardloo (hylos) meaning “matter”.
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as aT-hylomorphism and encode it HASKELL.
O

Exercise 3.3. Write functionz™ as aT-hylomorphism and encode it HASKELL.
O

Exercise 3.4. The following function irHASKELL computes thd-sequence of all even
numbers less or equal ta:

fn=ifn<=1
then Nil
else Cons(m,f(m-2))
where m = if even n then n else n-1

Find its “genetic material”, that is, functiory such that f§(g)| in

T 4 NgxT

[(g)]T Ticﬂ’idx[(g)}
INO 1+ |N0 X |NQ

g

3.6 Inductive types more generally

So far we have focussed our attention exclusively to a pdatidnductive typeT (3.20)
— that of finite sequences of non-negative integers. Thisfispurse, of a very limited
scope. First, because one could think of finite sequencethef datatypes.g.Booleans
or many others. Second, because other datatypes suchsahaisk-tablestc.exist which
our notation and method should be able to take into account.
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Although a generic theory of arbitrary datatypes requirdbemretical elaboration
which cannot be explained at once, we can move a step funthieking the two obser-
vations above as starting points. We shall start from tterlat order to talk generically
about inductive types. Then we introduce parameterizatimhfunctorial behaviour.

Suppose that, as a mere notational convention, we ableetaty expression of the
form “1 4+ Ng x ..."” occurring in the previous section b¥*..”, e.g.1+ Ny x BbyF B,
e.g.1+Nyx ThyFT

outt

T =~ FT (3.39)

etc. This is the same as introducing a datatype-level operator

FXY 14Ny x X (3.40)
which maps every datatypé into datatypel + Ny x A. OperatorfF captures the pattern

of recursion which is associated to so-called “right” li&$ non-negative integers), that

is, lists which grow to the right. The slightly different patn G X 4 X x INg will

generate a different, although related, inductive type
X =14+ X xNg (3.41)

— that of so-called “left” lists (of non-negative integer#)nd it is not difficult to think of
the pattern which is merges both right and left lists andginge to bi-linear lists, better
known asbinary trees

X 214X xNgxX (3.42)

One may think of many other expressioRs{ and guess the inductive datatype they
def

generate, for instandé X = Ny + INg x X generating non-empty lists of non-negative
integers N§). The general rule is that, given an inductive datatype digfimof the form
X 2 FX (3.43)

(also called a domain equation), its pattern of recursia@aured by a so-callefdnctor
F.

3.7 Functors

The concept of a functdf, borrowed from category theory, is a most generic and useful
device in programming. As we have seerf; can be regarded as a datatype constructor

5The category theory practitioner must be warned of the fattthe wordunctoris used here
in a too restrictive way. A proper (generic) definition of anéwor will be provided later in this
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which, given datatyped, builds a more elaborate datatyped; given another datatype
B, builds a similarly elaborate datatypeB; and so on. But what is more important
and has the most beneficial consequences is thatjsfregarded as a functor, then its
data-structuring effect extends smoothly to functionshim following way: suppose that
B <f— A is afunction which observes into B, which are parameters 6fA andF B,

respectively. By definition, if is a functor thenF B S F A exists for every suclt:

A e FA
1 e
B .............. FB

F f extendsf to F-structures and will, by definition, obey to two very basioerties: it
commutes with identity

Fida = idF g (3.44)
and with composition
Flg-h) = (Fg)-(Fh) (3.45)
Two simple examples of a functor follow:

¢ |dentity functor: defind X = X, for every datatypeX, andF f = f. Properties
(3.44) and (3.45) hold trivially just by removing symidolvherever it occurs.

e Constant functors: for a givefl, defineF X = C (for all datatypesX) andF f =
idc, as expressed in the following diagram:

A C
fl lidc
B C

Properties (3.44) and (3.45) hold trivially again.

In the same way functions can be unary, binatg, we can have functors with more
than one argument. So we get binary functors (also cdlifeohctorg, ternary functors
etc. Of course, properties (3.44) and (3.45) have to hold foryeparameter of am-ary
functor. For a binary functoB, for instance, equation (3.44) becomes

B (ida,idp) = idga,p) (3.46)

book.
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| Data construction | Universal construct | Functor | Description |

AXx B (f,9) f xg | Product
A+ B [ f,9] f+g | Coproduct
BA f fA Exponential

Table 3.1: Datatype constructions and associated operator

and equation (3.45) becomes

Product and coproduct are typical examples of bifunctorsthé former case one
hasB(A,B) = A x BandB(f,g) = f x g — recall (2.22). Properties (2.29) and
(2.28) instantiate (3.46) and (3.47), respectively, ansl éxplains why we called them
the functorial properties of product. In the latter cases basB (A, B) = A + B and

B(f,g9) = f + g —recall (2.37) — and functorial properties (2.43) and (2.4Znally,
exponentiation is a functorial construction too: assumihgone hask X 4f x4 and
Ff def f - ap and functorial properties (2.73) and (2.74). All this is soarized in table
3.1

Such as functions, functors may compose with each othereirobivious way: the
composition off andG, denotedF - G, is defined by

(F-6x ¥

(F-G)f

F(GX) (3.48)

“OFGY (3.49)

3.8 Polynomial functors

We may put constant, product, coproduct and identity fusdimgether to obtain so-called
polynomial functorswhich are described by polynomial expressions, for irc#an

FX=1+AxX
— recall (3.6). A polynomial functor is either
e a constant functor or the identity functor, or
o the (finitary) product or coproduct (sum) of other polynohfiisctors, or

e the composition of other polynomial functors.
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So the effect on arrows of a polynomial functor is compute@rnneasy and structured
way, for instance:

Ff = 14+AxX)f

= { sum of two functors wherd is a constant and is a variable }
Mf+(AxX)f

= { constant functor and product of two functo}s
idy + (A)f x (X)f

= { constant functor and identity functayr
idy +1idg X f

= { subscripts dropped for simplicity
id+idx f

So,1+ A x f denotes the same &$, + ida x f, or even the same @8 + id x f if one
drops the subscripts.

It should be clear at this point that what was referred to atise 2.10 as a “symbolic
pattern” applicable to both datatypes and arrows is aftex fainctor in the mathematical
sense. The fact that the same polynomial expression is wsddriote both the data
and the operators which structurally transform such datéd ggeat conceptual economy
and practical application. For instance, once polynomiakfor (3.40) is assumed, the
diagrams in (3.31) can be written as simply as

T " FT T " F7 (3.50)
fl iFf fT TFf
B~—7—FB B————FB

It is useful to know that, thanks to the isomorphism laws igdidn chapter 2, every
polynomial functorr may be put into the canonical form,

FX & Co+(01XX)-F(CQXXQ)—F"'—F(CRXX")

_ O x X (3.51)
and thatNewton’s binomial formula
(A+B)" = > "Cpx AP x BP (3.52)

p=0
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can be used in such conversions. These are performed umtorigbism, that is to say,
after the conversion one gets a different but isomorphiatglpe. Consider, for instance,

functor

FX Y Ax @1+ X)2

(whereA is a constant datatype) and check the following reasoning:

FX = Ax(1+X)?
{ law (2.87) }
Ax (14 X)x(1+X))
{ law (2.50) }
Ax(14+X)x1+(1+X)x X))
{ laws (2.81), (2.31) and (2.50)
Ax(14+4X)+ (1 xX+X xX))
{ laws (2.81) and (2.87)
Ax ((1+X)+ (X +X?)
{ law (2.46) }
Ax (14+(X+X)+X?%)

{ canonical form obtained via laws (2.50) and (2.88)

1%

1%

1%

1%

I

1

A +Ax2xX+ A xX?
NN <~
C(J Cl CQ

Exercise 3.5. Synthesize the isomorphism+ A x 2 x X + A x X2<—— A x (1 + X?)

implicit in the above reasoning.
O

3.9 Polynomial inductive types

An inductive datatype is said to kmlynomialwherever its pattern of recursion is de-
scribed by a polynomial functor, that is to say, wherelvén equation (3.43) is polyno-
mial. For instance, datatype(3.20) is polynomial{ = 1) and its associated polynomial
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functor is canonically defined with coefficient§) = 1 andC; = INy. For reasons that
will become apparent later on, we shall always imp6ge#£ 0 to hold in apolynomial
datatype expressed in canonical form.

Polynomial types are easy to encode indELL wherever the associated functor is
in canonical polynomial form, that is, wherever one has

T = S ,Cix T (3.53)
\—/ K3
in-r
Then we have
int S ]

where, fori = 1,n, f; is an arrow of typeT < (; x T* . Sincen is finite, one may
expand exponentials according to (2.87) and encode thig\gxELL as follows:

data T = CO |
Cl (C1LT) |
C2 (C2(T,T) |

e |
Cn (Cn,(T, ..., T))

Of course the choice of symb@li to realize eacly; is arbitrary®. Several instances of
polynomial inductive types (in canonical form) will be mimted in section 3.13. Section
3.17 will address the conversion between inductive dagstypduced by so-callguhtural
transformations

The concepts of catamorphism, anamorphism and hylomaerpimsoduced in sec-
tion 3.5 can be extended to arbitrary polynomial types. Wetdethe following sections
to explaining catamorphisms in the polynomial setting. yRoimial anamorphisms and
hylomorphisms will not be dealt with until chapter 7.

3.10 F-algebras andF-homomorphisms

Our interest in polynomial types is basically due to the fhet, for polynomialF, equa-
tion (3.43) always has a particularly interesting solutidrich corresponds to our notion
of a recursive datatype.

6A more traditional (but less close to (3.53)) encoding wél b
data T=CO0O|CLcCcaT|]C2C2TT]|.. |[ChCNT.. T (3.54)

delivering every constructor in curried form.
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In order to explain this, we need two notions which are easintterstand: first, that
of anF-algebra which simply is any functionx of signature A <*—F A . Ais called
the carrier of F-algebrac and contains the values whieh manipulates by computing
new A-values out of existing ones, according to theattern (the “type” of the algebra).
As examples, considér, add ] (3.19) andint (3.20), which are both algebras of type
FX =1+ Ny x X. The type of an algebra clearly determines its form. Forainse, any
algebrax of typeF X = 1+ X x X will be of form [ a1, as ], wherea, is a constant and
as is a binary operator. So monoids are algebras of this type

Secondly, we introduce the notion of &homomorphisnwhich is but a function
observing a particulaf-algebraa into anotherF-algebrags:

A<"—FA f-a=p-(Ff) (3.55)

LY

B<ﬁ—FB

Clearly, f can be regarded as a structural translation betweamd B, that is, A and

B have a similar structur. Note that — thanks to (3.44) — identity functions are
always (trivial)F-homomorphisms and that — thanks to (3.45) — these homorsonsh
compose, that is, the composition of tlichomomorphisms is aR-homomorphism.

3.11 F-catamorphisms

An F-algebra can be epic, monic or both, that is, iso. Fsalgebras are particularly
relevant to our discussion because they describe solutidhe X = F X equation (3.43).
Moreover, for polynomiaF a particular isd--algebra always exists, which is denoted by

uF <"~ F uF and has special properties. First, its carrier is the sstalong the
carriers of other is¢-algebras, and this is why it is denoted foly — 1 for “minimal” °.
Second, it is the so-calladitial F-algebra. What does this mean?

It means that, for everff-algebrax there exists one and only ofrehomomorphism
betweenin and . This unique arrow mediating: and « is therefore determined by
« itself, and is called thé&-catamorphisngenerated byv. This construct, which was
introduced in 3.5, is in general denoted (y)):

"But not every algebra of this type is a monoid, since the tyamalgebra only fixes its syntax
and does not impose any properties such as associatitaty,

8Cf. homomorphisrs homo(the same) -morphog(structure, shape).

9uF means the least fixpoint solution of equati&n= F X, as will be described in chapter 7 .
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pF <" FpuF (3.56)
f:GaDFl quO‘DF
A<=—4—FA
We will drop theF subscript in(a)r wherever deducible from the context, and often call
a the “gene” of(a)g.

As happens withsplits eithersand transposes, the uniqueness of the catamorphism
construct is captured by a universal property establishéuki class of alF-homomorphisms:

k=(a) & k-in=a-Fk (3.57)

According to the experience gathered from section 2.12 oisya few properties can be
expected as consequences of (3.57). For instance, one nmalewabout the “gene” of
the identity catamorphism. Just let= id in (3.57) and see what happens:
id=(a)<id-in=a-Fid
= { identity (2.10) andF is a functor (3.44)}
id=(a) < in=a-id
{ identity (2.10) once agair}

id = (a) ©in =«
= { «areplaced byin and simplifying }
id = (in])

Thus one finds out that the genetic material of the identitaroarphism is the initial
algebrain. Which is the same as establishing th#lection propertyof catamorphisms:

Cata-reflection :

pF <" FuF (in) = id,F (3.58)

uF - F uF

In a more intuitive way, one might have observed tfat)) is, by definition ofin, the
unique arrow mediating:F and itself. But another arrow of the same type is already
known: the identityid,r. So these two arrows must be the same.

Another property following immediately from (3.57), fér= («|), is
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Cata-cancellation :

(af) -in =a - F(a) (3.59)
Becausen is iso, this law can be rephrased as follows
(a) = a-F(a) - out (3.60)
whereout denotes the inverse of.:
out
T
uF = FuF
\_/

Now, let f be F-homomorphism (3.55) betwednalgebrasa and 3. How does it
relate to(«|) and(3))? Note thatf - («| is an arrow mediatinglF and B. But B is the
carrier of 3 and(|3)) is the unique arrow mediatingF and B. So the two arrows are the
same:

Cata-fusion :

uF <" F uF f-lab=(5) ¥ f-a=p-Ff (3.61)

(]al)l lF(IaD

A<T FA
fl lFf
B <ﬁ— FB
Of course, this law is also a consequence of the universakepy fork = f - (a):
f-la)=(8) < (f-(a))-in=p5-F(f-(a))
& { composition is associative afds a functor (3.45)}
f-Wa) -in) =B (Ff)- (F(a))
= { cata-cancellation (3.59}
fra-Fla)=5-Ff-F(a)
& { requiref to be aF-homomorphism (3.55)}
fra-Fla)=f-a-Flap)Af-a=p-Ff
= { simplify }
fra=p-Ff

The presentation of th@bsorptionproperty of catamorphisms entails the very impor-
tant issue of parameterization and deserves to be treateddparate section, as follows.
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3.12 Parameterization and type functors

By analogy with what we have done abapiits (product),eithers(coproduct) and trans-
poses (exponential), we now look forward to identifyiRgatamorphisms which exhibit
functorial behaviour.

Suppose that one wishes to square all numbers which are mewidests of typeT
(3.20). It can be checked that

([ Nil, Cons - (sqx id) ]|) (3.62)

s
will do this for us, wherelNg (_q N is given by (3.38). This catamorphism, which
converted to pointwise notation is nothing but functiowhich follows

h Nil = Nil
h(Cons(a,l)) = Cons(sqa, hl)

maps typeT to itself. This is becausegmapsiNg to INg. Now suppose that, instead s,

one would like to apply a given functiorB S No (for someB other thanN) to all
elements of the argument list. It is easy to see that it sufficeeplacef for sqin (3.62).
However, the output type no longerTs but rather typél’ = 1 + B x T'.

TypesT andT’ are very close to each other. They share the same “shapeitgiex
pattern) and only differ with respect to the type of element#N, in T andB in T’. This
suggests that these two types can be regarded as instarecesooé generic list datatype
List

1%

1+ X x List X (3.63)

in=[ Nil,Cons ]

List X

in which the type of elementX is allowed to vary. Thus one has = List Ny and
T’ = List B.
By inspection, it can be checked that, for evaﬁyé A,
([Nil, Cons - (f x id) ]) (3.64)
mapsList A to List B. Moreover, forf = id one has:
([ Nil,Cons - (id x id) ]|
= { by the x-functor-id property (2.29) and identity
([ Nil, Cons )
= { cata-reflection (3.58)}
id
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Therefore, by defining

List f % ([ Nil, Cons - (f x id) ])

what we have just seen can be written thus:
Listidg = idista

This is nothing but law (3.44) fdf replaced byList. Moreover, it will not be too difficult
to check that

List(¢g- f) = Listg-Listf

also holds —¢f. (3.45). Altogether, this means thatt can be regarded as a functor.

In programming terminology one says thadt X (the “lists of X's datatype”) ipara-
metricand that, by instantiating paramet&r, one gets ground lists such as lists of inte-
gers, booleansgtc. The illustration above deepens one’s understanding ofnpetexi-
zation by identifying the functorial behaviour of the paegtnit datatype along with its
parameter instantiations.

All this can be broadly generalized and leads to what is comynknown by atype
functor. First of all, it should be clear that the generic format

T = FT

adopted so far for the definition of an inductive type is ndfisiently detailed because
it does not provide a parametric view ®f For simplicity, let us suppose (for the mo-
mement) that only one parameter is identified'inThen we may factor this out vigpe
variable X and write (overloading symbdr)

TX =~ B(X,TX)

whereB is called the type’dase functor Binary functorB(X,Y’) is given this name
because it is the basis of the whole inductive type definitiBy instantiation ofX one
obtainsF. In the example abov® (X,Y) =14+ X x Y andinfactFY =B (Ny,Y) =
14+ Ng x Y, recall (3.40). Moreover, one has

Ff = B(d,f) (3.65)
and so every-homomorphism can be written in terms of the base-functdr, efg.
fra=p-B(id, )
instead of (3.55).
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T X will be referred to as thgype functorgenerated byg:

TX = B(X,TX)
~~ ———
type functor base functor

We proceed to the description of its functorial behavioul—#— for a given B SR A.
As far as typing rules are concerned, we shall have

Bl 4

Tr
TB=—TA

So we should be able to expreBy as aB (A, _)-catamorphisnig|):

A TA<—"T4 B(A,TA)
fl Tf—Gg)l lB(idﬁf)
B TB B(A, TB)

As we know thatint g is the standard constructor of values of typé3, we may put it
into the diagram too:

A TA T4 B (A, T A)
fj Tf—(lg)j lB(iCLT )
B TB 7 B(A,TB)
\;”k )
B(B,TB)

The catamorphism’s gengwill be synthesized by filling the dashed arrow in the diagram
with the “obvious”B (f, id), whereby one gets

Tf Y (inrp-B(f,id) (3.66)

and a final diagram, whet@ 4 is abbreviated byn 4 (ibid. inT g by ing):

ina

A TA B(A,TA)
fl TfIGinB-B(fﬂ'd)Dl lB(id,Tf)
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Next, we proceed to derive the useful lawaata-absorption

lgh-Tf = (g-B(f,id)) (3.67)
as a consequence of the laws studied in section 3.11. Ouwttargo show that, for
kE={(g)-Tfin(3.57),onegeta =g-B(f,id):

(g)-Tf=(a)
& { type-functor definition (3.66)}
(gD - linp - B(f,id)) = (o)
= { cata-fusion (3.61)}
(g) -inp - B(f,id) = a-B(id, (g))
& { cata-cancellation (3.59}
g-B(id, (g)) - B(f,id) = a - B (id, (g]))
& { Bis a bi-functor (3.47)}
g-B(id- f,(g)) - id) = - B(id, (g))
& { idis natural (2.11)}
& { (3.47) again, this time from left to righ}
g-B(f,id)-B(id, (g) = a - B (id, (g))
= { obvious }

g-B(f,id) = a

The following diagram pictures this property of catamosgpohs:

A TA na B (A, T A)

fj Tfj lB(id,Tf)

C TCWB(C,TC)W)B(A,TC)
(gD lB(idyﬂgl)) lB(ifL(]gD)

It remains to show that (3.66) indeed defines a functor. Tduisbe verified by check-
ing properties (3.44) and (3.45) fér= T
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e Propertytype-functor-id, cf. (3.44):
Tid
{ by definition (3.66) }
(inp - B (id, id)))
{ Bis a bi-functor (3.46)}
(inp - id)
{ identity and cata-reflection (3.58)

id

e Propertytype-functor, cf. (3.45) :

T(f-9)

= { by definition (3.66) }
(inp-B(f-g,id)]

= { id -id = id andB is a bi-functor (3.47)}

= { cata-absorption (3.67)
(ing-B(f,id))-Tyg

= { again cata-absorption (3.6%)
(ing) - Tf-Tg

= { cata-reflection (3.58) followed by identity
Tf-Tg

3.13 A catalogue of standard polynomial inductive
types

The following table contains a collection of standard polyral inductive types and as-
sociated base type bi-functors, which are in canonical {@&&3). The table contains two
extra columns which may be used as bookmarks for equatio5)(a&nd (3.66), respec-
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tively 19:
| Description | TX B(X,Y) B (id, f) B (f,id)
“Right” Lists List X 1+ X XY | id+idx f | id+ f xid
“Left” Lists LList X 1+4Y xX | id+fxid | id+idx f (3.68)
Non-empty Lists| NList X | X + X xY | id+idx f | f+ f xid
Binary Trees BTreeX | 1+ X xY? | id+id x f? | id+ f x id
“Leaf” Trees LTree X X+Y? id + f? f+id

All type functorsT in this table are unary. In general, one may think of inductiv
datatypes which exhibit more than one type parameter. 8hophrameters be identified
in T, then this will be based on an-+ 1-ary base functoB, cf.

T(X1,...,X,) = B(Xy,...,X,, T(X1,...,X,))
So, everyn + 1-ary polynomial functoB(X1, ..., X,, X,+1) can be identified as the
basis of an inductivex-ary type functor (the convention is to stick to the canoinfoem
and reserve the last variablg, | ; for the “recursive call”). While type bi-functors.(= 2)
are often found in programming, the situation in which> 2 is relatively rare. For
instance, the combination of leaf-trees with binary-tree3.68) leads to the so-called

“full tree” type bi-functor

| Description | T(X1, X») | B(X1,X2,Y) | B(id,id, f) | B(f,g,id) \,3 69)
| “Full” Trees | FTree(X1,Xs) | X1+ Xo x Y2 [id+idx f2 | f+gxid [

As we shall see later on, these types are widely used in progmag. In the actual
encoding of these types inA$KELL, exponentials are normally expanded to products
according to (2.87), see for instance

data BTree a = Empty | Node(a, (BTree a, BTree a))
Moreover, one may chose to curry the type constructors &sgn,

data BTree a = Empty | Node a (BTree a) (BTree a)

Exercise 3.6. Write as a catamorphisms

e the function which counts the number of elements of a noryelisp (typeNList
in (3.68)).

0Since(ida)? = id 42) one writesid? for id in this table.
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¢ the function which computes the maximum element of a bineeysf natural num-
bers.

Exercise 3.7. Characterize the function which is defined @[], % J|) for each of the
following definitions oh:

h(z, (y1,92)) = y1 -+ [z] H 2 (3.70)
h = +#-(singlx +) (3.71)
h = 4 (# xsingl) - swap (3.72)

assumingsingla = [a]. Identify in (3.68) which datatypes are involved as basetfrs.
O

Exercise 3.8. Write as a catamorphism the function which computedrtindier of a tree
of typeLTree (3.68), listed from left to right.
O

3.14 Functors and type functors in HASKELL

The concept of a (unary) functor is provided imsKELL in the form of a particular class
exporting themap operator:

class Functor f where
fmap :: (@ -> b) > (f a ->fb)

Sofmap g encoded g once we declaré as an instance of clagainctor . The most
popular use ofmap has to do with FASKELL lists, as allowed by declaration

instance Functor [] where
fmap f [] =1
fmap f (xixs) = f x : fmap f xs
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in language’sStandard Prelude
In order to encode the type functors we have seen so far wethate the same
concerning their declaration. For instance, should weewrit

instance Functor BTree
where fmap f =
cataBTree ( inBTree . (id -|- (f >< id)) )

concerning the binary-tree datatype of (3.68) and assumjpmgopriate declarations of
cataBTree andinBTree ,thenfmap is overloaded and used across such binary-trees.
Bi-functors can be added easily by writing

class BiFunctor f where
bmap :: (@ ->b) ->(c >d) > (fac->fbd)

Exercise 3.9. Declare all datatypes in (3.68) iHASKELL notation and turn them into
HASKELL type functors, that is, defifarap in each case.
O

Exercise 3.10. Declare datatype (3.69) iHASKELL notation and turn it into an instance
of classBi Funct or .
O

3.15 The mutual-recursion law

The theory developed so far for building (and reasoning gbieaursive functions doesn't
cope with mutual recursion. As a matter of fact, the pattdrmeoursion of a given
cata(ana,hylo)morphism involves only the recursive fiamcbeing defined, even though
more than once, in general, as dictated by the relevant baséof.

It turns out that rules for handling mutual recursion argeaingly simple to calcu-
late. As motivation, recall section 2.10 where, by mixingdurcts with coproducts, we
obtained a result — thexchange rul€2.47) — which stemmed from putting together the
two universal properties of product and coproduct, (2.5%6) @.57), respectively.
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The question we want to address in this section is of the saarebwhat can one
tell about catamorphisms which output pairs of vaRieBy (2.55), such catamorphisms
are bound to beplits as are the correspondilggnes

in

T FT
d(hJc))l lFGUL,k)D
Ax B<—F(AXx B)

(hsk)

As we did for the exchange rule, we put (2.55) and the univensaperty of catamor-
phisms (3.57) against each other and calculate:

(f,9) = ({h, k)
{ cata-universal (3.57}
{ x-fusion (2.24) twice}
{ (2.56) }
frin=h-F(f,g) N g-in=k-F(f g)
The rule thus obtained,
g-in=k F(fg)

is referred to as thenutual recursion lawor as “Fokkinga’s law”) and is useful in com-
bining two mutually recursive functionsandg

= (f,9) = (LK) (3.73)

T—" FT ~— ™ FT

T
fl lF (f.9) gl lF (f.9)
B

A<h—F(A><B) <k—F(A><B)

into a single catamorphism.

When applied from left to right, law (3.73) is surprisinglgaful in optimizing recur-
sive functions in a way which saves redundant traversalbefriput inductive typer.
Let us take the Fibonacci function as example:

fibo = 1
fibl = 1
fibn+2) = fib(n+1)+ fibn
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It can be shown thatib is a hylomorphism of typ&Tree (3.68), fib = [count, fibd], for
count = [ 1,add ], add(x,y) = x +yand fibd n = if n < 2 then iy Nil else iz(n —
1,n — 2). This hylo-factorization offib tells its internal algorithmic structure: thidvide
step|( fibd) builds a tree whose number of leaves is a Fibonacci numbecpthquer step
(count]) just counts such leaves.

There is, of course, much re-calculation in this hylomosphi Can we improve its
performance? The clue is to regard the two instancegilofn the recursive branch as
mutually recursive over the natural numbers. This clue ggested not only byfib
having two base cases (so, perhaps it hides two functiong)ismby the lookaheaad + 2
in the recursive clause.

We start by defining a function which reduces such a lookabgék]

fn = fibn+1)

Clearly, f(n+ 1) = fib(n+2) = fn+ fibnandf 0 = fib1 = 1. Putting f and fib
togther,

f0 =1
fln+1) = fn+ fibn
fibo = 1

fibln+1) = fn

we obtain two mutually recursive functions over the natmaibers Ny) which trans-
form into pointfree equalities

f'[Q,SUC] = [laadd<f7f7’b>]
fib-10,suc] = [1,f]
over
— >1+4+ Ny
0 o~ ——
NS~~~ FNNg

in=[ 0,suc |

N (3.74)

Reverset-absorption (2.41) will further enable us to rewrite theabmto

fib-in = [1,m ] F(f, fib)

thus bringing functoF f = id + f explicit and preparing for mutual recursion removal:

fib-in = [L,m]-F(f,fib)
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{ 3.73) }
(f, fib)y = ({[Ladd],[1,m ]))
{ exchange law (2.47)

(f, fib) = ([(L1), (add,m)])
{ going pointwise and denotingf, fib) by fit' }

fib' 0= (1,1)
fit (n+1) = (z + y,z) where (z,y) = fib' n

Since fib = m - fib' we easily recoverfib from fib’ and obtain the intended linear
version of Fibonacci (encoded in Haskell):

fib n = y where (x,y) = fib’ n
fib’ 0 = (1,1)
fib’ (n+1) = (x+y,x)
where (x,y) = fib’ n

This version offib is actually the semantics of the “for-loop” one would write an
imperative language which would initialize two global \aiesz,y := 1,1, loop over
assignment:, y := = + y,z and yield the result iy. In the C programming language,
one would write

int fib(int n)

{

int x=1; int y=1; int i

for (i=1;i<=n;i++) {int a=x; x=x+y; y=a;}
return vy;

%

where the extra variable is required for ensuring thaimultaneousissignment:, y :=
x + y, x takes place in a sequential way.

Our intuition above is confirmed by observing thatldjj catamorphisms are of shape
([k,g]), and thaf[ k, g ])n = g™k, whereg" is then-th iteration ofg, that is,¢® = id
andg™t! = ¢ - ¢". Sog is the body of a “for-loop” which repeats itselftimes, starting
with initial value k.

In a sense, the mutual recursion law gives us a hint on hovagl@biables “are born”
in computer programs, out of the maths definitions themsel@aiite often more that two
such variables are required in linearizing hylomorphismsnoitual recursion. Let us see
an example. The question isow many squares can one draw on & n-tiled wall? The
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answer is given by function

nsmn déf 22
i=1,n
that is,
ns0 = 0
ns(n+1) = (n+1)2+nsn

in Haskell. However, this hylomorphism is inefficient besateach iteration involves
another hylomorphism computing square numbers.

One way of improvingns is to introduce functiorbnm n def (n + 1)% and express
this over (3.74),

bom0 = 1
bnm(n+1) = 2n+3+bnmn

hoping to blendhs with bnm using the mutual recursion law. However, the same problem

arises inbnm itself, which now depends on tertm + 3. We inventlin n dfon 1 3 and

repeat the process, thus obtaining:

lin0 = 3
linln+1) = 24linn
By redefining
bnm'0 = 1
bnm/(n+1) = linn+bnm'n
ns0 = 0
ns'(n+1) = bnm'n+ns'n

we obtain three functions s, bnm’ andlin — mutually recursive over the polynomial
baseF g = id + g of the natural numbers.

Exercise 3.11 below shows how to extend (3.73) to three niutteursive functions
(3.75). (From this it is easy to extend it further to thery case.) It is routine work to
show that, by application of (3.75) to the above three fumsj one obtains the linear
version ofns which follows:
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ns” n = let (a,b,c) = aux n in a

where
aux 0 = (0,1,3)
aux(n+l) = let (a,b,c) = aux n

in (at+b,b+c,2+c)

In retrospect, note that (in general) not every systemmiutually recursive functions

fi=ao1(f1,--, fn)

fn:¢n(f177fn)

involving n functions anch functional combinator®;, ..., ¢, can be handled by a suit-
ably extended version of (3.73). This only happens iffalhave the same “shape”, that
is, if they share the same base fundtor

Exercise 3.11. Show that law (3.73) generalizes to more than two mutualtyngve
functions, in this case three:

frin=h-F(f{g,5))
g-in="k-F({f{9,5)) = (f:{9:5)) = ((h, (K, 1)) (3.75)
Jjein=1-F(f {g,5))

Exercise 3.12. The exponential functioa® : R — R (where “¢” denotes Euler’s
number) can be defined in several ways, one being the calzulaf Taylor series:

, X gn
ef = Z%H (3.76)

The following function, in Haskell,

exp :: Double -> Integer -> Double
exp x O =1
exp x (n+l) = x'(n+1) / fac (n+1) + (exp X n)

computes an approximation ef, where the second parameter tells how many terms to
compute. For instance, whilecp 11 = 2.0, exp 1 10 yields2.7182818011463845.



3.15. THE MUTUAL-RECURSION LAW 99

Functionexp = n performs badly for larger and larger: whileezp 1 100 runs instan-
taneouslyexp 1 1000 takes around 9 secondsyp 1 2000 takes circa 33 seconds, and so
on.

Decomposexp into mutually recursive functions so as to apply (3.75) ahthim the
following linear version:

exp x n = let (e,b,c) = aux x n
in e where
aux x 0 = (1,2,x)
aux x (n+l) = let (e,s,h) = aux x n
in  (e+h,s+1,(x/s) * h)

Exercise 3.13. From the following basic properties of addition and muitikion,

ax0 = 0 (3.77)
axl = a (3.78)
ax(b+c) = axb+axc (3.79)

show thata  n is the “for-loop” (a+)" 0.
O

Exercise 3.14. Show that, for alln € INg, n = suc™0. Hint: use cata-reflexion (3.58).
O

As example of application of (3.73) far other thaniNy, consider the following re-
cursive predicate which checks whether a (non-empty)distdlered,

ord: At ——=2
ord[a] = TRUE
ord (cons(a,l)) = a > (listMazl) A (ordl)
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where> is assumed to be a total order on datatypand
listMax = ([ id, max ]| (3.80)
computes the greatest element of a given listief

[Singl,cons]
At<=———A4+ Ax AT

listMazl lid+id><listMaz

A+Ax A

[ id,maz ]

(In the diagramsingla = [a].)
Predicateord is not a catamorphism because of the presencésoMax [ in the
recursive branch. However, the following diagram depigtind

sin |,cons
o ASINGheoms] A oAt

ordi lid#»idx (listM ax,ord)

2 A+ Ax(Ax2)

[TRUE, |

(wherea(a, (m, b)) et > ma b) suggests the possibility of using the mutual recursion
law. One only has to find a way of lettingstMax depend also owrd, which isn’t

difficult: for any o+ —2~ B , one has

[ singl.cons |
AT A+ Ax AT

listMa:rl lid—l—idx (listM az,g)

A+ Ax (Ax B)

[ id,maz-(idxm1) |

where the extra presence @fs cancelled by projection; .
For B = 2 andg = ord we are in position to apply Fokkinga’s law and obtain:

(listMaz,ord) = ({[id,max - (id x 71)],[ TRUE, a ]))
= { exchange lav2.47)}
([ (id, TRUE), (maz - (id x m1), ) ])

Of courseprd = my - (listMazx, ord). By denoting the above synthesized catamorphism
by aux, we end up with the following version of-d:

ordl = let (a,b) =auxl
mn b
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where

aur : ATt ——=Ax?2
aux [a] = (a, TRUE)
auzx (cons(a,l)) = let  (m,b) = auxl
in  (maz(a,m),(a>mAb))

3.16 “Banana-split”: a corollary of the mutual-recursion
law

Leth =14 -Fm andk = j-Fmein (3.73). Then

frin=(i-Fm) F(f.g)
{ composition is associative amds a functor}

frin=i-F(m-(f9))
{ by x-cancellation (2.20}

frin=i-Ff
= { by cata-cancellation
f= (i)

Similarly, fromk = j - F my we get
9= (3
Then, from (3.73), we get
((2D, (5D} = (¢ - Fry, 5 - F o))
that is
(@D, (5D} = (i x 5) - (F 1, Fr2)) (3.81)

by (reverse)x-absorption (2.25).

This law provides us with a very useful tool for “parallel ointer-combination:
“loops” (i]) and(j]) are fused together into a single “loofi{i x j) - (Fmy, F ms)|). The
need for this kind of calculation arises very often. Considier instance, the function
which computes the average of a non-empty list of naturalbars)

average e (/) - (sum, length) (3.82)
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wheresum andlength are the expectebl™ catamorphisms:

sum = ([ id,+ ]|
length = ([ 1, succ - 7o )

As defined by (3.82), functionverage performs two independent traversals of the argu-
ment list before divisior{/) takes place. Banana-split will fuse such two traversats ant
single one (see functiomux below), thus leading to a function which will run "twice as
fast”:

averagel = x/y
where  (x,y) = aux
auxla] = (a,1) (3.83)
auz(cons(a,l)) = (a+z,y+1)
where  (x,y) = aux

Exercise 3.15. Calculate (3.83) from (3.82). Which of these two versionthefsame
function is easier to understand?
O

3.17 Inductive datatype isomorphism

| not yet available

3.18 Bibliography notes

It is often the case that the expressive power of a partiquiagramming language or
paradigm is counter-productive in the sense that too mwetdhm is given to program-
mers. Sooner or later, these will end up writing uninteligi(authorship dependent) code
which will become a burden to whom has to maintain it. Suchidees the case of imper-
ative programming in the past (inc. assembly code), wherautiestricted use @foto
instructions eventually gave placeifehen-else ,While andrepeat structured
programming constructs.

A similar trend has been observed over the last decades aharhprogramming
level: arbitrary recursion and/or (side) effects have bemrsidered harmful in functional
programming. Instead, programmers have been invited tetste their code around
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generic program devices such as fd/unfold combinators, which bring discipline to
recursion. One witnesses progress in the sense that theflsesdom is balanced by the
increase of formal semantics and the availability of progralculi.

Such disciplined programming combinators have been egtefrom list-processing
to other inductive structures thanks to one of the most Bagmit advances in program-
ming theory over the last decade: the so-cafiguctorial approach to datatypes which
originated mainly from [MA86], was popularized by [Mal90hé reached textbook for-
mat in [BAM97]. A comfortable basis for exploitingplymorphisnjWad89], the “datatypes
as functors” moto has proved beneficial at a higher level sfrabtion, giving birth to
polytypism[JJ96].

The literature oranas catasandhylosis vast (see eg. [MH95], [JJ98], [GHAO1]) and
it is part of a broader discipline which has become known asrththematics of program
construction[Bac04]. This chapter provides an introduction to such asigiine. Only
the calculus of catamorphisms is presented. The correspptiteory of anamorphisms
and hylomorphisms demands further mathematical machiaedywill won't be dealt
with before chapters 5 and 7. The results on mutual recuggiesented in this chapter
were pionered by Maarten Fokkinga [Fok92].
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Chapter 4
Why Monads Matter

In this chapter we present a powerful device in state-ofatfigorogramming, that of a
monad The monad concept is nowadays of primary importance in coimgp science
because it makes it possible to describe computationalteffes disparate as input/output,
comprehension notation, state variable updating, comtegendence, partial behaviour
etc.in an elegant and uniform way.

Our motivation to this concept will start from a well-knowmoplem in functional
programming (and computing as a whole) — that of coping wittiefined computations.

4.1 Partial functions
Consider theR to R function
def

gr = 1l/x

Clearly, g is undefined for: = 0 becausey 0 = 1/0 is so big a real number that it cannot
be properly evaluated. In fact, thealKELL output forg 0 = 1/0 is just “panic”:

Main> g 0
Program error: {primDivDouble 1.0 0.0}

Main>

Functions such agabove are callegartial functionsbecause they cannot be applied
to all of their inputs {e., they diverge for some of their inputs). Partial functiome a
very common in mathematics or programming — for other exasphink ofe.g. list-
processing functionkead andtalil

105
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Panic is very dangerous in programming. In order to avoid kimd of behaviour
one has two alternatives, either ensuring that every cajlatas protected— i.e., the
contexts which wrap up such calls enspre-conditionz # 0, or oneraisesexceptions,
i.e. explicit error values. In the former case, mathematicabfgmeed to be carried out
in order to guarantesafety(that is, pre-conditioncompliance). The overall effect is to
restrict the domain of the partial function. In the latter case onesgbe other way
round, by extending the co-domain (vulg. range) of the fiancso that it accommodates
exceptional outputs. In this way one might define, IRSHELL:

data ExtReal = Ok Real | Error
and then redefine
g :: Real -> ExtReal
g 0 = Error
g n=0k 1/n
In general, one might define parametric type

data Ext a = Ok a | Error

in order to extend an arbitrary data typewith its (polymorphic) exception (or error
value). Clearly, one has

Ext A = Maybe A= 1+ A

So, in abstract terms, one may regarghadial every function of signature

1+4<2-B

for someA andB 1.

4.2 Putting partial functions together

Do patrtial functions compose? Their types won't match inegah
1+B<—A4

f

1+C B

In conventional programming, every function deliveringainteras result — as ie.g.the C
programming language — can be regarded as one of thesednscti
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Clearly, we have to extend — which is itself a partial function — to somg able to
accept arguments from+ B:

1+C

f

The most “obvious” instance of the ellipsis. () in the diagram above i§ and this
corresponds to what is calledtrict composition: an exception produced by thveducer
function g is propagated to the output of thensumerfunction f:

fog = [inflg (4.2)
Expressed in terms d&xt , composite functiorf e g works as follows:

(fegla = fl(ga)
where

f'Error = Error
f'(Okb) = fb

Altogether, we have the following Haskell expression fa theaning off e g:

\a > f (g a)
where ' Error = Error
f (Ok b) =fb

Note that the adopted extension otan be decomposed — by reverseabsorption
(2.41) — into

o= liid]- (id+ f)
as displayed in diagram

id
1+(1+0f 2 14BL 4

[il,id]l
140~
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All'in all, we have the following version of (4.1):
feg ¥ [irid]-(id+f)-g
Does this functional composition scheme have a unit, thét there a: such that
foeu=f=uef (4.2)

holds? Clearly, if it exists, it must bear type+ A <“— A . Let ussolve(4.2) foru:

feu=f=uef

= { substitution}
lin, f]-u=f=[inul f

= {letu =1y}
[i1, f] 2= f=[i1,i2] - fAu=1s

= { by +-cancellation (2.38) and-reflection (2.39)
f=f=id-fAu=is

= { identity }
u = ’iz

4.3 Lists

In contrast to partial functions, which can produce no oytigtius now consider functions
which delivertoo manyoutputs, for instance, lists of output values:

B <24

o135
Functionsf andg do not compose but once again one can think of extending tisicoer
function (f) by mapping it along the output of the producer functigh (

() <=

f

c* B
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To complete the process, one haflattenthe nested-sequence outputdi)* via the ob-

vious list-catamorphismc* <2< (c*)* | whereconcat & ([[],41)- In sum-

mary:
feg ef concat - f g (4.3)
as captured in the following diagram:

= g

() <—pBr<"—2
concatl
¢~ — B

Exercise 4.1. Show thatsingl (recall exercise 3.7) is the unit of e in the context of
(4.3).
O

Exercise 4.2. Encode inHASKELL a pointwise version of (4.3Hint: first apply (list)
cata-absorption (3.67).
O

4.4 Monads

Both function composition schemes (4.1) and (4.3) aboveestie same polytypic pat-
tern: the output of the producer function is-times” more elaborate than the input of the
consumer function, whereis some parametric datatype FX = 1+ X in case of (4.1),
andF X = X* in case of (4.3). Then a composition scheme is devised fdr unctions,
which is displayed in

FFC)<—FB=<'—4

|

FC B
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and is given by

feg X L Ffg (4.4)

where F A <“— F2 4 is a suitable polymorphic function. Together with a unitdtion

FA~<—— A andp, datatypeF will form a so-calledmonadtype, of whichl + __and
(__)* are the two examples seen above.

Arrow 4 - F f is called theextensiorof f. Functionsy andw are referred to as the
monad’smultiplication andunit, respectively. The monadic composition scheme (4.4) is
calledKleisli composition

A monadic arrow FB L A conveys the idea of a function which produces an
output of “type” B “wrapped byF”, where datatypd- describes some kind of (compu-
tational) “effect’. The monad’s unitF B <—— B is a primitive monadic arrow which
producesi(e. promotes, injects, wraps) datagether withsuch an effect.

The monad concept is nowadays of primary importance in céimgpgcience because
it makes it possible to describe computational effects sgadate as input/output, state
variable updating, context dependence, partial behag®en abovegtc.in an elegant
and uniform way. Moreover, the monad’s operators exhiliiable properties which make
it possible tareasonabout such computational effects.

The remainder of this section is devoted to such propeffiest of all, the properties
implicit in the following diagrams will beequiredfor F to be regarded as a monad:

Multiplication :

F2A<—F34 pop=p-Fp (4.5)

g |F

FA<T F2 A

Unit :
F2A<——FA peu=p-Fu=1id (4.6)
ul% lFu
FA<—F24

Simple but beautiful symmetries apparent in these diagraaie it easy to memorize
their laws and check them for particular cases. For instdiocehe (1 + _) monad, law
(4.6) will read as follows:

[41,id ] - i = [41,id ] - (id + i2) = id
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These equalities are easy to check.
In laws (4.5) and (4.6), the different instancesioéind v are differently typed, as
these are polymorphic and exhibit natural properties:

p-natural :
A FA<Z—F24 Ffop=p-F2f (4.7)
fl Ffl lFQf
B FB<~—F’B
u-natural :
A FA<— A Ff-u=u-f (4.8)
fl | lf
B FB<—RB

The simplest of all monads is thdentity monadF X def X, which is such that

uw=r1tdd,u=1idandfeg = f-g. SO— in a sense — one may be think of all the
functional discipline studied so far as a particular casa wider discipline in which an
arbitrary monad is present.

4.4.1 Properties involving (Kleisli) composition

The following properties arise from the definitions and ndiogproperties presented
above:

fe(geh) = (feg)eh (4.9)
uef= f = feu (4.10)
(feg)-h = fe(g-h) (4.11)
(f-g)eh = fe(Fg-h) (4.12)
ideid = p (4.13)

Properties (4.9) and (4.10) are the monadic counterparteggectively, (2.8) and (2.10),
meaning that monadic composition preserves the propatiesrmal functional compo-
sition. In fact, for the identity monad, these propertiemciole with each other.

Above we have shown that property (4.10) holds for the lishath recall (4.2). A
general proof can be produced similarly. We select propgér8) as an illustration of the
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réle of the monadic properties:
fe(geh)
= { definition (4.4) twice}
p-Ff-(u-Fg-h)
= { pis natural (4.7)}
pw-p-FFf)-Fg-h
{ functorF }
popF(Ffog)
= { definition (4.4)}
p-(Ff-g)eh
{ definition (4.4)}
(feg)eh

Exercise 4.3. Check the other laws above.
O

4.5 Monadic application (binding)

The monadic extension of functional applicatiem (2.67) is another operatap’ which
is intended to be “tolerant” in face of afyed argumentr:

(FB) x FA-2L- (4.14)
ap'(fyx) = flo = (u-Ffz

If in curry/flipped format, monadic application is callbthdingand denoted by sym-
bol “>>=", looking very much like postfix functional application,

(FB))F4—==FB (4.15)
that is:

e>=f ¥ (uFf (4.16)
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This operator will exhibit properties arising from its défiion and the basic monadic
propertiesge.g.

r>=u

{ definition (4.16) }
(1 - Fu)z

{ law (4.6) }
(id)x
= { identity function}

X
At pointwise level, one may chain monadic compositions fiefoito right, e.g.
(x>=f1)>=fo)>=... fn_1)>=fn
: b5 f2 fn
for functons A——FB;, By —=FBy,... Bp_1—FB,.

4.6 Sequencing and thelo-notation

Given two monadic values andy, it becomes possible to “sequence” them, thus obtain-
ing another of such value, by defining the following operator

x>y ef > Y (4.17)

For instance, within the finite-list monad, one has

[1,2] > [3,4] = (concat - [3,4]")[1, 2] = concat|[3,4],[3,4]] = [3,4,3,4]

Because this operator is associative (prove this as anigggrone may iterate it to
more than two arguments and write, for instance,

TS T3> ... > 1,

This leads to the populaito notation, which is another piece of (pointwise) notation
which makes sense in a monadic context:

def
doxy;wo;.. .52y = x1>>d0xo;... 2,
forn > 1. Forn = 1 one trivially has

do rKT = X1
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4.7 Generators and comprehensions

Thedo-notation accepts a variant in which the arguments oftheperator are “genera-
tors” of the form

a+—z (4.18)

where, fora of type A, x is an inhabitant of monadic tygdeA. One may regard < = as
meaning “leta be taken frome”. Then thedo-notation extends as follows:

doa« x1;z9;...;2, def 1 >= Aa.(dO x9; ... ;2,) (4.19)

Of course, we should now allow for the to range over terms involving variable For
instance (again in the list-monad), by writing

do a — [1,2,3]; [a?] (4.20)
we mean
[1,2,3] >= Aa.[a?]
= concat((Ma.[a*))"[1,2,3])

= concat|[1],[4], [9]]
= [1,4,9]

The analogy with classical set-theoretic ZF-notation, iehg one might write{a? |
a € {1,2,3}} to describe the set of the first three perfect squares, aalthé following
notation,

[a®a—[1,2,3]] (4.21)

as a “shorthand” of (4.20). This is an instance of the scedalbmprehensiomotation,
which can be defined in general as follows:

[elal «—21,...,ap — 2] = dOay —x1;...;a, — zp;u(e) (4.22)

Alternatively, comprehensions can be defined as followgref ¢ stand for arbitrary
generators;

[t] = ut (4.23)
[falz—1] = (Ff) (4.24)
[tIp,q] = pllt]q]|p] (4.25)

Note, however, that comprehensions are not restrictedt® dir sets — they can be
defined for any mona#.
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4.8 Monads in HASKELL

In the Standard Preludéor HASKELL, one finds the following minimal definition of the
Monad class,

class Monad m where
return :: a -> m a
>>=) “ma-=>@->mb)->mb

wherereturn  refers to the unit ofn on top of which the “sequence” operator

>> m"“ma->mb->mb
fail ;o String -> m a
is defined by

p>q =p>=\_ ->9q

as expected. This class is instantiated for finite sequgficdsMaybe andlO .
The 1 multiplication operator is functiojoin  in moduleMonad.hs :

join :: (Monad m) => m (m a) -> m a
join x = x >>=id

This is easily justified:

joinx = x>=1id (4.26)
= { definition (4.16) }
(p-Fid)x
= { functors commute with identity (3.44)
(- id)x
= {law (2.10)}
nx

In Mpi.hs we define (Kleisli) monadic composition in terms of the birgloperator:

() : Monad a => (b ->ac)->(d->ab)->d->ac
(f1g)a=(ga) >=f



116 CHAPTER 4. WHY MONADS MATTER

4.8.1 Monadic l/O

10, a parametric datatype whose inhabitants are special s/alakedactionsor com-
mandsis a most relevant monad. Actions perform the interconoedtetween HSKELL
and the environment (file system, operating system). Feameg,getLine :: 10 String

is a particular action. Paramet8tring refers to the fact that this action “delivers” —
or extracts — a string from the environent. This meaningésudy conveyed by the type
String  assigned to symbalin

do [« getLine;...l...

which is consistent with typing rule for generators (4.18¢quencing corresponds to the
“" syntax in most programming languages.d. C) and thedo-notation is particulary
intuitive in the 10-context.

Examples of functions delivering actions are

FilePath —=<1° _ 10 String

and
putChar

Char —10()

— both produce 1/0 commands as result.

As is to be expected, the implementation of t@monad in FASKELL — avail-
able from theStandard Prelude— is not totally visible, for it is bound to deal with the
intrincacies of the underlying machine:

instance Monad 10 where
(>>=) = primbindIO
return = primretlO

Rather interesting is the wd@ is regarded as a functor:
fmap f x = x >>= (return . f)

This goes the other way round, the monadic structure “hgtpim defining the functor
structure, everything consistent with the underlying thieo

z>=(u-f) = (u-10(u-[f))z
= { functors commute with composition
(- 10u-10 f)zx
= {law (4.6) forF =10 }
(10 f)z
= { definition of fmap }
(fmap f)x
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For enjoyable reading on monadic input/output indkELL see [Hud00], chapter 18.

Exercise 4.4. Use thedo-notation and the comprehension notation to output th@foll
ing truth-table, iNHASKELL:

| p/q | False| True |

False || False | False
True || False| True

Exercise 4.5. Extend theMaybe monad to the following “error message” exception
handling datatype:

data Error a = Err String | Ok a deriving Show

In case of several error messages issued iloasequence, how many turn up on the
screen? Which ones?
O

4.9 The state monad

| NB: this section is still very drafty

The so-calledstate monads a monad whose inhabitants are state-transitions ergedin
particular brand of state-based automaton knowilealy machineGiven a setd (input
alphabet), a seB (output alphabet) and a set of stattsa deterministic Mealy machine
(DMM) is specified by a transition function of type

AxS—2-BxS (4.27)
Wherever(b, s') = 4(a, s), we say that the machine has transition

alb
S§——>g
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and refer tos as thebefore state, and t@’ as theafter state.
It is clear from (4.27) thab can be expressed as thglit of two functions f andg,
0 = (f,g), as depicted in the following diagram:

————————————————

________________ (4.28)

The information recorded in the state of a DMM is either megl@ss to the user of
the machine (as in eg. the case of states represented by ra)robéoo complex to be
handled explicitly (as is the case of eg. the data kept ingeldatabase). So, it is con-
venient toabstractfrom it. Such an abstraction leads to gtate monadn the following
way: recalling (2.75), we simplgurry ¢

5 (Bx9)°
A2 BSOS (4.29)
(St S) B

thus “shifting” the input state to the output. In this way,a is a function capturing all
state-transitions (and corresponding outputs) for impuRor instance, the function which
appendsa new element to the back of a queue,

eng(a,s) s+ [a]

can be converted into a DMM by adding to it a dummy output okty@nd then trans-
posing:

enqueve : A — (1x8)°
def (430)
enqueve a = (!, (+[a]))

Action enqueue performseng on the state while acknowledging it by issuing an output
of typel.
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Unit and multiplication.  Let us show that
(StS)A = (AxS)® (4.31)

forms a monad. As we shall see, the fact that vhkiesof this monad are functions
brings the theory of exponentiation to the forefront. (Tlaugeview of section 2.14 is
recommended.) Notatiofi will be used to abbreviatencurry f. Thus the following
variant of universal law (2.67),

k=f o f=ap-(kxid (4.32)

whose cancellation

~

k=ap-(kxid) (4.33)

is written pointwise as follows:

~

k(c,a) = (kc)a (4.34)
First of all, what is the functor behind (4.31)? Fixing thatstspace, we obtain

FX ¥ (xx9) (4.35)

on objects and

Fr < (fxid) (4.36)

on functions, wher¢_)” is the exponential functor (2.71).
The unit of this monad is the transpose of the simplest of &hM machines — the
identity:

u A— (AxS8)°
w — 7d (4.37)
Let us see what this means:

u=id
{ (2.67) }
ap - (uxid) =id

{ introducing variables}

ap(u a, s) = (a, s)

{ definition ofa }

(ua)s = (a,s)
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From the type o}, for this monad,
(Ax 9)5 x §)° —=(Ax9)S

one figures oupr = z° (recalling the exponential functor as defined by (2.71)) dor
of type ((A x §)% x §) —== (A x S). This, on its turn, is easily recognized as an

instance of thep polymorphic function (2.67), which is such that = id, recall (2.69).
Altogether, we define

p o= ap® (4.38)

Let us check the meaning @f by applying it to an action expressed as in diagram
(2.75):

w(f,g) = ap®(f,g)
{ (2.71) }

w(f,g) = ap-(f,g)

{ extensional equality (2.5}

u(f,g)s =ap(fs,g )
{ definition ofap }

w(f,9)s = (f s)(gs)

We find out thatu “unnests” the action insid¢ by applying it to the state delivered lpy

Checking the monadic laws. The calculation of (4.6) is made in two parts, checking
- u = id first,
pu
= { definitions}
aps -id
= { exponentials absorption (2.73)

ap - id
- { reflection (2.69)}
id
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and then checking - (Fu) = id:
p- (Fu)
= { (4.38,4.36) }
ap® - (id x id)®
= { functor }
(ap - (id x id))*
= { cancellation (2.68)}
id®
= { functor }
id
The proof of (4.5) is also not difficult once supported by &g of exponentials.

Kleisli composition. Let us calculatef e g for this monad:
feyg
= { @44}
pw-Ff-g
= { (4.38);(4.36)}
ap® - (f xid)® - g
= { (0% is afunctor }
(ap- (f xid))* - g
- {432)
/g

= { cancellation }

73
= { absorption (2.72)}
f-9

In summary, we have:

(4.39)

)
Q)

feg =
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Let us use this in calculating law
pop e push = wu (4.40)

wherepush andpop are such that

push : A — (1x8)°

pueh (4.41)
1= (AxS)°

pop — (4x8) (4.42)

pop def (head, tail) - mo
for S the datatype of finite lists. We reason:
pop e push
{ (4.39) }
= { (4.41,4.42)}

(head, tail) - mo - (!, (/\)>
= { (2.20, 2.24)}

(head, tail) - (/\)
= { out -in = id (lists) }
id

{ (4.37) }

Bind. The effect of binding a state transitianto a state-monadic functioh is calcu-
lated in a similar way:

xr>=h
= { (4.16) }
(u-Fh)z
{ (4.38) and (4.36)}
(ap® - (h x id)®)z
= { ()% is afunctor }
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(ap - (h x id))°z
= { cancellation (4.33)}
rSx

= { exponential functor (2.71)
bz

Let us unfoldh - 2 by splitting z into its components two componentandg:
(frg)>=h = h-(f,9)

{ go pointwise }
((f.9)>=h)s = h({f.9)s)

{ (2.18) }
((f,9) >=h)s

{ (4.34) }
((fr9)>=h)s = h(fs)(gs)

In summary, for a given “before state; g s is the intermediate state upon whi¢lts runs
and yields the output and (final) “after state”.

h(f s,95)

Two prototypical inhabitants of the state monad: get and put. These generic
actions are defined as follows, in the PF-style:

get < (id,id) (4.43)

put def (I, ) (4.44)
Action g retrieves the data stored in the state whil¢ (which can also be written
puts = modify(s) (4.45)

where

modify f % (1, f) (4.46)

updates the state via state-to-state funcfipstores a particular value in the state.
The following is an example, in Haskell, of the standard usget/put in managing

context data, in this case a counter. The function decoestels node of 87 ree (recall
this datatype from page 91) with its position in the tree:
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decBTree Empty = return Empty
decBTree (Node (a,(t1,t2))) =
do n <- get ;
put(n+1) ;
| <- decBTree t1 ;
r <- decBTree t2 ;
return (Node((a,n),(l,r)))

4.10 Bibliography notes

The use of monads in computer science started with Moggi P@hgvho had the idea
that monads should supply the extra semantic informatied®e to implement the lambda-
calculus theory. Haskell [Jon03] is among the computerdaggs which make systematic
use of monads for implementing effects and imperative cootst in an otherwise purely
functional language.

Category theorists invented monads in the 1960’s to colyoisgoress certain aspects
of universal algebra. Functional programmers inventédttsprehensions in the 1970's
to concisely express certain programs involving lists. liphvadler [Wad89] made a
great contribution in the field by showing that list compnesiens could be generalised
to arbitrary monads and unify with imperative “do”-notation case of the monad which
explains imperative computations.

Monads are nowadays an essential feature of functionalgmuming and are used in
fields as diverse as language parsing [HM93], componeatitmdl programming [Bar01],
strategic programming [LV03] and multimedia [HudOO0].
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