
Chapter 2

Recursion in the Pointfree Style

How useful from a programmer’s point of view are the abstract concepts presented in
the previous chapter? Recall that a table was presented — table 1.1 — which records an
analogy between abstract type notation and the corresponding data-structures available
in common, imperative languages.

This analogy is precisely our point of departure for extending the abstract notation
towards a most important field of programming: recursion.

2.1 Motivation

Let us consider a very common data-structure in programming: “linked-lists”. In PAS-
CAL one will write

L = ˆN;
N = record

P: A;
S: ˆN

end;

to specify such a data-structure L. This consists of a pointer to a node (N), where a
node is a record structure which puts some predefined type A together with a pointer to
another node, and so on. In the C programming language, every x � L will be declared
as

L x;

in the context of datatype definition

typedef struct N {
A first;
struct N *next;
} *L;

43

44 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

and so on.
What interests us in such “first year programming course” datatype declarations?

Records and pointers have already been dealt with in table 1.1. So we can use this
table to find the abstract version of datatype L, by replacing pointers by the “� � � � �”
notation and records (structs) by the “� � �� � � �” notation:�

L � � �N

N � A� �� �N�
(2.1)

We obtain a system of two equations on unknowns L and N , in which L’s depen-
dence on N can be removed by substitution:�

L � � �N

N � A� �� �N�

� f substituting L for � �N in the second equationg�
L � � �N

N � A� L

� f substituting A� L for N in the first equationg�
L � � �A� L

N � A� L

System (2.1) is thus equivalent to:�
L � � �A� L

N � A� �� �N�
(2.2)

Intuitively, L abstracts the “possibly empty” linked-list of elements of type A, while
N abstracts the “non-empty” linked-list of elements of type A. Note that L and N are
independent of each other, but also that each depends on itself. Can we solve these
equations in a way such that we obtain “solutions” for L and N , in the same way we
do with school equations such as, for instance,

x � � �
x

�
� (2.3)

Concerning this equation, let us recall how we would go about it in school mathe-
matics:

x � � �
x

�

� f adding�x
� to both sides of the equationg

x�
x

�
� � �

x

�
�

x

�

� f �x
� cancels x

�g

x�
x

�
� �

2.1. MOTIVATION 45

� f multiplying both sides of the equation by � etc. g

�� x� x � �

� f subtractiong

x � �

We very quickly get solution x � �. However, many steps were omitted from the
actual calculation. This unfolds into the longer sequence of more elementary steps
which follows, in which notation a� b abbreviates a� ��b� and a

b
abbreviates a� �

b
,

for b �� �:

x � � �
x

�

� f adding�x
� to both sides of the equationg

x�
x

�
� �� �

x

�
��

x

�

� f � is associativeg

x�
x

�
� � � �

x

�
�

x

�
�

� f �x
� is the additive inverse of x

� g

x�
x

�
� � � �

� f � is the unit of additiong

x�
x

�
� �

� f multiplying both sides of the equation by �g

�� �x�
x

�
� � �� �

� f � is the unit of multiplicationg

�� �x�
x

�
� � �

� f multiplication distributes over additiong

�� x� ��
x

�
� �

� f � cancels its inverse �
� g

�� x� �� x � �

� f multiplication distributes over additiong

��� ��� x � �

� f �� � � � and � is the unit of multiplicationg

x � �

46 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

Back to (2.2), we would like to submit each of the equations, e.g.

L � � �A� L (2.4)

to a similar reasoning. Can we do it? The analogy which can be found between this
equation and (2.3) goes beyond pattern similarity. From chapter 1 we know that many
properties required in the reasoning above hold in the context of (2.4), provided the “=”
sign is replaced by the “��” sign, that of set-theoretical isomorphism. Recall that, for
instance, � is associative (1.46), � is the unit of addition (1.77), � is the unit of multi-
plication (1.79), multiplication distributes over addition (1.50) etc. Moreover, the first
step above assumed that addition is compatible (monotonic) with respect to equality,

a � b

c � d

a� c � b� d

a fact which still holds when numeric equality gives place to isomorphism and numeric
addition gives place to coproduct:

A �� B

C �� D

A� C �� B �D

— recall (1.44) for isos f and g.
Unfortunately, the main steps in the reasoning above are concerned with two basic

cancellation properties

x� b � c � x � c� b

x� b � c � x �
c

b
�b �� ��

which hold about numbers but do not hold about datatypes. In fact, neither products
nor coproducts have arbitrary inverses 1, and so we cannot “calculate by cancellation”.
How do we circumvent this limitation?

Just think of how we would have gone about (2.3) in case we didn’t know about
the cancellation properties: we would be bound to the x by � � x

� substitution plus
the other properties. By performing such a substitution over and over again we would
obtain. . .

x � � �
x

�

� f x by � � x
� substitution followed by simplificationg

x � � �
� � x

�

�
� � �

�

�
�

x

�

� f the same as aboveg

1The initial and terminal datatypes do have inverses — � is its own “additive inverse” and � is its own
“multiplicative inverse” — but not all the others.

2.1. MOTIVATION 47

x � ��
�

�
�

� � x
�

�
� � �

�

�
�

�

�
�

x

	

� f over and over again, n-timesg

� � �

� f simplificationg

x �

nX
i��

�

�i
�

x

�n��

� f sum of n first terms of a geometric progression g

x � ���
�

�n
� �

x

�n��

� f let n��g

x � ��� �� � �

� f simplification g

x � �

Clearly, this is a much more complicated way of finding solution x � � for equation
(2.3). But we would have loved it in case it were the only known way, and this is
precisely what happens with respect to (2.4). In this case we have:

L � � �A� L

� f substitution of � �A� L for Lg

L � � �A� �� �A� L�

� f distributive property (1.50) g

L �� � �A� � �A� �A� L�

� f unit of product (1.79) and associativity of product (1.32)g

L �� � �A� �A�A�� L

� f by (1.80), (1.82) and (1.85)g

L �� A� �A� �A� � L

� f another substitution as above and similar simplificationsg

L �� A� �A� �A� �A� � L

� f after �n� ��-many similar stepsg

L ��

nX
i��

Ai �An�� � L

Bearing a large n in mind, let us deliberately (but temporarily) ignore term An���

48 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

L. Then L will be isomorphic to the sum of n-many contributions Ai,

L ��

nX
i��

Ai

each of them consisting of i-long tuples, or sequences, of values of A. (Number i
is said to be the length of any sequence in Ai.) Such sequences will be denoted by
enumerating their elements between square brackets, for instance the empty sequence

 � which is the only inhabitant in A�, the two element sequence
a�� a�� which belongs
to A� provided a�� a� � A, and so on. Note that all such contributions are mutually
disjoint, that is, Ai 	Aj �
 wherever i �� j. (In other words, a sequence of length i is
never a sequence of length j, for i �� j.) If we join all contributionsAi into a single set,
we obtain the set of all finite sequences on A, denoted by A� and defined as follows:

A� def
�

�
i��

Ai (2.5)

The intuition behind taking the limit in the numeric calculation above was that term
x

�n�� was getting smaller and smaller as n went larger and larger and, “in the limit”,
it could be ignored. By analogy, taking a similar limit in the calculation just sketched
above will mean that, for a “sufficiently large” n, the sequences in An are so long that
it is very unlikely that we will ever use them! So, for n�� we obtain

L ��

�X
i��

Ai

Because
P�

i��A
i is isomorphic to

S�
i�� A

i (see exercise 1.19), we finally have:

L �� A�

All in all, we have obtained A� as a solution to equation (2.4). In other words,
datatype L is isomorphic to the datatype which contains all finite sequences of some
predefined datatype A. This corresponds to the HASKELL [a] datatype, in general.
Recall that we started from the “linked-list datatype” expressed in PASCAL or C. In
fact, wherever the C programmer thinks of linked-lists, the HASKELL programmer will
think of finite sequences.

But, what does equation (2.4) mean in fact? IsA� the only solution to this equation?
Back to the numeric field, we know of equations which have more than one solution —
for instance x � x���

� , which admits two solutions � and � —, which have no solution
at all — for instance x � x�� —, or which admit an infinite number of — for instance
x � x.

We will address these topics in the next section about inductive datatypes and in
chapter 3, where the formal semantics of recursion will be made explicit. This is
where the “limit” constructions used informally in this section will be shown to make
sense.

2.2. INTRODUCING INDUCTIVE DATATYPES 49

2.2 Introducing inductive datatypes

Datatype L as defined by (2.4) is said to be recursive because L “recurs” in the defi-
nition of L itself 2. From the discussion above, it is clear that set-theoretical equality
“�” in this equation should give place to set-theoretical isomorphism (“��”):

L �� � �A� L (2.6)

Which isomorphism L � �A� L
in�� do we expect to witness (2.4)? This will

depend on which particular solution to (2.4) we are thinking of. So far we have seen
only one, A�. By recalling the notion of algebra of a datatype (section 1.18), so we
may rephrase the question as: which algebra

A� � �A�A�in��

do we expect to witness the tautology which arises from (2.4) by replacing unknownL
with solution A�, that is

A� �� � �A�A� �

It will have to be of the form in �
 in�� in� � as depicted by the following diagram:

�
i���

in� ����
���

���
��� � �A�A�

in

��

A�A�
i���

in���� � �
� � �

� � �
� �

A�

(2.7)

Arrows in� and in� can be guessed rather intuitively: in� �
 �, which will express
the “NIL pointer” by the empty sequence, at A� level, and in� � cons, where cons is
the standard “left append” sequence constructor, which we for the moment introduce
rather informally as follows:

cons
 A�A� �� A�

cons�a�
a�� � � � � an�� �
a� a�� � � � � an�
(2.8)

In a diagram:

�
i���

� � ����
���

���
��� � �A�A�

� � ��cons �

��

A�A�
i���

cons
��� � �

� � �
� � �

� �

A�

(2.9)

Of course, for in to be iso it needs to have an inverse, which is not hard to guess,

out
def
� �� � hhd� tli� . ��� ��� (2.10)

2By analogy, we may regard (2.3) as a “recursive definition” of number �.

50 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

where sequence operators hd (head of a nonempty sequence) and tl (tail of a nonempty
sequence) are (again informally) described as follows:

hd
 A� �� A
hd
a�� a�� � � � � an� � a�

(2.11)

tl
 A� �� A�

tl
a�� a�� � � � � an� �
a�� � � � � an�
(2.12)

Showing that in and out are each other inverses is not a hard task either:

in . out � id

� f definitions of in and outg

 �� cons � . �� � hhd� tli� . ��� ��� � id

� f �-absorption (1.41) and (1.15)g

 �� cons . hhd� tli � . ��� ��� � id

� f property of sequences: cons�hd s� tl s� � sg

 �� id � . ��� ��� � id

� f going pointwise g�
�� � a �

 �� id � �i� a�

���� � a� �

 �� id � �i� a�
� a

� f �-cancellation (1.38) g�
�� � a �
 � a

���� � a� � id a
� a

� f a �
 � in one case and identity function (1.9) in the other g�
a �
 � � a

��a �
 �� � a
� a

� f property �p� f� f� � f holds g

a � a

A comment on the particular choice of terminology above: symbol in suggests that
we are going inside, or constructing (synthesizing) values of A�; symbol out suggests
that we are going out, or destructing (analyzing) values of A�. We shall often resort to
this duality in the sequel.

Are there more solutions to equation (2.6)? In trying to implement this equation, a
HASKELL programmer could have written, after the declaration of type A, the follow-
ing datatype declaration:

data L = Nil () | Cons (A,L)

2.2. INTRODUCING INDUCTIVE DATATYPES 51

which, as we have seen in section 1.18, can be written simply as

data L = Nil | Cons (A,L) (2.13)

and generates diagram

�
i���

Nil
����

���
���

���
� �A� L

in�

��

A� L
i���

Cons
��� � �

� � �
� � �

� �

L

(2.14)

leading to algebra in� �
Nil� Cons �.
HASKELL seems to have generated another solution for the equation, which it calls

L. To avoid the inevitable confusion between this symbol denoting the newly created
datatype and symbolL in equation (2.6), which denotes a mathematical variable, let us
use symbol T to denote the former (T stands for “type”). This can be coped with very
simply by writing T instead of L in (2.13):

data T = Nil | Cons (A,T) (2.15)

In order to make T more explicit, we will write inT instead of in�.
Some questions are on demand at this point. First of all, what is datatype T? What

are its inhabitants? Next, is T � �A� T
inT�� an iso or not?

HASKELL will help us to answer these questions. Suppose that A is a primitive
numeric datatype, and that we add deriving Show to (2.15) so that we can “see”
the inhabitants of the T datatype. The information associated to T is thus:

Main> :i T
-- type constructor
data T

-- constructors:
Nil :: T
Cons :: (A,T) -> T

-- instances:
instance Show T
instance Eval T

By typing Nil

Main> Nil
Nil :: T

we confirm that Nil is itself an inhabitant of T, and by typing Cons

Main> Cons
<<function>> :: (A,T) -> T

52 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

we realize thatCons is not so (as expected), but it can be used to build such inhabitants,
for instance:

Main> Cons(1,Nil)
Cons (1,Nil) :: T

or

Main> Cons(2,Cons(1,Nil))
Cons (2,Cons (1,Nil)) :: T

etc. We conclude that expressions involving Nil and Cons are inhabitants of type T.
Are these the only ones? The answer is yes because, by design of the HASKELL lan-
guage, the constructors of type T will remain fixed once its declaration is interpreted,
that is, no further constructor can be added to T. Does inT have an inverse? Yes, its
inverse is coalgebra

outT
 T �� � �A� T

outTNil � i� NIL

outT�Cons�a� l�� � i��a� l�

(2.16)

which can be straightforwardly encoded in HASKELL using the Either realization of
� (recall sections 1.9 and 1.18):

outT :: T -> Either () (A,T)
outT Nil = Left ()
outT (Cons(a,l)) = Right(a,l)

In summary, isomorphism

T

outT
��

�� � �A� T

inT

		 (2.17)

holds, where datatype T is inhabited by symbolic expressions which we may visualize
very conveniently as trees, for instance

t

t

�
�

�

�
�
�t

�
�
�

�
�
�t t

� Nil

Cons

�

Cons

2.3. OBSERVING AN INDUCTIVE DATATYPE 53

picturing expression Cons��� Cons��� Nil��. Nil is the empty tree and Cons may be
regarded as the operation which adds a new root and a new branch, say a, to a tree t:

t

�
�
�

�
�
�

t

t

�
�

�

�
�
�

t

t

�
�
�

�
�
�tCons�a� � �

Cons

a

The choice of symbols T, Nil and Cons was rather arbitrary in (2.15). Therefore,
an alternative declaration such as, for instance,

data U = Stop | Join (A,U) (2.18)

would have been perfectly acceptable, generating another solution for the equation
under algebra
 Stop� Join �. It is easy to check that (2.18) is but a renaming of Nil to
Stop and of Cons to Join. Therefore, both datatypes are isomorphic, or “abstractly
the same”.

Indeed, any other datatype X inductively defined by a constant and a binary con-
structor accepting A and X as parameters will be a solution to the equation. Because
we are just renaming symbols in a consistent way, all such solutions are abstractly the
same. All of them capture the abstract notion of a list of symbols.

We wrote “inductively” above because the set of all expressions (trees) which i-
nhabit the type is defined by induction. Such types are called inductive and we shall
have a lot more to say about them in chapter 3.

Exercise 2.1 Obviously,

either (const []) (:)

does not work as a HASKELL realization of the mediating arrow in diagram (2.9). What do you need to write

instead?

�

2.3 Observing an inductive datatype

Suppose that one is asked to express a particular observation of an inductive such as T

(2.15), that is, a function of signature B T
f�� for some target type B. Suppose,

for instance, that A is IN� (the set of all non-negative integers) and that we want to add
all elements which occur in a T-list. Of course, we have to guarantee that addition is
available in IN�,

add
 IN� � IN�
�� IN�

add�x� y�
def
� x� y

54 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

and that � � IN� is a value denoting “the addition of nothing”. So constant arrow

IN� �
��� is available. Of course, add��� x� � add�x� �� � x holds, for all x �

IN�. This property means that IN�, together with operator add and constant �, forms
a monoid, a very important algebraic structure in computing which will be exploited
intensively later in this book. The following arrow “packaging” IN�, add and �,

IN� � � IN� � IN�

� ��add ��� (2.19)

is a convenient way to express such a structure. Combining this arrow with the algebra

T � � IN� � T
inT�� (2.20)

which defines T, and the function f we want to define, the target of which is B � IN�,
we get the almost closed diagram which follows, in which only the dashed arrow is yet
to be filled in:

T

f

��

� � IN� � T
inT��

��
IN� � � IN� � IN�

� ��add �
��

(2.21)

We know that inT �
 Nil� Cons �. A pattern for the missing arrow is not difficult to
guess: in the same way f bridges T and IN� on the lefthand side, it will do the same
job on the righthand side. So pattern � � �� � � � � f comes to mind (recall section 1.10),
where the “� � �” are very naturally filled in by identity functions. All in all, we obtain
diagram

T

f

��

� � IN� � T
� Nil�Cons ���

id�id�f

��
IN� � � IN� � IN�

� ��add �
��

(2.22)

which pictures the following property of f

f .
 Nil� Cons � �
 �� add � . �id� id� f� (2.23)

and is easy to convert to pointwise notation:

f .
 Nil� Cons � �
 �� add � . �id� id� f�

� f (1.40) on the lefthand side, (1.41) and identity id on the righthand side g

 f .Nil� f . Cons � �
 �� add . �id� f� �

� f either structural equality (1.58) g

2.3. OBSERVING AN INDUCTIVE DATATYPE 55

�
f .Nil � �
f . Cons � add . �id� f�

� f going pointwiseg�
�f .Nil�x � �x
�f . Cons��a� x� � �add . �id� f���a� x�

� f composition (1.6), constant (1.12), product (1.22) and definition of add g�
f Nil � �
f�Cons�a� x�� � a� f x

Note that we could have used outT in diagram (2.21),

T
outT ��

f

��

� � IN� � T

id�id�f

��
IN� � � IN� � IN�

� ��add �
��

(2.24)

obtaining another version of the definition of f ,

f �
 �� add � . �id� id� f� . outT (2.25)

which would lead to exactly the same pointwise recursive definition:

f �
 �� add � . �id� id� f� . outT
� f (1.41) and identity id on the righthand side g

f �
 �� add . �id� f� � . outT
� f going pointwise on outT (2.16) g�

f Nil � �
 �� add . �id� f� � . outT�Nil

f�Cons�a� x�� � �
 �� add . �id� f� � . outT��a� x�
� f definition of outT (2.16)g�

f Nil � �
 �� add . �id� f� � . i��Nil

f�Cons�a� x�� � �
 �� add . �id� f� � . i���a� x�
� f �-cancellation (1.38) g�

f Nil � �Nil

f�Cons�a� x�� � �add . �id� f�� �a� x�

� f simplification g�
f Nil � �
f�Cons�a� x�� � a� f x

Pointwise f mirrors the structure of type T in having has many definition clauses
as constructors in T. Such functions are said to be defined by induction on the structure

56 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

of their input type. If we repeat this calculation for IN�
� instead of T, that is, for

out � �� � hhd� tli� . ��� ���

— recall (2.10) — taking place of outT, we get a “more algorithmic” version of f :

f �
 �� add � . �id� id� f� . �� � hhd� tli� . ��� ���

� f �-functor (1.42), identity and �-absorption (1.25) g

f �
 �� add � . �� � hhd� f . tli� . ��� ���

� f �-absorption (1.41) and constant � g

f �
 �� add . hhd� f . tli � . ��� ���

� f going pointwise on guard �� �� (1.60) and simplifying g

f l �

�
l �
 � � � l

��l �
 �� � �add . hhd� f . tli� l

� f simplification g

f l �

�
l �
 � � �

��l �
 �� � hd l � f�tl l�

The outcome of this calculation can be encoded in HASKELL syntax as

f l | l == [] = 0
| otherwise = head l + f (tail l)

or

f l = if l == []
then 0
else head l + f (tail l)

both requiring the equality predicate “==” and destructors “head” and “tail”.

2.4 Synthesizing an inductive datatype

The issue which concerns us in this section dualizes what we have just dealt with:
instead of analyzing or observing an inductive type such as T (2.15), we want to be
able to synthesize (generate) particular inhabitants of T. In other words, we want to

be able to specify functions with signature B
f �� T for some given source type B.

Let B � IN� and suppose we want f to generate, for a given natural number n � �, the
list containing all numbers less or equal to n in decreasing order

Cons�n�Cons�n� �� Cons�� � � � Nil���

or the empty list Nil, in case n � �.

2.4. SYNTHESIZING AN INDUCTIVE DATATYPE 57

Let us try and draw a diagram similar to (2.24) applicable to the new situation.
In trying to “re-use” this diagram, it is immediate that arrow f should be reversed.
Bearing duality in mind, we may feel tempted to reverse all arrows just to see what
happens. Identity functions are their own inverses, and inT takes the place of outT:

T � � IN� � T
inT��

IN�

f

�� � � IN� � IN�

id�id�f

Interestingly enough, the bottom arrow is the one which is not obvious to reverse,
meaning that we have to “invent” a particular destructor of IN�, say

IN�
g �� � � IN� � IN�

fitting in the diagram and generating the particular computational effect we have in
mind. Once we do this, a recursive definition for f will pop out immediately,

f � inT . �id� id� f� . g (2.26)

which is equivalent to:

f �
 Nil� Cons . �id� f� � . g (2.27)

Because we want f � � Nil to hold, g (the actual generator of the computation) should
distinguish input � from all the others. One thus decomposes g as follows,

IN�
��	��

g

��IN� � IN�

�h �� � � IN� � IN�

leaving h to fill in. This will be a split providing, on the lefthand side, for the value to
beCons’ed to the output and, on the righthand side, for the “seed” to the next recursive
call. Since we want the output values to be produced contiguously and in decreasing
order, we may define h � hid� predi where, for n � �,

pred n def
� n� � (2.28)

computes the predecessor of n. Altogether, we have synthesized

g � �� � hid� predi� . ����� (2.29)

Filling this in (2.27) we get

f �
 Nil� Cons . �id� f� � . �� � hid� predi� . �����

� f �-absorption (1.41) followed by �-absorption (1.25) etc.g

f �
 Nil� Cons . hid� f . predi � . �����

� f going pointwise on guard ��� (1.60) and simplifying g

f n �

�
n � � � Nil

��n � �� � Cons�n� f �n� ���

which matches the function we had in mind:

58 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

f n | n == 0 = Nil
| otherwise = Cons(n,f(n-1))

We shall see briefly that the constructions of the f function adding up a list of
numbers in the previous section and, in this section, of the f function generating a list
of numbers are very standard in algorithm design and can be broadly generalized. Let
us first introduce some standard terminology.

2.5 Introducing (list) catas, anas and hylos

Suppose that, back to section 2.3, we want to multiply, rather than add, the elements
occurring in lists of type T (2.15). How much of the program synthesis effort presented
there can be reused in the design of the new function?

It is intuitive that only the bottom arrow IN� � � IN� � IN�

� ��add ��� of dia-
gram (2.24) needs to be replaced, because this is the only place where we can specify
that target datatype IN� is now regarded as the carrier of another (multiplicative rather
than additive) monoidal structure,

IN� � � IN� � IN�

� ��mul ��� (2.30)

for mul�x� y�
def
� x y. We are saying that the argument list is now to be reduced by the

multiplication operator and that output value � is expected as the result of “nothing left
to multiply”.

Moreover, in the previous section we might have wanted our number-list generator
to produce the list of even numbers smaller than a given number, in decreasing order
(see exercise 2.4). Intuition will once again help us in deciding that only arrow g in
(2.26) needs to be updated.

The following diagrams generalize both constructions by leaving such bottom ar-
rows unspecified,

T
outT ��

f

��

� � IN� � T

id�id�f

��
B � � IN� �B

g
��

T � � IN� � T
inT��

B

f

g
�� � � IN� �B

id�id�f

 (2.31)

and express their duality (cf. the directions of the arrows). It so happens that, for each
of these diagrams, f is uniquely dependent on the g arrow, that is to say, each particular
instantiation of g will determine the corresponding f . So both gs can be regarded as
“seeds” or “genetic material” of the f functions they uniquely define 3.

Following the standard terminology, we express these facts by writing f � �
g��
with respect to the lefthand side diagram and by writing f �
�g�� with respect to the
righthand side diagram. Read �
g�� as “the T-catamorphism induced by g” and
�g�� as

3The theory which supports the statements of this paragraph will not be dealt with until chapter 3.

2.5. INTRODUCING (LIST) CATAS, ANAS AND HYLOS 59

“theT-anamorphism induced by g”. This terminology is derived from the Greek words
���� (cata) and ��� (ana) meaning, respectively, “downwards” and “upwards” (com-
pare with the direction of the f arrow in each diagram). The exchange of parentheses
“� �” and “
 �” in double parentheses “�
 ��” and “
� ��” is aimed at expressing the duality
of both concepts.

We shall have a lot to say about catamorphisms and anamorphisms of a given type
such as T. For the moment, it suffices to say that

 the T-catamorphism induced by B � � IN� �B
g�� is the unique function

B T
��g���� which obeys to property (or is defined by)

�
g�� � g . �id� id� �
g��� . outT (2.32)

which is the same as

�
g�� . inT � g . �id� id� �
g��� (2.33)

 given B
g �� � � IN� �B the T-anamorphism induced by g is the unique

function B
��g�� �� T which obeys to property (or is defined by)

�g�� � inT . �id� id�
�g��� . g (2.34)

From (2.31) it can be observed thatT can act as a mediator between anyT-anamorphism

and any T-catamorphism, that is to say, B T
��g���� composes with T C

��h���� , for

some C
h �� � � IN� � C . In other words, a T-catamorphism call always observe

(consume) the output of a T-anamorphism. The latter produces a list of IN�s which is
consumed by the former. This is depicted in the diagram which follows:

B � � IN� �B
g��

T

��g��

� � IN� � T
inT��

id�id���g��

C

��h��

h
�� � � IN� � C

id�id���h��

(2.35)

What can we say about the �
g�� .
�h�� composition? It is a function from B to C

which resorts to T as an intermediate data-structure and can be subject to the following
calculation (cf. outermost rectangle in (2.35)):

�
g�� .
�h�� � g . �id� id� �
g��� . �id� id�
�h��� . h
� f �-functor (1.42) g

60 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

�
g�� .
�h�� � g . ��id . id� � �id� �
g��� . �id�
�h���� . h
� f identity and �-functor (1.28) g

�
g�� .
�h�� � g . �id� id� �
g�� .
�h��� . h
This calculation shows how to define C B

��g��.��h���� in one go, that is to say,
doing without any intermediate data-structure:

B � � IN� �B
g��

C

��g��.��h��

h
�� � � IN� � C

id�id���g��.��h��

 (2.36)

As an example, let us see what comes out of �
g�� .
�h�� for h and g respectively given
by (2.29) and (2.30):

�
g�� .
�h�� � g . �id� id� �
g�� .
�h��� . h
� f �
g�� .
�h�� abbreviated to f and instantiating h and g g

f �
 ��mul � . �id� id� f� . �� � hid� predi� . �����

� f �-functor (1.42) and identity g

f �
 ��mul � . �� � �id� f� . hid� predi� . �����

� f �-absorption (1.25) and identity g

f �
 ��mul � . �� � hid� f . predi� . �����

� f �-absorption (1.41) and constant � (1.15) g

f �
 ��mul . hid� f . predi � . �����

� f McCarthy conditional (1.59) g

f � ������ ��mul . hid� f . predi

Going pointwise, we get

f � �
 ��mul . hid� f . predi ��i� ��

� f �-cancellation (1.38) g

� �

� f constant function (1.12) g

�

and

f�n� �� �
 ��mul . hid� f . predi ��i��n� ���

2.5. INTRODUCING (LIST) CATAS, ANAS AND HYLOS 61

� f �-cancellation (1.38) g

mul . hid� f . predi�n� ��

� f pointwise definitions of split, identity, predecessor and mul g

�n� ��� f n

In summary, f is but the well-known factorial function:

�
f � � �
f�n� �� � �n� ��� f n

This result comes to no surprise if we look at diagram (2.35) for the particular g
and h we have considered above and recall a popular “definition” of factorial:

n� � n� �n� ��� � � �� �� �z �
n times

(2.37)

In fact,
�h��n produces T-list

Cons�n�Cons�n� �� � � � Cons��� Nil���

as an intermediate data-structure which is consumed by �
g�� , the effect of which is but
the “replacement” of Cons by � and Nil by �, therefore accomplishing (2.37) and
realizing the computation of factorial.

The moral of this example is that a function as simple as factorial can be decom-
posed into two components (producer/consumer functions) which share a common in-
termediate inductive datatype. The producer function is an anamorphism which “rep-
resents” or produces a “view” of its input argument as a value of the intermediate
datatype. The consumer function is a catamorphism which reduces this intermedi-
ate data-structure and produces the final result. Like factorial, many functions can be
handsomely expressed by a �
g�� .
�h�� composition for a suitable choice of the inter-
mediate type, and of g and h. The intermediate data-structure is said to be virtual in
the sense that it only exists as a means to induce the associated pattern of recursion and
disappears by calculation.

The composition �
g�� .
�h�� of a T-catamorphism with a T-anamorphism is called
a T-hylomorphism 4 and is denoted by

g� h��. Because g and h fully determine the
behaviour of the

g� h�� function, they can be regarded as the “genes” of the function
they define. As we shall see, this analogy with biology will prove specially useful for
algorithm analysis and classification.

Exercise 2.2 A way of computing n�, the square of a given natural number n, is to sum up the n first odd
numbers. In fact, �� � �, �� � � � �, �� � � � � � �, etc., n� � ��n� �� � �n� ��� . Following this
hint, express function

sq n
def
� n� (2.38)

4This terminology is derived from the Greek word v�o� (hylos) meaning “matter”.

62 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

as a T-hylomorphism and encode it in HASKELL.

�

Exercise 2.3 Write function xn as a T-hylomorphism and encode it in HASKELL.

�

Exercise 2.4 The following function in HASKELL computes the T-sequence of all even numbers less or
equal to n:

f n = if n <= 1
then Nil
else Cons(m,f(m-2))

where m = if even n then n else n-1

Find its “genetic material”, that is, function g such that f=	�g�
 in

T � � IN� � T
inT��

IN�

��g��

g
�� � � IN� � IN�

id�id���g��

�

2.6 Inductive types more generally

So far we have focussed our attention exclusively to a particular inductive type T (2.20)
— that of finite sequences of non-negative integers. This is, of course, of a very lim-
ited scope. First, because one could think of finite sequences of other datatypes, e.g.
Booleans or many others. Second, because other datatypes such as trees, hash-tables
etc. exist which our notation and method should be able to take into account.

Although a generic theory of arbitrary datatypes requires a theoretical elaboration
which cannot be explained at once, we can move a step further by taking the two
observations above as starting points. We shall start from the latter in order to talk
generically about inductive types. Then we introduce parameterization and functorial
behaviour.

Suppose that, as a mere notational convention, we abbreviate every expression of
the form “�� IN� � � � �” occurring in the previous section by “F � � �”, e.g. �� IN� �B

by FB, e.g. � � IN� � T by FT

T

outT

��
�� FT

inT

 (2.39)

2.7. FUNCTORS 63

etc. This is the same as introducing a datatype-level operator

FX
def
� � � IN� �X (2.40)

which maps every datatypeA into datatype ��IN��A. Operator F captures the pattern
of recursion which is associated to so-called “right” lists (of non-negative integers), that

is, lists which grow to the right. The slightly different pattern GX
def
� ��X� IN� will

generate a different, although related, inductive type

X �� � �X � IN� (2.41)

— that of so-called “left” lists (of non-negative integers). And it is not difficult to think
of the pattern which is merges both right and left lists and gives rise to bi-linear lists,
better known as binary trees:

X �� � �X � IN� �X (2.42)

One may think of many other expressions FX and guess the inductive datatype they

generate, for instanceHX
def
� IN��IN��X generating non-empty lists of non-negative

integers (IN�
�). The general rule is that, given an inductive datatype definition of the

form

X �� FX (2.43)

(also called a domain equation), its pattern of recursion is captured by a so-called func-
tor F.

2.7 Functors

The concept of a functorF, borrowed from category theory, is a most generic and useful
device in programming 5. As we have seen, F can be regarded as a datatype constructor
which, given datatype A, builds a more elaborate datatype FA; given another datatype
B, builds a similarly elaborate datatype FB; and so on. But what is more important
and has the most beneficial consequences is that, if F is regarded as a functor, then its
data-structuring effect extends smoothly to functions in the following way: suppose

that B A
f�� is a function which observes A into B, which are parameters of FA

and FB, respectively. By definition, if F is a functor then FB FA
F f�� exists for

every such f :

A

f

��

FA

F f

��
B FB

5The category theory practitioner must be warned of the fact that the word functor is used here in a too
restrictive way. A proper (generic) definition of a functor will be provided later in this book.

64 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

F f extends f to F-structures and will, by definition, obey to two very basic properties:
it commutes with identity

F idA � id�FA� (2.44)

and with composition

F�g . h� � �F g� . �Fh� (2.45)

Two simple examples of a functor follow:

 Identity functor: define FX � X , for every datatypeX , and F f � f . Properties
(2.44) and (2.45) hold trivially just by removing symbol F wherever it occurs.

 Constant functors: for a given C, define FX � C (for all datatypes X) and
F f � idC , as expressed in the following diagram:

A

f

��

C

idC

��
B C

Properties (2.44) and (2.45) hold trivially again.

In the same way functions can be unary, binary, etc., we can have functors with
more than one argument. So we get binary functors (also called bifunctors), ternary
functors etc.. Of course, properties (2.44) and (2.45) have to hold for every parameter
of an n-ary functor. For a binary functor B, for instance, equation (2.44) becomes

B �idA� idB� � idB �A�B� (2.46)

and equation (2.45) becomes

B �g . h� i . j� � B �g� i� . B �h� j� (2.47)

Product and coproduct are typical examples of bifunctors. In the former case one
has B �A�B� � A � B and B �f� g� � f � g — recall (1.22). Properties (1.29) and
(1.28) instantiate (2.46) and (2.47), respectively, and this explains why we called them
the functorial properties of product. In the latter case, one has B �A�B� � A� B and
B �f� g� � f�g — recall (1.37) — and functorial properties (1.43) and (1.42). Finally,

exponentiation is a functorial construction too: assuming A, one has FX
def
� XA and

F f
def
� f . ap and functorial properties (1.71) and (1.72). All this is summarized in

table 2.1.
Such as functions, functors may compose with each other in the obvious way: the

composition of F and G, denoted F . G, is defined by

�F . G�X def
� F �GX� (2.48)

�F . G�f def
� F �G f� (2.49)

2.8. POLYNOMIAL FUNCTORS 65

Data construction Universal construct Functor Description
A�B hf� gi f � g Product
A�B
 f� g � f � g Coproduct
BA f fA Exponential

Table 2.1: Datatype constructions and associated operators.

2.8 Polynomial functors

We may put constant, product, coproduct and identity functors together to obtain so-
called polynomial functors, which are described by polynomial expressions, for in-
stance

FX � � �A�X

— recall (2.6). A polynomial functor is either

 a constant functor or the identity functor, or

 the (finitary) product or coproduct (sum) of other polynomial functors, or

 the composition of other polynomial functors.

So the effect on arrows of a polynomial functor is computed in an easy and structured
way, for instance:

F f � �� �A�X�f

� f sum of two functors where A is a constant and X is a variable g

���f � �A�X�f

� f constant functor and product of two functors g

id� � �A�f � �X�f

� f constant functor and identity functor g

id� � idA � f

� f subscripts dropped for simplicity g

id� id� f

So, � � A� f denotes the same as id� � idA � f , or even the same as id� id� f if
one drops the subscripts.

It should be clear at this point that what was referred to in section 1.10 as a “sym-
bolic pattern” applicable to both datatypes and arrows is after all a functor in the math-
ematical sense. The fact that the same polynomial expression is used to denote both
the data and the operators which structurally transform such data is of great conceptual
economy and practical application. For instance, once polynomial functor (2.40) is

66 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

assumed, the diagrams in (2.31) can be written as simply as

T
outT ��

f

��

FT

F f

��
B FBg

��

T FT
inT��

B

f

g
�� FB

F f

 (2.50)

It is useful to know that, thanks to the isomorphism laws studied in chapter 1, every
polynomial functor F may be put into the canonical form,

FX �� C� � �C� �X� � �C� �X�� � � � �� �Cn �Xn�
�

Pn
i�� Ci �X i (2.51)

and that Newton’s binomial formula

�A�B�n ��

nX
p��

nCp �An�p �Bp (2.52)

can be used in such conversions. These are performed up to isomorphism, that is to
say, after the conversion one gets a different but isomorphic datatype. Consider, for
instance, functor

FX
def
� A� �� �X��

(where A is a constant datatype) and check the following reasoning:

FX � A� �� �X��

�� f law (1.85) g

A� ��� �X�� �� �X��

�� f law (1.50) g

A� ��� �X�� � � �� �X��X��

�� f laws (1.79), (1.31) and (1.50) g

A� ��� �X� � ���X �X �X��

�� f laws (1.79) and (1.85) g

A� ��� �X� � �X �X���

�� f law (1.46) g

A� �� � �X �X� �X��

�� f canonical form obtained via laws (1.50) and (1.86) g

A��z�
C�

�A� �� �z �
C�

�X � A��z�
C�

�X�

2.9. POLYNOMIAL INDUCTIVE TYPES 67

Exercise 2.5 Synthesize the isomorphism A�A� ��X � A�X� A� �� �X��
��� implicit

in the above reasoning.

�

2.9 Polynomial inductive types

An inductive datatype is said to be polynomial wherever its pattern of recursion is
described by a polynomial functor, that is to say, wherever F in equation (2.43) is
polynomial. For instance, datatype T (2.20) is polynomial (n � �) and its associated
polynomial functor is canonically defined with coefficients C� � � and C� � IN�. For
reasons that will become apparent later on, we shall always impose C� �� � to hold in
a polynomial datatype expressed in canonical form.

Polynomial types are easy to encode in HASKELL wherever the associated functor
is in canonical polynomial form, that is, wherever one has

T ��
Pn

i�� Ci � Ti

inT

		 (2.53)

Then we have

inT
def
�
 f�� � � � � fn �

where, for i � �� n, fi is an arrow of type T Ci � Ti�� . Since n is finite, one
may expand exponentials according to (1.85) and encode this in HASKELL as follows:

data T = C0 |
C1 (C1,T) |
C2 (C2,(T,T)) |
... |
Cn (Cn,(T, ..., T))

Of course the choice of symbol Ci to realize each fi is arbitrary 6. Several instances
of polynomial inductive types (in canonical form) will be mentioned in section 2.13.
Section 2.15 will address the conversion between inductive datatypes induced by so-
called natural transformations.

The concepts of catamorphism, anamorphism and hylomorphism introduced in
section 2.5 can be extended to arbitrary polynomial types. We devote the following
sections to explaining catamorphisms in the polynomial setting. Polynomial anamor-
phisms and hylomorphisms will not be dealt with until chapter 3.

6A more traditional (but less close to (2.53)) encoding will be

data T = C0 | C1 C1 T | C2 C2 T T | ... | Cn Cn T ... T (2.54)

delivering every constructor in curried form.

68 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

2.10 F-algebras and F-homomorphisms

Our interest in polynomial types is basically due to the fact that, for polynomial F,
equation (2.43) always has a particularly interesting solution which corresponds to our
notion of a recursive datatype.

In order to explain this, we need two notions which are easy to understand: first,

that of an F-algebra, which simply is any function � of signature A FA
��� . A

is called the carrier of F-algebra � and contains the values which � manipulates by
computing new A-values out of existing ones, according to the F-pattern (the “type”
of the algebra). As examples, consider
 �� add � (2.19) and inT (2.20), which are both
algebras of type FX � � � IN� � X . The type of an algebra clearly determines its
form. For instance, any algebra � of type FX � ��X�X will be of form
 ��� �� �,
where �� is a constant and �� is a binary operator. So monoids are algebras of this
type 7.

Secondly, we introduce the notion of an F-homomorphism which is but a function
observing a particular F-algebra � into another F-algebra �:

A

f

��

FA

F f

��

���

B FB
�

��

f . � � � . �F f� (2.55)

Clearly, f can be regarded as a structural translation between A and B, that is, A and
B have a similar structure 8. Note that — thanks to (2.44) — identity functions are al-
ways (trivial) F-homomorphisms and that — thanks to (2.45) — these homomorphisms
compose, that is, the composition of two F-homomorphisms is an F-homomorphism.

2.11 F-Catamorphisms

An F-algebra can be epic, monic or both, that is, iso. Iso F-algebras are particularly
relevant to our discussion because they describe solutions to the X �� FX equation
(2.43). Moreover, for polynomial F a particular iso F-algebra always exists, which is

denoted by �F F�F
in�� and has special properties. First, its carrier is the smallest

among the carriers of other iso F-algebras, and this is why it is denoted by �F — � for
“minimal” 9. Second, it is the so-called initial F-algebra. What does this mean?

It means that, for every F-algebra� there exists one and only one F-homomorphism
between in and �. This unique arrow mediating in and � is therefore determined by
� itself, and is called the F-catamorphism generated by �. This construct, which was
introduced in 2.5, is in general denoted by �
���

F
:

7But not every algebra of this type is a monoid, since the type of an algebra only fixes its syntax and does
not impose any properties such as associativity, etc.

8Cf. homomorphism = homo (the same) + morphos (structure, shape).
9�F means the least fixpoint solution of equation X�� FX , as will be described in chapter 3.

2.11. F-CATAMORPHISMS 69

�F

f������
F

��

F�F

F �����
F

��

in��

A FA�
��

(2.56)

We will drop the F subscript in �
���
F

wherever deducible from the context, and often
call � the “gene” of �
���

F
.

As happens with splits, eithers and transposes, the uniqueness of the catamor-
phism construct is captured by a universal property established in the class of all F-
homomorphisms:

k � �
��� � k . in � � . F k (2.57)

According to the experience gathered from section 1.12 onwards, a few properties can
be expected as consequences of (2.57). For instance, one may wonder about the “gene”
of the identity catamorphism. Just let k � id in (2.57) and see what happens:

id � �
���� id . in � � . F id
� f identity (1.10) and F is a functor (2.44) g

id � �
���� in � � . id
� f identity (1.10) once again g

id � �
���� in � �

� f � replaced by in and simplifying g

id � �
in��

Thus one finds out that the genetic material of the identity catamorphism is the initial
algebra in. Which is the same as establishing the reflection property of catamorphisms:

Cata-reflection :

�F

��in��

��

F�F

F ��in��

��

in��

�F F�F
in

��

�
in�� � id�F (2.58)

In a more intuitive way, one might have observed that �
in�� is, by definition of in, the
unique arrow mediating �F and itself. But another arrow of the same type is already
known: the identity id�F. So these two arrows must be the same.

Another property following immediately from (2.57), for k � �
���, is

Cata-cancellation :

�
��� . in � � . F �
��� (2.59)

70 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

Because in is iso, this law can be rephrased as follows

�
��� � � . F �
��� . out (2.60)

where out denotes the inverse of in:

�F

out

��
�� F�F

in

		

Now, let f be F-homomorphism (2.55) between F-algebras � and �. How does it
relate to �
��� and �
���? Note that f . �
��� is an arrow mediating �F and B. But B is
the carrier of � and �
��� is the unique arrow mediating �F and B. So the two arrows
are the same:

Cata-fusion :

�F

�����

��

F�F

F�����

��

in��

A

f

��

FA�
��

F f

��
B FB

�
��

f . �
��� � �
��� if f . � � � . F f (2.61)

Of course, this law is also a consequence of the universal property, for k � f . �
���:

f . �
��� � �
��� � �f . �
���� . in � � . F �f . �
����

� f composition is associative and F is a functor (2.45) g

f . �
��� . in � � . F f . F �
���

� f cata-cancellation (2.59) g

f . � . F �
��� � � . F f . F �
���

� f require f to be a F-homomorphism (2.55) g

f . � . F �
��� � f . � . F �
��� � f . � � � . F f
� f simplify g

f . � � � . F f
The presentation of the absorption property of catamorphisms entails the very im-

portant issue of parameterization and deserves to be treated in a separate section, as
follows.

2.12. PARAMETERIZATION, TYPE FUNCTORS AND CATA-ABSORPTION 71

2.12 Parameterization, type functors and cata-absorption

By analogy with what we have done about splits (product), eithers (coproduct) and
transposes (exponential), we now look forward to identifying F-catamorphisms which
exhibit functorial behaviour.

Suppose that one wishes to square all numbers which are members of lists of type
T (2.20). It can be checked that

�

 Nil� Cons . �sq� id� ��� (2.62)

will do this for us, where IN� IN�

sq�� is given by (2.38). This catamorphism, which
converted to pointwise notation is nothing but function h which follows�

hNil � Nil

h�Cons�a� l�� � Cons�sq a� h l�

maps type T to itself. This is because sq maps IN� to IN�. Now suppose that, instead of

sq, one would like to apply a given function B IN�
f�� (for some B other than IN�)

to all elements of the argument list. It is easy to see that it suffices to replace f for sq
in (2.62). However, the output type no longer is T, but rather type T � �� ��B � T�.

TypesT andT� are very close to each other. They share the same “shape” (recursive
pattern) and only differ with respect to the type of elements — IN� in T and B in T�.
This suggests that these two types can be regarded as instances of a more generic list
datatype List

ListX �� � �X � ListX

in�� Nil�Cons �

�� (2.63)

in which the type of elements X is allowed to vary. Thus one has T � List IN� and
T� � ListB.

It can be seen by inspection that, for any B A
f�� ,

�

 Nil� Cons . �f � id� ��� (2.64)

maps ListA to ListB. Moreover, for f � id one has:

�

 Nil� Cons . �id� id� ���

� f by the �-functor-id property (1.29) and identity g

�

 Nil� Cons ���

� f cata-reflection (2.58) g

id

Therefore, by defining

List f
def
� �

 Nil� Cons . �f � id� ���

72 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

what we have just seen can be written thus:

List idA � idListA

This is nothing but law (2.44) for F replaced by List. Moreover, it will not be too
difficult to check that

List �g . f� � List g . List f
also holds — cf. (2.45). Altogether, this means that List can be regarded as a functor.

In programming terminology one says that ListX (the “lists of Xs datatype”) is
parametric and that, by instantiating parameterX , one gets ground lists such as lists of
integers, booleans, etc. The illustration above deepens one’s understanding of param-
eterization by identifying the functorial behaviour of the parametric datatype along its
parameter instantiations.

All this can be broadly generalized and leads to what is commonly known by a type
functor. First of all, it should be clear that the generic format

T �� FT

adopted so far for the definition of an inductive type is not sufficiently detailed because
it does not provide a parametric view of T. For simplicity, let us suppose that only one
parameter is identified in T. Then we may factor this out via type variableX and write
(overloading symbol T)

TX �� B�X�TX�

where B is called the type’s base functor. Binary functor B�X�Y � is given this name
because it is the basis of the whole inductive type definition. By instantiation of X
one obtains F. In the example above, B �X�Y � � � � X � Y and in fact FY �
B �IN�� Y � � � � IN� � Y , recall (2.40). Moreover, one has

F f � B �id� f� (2.65)

and so every F-homomorphism can be written in terms of the base-functor of F, e.g.

f . � � � . B �id� f�

instead of (2.55).
TX will be referred to as the type functor generated by B:

TX��z�
type functor

�� B�X�TX�� �z �
base functor

We proceed to the description of its functorial behaviour —T f — for a given B A
f�� .

As far as typing rules are concerned, we shall have

B A
f��

TB TA
T f��

2.12. PARAMETERIZATION, TYPE FUNCTORS AND CATA-ABSORPTION 73

So we should be able to express T f as a B �A� �-catamorphism �
g��:

A

f

��

TA

T f���g��

��

B �A�TA�
inTA��

B �id�T f�

��
B TB B �A�TB�

g
��

As we know that inTB is the standard constructor of values of type TB. So we may
put it into the diagram too:

A

f

��

TA

T f���g��

��

B �A�TA�
inTA��

B �id�T f�

��
B TB B �A�TB�

g
��

B �B�TB�

inTB

��� � � � � � � � � �

The catamorphism’s gene g will be synthesized by filling the dashed arrow in the dia-
gram with the obvious B �f� id�. Thus one gets

T f
def
� �
inTB . B �f� id��� (2.66)

and a final diagram, where inTA is abbreviated by inA (ibid. inTB by inB):

A

f

��

TA

T f���inB.B �f�id���

��

B �A�TA�
inA��

B �id�T f�

��
B TB B �B�TB�

inB

�� B �A�TB�
B �f�id�
��

Next, we proceed to derive the useful law of cata-absorption

�
g�� . T f � �
g . B �f� id��� (2.67)

as a consequence of the laws studied in section 2.11. Our target is to show that, for
k � �
g�� . T f in (2.57), one gets � � g . B �f� id�:

�
g�� . T f � �
���

� f type-functor definition (2.66) g

�
g�� . �
inB . B �f� id��� � �
���

� f cata-fusion (2.61) g

�
g�� . inB . B �f� id� � � . B �id� �
g���

74 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

� f cata-cancellation (2.59) g

g . B �id� �
g��� . B �f� id� � � . B �id� �
g���

� f B is a bi-functor (2.47) g

g . B �id . f� �
g�� . id� � � . B �id� �
g���

� f id is natural (1.11) g

g . B �f . id� id . �
g��� � � . B �id� �
g���

� f (2.47) again, this time from left to right g

g . B �f� id� . B �id� �
g��� � � . B �id� �
g���

� f obvious g

g . B �f� id� � �

The following diagram pictures this property of catamorphisms:

A

f

��

TA

T f

��

B �A�TA�
inA��

B �id�T f�

��
B TB

��g��

��

B �B�TB�
inB

��

B �B���g���

��

B �A�TB�
B �f�id�
��

B �A���g���

��
C B �B�C�

g
�� B �A�C�

B �f�id�
��

It remains to show that (2.66) indeed defines a functor. This can be verified by
checking properties (2.44) and (2.45) for F � T :

 Property type-functor-id, cf. (2.44):

T id

� f by definition (2.66) g

�
inB . B �id� id���

� f B is a bi-functor (2.46) g

�
inB . id��
� f identity and cata-reflection (2.58) g

id

 Property type-functor, cf. (2.45) :

T �f . g�
� f by definition (2.66) g

2.13. A CATALOGUE OF STANDARD POLYNOMIAL INDUCTIVE TYPES 75

�
inB . B �f . g� id���
� f identities and B is a bi-functor (2.47) g

�
inB . B �f� id� . B �g� id���

� f cata-absorption (2.67) g

�
inB . B �f� id��� . T g

� f again cata-absorption (2.67) g

�
inB �� . T f . T g

� f cata-reflection (2.58) followed by identity g

T f . T g

2.13 A catalogue of standard polynomial inductive types

The following table contains a collection of standard polynomial inductive types and
associated base type bi-functors, which are in canonical form (2.53). The table contains
two extra columns which may be used as bookmarks for equations (2.69) and (2.66),
respectively 10:

Description TX B �X�Y � B �id� f� B �f� id�

“Right” Lists ListX � �X � Y id� id� f id� f � id

“Left” Lists LListX � � Y �X id� f � id id� id� f

Non-empty Lists NListX X �X � Y id� id� f f � f � id

Binary Trees BTreeX � �X � Y � id� id� f� id� f � id

“Leaf” Trees LTreeX X � Y � id� f� f � id

(2.68)

All type functors T in this table are unary. In general, one may think of inductive
datatypes which exhibit more than one parameter. Should n parameters be identified
in T, then this will be based on an n� �-ary base functor B, cf.

T�X�� � � � � Xn� �� B�X�� � � � � Xn�T�X�� � � � � Xn��

So, every n��-ary polynomial functor B�X�� � � � � Xn� Xn��� can be identified as the
basis of an inductiven-ary type functor (the convention is to stick to the canonical form
and reserve the last variable Xn�� for the “recursive call”). While type bi-functors
(n � �) are often found in programming, the situation in which n � � is relatively
rare. For instance, the combination of leaf-trees with binary-trees in (2.68) leads to the
so-called “full tree” type bi-functor

Description T�X�� X�� B�X�� X�� Y � B�id� id� f� B�f� g� id�

“Full” Trees FTree�X�� X�� X� �X� � Y � id� id� f� f � g � id
(2.69)

10Since �idA�� � id�A�� one writes id� to id in this table.

76 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

As we shall see later on, these types are widely used in programming. In the actual
encoding of these types in HASKELL, exponentials are normally expanded to products
according to (1.85), see for instance

data BTree a = Empty | Node(a, (BTree a, BTree a))

Moreover, one may chose to curry the type constructors as in, e.g.

data BTree a = Empty | Node a (BTree a) (BTree a)

Exercise 2.6 Write as a catamorphism the function which counts the number of elements of a non-empty

list (type NList in (2.68)).

�

Exercise 2.7 Write the function which computes the maximum element of a binary-tree of natural numbers

as a catamorphism.

�

Exercise 2.8 Characterize the function which is defined by �		Nil� h

� for each of the following definitions
of h:

h�x� �y�� y��� � y� �� 	x
 �� y� (2.70)

h � �� . �singl ���� (2.71)

h � �� . ���� singl� . swap (2.72)

assuming singl a � 	a
. What datatype in (2.68) are we talking about?

�

Exercise 2.9 Write as a catamorphism the function which computes the frontier of a tree of type LTree

(2.68), listed from left to right.

�

2.14 Functors and type functors in HASKELL

The concept of a (unary) functor is provided in HASKELL in the form of a particular
class exporting the map operator:

class Functor f where
map :: (a -> b) -> (f a -> f b)

So map g encodes F g once we declare F as an instance of class Functor. The most
popular use of map has to do with HASKELL lists and this is allowed by declaration

instance Functor [] where
map f [] = []
map f (x:xs) = f x : map f xs

2.15. INDUCTIVE DATATYPE CONVERSION AND ISOMORPHISM 77

in the HUGS Standard Prelude.
In order to encode the type functors we have seen so far we have to do the same

concerning their declaration. For instance, if we write

instance Functor BTree
where map f =

cataBTree (inBTree . (id -|- (f >< id)))

concerning the binary-tree datatype of (2.68) and assuming appropriate declarations
of cataBTree and inBTree, then map is overloaded and used across such binary-
trees.

Bi-functors can be added easily by writing

class BiFunctor f where
bmap :: (a -> b) -> (c -> d) -> (f a c -> f b d)

Exercise 2.10 Declare all datatypes in (2.68) in HASKELL notation and turn them into HASKELL type

functors, that is, define map in each case.

�

Exercise 2.11 Declare datatype (2.69) in HASKELL notation and turn it into an instance of class BiFunctor.

�

2.15 Inductive datatype conversion and isomorphism

The T f “map” operation is a special case of a transformation between two inductive
datatypes (in which the pattern of recursion remains unchanged). In a more general
setting, suppose one is given two inductive datatypes T and U defined by functors F
and G, respectively:

T �� FT

inT

and

U �� GU

inU

Moreover suppose that recursion pattern G can be converted to recursion pattern F via

polymorphic map FX GX
�X�� . It can be checked that

�
inT . �T��G (2.73)

