
Chapter 1

An Introduction to Pointfree
Programming

Everybody is familiar with the concept of a function since the school desk. The func-
tional intuition traverses mathematics from end to end because it has a solid semantics
rooted on a well-known mathematical system — the class “all” sets and set-theoretical
functions.

Functional programming literally means “programming with functions”. Program-
ming languages such as LISP or HASKELL allow us to program with functions. How-
ever, the functional intuition is far more reaching than producing code which runs on
a computer. Since the pioneering work of John McCarthy — the inventor of LISP —
in the early 1960s, one knows that other branches of programming can be structured,
or expressed functionally. The idea of producing programs by calculation, that is to
say, that of calculating efficient programs out of abstract, inefficient ones has a long
tradition in functional programming.

This book is structured around the idea that functional programming can be used as
a basis for teaching programming as a whole, from the successor function n �� n� �
to large information system design.

This chapter provides a light-weight introduction to the theory of functional pro-
gramming. Its emphasis is on explaining how to construct new functions out of other
functions using a minimal set of predefined functional combinators. This leads to a
programming style which is point free in the sense that function descriptions dispense
with variables (definition points).

Many technical issues are deliberately ignored and deferred to later chapters. Most
programming examples will be provided in the HASKELL functional programming lan-
guage. Appendix A includes the listings of some HASKELL modules which comple-
ment the HUGS Standard Prelude (which is based very closely on the Standard Prelude
for HASKELL 1.4.) and help to “animate” the main concepts introduced in this chapter.

3

4 CHAPTER 1. AN INTRODUCTION TO POINTFREE PROGRAMMING

1.1 Introducing functions and types

The definition of a function

f � A �� B (1.1)

can be regarded as a kind of “process” abstraction: it is a “black box” which produces
an output once it is supplied with an input:

f� �x�� A� f x�� B�

From another viewpoint, f can be regarded as a kind of “contract”: it commits itself
to producing a B-value provided it is supplied with an A-value. How is such a value
produced? In many situations one wishes to ignore it because one is just using function
f . In others, however, one may want to inspect the internals of the “black box” in order
to know the function’s computation rule. For instance,

succ � IN �� IN

succ n def
� n� �

expresses the computation rule of the successor function — the function succ which
finds “the next natural number” — in terms of natural number addition and of natural
number �. What we above meant by a “contract” corresponds to the signature of the
function, which is expressed by arrow IN �� IN in the case of succ and which, by

the way, can be shared by other functions, e.g. sq n def
� n�.

In programming terminology one says that succ and sq have the same “type”. Types
play a prominent rôle in functional programming (as they do in other programming
paradigms). Informally, they provide the “glue”, or interfacing material, for putting
functions together to obtain more complex functions. Formally, a “type checking”
discipline can be expressed in terms of compositional rules which check for functional
expression wellformedness.

It has become standard to use arrows to denote function signatures or function
types, recall (1.1). In this book the following variants will be used interchangeably
to denote the fact that function f accepts arguments of type A and produces results

of type B: f � B A�� , f � A �� B , B A
f�� or A

f �� B . This
corresponds to writing f :: a -> b in the HASKELL functional programming
language, where type variables are denoted by lowercase letters. A will be referred to
as the domain of f and B will be referred to as the codomain of f . Both A and B are
symbols which denote sets of values, very often called types.

1.2. FUNCTIONAL APPLICATION 5

1.2 Functional application

What do we want functions for? If we ask this question to a physician or engineer the
answer is very likely to be: one wants functions for modelling and reasoning about the
behaviour of real things.

For instance, function distance t � �� � t could be written by a school physics
student to model the distance (in, say, kilometers) a car will drive (per hour) at average
speed ��km�hour. When questioned about how far the car has gone in 2.5 hours, such
a model provides an immediate answer: just evaluate distance ��	 to obtain �	�km.

So we get a naı̈ve purpose of functions: we want them to be applied to arguments
in order to obtain results. Functional application is denoted by juxtaposition, e.g. f a

for B A
f�� and a � A, and associates to the left: f x y denotes �f x� y rather than

f �x y�.

1.3 Functional equality and composition

Application is not everything we want to do with functions. Very soon our physics
student will be able to talk about properties of the distance model, for instance that
property

distance ��� t� � �� �distance t� (1.2)

holds. Later on, we could learn from her or him that the same property can be restated

as distance �twice t� � twice �distance t�, by introducing function twice x def
� � � x.

Or even simply as

distance . twice � twice . distance (1.3)

where “.” denotes function-arrow chaining, as suggested by drawing

IR

distance
��

IR
twice��

distance
��

IR IR
twice
��

(1.4)

where both space and time are modelled by real numbers.
This trivial example illustrates some relevant facets of the functional programming

paradigm. Which version of the property presented above is “better”? the version
explicitly mentioning variable t and requiring parentheses (1.2)? the version hiding
variable t but resorting to function twice (1.3)? or even drawing (1.4)?

Expression (1.3) is clearly more compact than (1.2). The trend for notation econ-
omy and compactness is well-known throughout the history of mathematics. In the
16th century, for instance, algebrists would write 12.cu.p̃.18.ce.p̃.27.co.p̃.17 for what
is nowadays written as ��x���
x����x���. We may find such syncopated notation

6 CHAPTER 1. AN INTRODUCTION TO POINTFREE PROGRAMMING

odd, but should not forget that at its time it was replacing even more obscure expression
denotations.

Why do people look for compact notations? A compact notation leads to shorter
documents (less lines of code in programming) in which patterns are easier to identify
and to reason about. Properties can be stated in clear-cut, one-line long equations which
are easy to memorize. And diagrams such as (1.4) can be easily drawn which enable
us to visualize maths in a graphical format.

Some people will argue that such compact “pointfree” notation (that is, the notation
which hides variables, or function “definition points”) is too cryptic to be useful as
a practical programming medium. In fact, pointfree programming languages such as
Iverson’s APL or Backus’ FP have been more respected than loved by the programmers
community. Virtually all commercial programming languages require variables and so
implement the more traditional “pointwise” notation.

Throughout this book we will adopt both, depending upon the context. Our chosen
programming medium — HASKELL — blends the pointwise and pointfree program-
ming styles in a quite successful way. In order to switch from one to the other, we
need two “bridges”: one lifting equality to the functional level and the other lifting
application.

Concerning equality, note that the “�” sign in (1.2) differs from that in (1.3): while
the former states that two real numbers are the same number, the latter states that two
IR IR�� functions are the same function. Formally, we will say that two functions
f� g � B A�� are equal if they agree at pointwise-level, that is

f � g iff �a � A � f a �B g a (1.5)

where �B denotes equality at B-level.
Concerning application, the pointfree style replaces it by the more generic con-

cept of functional composition suggested by function-arrow chaining: wherever two

functions are such that the target type of one of them, say B A
g�� is the same as

the source type of the other, say C B
f�� , then another function can be defined,

C A
f.g�� — called the composition of f and g, or “f after g” — which “glues” f

and g together:

�f . g� a def
� f �g a� (1.6)

This situation is pictured by the following arrow-diagram

B

f

��

A
g��

f.g��� �
� �
� �
�

C

(1.7)

or by block-diagram

1.4. IDENTITY FUNCTIONS 7

� ga �

g a
f � f �g a�

Therefore, the type-rule associated to functional composition can be expressed as fol-
lows:

B C
f��

C A
g��

B A
f.g��

Composition is certainly the most basic of all functional combinators. It is the first
kind of “glue” which comes to mind when programmers need to combine, or chain
functions (or processes) to obtain more elaborate functions (or processes) 1. This is
because of one of its most relevant properties,

�f . g� . h � f . �g . h� (1.8)

which shares the pattern of, for instance

�a� b� � c � a� �b� c�

and so is called the associative property of composition. This enables us to move
parentheses around in pointfree expressions involving functional compositions, or even
to omit them, for instance by writing f . g .h . i as an abbreviation of ��f . g� .h� . i,
or of �f . �g . h�� . i, or of f . ��g . h� . i�, etc. For a chain of n-many function
compositions the notation�n

i��fi will be acceptable as abbreviation of f� . � � � . fn.

1.4 Identity functions

How free are we to fulfill the “give me an A and I will give you a B” contract of
equation (1.1)? In general, the choice of f is not unique. Some fs will do as little
as possible while others will laboriously compute non-trivial outputs. At one of the
extremes, we find functions which “do nothing” for us, that is, the added-value of their
output when compared to their input amounts to nothing:

f a � a

1It even has a place in script languages such as UNIX’s, where f | g is the shell counterpart of g. f ,
for appropriate “processes” f and g.

8 CHAPTER 1. AN INTRODUCTION TO POINTFREE PROGRAMMING

In this case B � A, of course, and f is said to be the identity function on A:

idA � A A��

idA a
def
� a

(1.9)

Note that every type X “has” its identity idX . Subscripts will be omitted wherever

implicit in the context. For instance, the arrow notation IN IN
id�� saves us from

writing idIN, etc.. So, we will often refer to “the” identity function rather than to “an”
identity function.

How useful are identity functions? At first sight, they look fairly uninteresting. But
the interplay between composition and identity, captured by the following equation,

f . id � id . f � f (1.10)

will be appreciated later on. This property shares the pattern of, for instance,

a� � � � � a � a

This is why we say that id is the unit of composition. In a diagram, (1.10) looks like
this:

A

f

��

A
id��

f

��
B B

id
��

(1.11)

Note the graphical analogy of diagrams (1.4) and (1.11). Diagrams of this kind are very
common and express important properties of functions, as we shall see further on.

1.5 Constant functions

Opposite to the identity functions, which do not lose any information, we find functions
which lose all (or almost all) information. Regardless of their input, the output of these
functions is always the same value.

Let C be a nonempty data domain and let and c � C. Then we define the every-
where c function as follows, for arbitrary A:

c � A �� C

c a
def
� c

(1.12)

The following property defines constant functions at pointfree level,

c . f � c (1.13)

1.6. MONICS AND EPICS 9

and is depicted by a diagram similar to (1.11):

C

id

��

A
c��

f

��
C Bc

��

(1.14)

Note that, strictly speaking, symbol c denotes two different functions in diagram (1.14):
one, which we should have written cA , accepts inputs from A while the other, which
we should have written cB , accepts inputs from B:

cB . f � cA (1.15)

This property will be referred to as the constant-fusion property.
As with identity functions, subscripts will be omitted wherever implicit in the con-

text.

Exercise 1.1 The HUGS Standard Prelude provides for constant functions: you write const c for c. Check

that HUGS assigns the same type to expressions f . const c and const (f c), for every f and c.

What else can you say about these functional expressions? Justify.

�

1.6 Monics and epics

Identity functions and constant functions are the limit points of the functional spectrum
with respect to information preservation. All the other functions are in between: they
lose “some” information, which is regarded as uninteresting for some reason. This
remark supports the following aphorism about a facet of functional programming: it
is the art of transforming or losing information in a controlled and precise way. That
is to say, the art of constructing the exact observation of data which fits in a particular
context or requirement.

How do functions lose information? Basically in two different ways: they may be
“blind” enough to confuse different inputs, by mapping them onto the same output,
or they may ignore values of their codomain. For instance, c confuses all inputs by
mapping them all onto c. Moreover, it ignores all values of its codomain apart from c.

Functions which do not confuse inputs are called monics (or injective functions)

and obey the following property: B A
f�� is monic if, for every pair of functions

A C
h�k�� , if f . h � f . k then h � k, cf. diagram

B A
f�� C

h��
k

��

(f is “cancellable on the left”).

10 CHAPTER 1. AN INTRODUCTION TO POINTFREE PROGRAMMING

It is easy to check that “the” identity function is monic,

id . h � id . k� h � k

� f by (1.10)g

h � k� h � k

� f predicate logicg

TRUE

and that any constant function c is not monic:

c . h � c . k� h � k

� f by (1.15)g

c � c� h � k

� f function equality is reflexiveg

TRUE � h � k

� f predicate logicg

h � k

So the implication does not hold in general (only if h � k).
Functions which do not ignore values of their codomain are called epics (or surjec-

tive functions) and obey the following property: A B
f�� is epic if, for every pair

of functions C A
h�k�� , if h . f � k . f then h � k, cf. diagram

C A
h

��
k��

B
f

��

(f is “cancellable on the right”).
As expected, identity functions are epic:

h . id � k . id� h � k

� f by (1.10)g

h � k� h � k

� f predicate logicg

TRUE

Exercise 1.2 Under what circumstances is a constant function epic? Justify.

�

1.7. ISOS 11

1.7 Isos

A function B A
f�� which is both monic and epic is said to be iso (an isomorphism,

or a bijective function). In this situation, f always has an inverse B
f�� �� A , which

is such that

f . f�� � idB 	 f�� . f � idA (1.16)

(i.e. f is invertible).
Isomorphisms are very important functions because they convert data from one

“format”, say A, to another format, say B, without losing information. So f and and
f�� are faithful protocols between the two formats A and B. Of course, these formats
contain the same “amount” of information, although the same data adopts a different
“shape” in each of them. In mathematics, one says that A is isomorphic to B and one
writes A
� B to express this fact.

Isomorphic data domains are regarded as “abstractly” the same. Note that, in gen-
eral, there is a wide range of isos between two isomorphic data domains. For instance,
let Weekday be the set of weekdays,

Weekday �

fSunday�Monday� Tuesday�Wednesday� Thursday� F riday� Saturdayg

and let symbol � denote the set f�� �� ��
� 	� �� �g, which is the initial segment of IN
containing exactly seven elements. The following function f , which associates each
weekday with its “ordinal” number,

f � Weekday �� �

f Monday � �

f Tuesday � �

f Wednesday � �

f Thursday �

f Friday � 	

f Saturday � �

f Sunday � �

is iso (guess f��). Clearly, f d � i means “d is the i-th day of the week”. But note

that function g d
def
� rem�f d� �� � � is also an iso between Weekday and �. While f

regards Monday the first day of the week, g places Sunday in that position. Both f
and g are witnesses of isomorphism

Weekday
� � (1.17)

Finally, note that all classes of functions referred to so far — constants, identities,
epics, monics and isos — are closed under composition, that is, the composition of two
constants is a constant, the composition of two epics is epic, etc.

12 CHAPTER 1. AN INTRODUCTION TO POINTFREE PROGRAMMING

1.8 Gluing functions which do not compose — products

Function composition has been presented above as the basis for gluing functions to-
gether in order to build more complex functions. However, not every two functions
can be glued together by composition. For instance, functions f � A C�� and
g � B C�� do not compose with each other because the domain of one of them
is not the codomain of the other. However, both f and g share the same domain C. So,
something we can do about gluing f and g together is to draw a diagram expressing
this fact, something like

A B

C

f

��� � � � � � � g

���������

Because f and g share the same domain, their outputs can be paired, that is, we
may write ordered pair �f c� g c� for each c � C. Such pairs belong to the Cartesian
product of A and B, that is, to the set

A�B
def
� f�a� b� j a � A 	 b � Bg

So we may think of the operation which pairs the outputs of f and g as a new function
combinator hf� gi defined as follows:

hf� gi � C �� A�B

hf� gi c
def
� �f c� g c�

(1.18)

Function combinator hf� gi is pronounced “f split g” (or “pair f and g”) and can
be depicted by the following “block”, or “data flow” diagram:

c

�

�

f

g

�

�

f c

g c

Function hf� gi keeps the information of both f and g in the same way Cartesian prod-
uct A � B keeps the information of A and B. So, in the same way A data or B data
can be retrieved from A�B data via the implicit projections �� or ��,

A A�B
���� �� �� B (1.19)

defined by

���a� b� � a and ���a� b� � b

1.8. GLUING FUNCTIONS WHICH DO NOT COMPOSE — PRODUCTS 13

f and g can be retrieved from hf� gi via the same projections:

�� . hf� gi � f and �� . hf� gi � g (1.20)

This fact (or pair of facts) will be referred to as the �-cancellation property and is
illustrated in the following diagram which puts things together:

A A�B
���� �� �� B

C

f

��� � � � � � � � �
hf�gi

��

g

		���������

(1.21)

In summary, the type-rule associated to the “split” combinator is expressed by

A C
f��

B C
g��

A�B C
hf�gi��

A split arises wherever two functions do not compose but share the same domain.
What about gluing two functions which fail such a requisite, e.g.

A C
f��

B D
g��

� � ��

The hf� gi split combination does not work any more. But a way to “unify” the domains
of f and g, C and D respectively, is to regard them as targets of the projections �� and
�� of C �D. That is to say, expression hf . ��� g . ��i is well-typed, having domain
C �D and codomain A � B. It corresponds to the “parallel” application of f and g
which is suggested by the following data-flow diagram:

c

d

�

�

f

g

�

�

f c

g d

Functional combination hf . ��� g . ��i appears very often and deserves special
notation — it will be expressed by f � g. So, by definition, we have

f � g
def
� hf . ��� g . ��i (1.22)

14 CHAPTER 1. AN INTRODUCTION TO POINTFREE PROGRAMMING

which is pronounced “product of f and g” and has typing-rule

A C
f��

B D
g��

A�B C �D
f�g��

(1.23)

Note the overloading of symbol “�”, which is used to denote both Cartesian product
and functional product. The adoption of this notation will be fully justified later on.

What is the interplay among functional combinators f . g (composition), hf� gi
(split) and f�g (product) ? Composition and split relate to each other via the following
property, known as �-fusion:

A A�B
���� �� �� B

C

g

��� � � � � � � � �
hg�hi

��

h

		���������

D

g.f

� � � � � � � � � � � � � � �
f

�� h.f

�����������������

hg� hi . f � hg . f� h . fi (1.24)

This shows that split is right-distributive with respect to composition. Left-distributivity
does not hold but there is something we can say about f . hg� hi in case f � i� j:

�i� j� . hg� hi
� f by (1.22)g

hi . ��� j . ��i . hg� hi
� f by �-fusion (1.24)g

h�i . ��� . hg� hi� �j . ��� . hg� hii
� f by (1.8)g

hi . ��� . hg� hi�� j . ��� . hg� hi�i
� f by �-cancellation (1.20)g

hi . g� j . hi

The law we have just derived is known as �-absorption. (The intuition behind this
terminology is that “split absorbs �”, as a special kind of fusion.) It is a consequence

1.8. GLUING FUNCTIONS WHICH DO NOT COMPOSE — PRODUCTS 15

of�-fusion and �-cancellation and is depicted as follows:

A A�B
���� �� �� B

D

i

��

D �E
���� �� ��

i�j

��

E

j

��

C

g

��� � � � � � � � �
hg�hi

��

h

		���������

�i� j� . hg� hi � hi . g� j . hi (1.25)

This diagram provides us with two further results about products and projections which
can be easily justified:

i . �� � �� . �i� j� (1.26)

j . �� � �� . �i� j� (1.27)

Two special properties of f � g are presented next. The first one expresses a kind
of “bi-distribution” of � with respect to composition:

�g . h�� �i . j� � �g � i� . �h� j� (1.28)

We will refer to this property as the �-functor property. The other property, which we
will refer to as the �-functor-id property, has to do with identity functions:

idA � idB � idA�B (1.29)

These two properties will be identified as the functorial properties of product. This
choice of terminology will be explained later on.

Let us finally analyse the particular situation in which a split is built involving
projections�� and �� only. These exhibit interesting properties, for instance h��� ��i �
id. This property is known as �-reflexion and is depicted as follows:

A A� B
���� �� �� B

A� B

��

��� � � � � � � � �
idA�B

��

��

���������

h��� ��i � idA�B (1.30)

What about h��� ��i? This corresponds to a diagram

B B �A
���� �� �� A

A�B

��

��� � � � � � � � �
h�����i

��

��

���������

which looks very much the same if submitted to a �
�o clockwise rotation (A and B
swap with each other). This suggests that swap (the name we adopt for h��� ��i) is its

16 CHAPTER 1. AN INTRODUCTION TO POINTFREE PROGRAMMING

own inverse, as can be checked easily as follows:

swap . swap
� f by definition swap

def
� h��� ��ig

h��� ��i . swap
� f by �-fusion (1.24)g

h�� . swap� �� . swapi
� f definition of swap twiceg

h�� . h��� ��i� �� . h��� ��ii
� f by �-cancellation (1.20)g

h��� ��i

� f by �-reflexion (1.30)g

id

Therefore, swap is iso and establishes the following isomorphism

A�B
� B �A (1.31)

which is known as the commutative property of product.

The “product datatype”A�B is essential to information processing and is available
in virtually every programming language. In HASKELL one writes (A,B) to denote
A � B, for A and B two predefined datatypes, fst to denote �� and snd to denote
��. In the C programming language this datatype is called the “struct datatype”,

struct f
A first;
B second;

g;

while in PASCAL it is called the “record datatype”:

record
first: A;
second: B

end;

Isomorphism (1.31) can be re-interpreted in this context as a guarantee that one does
not lose (or gain) anything in swapping fields in record datatypes. C or PASCAL pro-
grammers know also that record-field nesting has the same status, that is to say that,

1.9. GLUING FUNCTIONS WHICH DO NOT COMPOSE — COPRODUCTS 17

for instance, datatype

record
F: A;
S: record

F: B;
S: C;

end
end;

is abstractly the same as

record
F: record

F: A;
S: B

end;
S: C;

end;

In fact, this is another well-known isomorphism, known as the associative property
of product:

A� �B � C�
� �A�B�� C (1.32)

This is established by A� �B � C� �A�B�� C
assocr�� , which is pronounced “as-

sociate to the right” and is defined by

assocr
def
� h�� . ��� h�� . ��� ��ii (1.33)

Section A.1 in the appendix lists an extension to the HUGS Standard Prelude, called
Set.hs, which makes isomorphisms such as swap and assocr available. In this
module, the concrete syntax chosen for hf� gi is split f g and the one chosen for
f � g is f >< g.

Exercise 1.3 Show that assocr is iso by conjecturing its inverse assocl and proving that functional equality

assocr . assocl � id holds.

�

Exercise 1.4 Use (1.22) to prove properties (1.28) and (1.29).

�

1.9 Gluing functions which do not compose — coprod-
ucts

The split functional combinator arose in the previous section as a kind of glue for
combining two functions which do not compose but share the same domain. The “dual”
situation of two non-composable functions f � C A�� and g � C B��

which however share the same codomain is depicted in

A

f ���
��

��
��

B

g
��� �
� �
� �
�

C

18 CHAPTER 1. AN INTRODUCTION TO POINTFREE PROGRAMMING

It is clear that the kind of glue we need in this case should make it possible to apply
f in case we are on the “A-side” or to apply g in case we are on the “B-side” of the
diagram. Let us write � f� g � to denote the new kind of combinator. Its codomain will
be C. What about its domain?

We need to describe the datatype which is “either an A or a B”. Since A and B
are sets, we may think of A � B as such a datatype. This works in case A and B
are disjoint sets, but wherever the intersection A � B is non-empty it is undecidable
whether a value x � A � B is an “A-value” or a “B-value”. In the limit, if A � B
then A�B � A � B, that is to say, we have not invented a new datatype at all. These
difficulties can be circumvented by resorting to disjoint union:

A
i� �� A�B B

i���

The values of A � B can be thought of as “copies” of A or B values which are
“stamped” with different tags in order to guarantee that values which are simultane-
ously in A and B do not get mixed up. The tagging functions i� and i� are called
injections:

i� a � �t�� a� � i� b � �t�� b� (1.34)

Knowing the exact values of tags t� and t� is not essential to understanding the concept
of a disjoint union. It suffices to know that i� and i� tag differently and consistently.
For instance, the following realizations of A�B in the C programming language,

struct f
int tag; /* 1,2 */
union f

A ifA;
B ifB;

g data;
g;

or in PASCAL,

record
case

tag: integer
of x =

1: (P:A);
2: (S:B)

end;

adopt integer tags. In the HUGS Standard Prelude, which is based very closely on the
Standard Prelude for HASKELL 1.4., the A�B datatype is realized by

data Either a b = Left a | Right b

So, Left and Right can be thought of as the injections i� and i� in this realization.

1.9. GLUING FUNCTIONS WHICH DO NOT COMPOSE — COPRODUCTS 19

At this level of abstraction, disjoint union A � B is called the coproduct of A and
B, on top of which we define the new combinator � f� g � (pronounced “either f or g”)
as follows:

� f� g � � A�B �� C

� f� g �x
def
�

�
x � i� a � f a
x � i� b � g b

(1.35)

As we did for products, we can express all this in a single diagram:

A
i� ��

f ����
���

���
� A�B

� f�g �

��

B
i���

g
��� � �

� � �
� � �

C

(1.36)

It is interesting to note how similar this diagram is to the one drawn for products —
one just has to reverse the arrows, replace projections by injections and the split arrow
by the either one. This expresses the fact that product and coproduct are dual math-
ematical constructs (compare with sine and cosine in trigonometry). This duality is
of a great conceptual economy because everything we can say about product A � B
can be rephrased to coproduct A �B. For instance, we may introduce the sum of two
functions f � g as the notion dual to product f � g:

f � g
def
� � i� . f� i� . g � (1.37)

The following list of �-laws provides eloquent evidence of this duality:

�-cancellation :

A
i� ��

g
����

���
���

� A�B

� g�h �

��

B
i���

h��� � �
� � �

� � �

C

� g� h � . i� � g , � g� h � . i� � h (1.38)

�-reflexion :

A
i� ��

i� ����
���

���
� A�B

idA�B

��

B
i���

i���� � �
� � �

� � �

A�B

� i�� i� � � idA�B (1.39)

20 CHAPTER 1. AN INTRODUCTION TO POINTFREE PROGRAMMING

�-fusion :

A
i� ��

g
����

���
���

�

f.g
���

��
��

��
��

��
��

��
A�B

� g�h �

��

B
i���

h��� � �
� � �

� � �

f.h
��� �
� �
� �
� �
� �
� �
� �
�

C

f

��
D

f . � g� h � � � f . g� f . h � (1.40)

�-absorption :

A
i� ��

i

��

A�B

i�j

��

B
i���

j

��
D

i� ��

g
����

���
���

� D �E

� g�h �

��

E
i�

��

h��� � �
� � �

� � �

C

� g� h � . �i� j� � � g . i� h . j � (1.41)

�-functor :

�g . h� � �i . j� � �g � i� . �h� j� (1.42)

�-functor-id :

idA � idB � idA�B (1.43)

In summary, the typing-rules of the either and sum combinators are as follows:

C A
f��

C B
g��

C A�B
� f�g ���

C A
f��

D B
g��

C �D A�B
f�g��

(1.44)

Exercise 1.5 By analogy (duality) with swap, show that � i�� i� � is its own inverse and so that fact

A� B �� B �A (1.45)

holds.

�

Exercise 1.6 Dualize (1.33), that is, write the iso which witnesses fact

A� �B �C� �� �A� B� �C (1.46)

1.10. MIXING PRODUCTS AND COPRODUCTS 21

from right to left. Use the either syntax available from the HUGS Standard Prelude to encode this iso in

HASKELL.

�

1.10 Mixing products and coproducts

Datatype constructions A � B and A � B have been introduced above as devices
required for expressing the codomain of splits (A�B) or the domain of eithers (A�B).
Therefore, a function mapping values of a coproduct (sayA�B) to values of a product
(say A� � B�) can be expressed alternatively as an either or as a split. In the first case,
both components of the either combinator are splits. In the latter, both components of
the split combinator are eithers.

This exchange of format in defining such functions is known as the exchange law.
It states the functional equality which follows:

� hf� gi� hh� ki � � h� f� h �� � g� k �i (1.47)

It can be checked by type-inference that both the left-hand side and the right-hand

side expressions of this equality have type B �D A� C�� , for B A
f�� ,

D A
g�� , B C

h�� and D C
k�� .

An example of a function which is in the exchange-law format is isomorphism

A� �B � C� �A�B� � �A� C�
undistr�� (1.48)

(pronounce undistr as “un-distribute-right”) which is defined by

undistr
def
� � id� i�� id� i� � (1.49)

and witnesses the fact that product distributes through coproduct:

A� �B � C�
� �A�B� � �A� C� (1.50)

In this context, suppose that we know of three functions D A
f�� , E B

g��

and F C
h�� . By (1.44) we infer E � F B � C

g�h�� . Then, by (1.23) we infer

D � �E � F � A� �B � C�
f��g�h��� (1.51)

So, it makes sense to combine products and sums of functions and the expressions
which denote such combinations have the same “shape” (or symbolic pattern) as the
expressions which denote their domain and range — the � � � � �� � � � � � �� “shape” in
this example. In fact, if we abstract such a pattern via some symbol, say F — that is,
if we define

F��� �� ��
def
� �� �� � ��

22 CHAPTER 1. AN INTRODUCTION TO POINTFREE PROGRAMMING

— then we can write F�D�E� F � F�A�B�C�
F�f�g�h��� for (1.51).

This kind of abstraction works for every combination of products and coproducts.
For instance, if we now abstract the right-hand side of (1.48) via pattern

G��� �� ��
def
� ��� �� � �� � ��

we have G�f� g� h� � �f � g� � �f � h�, a function which maps G�A�B�C� � �A �
B���A�C� onto G�D�E� F � � �D�E���D�F �. All this can be put in a diagram

F�A�B�C�

F�f�g�h�

��

G�A�B�C�
undistr��

G�f�g�h�

��
F�D�E� F � G�D�E� F �

which unfolds to

A� �B � C�

f��g�h�

��

�A�B� � �A� C�
undistr��

�f�g���f�h�

��
D � �E � F � �D �E� � �D � F �

(1.52)

once the F and G patterns are instantiated. An interesting topic which stems from
(completing) this diagram will be discussed in the next section.

Exercise 1.7 Apply the exchange law to undistr.

�

Exercise 1.8 Complete the “?”s in diagram

�

� x�y �

��� �
� �
� �
�

id�id�f

��
� �

� k�g �

��

and then solve the implicit equation for x and y.

�

Exercise 1.9 Repeat exercise 1.8 with respect to diagram

�
h�hi�ji��

x�y
��	

		
		

		 �

id�id�f

��
�

�

1.11. NATURAL PROPERTIES 23

1.11 Natural properties

Let us resume discussion about undistr and the two other functions in diagram (1.52).
What about using undistr itself to close this diagram, at the bottom? Note that defini-
tion (1.49) works for D, E and F in the same way it does for A, B and C. (Indeed, the
particular choice of symbols A, B and C in (1.48) was rather arbitrary.) Therefore, we
get:

A� �B � C�

f��g�h�

��

�A�B� � �A� C�
undistr��

�f�g���f�h�

��
D � �E � F � �D �E� � �D � F �

undistr
��

which expresses a very important property of undistr:

�f � �g � h�� . undistr � undistr . ��f � g� � �f � h�� (1.53)

This is called the natural property of undistr. This kind of property (often called
free instead of natural) is not a privilege of undistr. As a matter of fact, every function
interfacing patterns such as F or G above will exhibit its own natural property. Further-
more, we have already quoted natural properties without mentioning it. Recall (1.10),
for instance. This property (establishing id as the unit of composition) is, after all, the
natural property of id. In this case we have F� � G� � �, as can be easily observed
in diagram (1.11).

In general, natural properties are described by diagrams in which two “copies” of
the operator of interest are drawn as horizontal arrows:

A

f

��

FA

F f

��

GA
���

G f

��
B FB GB

�
��

�F f� . � � � . �G f� (1.54)

Note that f is universally quantified, that is to say, the natural property holds for every
f � B A�� .

Diagram (1.54) corresponds to unary patterns F and G. As we have seen with
undistr, other functions (g,h etc.) come into play for multiary patterns. A very
important rôle will be assigned throughout this book to these F�G, etc. “shapes” or
patterns which are shared by pointfree functional expressions and by their domain and
codomain expressions. From chapter 2 onwards we will refer to them by their proper
name — “functor” — which is standard in mathematics and computer science. Then
we will also explain the names assigned to properties such as, for instance, (1.28) or
(1.42).

Exercise 1.10 Show that (1.26) and (1.27) are natural properties. Dualize these properties. Hint: recall

diagram (1.41).

�

24 CHAPTER 1. AN INTRODUCTION TO POINTFREE PROGRAMMING

Exercise 1.11 Establish the natural properties of the swap (1.31) and assocr (1.33) isomorphisms.

�

1.12 Universal properties

Functional constructs hf� gi and � f� g � (and their derivatives f � g and f � g) provide
good illustration about what is meant by a program combinator in a compositional
approach to programming: the combinator is put forward equipped with an useful set
of properties which enable programmers to transform programs, reason about them
and perform useful calculations. This raises a programming methodology which is
scientific and stable.

Such properties bear standard names such as cancellation, reflexion, fusion, ab-
sortion etc.. Where do these come from? As a rule, for each combinator to be defined
one has to define suitable constructions at “interface”-level 2, e.g. A � B and A � B.
These are not chosen or invented at random: each is defined in a way such that the
associated combinator is uniquely defined. This is assured by a so-called universal
property from which the others can derived.

Take product A � B, for instance. Its universal property states that, for each pair

of arrows A C
f�� and B C

f�� , there exists an arrow A�B C
hf�gi�� such

that

k � hf� gi

�
�� . k � f
�� . k � g

(1.55)

holds — recall diagram (1.21) — for all A�B C
k�� . This equivalence states that

hf� gi is the unique arrow satisfying the property on the right. In fact, read (1.55) in the
� direction and let k be hf� gi. Then �� . hf� gi � f and �� . hf� gi � g will hold,
meaning that hf� gi effectively obeys the property on the right. In other words, we have
derived �-cancellation (1.20). Reading (1.55) in the � direction we understand that,
if some k satisfies such properties, then it “has to be” the same arrow as hf� gi.

It is easy to see other properties of hf� gi arising from (1.55). For instance, for
k � id we get �-reflexion (1.30),

id � hf� gi

�
�� . id � f
�� . id � g

� f by (1.10)g

id � hf� gi

�
�� � f
�� � g

� f by substitution of f and g g

id � h��� ��i

2In the current context, programs “are” functions and program-interfaces “are” the datatypes involved in
functional signatures.

1.13. GUARDS AND MCCARTHY’S CONDITIONAL 25

and for k � hi� ji . h we get �-fusion (1.24):

hi� ji . h � hf� gi

�
�� . �hi� ji . h� � f
�� . �hi� ji . h� � g

� f composition is associative (1.8)g

hi� ji . h � hf� gi

�
��� . hi� ji� . h � f
��� . hi� ji� . h � g

� f by �-cancellation (just derived) g

hi� ji . h � hf� gi

�
i . h � f
j . h � g

� f by substitution of f and g g

hi� ji . h � hi . h� j . hi
It will take about the same effort to derive split structural equality

hi� ji � hf� gi

�
i � f
j � g

(1.56)

from universal property (1.55) — just let k � hi� ji.
Similar arguments can be built around coproduct’s universal property,

k � � f� g �

�
k . i� � f
k . i� � g

(1.57)

from which structural equality of eithers can be inferred,

� i� j � � � f� g �

�
i � f
j � g

(1.58)

as well as the other properties we know about this combinator.

Exercise 1.12 Derive �-cancellation (1.38), �-reflexion (1.39) and �-fusion (1.40) from universal property

(1.57).

�

1.13 Guards and McCarthy’s conditional

Most functional programming languages and notations cater for pointwise conditional
expressions of the form

if �p x� then �g x� else �h x�

meaning �
p x � g x

��p x� � hx

26 CHAPTER 1. AN INTRODUCTION TO POINTFREE PROGRAMMING

for some given predicate Bool A
p�� , some “then”-function B A

g�� and some

“else”-function B A
h�� . Bool is the primitive datatype containing truth values

FALSE and TRUE.
Can such expressions be written in the pointfree style? They can, provided we

introduce the so-called “McCarthy conditional” functional form

p� g� h

which is defined by

p� g� h
def
� � g� h � . p� (1.59)

a definition we can understand provided we know the meaning of the “p�” construct.

We call A�A A
p	�� a guard, or better, the guard associated to a given predicate

Bool A
p�� . Every predicate p gives birth to its own guard p� which, at point-level,

is defined as follows:

�p��a �

�
p a � i� a

��p a� � i� a
(1.60)

In a sense, guard p� is more “informative” than p alone: it provides information about
the outcome of testing p on some input a, encoded in terms of the coproduct injections
(i� for a true outcome and i� for a false outcome, respectively) without losing the input
a itself.

The following fact, which we will refer to as McCarthy’s conditional fusion law, is
a consequence of �-fusion (1.40):

f . �p� g� h� � p� f . g� f . h (1.61)

We shall introduce and define instances of predicate p as long as they are needed. A
particularly important assumption of our notation should, however, be mentioned at this

point: we assume that, for every datatypeA, the equality predicate Bool A�A
�A��

is defined in a way which guarantees three basic properties: reflexivity (a �A a for
every a), transitivity (a �A b and b �A c implies a �A c) and symmetry (a �A b iff
b �A a). Subscript A in �A will be dropped wherever implicit in the context.

In HASKELL programming, the equality predicate for a type becomes available by
declaring the type as an instance of class Eq, which exports equality predicate (==).
This does not, however, guarantee the reflexive, transitive and symmetry properties,
which need to be proved by dedicated mathematical arguments.

Exercise 1.13 Prove that the following equality between two conditional expressions

k�if p x then f x else hx� if p x then g x else i x�

� if p x then k�f x� g x� else k�hx� i x�

holds by rewriting it in the pointfree style (using the McCarthy’s conditional combinator) and applying the

exchange law (1.47), among others.

�

1.14. GLUING FUNCTIONS WHICH DO NOT COMPOSE — EXPONENTIALS27

Exercise 1.14 Prove law (1.61).

�

1.14 Gluing functions which do not compose — expo-
nentials

Now that we have made the distinction between the pointfree and pointwise functional
notations reasonably clear, it is instructive to revisit section 1.2 and identify functional
application as the “bridge” between the pointfree and pointwise worlds. However, we
should say “a bridge” rather than “the bridge”, for in this section we enrich such an
interface with another “bridge” which is very relevant to programming.

Suppose we are given the task to combine two functions B C �A
f�� and

D A
g�� . It is clear that none of the combinations f . g, hf� gi or � f� g � is well-

typed. So, f and g cannot be put together directly — they require some extra interfac-
ing.

Note that hf� gi would be well-defined in case the C component of f ’s domain
could be somehow “ignored”. Suppose, in fact, that in some particular context the first
argument of f happens to be “irrelevant”, or to be frozen to some c � C. It is easy to
derive a new function

fc � A �� B

fc a
def
� f�c� a�

from f which combines nicely with g via the split combinator: hfc� gi is well-defined
and bears type B �D A�� . For instance, suppose that C � A and f is the

equality predicate � on A. Then Bool A
�c�� is the “equal to c” predicate on A

values:

�c a
def
� a � c (1.62)

As another example, recall function twice (1.3) which could be defined as �� using
the new notation.

However, we need to be more careful about what is meant by fc. Such as func-
tional application, expression fc interfaces the pointfree and the pointwise levels — it

involves a function (f) and a value (c). But, for B C �A
f�� , there is a major dis-

tinction between f c and fc — while the former denotes a value of typeB, i.e. f c � B,
fc denotes a function of type B A�� . We will say that fc � BA by introducing a
new datatype construct which we will call the exponential:

BA def
� fg j g � B A�� g (1.63)

There are strong reasons to adopt the BA notation in detriment of the more obvious
B � A or A� B alternatives, as we shall see shortly.

28 CHAPTER 1. AN INTRODUCTION TO POINTFREE PROGRAMMING

The BA exponential datatype is therefore inhabited by functions from A to B, that
is to say, functional declaration g � B A�� means the same as g � BA. And what
do we want functions for? We want to apply them. So it is natural to introduce the
apply operator

ap � B BA �A
ap��

ap�f� a�
def
� f a

which applies a function f to an argument a.

Back to generic binary function B C �A
f�� , let us now think of the opera-

tion which, for every c � C, produces fc � BA. This can be regarded as a function
of signature BA C�� which expresses f as a kind of C-indexed family of func-

tions of signature A B�� . We will denote such a function by f (read f as “f
transposed”). Intuitively, we want f and f to be related to each other by the following
property:

f�c� a� � �f c�a (1.64)

Given c and a, both expressions denote the same value. But, in a sense, f is more
tolerant than f : while the latter is binary and requires both arguments �c� a� to become
available before application, the former is happy to be provided with c first and with a
later on, if actually required by the evaluation process.

Similarly to A � B and A � B, exponential BA is characterized by a universal
property,

k � f
 f � ap . �k � id� (1.65)

from which laws for cancellation, reflexion and fusion can be derived:

Exponentials cancellation :

BA BA �A
ap �� B

C

f

��

C �A

f�id

��

f

		

f � ap . �f � id� (1.66)

Exponentials reflexion :

BA BA �A
ap �� B

BA

id
BA

��

BA �A

id
BA

�idA

��

ap

		���������

ap � idBA (1.67)

1.14. GLUING FUNCTIONS WHICH DO NOT COMPOSE — EXPONENTIALS29

Exponentials fusion :

BA BA �A
ap �� B

C

g

��

C � A

g�id

��
g

		

D

f

��

D �A

f�id

�� g.�f�id�

������������������

g . �f � id� � g . f (1.68)

Note that the cancellation law is nothing but fact (1.64) written in the pointfree style.
In order to present the absorption law for exponentials we need to introduce a new

functional combinator which we will write as fA. Its type-rule is as follows:

C B
f��

CA BA
fA��

Fixing A and C B
f�� , fA is the function which accepts some input function

B A
g�� as argument and produces function f .g as result. So fA is the “compose

with f” functional combinator:

�fA�g
def
� f . g (1.69)

Now we are ready to understand the laws which follow:

Exponentials absorption :

DA DA �A
ap �� D

BA

fA

��

BA �A

fA�id

��

ap �� B

f

��

C

g

��

C �A

g�id

��
g

		

f . g � fA . g (1.70)

Exponentials-functor :

�g . h�A � gA . hA (1.71)

Exponentials-functor-id :

idA � id (1.72)

30 CHAPTER 1. AN INTRODUCTION TO POINTFREE PROGRAMMING

To conclude this section we need to explain why we have adopted the apparently
esoteric BA notation for the “function from A to B” data type. Let us introduce the
following operator

curry f def
� f (1.73)

which maps a function f to its transpose f . This operator, which is very familiar to
functional programmers, maps functions in some function space BC�A to functions in
�BA�C . Its inverse (known as the uncurry function) also exists. In the HUGS Standard
Prelude we find them declared as follows:

curry :: ((a,b) -> c) -> (a -> b -> c)
curry f x y = f (x,y)

uncurry :: (a -> b -> c) -> ((a,b) -> c)
uncurry f p = f (fst p) (snd p)

From (1.73) it is obvious see that writing f or curry f is a matter of taste, the latter
being more in the tradition of functional programming. For instance, the fusion law
(1.68) can be re-written as

curry �g . �f � id�� � curry g . f
and so on.

It is known from mathematics that curry and uncurry are isos witnessing the fol-
lowing isomorphism which is at the core of the theory of functional programming:

BC�A
� �BA�
C

(1.74)

Fact (1.74) clearly resembles a well known equality concerning numeric exponentials,
bc�a � �ba�

c. But other known facts about numeric exponentials, e.g. ab�c � ab � ac

or �b� c�
a
� ba�ca find their counterpart in functional exponentials. The counterpart

of the former,

AB�C
� AB �AC (1.75)

arises from the uniqueness of the either combination: every pair of functions �f� g� �
AB �AC leads to a unique function � f� g � � AB�C and vice-versa, every function in
AB�C is the either of some function in AB and of another in AC .

The function exponentials counterpart of the second fact about numeric exponen-
tials above is

�B � C�
A
� BA � CA (1.76)

This can be justified by a similar argument concerning the uniqueness of the split com-
binator hf� gi.

What about other facts valid for numeric exponentials such as a
 � � and �a � �?
We need to know what � and � mean as datatypes. Such elementary datatypes are
presented in the section which follows.

Exercise 1.15 Load module Set.hs (cf. section A.1) into the HUGS interpreter and check the types as-
signed to the following functional expressions:

1.15. ELEMENTARY DATATYPES 31

curry ap
\f -> ap . (f >< id)
uncurry . curry

Which of these is functionally equivalent to the uncurry function and why? Which of these are functionally

equivalent to identity functions? Justify.

�

1.15 Elementary datatypes

So far we have talked mostly about arbitrary datatypes represented by capital letters
A, B, etc. (lowercase a, b, etc. in the HASKELL illustrations). We also mentioned IR,
Bool and IN and, in particular, the fact that we can associate to each natural number n
its initial segment n � f�� �� � � � � ng. We extend this to IN
 by stating � � fg and, for
n � �, n� � � fn� �g � n.

Initial segments can be identified with enumerated types and are regarded as prim-
itive datatypes in our notation. We adopt the convention that primitive datatypes are
written in the sans serif font and so, strictly speaking, n is distinct from n: the latter
denotes a natural number while the former denotes a datatype.

Datatype 0

Among such enumerated types, � is the smallest because it is empty. This is the Void
datatype in HASKELL, which has no constructor at all. Datatype � (which we tend to
write simply as �) may not seem very “useful” in practice but it is of theoretical interest.
For instance, it is easy to check that the following “obvious” properties hold:

A� �
� A (1.77)

A� �
� � (1.78)

Datatype 1

Next in the sequence of initial segments we find �, which is singleton set f�g. How
useful is this datatype? Note that every datatype A containing exactly one element is
isomorphic to f�g, e.g. A � fNILg, A � f�g, A � f�g, A � fFALSEg, etc.. We
represent this class of singleton types by �.

Recall that isomorphic datatypes have the same expressive power and so are “ab-
stractly identical”. So, the actual choice of inhabitant for datatype � is irrelevant, and
we can replace any particular singleton set by another without losing information. This
is evident from the following relevant facts involving �:

A� �
� A (1.79)

A

� � (1.80)

We can read (1.79) informally as follows: if the second component of a record (“struct”)
cannot change, then it is useless and can be ignored. Selector �� is, in this context, an

32 CHAPTER 1. AN INTRODUCTION TO POINTFREE PROGRAMMING

iso mapping the left-hand side of (1.79) to its right-hand side. Its inverse is hid� ci
where c is a particular choice of inhabitant for datatype �. Concerning (1.80), A
 de-
notes the set of all functions from the empty set to some A. What does (1.80) mean? It
simply tells us that there is only one function in such a set — the empty function map-
ping “no” value at all. This fact confirms our choice of notation once again (compare
with a
 � � in a numeric context).

Next, we may wonder about facts

�A
� � (1.81)

A�
� A (1.82)

which are the functional exponentiation counterparts of �a � � and a� � a. Fact (1.81)
is valid: it means that there is only one function mapping A to some singleton set fcg
— the constant function c. There is no room for another function in �A because only
c is available as output value. Fact (1.82) is also valid: all functions in A� are (single
valued) constant functions and there are as many constant functions in such a set as
there are elements in A.

In summary, when referring to datatype � we will mean an arbitrary singleton type,
and there is a unique iso (and its inverse) between two such singleton types. The
HASKELL representative of � is datatype (), called the unit type, which contains ex-
actly constructor (). It may seem confusing to denote the type and its unique inhabitant
by the same symbol but it is not, since HASKELL keeps track of types and constructors
in separate symbol sets.

Finally, what can we say about ��A? Every function B � �A
f�� observing

this type is bound to be an either � b
� g � for b
 � B and B A
g�� . This is very

similar to the handling of a pointer in C or PASCAL: we “pull a rope” and either we
get nothing (�) or we get something useful of type A. In such a programming context
“nothing” above means a predefined value NIL. This analogy supports our preference
in the sequel for NIL as canonical inhabitant of datatype �. In fact, we will refer to
� �A (or A� �) as the “pointer to A” datatype. This corresponds to the Maybe type
constructor of the HUGS Standard Prelude.

Datatype 2

Let us inspect the � � � instance of the “pointer” construction just mentioned above.

Any observation B � � �
f�� can be decomposed in two constant functions: f �

� b�� b� �. Now suppose that B � fb�� b�g (for b� �� b�). Then � � �
� B will hold,
for whatever choice of inhabitants b� and b�. So we are in a situation similar to �: we
will use symbol � to represent the abstract class of all such Bs containing exactly two
elements. Therefore, we can write:

� � �
� �

Of course, Bool � fTRUE� FALSEg and initial segment � � f�� �g are in this ab-
stract class. In the sequel we will show some preference for the particular choice of

1.16. FINITARY PRODUCTS AND COPRODUCTS 33

inhabitants b� � TRUE and b� � FALSE, which enables us to use symbol � in places
where Bool is expected.

Exercise 1.16 Relate HASKELL expressions

either (split (const True) id) (split (const False) id)

and

\f->(f True, f False)

to the following isomorphisms involving generic elementary type �:

��A �� A�A (1.83)

A�A �� A� (1.84)

Apply the exchange law (1.47) to the first expression above.

�

1.16 Finitary products and coproducts

In section 1.8 it was suggested that product could be regarded as the abstraction behind
data-structuring primitives such as struct in C or record in PASCAL. Similarly,
coproducts were suggested in section 1.9 as abstract counterparts of C unions or PAS-
CAL variant records. For a finite A, exponential BA could be realized as an array in
any of these languages. These analogies are captured in table 1.1.

In the same way C structs and unions may contain finitely many entries, as
may PASCAL (variant) records, productA�B extends to finitary productA��� � ��An,
for n � IN, also denoted by �n

i��Ai, to which as many projections �i are associated as
the number n of factors involved. Of course, splits become n-ary as well

hf�� � � � � fni � A� � � � �� An B��

for fi � Ai B�� , i � �� n.
Dually, coproductA�B is extensible to the finitary sum A�� � � ��An, for n � IN,

also denoted by
Pn

j�� Aj , to which as many injections ij are assigned as the number
n of terms involved. Similarly, eithers become n-ary

� f�� � � � � fn � � A� � � � ��An
�� B

for fi � B Ai
�� , i � �� n.

Datatype n

Next after �, we may think of � as representing the abstract class of all datatypes con-
taining exactly three elements. Generalizing, we may think of n as representing the
abstract class of all datatypes containing exactly n elements. Of course, initial segment

34 CHAPTER 1. AN INTRODUCTION TO POINTFREE PROGRAMMING

Abstract notation PASCAL C/C++ Description

A� B

record
P: A;
S: B

end;

struct f
A first;
B second;

g;

Records

A� B

record
case

tag: integer
of x =

1: (P:A);
2: (S:B)

end;

struct f
int tag; /* 1,2 */
union f

A ifA;
B ifB;

g data;
g;

Variant records

BA array[A] of B B ...[A] Arrays
� � A ˆA A *... Pointers

Table 1.1: Abstract notation versus programming language data-structures.

n will be in this abstract class. (Recall (1.17), for instance: both Weekday and � are
abstractly represented by �.) Therefore,

n
� � � � � �� �� �z �
n

and

A� � � ��A� �z �
n

� An (1.85)

A� � � ��A� �z �
n

� n�A (1.86)

hold.

Exercise 1.17 On the basis of table 1.1, encode undistr (1.49) in C or PASCAL. Compare your code with

the HASKELL pointfree and pointwise equivalents.

�

1.17 Initial and terminal datatypes

All properties studied for binary splits and binary eithers extend to the finitary case.
For the particular situation n � �, we will have hfi � � f � � f and �� � i� � id,
of course. For the particular situation n � �, finitary products “degenerate” to � and
finitary coproducts “degenerate” to �. So diagrams (1.21) and (1.36) are reduced to

� �

� �

��
C

hi

��

C

The standard notation for the empty split hi is �C , where subscript C can be omitted
if implicit in the context. By the way, this is precisely the only function in �C , recall

1.18. SUMS AND PRODUCTS IN HASKELL 35

(1.81). Dually, the standard notation for the empty either � � is �C , where subscript C
can also be omitted. By the way, this is precisely the only function in C
, recall (1.80).

In summary, we may think of � and � as, in a sense, the “extremes” of the whole
datatype spectrum. For this reason they are called initial and terminal, respectively.
We conclude this subject with the presentation of their main properties which, as we
have said, are instances of properties we have stated for products and coproducts.

Initial datatype reflexion :

�

	��id�

��
�
 � id
 (1.87)

Initial datatype fusion :

�

	A

��

	B

���
���

���
�

A
f

�� B

f.�A ��B (1.88)

Terminal datatype reflexion :

�

���id�

��
�� � id� (1.89)

Terminal datatype fusion :

�

A

�A

��

B
f

��

�B

��� � � � � � � �

�A . f ��B (1.90)

Exercise 1.18 Particularize the exchange law (1.47) to empty products and empty coproducts, i.e. � and 	.

�

1.18 Sums and products in HASKELL

We conclude this chapter with an analysis of the main primitive available in HASKELL

for creating datatypes: the data declaration. Suppose we declare

data CostumerId = P Int | CC Int

36 CHAPTER 1. AN INTRODUCTION TO POINTFREE PROGRAMMING

meaning to say that, for some company, a client is identified either by its passport
number or by its credit card number, if any. What does this piece of syntax precisely
mean?

If we enquire the HUGS interpreter about what he knows about CostumerId, the
reply will contain the following information:

Main> :i CostumerId
-- type constructor
data CostumerId

-- constructors:
P :: Int -> CostumerId
CC :: Int -> CostumerId

In general, let A and B be two known datatypes. Via declaration

data C = C1 A | C2 B (1.91)

one obtains from HUGS a new datatypeC equipped with constructors C A
C��� and

C B
C��� , in fact the only ones available for constructing values of C:

A

C� ���
��

��
��

B

C���� �
� �
� �
�

C

This diagram leads to an obvious instance of coproduct diagram (1.36),

A
i� ��

C� ����
���

���
� A�B

� C��C� �

��

B
i���

C���� � �
� � �

� � �

C

describing that a data declaration in HASKELL means the either of its constructors.
Because there are no other means to buildC data, it follows that C is isomorphic to

A�B. So � C�� C� � has an inverse, say inv, which is such that inv . � C�� C� � � id.
How do we calculate inv? Let us first think of the generic situation of a function

D C
f�� which observes datatype C:

A
i� ��

C� ����
���

���
� A�B

� C��C� �

��

B
i���

C���� � �
� � �

� � �

C

f

��
D

1.18. SUMS AND PRODUCTS IN HASKELL 37

This is an opportunity for �-fusion (1.40), whereby we obtain

f . � C�� C� � � � f . C�� f . C� �

Therefore, the observation will be fully described provided we explain how f behaves
with respect to C� — cf. f . C� — and with respect to C� — cf. f .C�. This is what
is behind the typical inductive structure of pointwise f , which will be made of two and
only two clauses:

f � C �� D

f�C� a� � � � �

f�C� b� � � � �

Let us use this in calculating the inverse inv of � C�� C� �:

inv . � C�� C� � � id

� f by �-fusion (1.40)g

� inv . C�� inv . C� � � id

� f by �-reflexion (1.39)g

� inv . C�� inv . C� � � � i�� i� �

� f either uniqueness (1.58) g

inv . C� � i� 	 inv . C� � i�

Therefore:

inv � C �� A�B

inv�C� a� � i� a

inv�C� a� � i� b

In summary,C� is a “renaming” of injection i�, C� is a “renaming” of injection i� and
C is “renamed” replica of A�B:

C A�B
� C��C� ���

� C�� C� � is called the algebra of datatypeC and its inverse inv is called the coalgebra
of C. The algebra contains the constructors of C� and C� of type C, that is, it is used
to “build” C-values. In the opposite direction, co-algebra inv enables us to “destroy”
or observe values of C:

C

inv
��

� A�B

� C��C� �

��

38 CHAPTER 1. AN INTRODUCTION TO POINTFREE PROGRAMMING

Algebra/coalgebras also arise about product datatypes. For instance, suppose that one
wishes to describe datatypePoint inhabited by pairs �x
� y
�, �x�� y�� etc. of Cartesian
coordinates of a given type, say A. Although A� A equipped with projections ��� ��
“is” such a datatype, one may be interested in a suitably named replica of A � A in
which points are built explicitly by some constructor (say Point) and observed by
dedicated selectors (say x and y):

A A�A
���� �� ��

Point

��

A

Point

x

��� � � � � � � � � y

���������

(1.92)

This rises an algebra (Point) and a coalgebra (hx� yi) for datatype Point:

Point

hx�yi

��

� A�A

Point

��

In HASKELL one writes

data Point a = Point { x :: a, y :: a }

warned by the fact that Point is delivered in curried form:

Point :: a -> a -> Point a

Finally, what is the “pointer”-equivalent in HASKELL? This corresponds to A � �
in (1.91) and to the following HASKELL declaration:

data C = C1 () | C2 B

Note that HASKELL allows for a more programming-oriented alternative in this case,
in which the unit type () is eliminated:

data C = C1 | C2 B

The difference is that here C1 denotes an inhabitant of C (and so a clause f�C� a� �

� � � is rewritten to f C� � � � �) while above C1 denotes a (constant) function C �
C��� .

Isomorphism (1.82) helps in comparing these two alternative situations.

1.19 Exercises

Exercise 1.19 Let A and B be two disjoint datatypes, that is, A � B � � holds. Show that isomorphism

A � B �� A� B (1.93)

1.19. EXERCISES 39

holds. Hint: define A �B A� B
i�� as i � � embA� embB � for embA a � a and embB b � b,

and find its inverse. By the way, why didn’t we define i simply as i
def
� � idA� idB �?

�

Exercise 1.20 Let distr (read: ‘distribute right’) be the bijection which witnesses isomorphism A� �B �
C� �� A � B � A � C. Fill in the “. . . ”in the diagram which follows so that it describes bijection distl

(red: ‘distribute left’) which witnesses isomorphism �B �C�� A�� B � A� C � A:

�B �C�� A
swap ��

distl

��� � �
distr �� � � � ��� �� B �A� C � A

�

Exercise 1.21 In the context of exercise 1.20, show that

� g� h �� f � � g � f� h� f � . distl (1.94)

holds.

�

Exercise 1.22 Let C
const �� CA be the function of exercise 1.1, that is, const c � cA. Which fact is

expressed by the following diagram featuring const?

C
const ��

f

��

CA

fA

��
B

const
�� BA

Write it at point-level and describe it by your own words.

�

Exercise 1.23 Establish the difference between the following two declarations in HASKELL,

data D = D1 A | D2 B C

and

data E = E1 A | E2 (B,C)

for A, B and C any three predefined types. Are D and E isomorphic? If so, can you specify and encode the

corresponding isomorphism?

�

40 CHAPTER 1. AN INTRODUCTION TO POINTFREE PROGRAMMING

1.20 Bibliography notes

Almost two decades ago John Backus read, in his Turing Award Lecture, a revolu-
tionary paper [Bac78]. This paper proclaimed conventional command-oriented pro-
gramming languages obsolete because of their inefficiency arising from retaining, at
a high-level, the so-called “memory access bottleneck” of the underlying computation
model — the well-known von Neumann architecture. Alternatively, the (at the time
already mature) functional programming style was put forward for two main reasons.
Firstly, because of its potential for concurrent and parallel computation. Secondly —
and Backus emphasis was really put on this —, because of its strong algebraic basis.

Backus algebra of (functional) programs was providential in alerting computer
programmers that computer languages alone are insufficient, and that only languages
which exhibit an algebra for reasoning about the objects they purport to describe will
be useful in the long run.

The impact of Backus first argument in the computing science and computer archi-
tecture communities was considerable, in particular if assessed in quality rather than
quantity and in addition to the almost contemporary structured programming trend 3.
By contrast, his second argument for changing computer programming was by and
large ignored, and only the so-called algebra of programming research minorities pur-
sued in this direction. However, the advances in this area throughout the last two
decades are impressive and can be fully appreciated by reading a textbook written
relatively recently by Bird and de Moor [BdM97]. A comprehensive review of the
voluminous literature available in this area can also be found in this book.

Although the need for a pointfree algebra of programming was first identified by
Backus, perhaps influenced by Iverson’s APL growing popularity in the USA at that
time, the idea of reasoning and using mathematics to transform programs is much older
and can be traced to the times of McCarthy’s work on the foundations of computer pro-
gramming [McC63], of Floyd’s work on program meaning [Flo67] and of Paterson and
Hewitt’s comparative schematology [PH70]. Work of the so-called program transfor-
mation school was already very expressive in the mid 1970s, see for instance references
[BD77].

The mathematics adequate for the effective integration of these related but inde-
pendent lines of thought was provided by the categorial approach of Manes and Arbib
compiled in a textbook [MA86] which has very strongly influenced the last decade of
20th century theoretical computer science.

A so-called MPC (“Mathematics of Program Construction”) community has been
among the most active in producing an integrated body of knowledge on the algebra of
programming which has found in functional programming an eloquent and paradig-
matic medium. Functional programming has a tradition of absorbing fresh results
from theoretical computer science, algebra and category theory. Languages such as
HASKELL [Bir98] have been competing to integrate the most recent developments and
therefore are excellent prototyping vehicles in courses on program calculation, as hap-
pens with this book.

3Even the C programming language and the UNIX operating system, with their implicit functional flavour,
may be regarded as subtle outcomes of the “going functional” trend.

