
An Interactive State Monad Example

Métodos de Programação I - 2005/06

Nuno F. Rodrigues
nfr@di.uminho.pt

1 Introduction

A common problem among information systems is the storage and maintenance
of permanent information identified by a key. Such systems are typically known
as data base engines or simply as data bases. Today the systems information
market is full of solutions that provide mass storage capacities implemented
in different operating system and with great amounts of extra functionalities.
In this paper we will focus on the formal high level specification of data base
systems in the Haskell language. We begin by introducing a high level view
of a data base system with a specification of the most common operations in
a functional point of view. We then augment this specification by lifting to
the state monad which is then modified once again to permit input/output
operations between the computations.

2 Data Base Specification

If we take a step higher in the abstraction leader when looking at any data base
system, we can regard it in a data type independent manner. Thus, a data base
system must supply some operational needs which are independent of whatever
data structure it is used to store the actual information. In Haskell, we can
specify such operational demands over the data structures by using a class like
the following.

class BD bd where
vazia :: bd ch inf
acrescenta :: (Eq ch) => bd ch inf -> ch -> inf -> bd ch inf
remove :: (Eq ch) => bd ch inf -> ch -> bd ch inf
chaves :: bd ch inf -> [ch]
definida :: (Eq ch) => bd ch inf -> ch -> Bool
daInfo :: (Eq ch) => bd ch inf -> ch -> Maybe inf

1

3 Functional Specification

After having specified what our data base habitants should provide, we can pro-
vide several instances of such a system, or even expect that someone else provide
them for us. A simple and inefficient instance can be given by implementing the
data base as a list of pairs followed by the proper specification of the operations
over this chosen data type. .

data LP c i = LP [(c,i)]

instance BD LP where
vazia = LP []
acrescenta b c i = let (LP b’) = remove b c in LP ((c,i):b’)
remove (LP l) c = LP [(a,b) | (a,b) <- l, a /= c]
chaves (LP l) = map fst l
definida b c = c ‘elem‘ (chaves b)
daInfo (LP l) c = case [(a,b) | (a,b) <- l, a == c] of

(_,i):_ -> Just i
_ -> Nothing

After having specified the above instance, we can now perform some tests
over the code obtained so far. For instance, we can test the creation of a new
data base followed by the storage of three records followed by a query to the
information of the first introduced record.

dbProcedure2 :: Maybe String
dbProcedure2 = let bd1 :: LP Int String

bd1 = vazia
bd2 = acrescenta bd1 1 "A"
bd3 = acrescenta bd2 2 "B"
bd4 = acrescenta bd3 2 "C"

in daInfo bd4 1

4 Introducing State

So far so good. But, there is something strange happening to the above test.
Notice that we are always feeding the result of a function to another function,
which can be identified as simple functional composition. Nevertheless, it isn’t
quite just functional composition, since functions daInfo or definida do not
return any data base. Still, they do receive a data base has input.

So, what is really happening here is the passing of a data base (which will
be our state) throughout the different operations that we are composing.

This pattern of the operations being applied to the data base can clearly be
captured by a high order data type. Thus, we introduce the state monad, which
captures this pattern of execution with the following definition.

data ST s l = ST { st :: s -> (s,l) }

2

Now, we have a data type that operates over a state, which in our case the
data base. But, we still need a way to combine several of these operations over
a state. A elegant way of providing such combinatory operators is by giving an
instance of Monad to the ST data type.

instance Monad (ST s) where
return x = ST (\s -> (s, x))
f >>= g = ST (\s -> let (s’, x) = st f s

in st (g x) s’)

After having defined the ST type and the correspondent Monad instance, we
have to lift our previous data base operations to the new definitions in order to
take advantage of the new monadic combiners. Such a lift is quite simple and
can be given by the following code.

stVazia :: (BD b) => ST (b ch inf) ()
stVazia = ST (_ -> (vazia,()))

stAcrescenta :: (BD b, Eq ch) => ch -> inf -> ST (b ch inf) ()
stAcrescenta c i = ST (\b -> (acrescenta b c i, ()))

stChaves :: (BD b) => ST (b ch inf) [ch]
stChaves = ST (\b -> (b, chaves b))

stRemove :: (BD b, Eq ch) => ch -> ST (b ch inf) ()
stRemove c = ST (\b -> (remove b c, ()))

stDefinida :: (BD b, Eq ch) => ch -> ST (b ch inf) Bool
stDefinida c = ST (\b -> (b, definida b c))

stDaInfo :: (BD b, Eq ch) => ch -> ST (b ch inf) (Maybe inf)
stDaInfo c = ST (\b -> (b, daInfo b c))

Having this state monad tool box over data bases, we can rewrite the above
simple functional operations without concerns about passing the underlying
state.

dbStProcedure :: (BD b, Num ch) => ST (b ch String) (Maybe String)
dbStProcedure = stAcrescenta 1 "A" >>

stAcrescenta 1 "B" >>
stAcrescenta 1 "C" >>
stDaInfo 1

lpExec :: ST (LP ch inf) v -> v
lpExec stm = snd (st stm $ vazia)

Regard that in the definition of function lpExec which executes our state
transformers over an empty data base, we have to explicitly say which instance

3

of the DB class we are using. In this example we use the only instance available,
that is the list of pairs LP.

5 Going Interactive

Having come this far, we find ourselves able of constructing and combining
operations over the data base in simple and elegant manner. But still, we can
only execute such data base transformers in an atomic way, i.e., we cannot
interrupt our elegantly composed operations in order to show the intermediate
results nor to interact with the user.

Typically, what we want to do is to intermediate our computations over the
data base with some IO operations that will let us interact with the user. In
order to perform this, we have to leave our previous ST type behind and move on
to a more generic type that will permit us to perform IO computations between
the execution of our previous state transformers. We will call this new type
STIO, with the following definition and monad instance.

data STIO s l = STIO { stio :: s -> IO (s,l)}

instance Monad (STIO s) where
return x = STIO (\s -> return (s, x))
f >>= g = STIO (\s -> do { (s’, x) <- stio f s ;

stio (g x) s’ })

Again, in order to used this new type, we have to lift the previous computa-
tions that were defined over the ST monad to the new interactive STIO monad.
Still, instead of having to redefine everything again, we can write a generic
function that lifts every ST monad to a STIO monad and then apply it to every
previous data base transformer.

liftST2STIO :: ST s l -> STIO s l
liftST2STIO f = STIO (\s -> return (st f s))

stioVazia :: (BD b) => STIO (b ch inf) ()
stioVazia = liftST2STIO stVazia

stioAcrescenta :: (BD b, Eq ch) => ch -> inf -> STIO (b ch inf) ()
stioAcrescenta c i = liftST2STIO (stAcrescenta c i)

stioRemove :: (BD b, Eq ch) => ch -> STIO (b ch inf) ()
stioRemove = liftST2STIO . stRemove

stioChaves :: (BD b) => STIO (b ch inf) [ch]
stioChaves = liftST2STIO stChaves

stioDefinida :: (BD b, Eq ch) => ch -> STIO (b ch inf) Bool

4

stioDefinida = liftST2STIO . stDefinida

stioDaInfo :: (BD b, Eq ch) => ch -> STIO (b ch inf) (Maybe inf)
stioDaInfo = liftST2STIO . stDaInfo

But, with these definitions we are only able to lift ST monads to STIO, still
leaving us unable to introduce IO operations between our data base transform-
ers.

To solve this problem we need to provide a way of lifting habitants of IO to
STIO, by introducing the following lift.

liftIO2STIO :: IO a -> STIO s a
liftIO2STIO a = STIO (\s -> do { i <- a;

return (s, i) })

6 Putting it All Together

Finally, we are in condition to use the above definitions to build an interac-
tive program working over a state, which in our example will be a data base
implemented as lists of pairs.

As a simple test we will define a computation (prog) that stores the value
”A” into the data base; interacts with the user in order for him to introduce a
new record; stores that record in the data base and terminates by printing the
information stored with key 1.

prog :: STIO (LP String String) ()
prog = stioAcrescenta "1" "A" >>

menuAcrescenta >>=
uncurry stioAcrescenta >>
stioDaInfo "1" >>=
liftIO2STIO . print

menuAcrescenta = liftIO2STIO (do print "Introduza uma chave"
c <- getLine
print "Introduza informacao"
i <- getLine
return (c, i))

To execute the above test, we need to provide an interpreter that takes an
interactive computation of type STIO and applies it to an empty data base. Such
an interpreter can be given by

executa :: (BD b) => STIO (b ch inf) v -> IO v
executa f = do { (_, x) <- stio f vazia ;

return x }

5

that once applied to the above test will output the value ”A”.
After having understand the working mechanism of the STIO monad, we can

define more elaborated programs with the traditional menus and user interac-
tions by making use of the above lift functions.

7 Final Remarks

Much of what have been exposed here is already defined the libraries supplied
by most of Haskell compilers/interpreters and can be used to reduce the amount
of code as well as to improve the performance of the specifications.

6

