An Introduction to Relational
Hylomorphisms

DI/UM, 2002

José N. Oliveira
Dept. Informatica
Universidade do Minho, 4700 Braga, Portugal
jno@di.uminho.pt

irhsl.tex — p.1/4!

“How” does one specify?

General problem solving strategy?

Problem >

irhsl.tex — p.2/4!

“How” does one specify?
Divide-and-conquer:

divide (analysis)

T~
Problem > @b—proble@

irhsl.tex — p.2/4!

“How” does one specify?
Divide-and-conquer:

divide (analysis)

T~
Problem > @b-proble@

solve
sub-problems

Sub-solutions>

irhsl.tex — p.2/4!

“How” does one specify?

Divide-and-conquer:

divide (analysis)

>~
Problem > @b-proble@

solve
sub-problem:

CSolution > _Sub-solutions_>

combine (synthesis)

irhsl.tex — p.2/4!

Divide-and-conquer (formally)

Problem space

Solution space

irhsl.tex — p.3/4!

Divide-and-conquer (formally)

Sub-problem structure

Divide &

FA

Solve

irhsl.tex — p.3/4!

Divide-and-conquer (formally)

Divide
FA

Solve

B - F B
C'onquer

irhsl.tex — p.3/4!

Divide-and-conquer (formally)

Divide
FA

Solve F Solve

B - F B
C'onquer

irhsl.tex — p.3/4!

Divide-and-conquer (formally)

Divide
FA
Solve F Solve
B -~ FB
C'onquer

Questions:
= What are the mathematics of Divide, C'onquer, Solve?

m What do (F A), (F Solve) mean?

irhsl.tex — p.3/4!

Relators

Symbol F is overloaded:

= F A means a (parametric) datatype, eg. A* —
seq of Ain VDM-SL;

= F X means a relation

A FA
X| | FX
B F B

Example: X* will be such that

(X)) = lenl=lenl' AVieindsli.(l4)X(I'7)

irhsl.tex — p.4/4!

Properties of relators

Every relator F Is monotone,

RCS = (FR)C(FS)

and commutes with (-)

Terminology:

F(R-95)
Fid
F(R®)

, ()° and «d:

(FR) - (FS)
id
(FR)”

irhsl.tex — p.5/4!

Properties of relators

Every relator F Is monotone,
RCS = (FR)C(FS)
and commutes with (-) , (_)° and id:

F(R-S) = (FR)-(FS)
Fid id
F(R®) (FR)®

Terminology:

R
A -~ F A s called an F-algebra

irhsl.tex — p.5/4!

Properties of relators

Every relator F Is monotone,
RCS = (FR)C(FS)
and commutes with (-) , (_)° and id:

F(R-S) = (FR)-(FS)
Fid id
F(R®) (FR)®

Terminology:

A——F A s called an F-coalgebra

irhsl.tex — p.5/4!

Back to divide-and-conguer

Divide-and-conguer = relational hylomorphism:

S
A—FA

that is, X=R-(FX)-S
X FX

B——FB
R

How do we solve this (hylo) equation for X?

irhsl.tex — p.6/4!

An example first

mergeSort: seq of Int -> seq of iInt
mergeSort(l) ==
cases I :
[e]l > [e] .
others -> let 11 & 12
in set {1} be st
abs (Ien 11 - len 12) < 2 1n
Imerge(mergeSort(l1), mergeSort(l2))
end;

Is a relational hylomorphism for

FX = Int +XxX

irhsl.tex — p.7/4!

In fact

S
seq of Iint —Fseq of Int

mergeSort F mergeSort

seq of Int ?Fseq of 1 nt
that Is,

mergeSort = R-(FmergeSort) - S

where R = |[singl,lmerge| , for singl = le.|e]

irhsl.tex — p.8/4!

mergeSort algebra and coalgebra

and S Is

S: seq of Int -=> (Int | seq of Int * seq of Int)
S() ==
cases | :
[e] > e,
others -> let 11 & 12
in set {l} be st
abs (len I1 - len 12) < 2 1In
mk_(11,12)
end;

irhsl.tex — p.9/4!

Equations and fixpoints

Given an equation of pattern

r = fx

where A - A for some A, we will say that any
solution to this equation — that is, any ay € A such
that

ap = [ag

Is a fixpointof f.

irhsl.tex — p.10/4¢

Equations versus recursion

Equation x = f x can also be regarded as a
“recursive” definition of its fixpoints, eq.

r =1+ % IS a recursive definition of number 2.

However,
r = % has two solutions (=fixpoints) 1 e 3.
What are we “recursively defining” here?

Furthermore, xr = x defines any object!

Last but not least, some equations don’t have
any solution at all. Thinkeg. of x =2 + 1 In IV.

irhsl.tex — p.11/4!

Solving (Fixpoint) Equations |

<
let A——— Abea partial order. Then, every
a € A such that

a <4 fa

IS said to be a post-fixpoint of f, and everya € A
such that

a >4 fa

IS said to be a pre-fixpoint of f. Clearly,

Every a € A which is both a pre-fixpoint and
a post-fixpoint of f Is a fixpoint of f.

irhsl.tex — p.12/4¢

Solving (Fixpoint) Equations I

Function B -

A IS monotone wherever

J-<a € <p-f

for partial orders <4 and <g, that is:

J-<a C© <p-f

{ shunting}

<a C f°-<p-f

{ going pointwise}

a<asd = (fa)<p(fd)

irhsl.tex — p.13/4¢

Solving (Fixpoint) Equations Il

L . | /9
Pointwise ordering on functions B -~ A:

I € <p-yg

f§39

meaning

/S € <Byg
{ shunting}
dC f7-<p-g
{ going pointwise}

Va.fa <pg ga

fﬁBg

irhsl.tex — p.14/4"

Solving (Fixpoint) Equations IV

Lattice fixpoint theorem (Tarski 1955) for monotone
f as above and <4 defining a complete lattice:

= The set of all fixpoints of f,

P={a€eAla= fa}

IS non-empty and (P; <4) is a complete

(sub)lattice.

= The least of all fixpoints (/A P) and the greatest
one (\/ P) are as follows:

pf =
vf =

AP
\V/ P

A
Vi

x> fx}
L SA f SE} irhsl.tex — p.15/4!

Solving relational equations

Hylo-equation X=R-(FX)-S
f X
and other relational equations such as
X=RU];2(- X
g

(cf. transitive closure) have least solutions

puf =[RS
pg = RY

because both f, g are monotone.

irhsl.tex — p.16/4¢

Laws of the Fixpoint Calculus

Computation rule:
pf = fuf
Example: hylo-cancellation law
|R,S] = R-F[R,S]-S
Rolling rule:
p(g-h) = g(p(h-g))

Example: f = ¢g-hwhere h X = R- X and g X =
R U X. Then

irhsl.tex — p.17/4¢

Rolling rule

pf = wplg-h)
— { rolling rule }
g(u(h - g))
= { definitions of g, h}
RU (px.(R-(RUx))
— { (R-) is a lower-adjoint }

RUuz.(RPUR-x)

Further application of this rule will “factor out” R?, R3, etc., In

the limit, puf = U2, B/ = R".

irhsl.tex — p.18/4¢

Hylo rolling rule

Let f=g-hwhere h X =FX-Sandg=(R-). Then

uf = plg-h) = glu(h-g))
_ { definitions of g, h}
R-(uX.(F(R-X)-S)
{ relators }

R-(uUXFR-FX-5)

that is,

|R,S|] = R-|FR,S]

irhsl.tex — p.19/4¢

Other rules

Square rule:

pf = p(f?)

Monotonicity:

f<g = uf<pug
Thus
[T.U]JC[R,S] « TCRAUCS

irhsl.tex — p.20/4¢

Other rules

Induction rule:
Jr<z = pf<x
Thus
| R,S|CT < R-FT-SCT
and, in particular (coreflexive hylos):
|R,S]Cid < R-SCid
| R, R°] Cid < Rissimple

Last — but not least — ;-fusion:

irhsl.tex — p.21/4¢

u-fusion theorem

Let
fb
A < B
9| | B
A < B
fb

= h, g be monotonic,
m (A, <) and (B,C) be complete lattices,

= f’ be a lower-adjoint.
Then

f(uh)=pg < f-h=g-f

irhsl.tex — p.22/4"

Applications of y-fusion theorem

Converse of a hylo
[[SvR]]O — [[Rovso]]
Proof: let f* = (_)° and

h X S -
gX =T -FX.-U

that Is,

irhsl.tex — p.23/4!

Proof

Then
[S,R]"=[T,U]
= { p-fusion theorem }

(S-FX-R°=T-F(X°) U

{ converse and F is a relator}
R°-FX°-S°=T-FX°-U
= { Leibnitz}

RR=TANS"=U

irhsl.tex — p.24/4"

Hylo(cata)-fusion

VIS R|=|T,R] <« V.-S=T-(FV)
Proof: since (V) = (V\)?,

V- [SR]|=[T,R]
= { p-fusion theorem }
V- (S-FX-R)=T-F(V-X) R

{ associative (-) and relator F }
(V.-S)-FX-R=T-(FV)-(FX)-R
= { Leibnitz}

V.S=T-(FV)

irhsl.tex — p.25/4¢

Hylo(ana)-fusion

|SSR|-V=[SU] « R-V=FV.-U

Proof: (V) = (/V)’. Then
= { p-fusion theorem }

(S-FX-R)-V=S-F(X-V)-U

{ associative (-) and relator F }
S-FX-(R-V)=S-(FX)-(FV)-U
= { Leibnitz}

R-V=FV.-U

irhsl.tex — p.26/4!

Examples: VDM collective types

O

NS
set of A -1+ Axsetof A
{R]} id +id X {| R}
B -~ 1+ AXx B
R

that Is,
{R[} = [R,ins°] where ins ¥ [0, puts]

and ...

irhsl.tex — p.27/4"

VDM-SL collective type set of A

puts[@A] - @A * set of @A -> set of QA
puts(e,s) == {e} union s
pre not e In set s ;

Pointfree version (for R = [u, f]):

shylo[@A,@B] : (@A*@B -> @B) * @B -> set of QA -> @B
shylo(f,u)(s) ==
1T s={} then u
else let a In set s,
r = s \ {a}
in f(a,shylo[@A,@B](F,u)(r));

irhsl.tex — p.28/4!

VDM-SL collective type set of A

= For shyl o(f, u) to be a function the following
must hold:

f(a, f(a',b)) = f(d, f(a,b))
m Fusion law
TR} ={S} « T-R=S-(FT)

arises from hylo(cata)-fusion
m The reflection law holds:

{lins]} = 1id

irhsl.tex — p.29/4¢

Relational cata(ana)morphisms

Define
(R) = [R,in"]
(5] = [wm,S]
1n”
where F,F ~ =~ _ ,F . Forinstance,

m

elems = (|ins))

irhsl.tex — p.30/4¢

Relational cata(ana)morphisms

From
[[SvR]]O — IIRovso]]
Infer
(S)
= |, S]]OO
= [S°,in°]
= (S°)°

(=ana Is the converse of the cata of the converse)

irhsl.tex — p.31/4¢

Inductive coreflexives

Recall
[R,S]Cid <« R-SCid
which entails
(R) Cid <= RCin
that Is,
lin-S) Cid <= S Cid
Example (on finite lists):

IsOrdered & (en - (id + ok)))

irhsl.tex — p.32/4¢

Inductive coreflexives

where ok Is the coreflexive induced by predicate

ok(a,x) == forall b In set elems X & a <= b

This leads to

IsOrdered

inil, cons - ok] -

(¢d + id x I[sOrdered) -

nil, cons|’

= [nil, cons - ok - (id x IsOrdered)] -

- ;
nil, cons]

irhsl.tex — p.33/4¢

Inductive coreflexives

...and, finally, to

IsOrdered(l) ==
it 1 =[]
then true
else (forall b In set elems tl I & hd I <= b) and
IsOrdered (tl 1) ;

Exercise: calculate the above from (in - (id + ok)|)

irhsl.tex — p.34/4!

VDM-SL datatypenap Ato B

O

s

map AtoC -1+ (AxC)xmap AtoC
{|R|} id 4 id X (ia
B - 1+ (AxC)x B
I + (A x (') X

leading to the following pointwise syntax:

irhsl.tex — p.35/4¢

VDM-SL datatypenap Ato B

mhylo[@A,@B,@C] : (@A*@C*@B -> @B) * @B ->
map QA to @C ->
@B
mhylo(f,u)(s) ==
iIT s={]->} then u
else let a In set dom s,
c = s(a),
r = s <-: {a}
in f(c,mhylo[@A,@B,@C](F,u)(r));

irhsl.tex — p.36/4¢

Hylos as unigue solutions

A standard result of the relational calculus
establishes the following condition for

uX.(R-FX-S) = X

to be a unique solution:

the “accessibility relation” of S is required to be
iInductive (cf. “well-founded” relations)

This ensures termination insofar as the “size”
of a sub-problem generated by S Is strictly
smaller than its source.

One can perform induction over S.

irhsl.tex — p.37/4¢

Accessibility and membership

Accessibility relation for F A A:
=S
A A
<5d§f ST
CF S

where A F A extends A < P A inductively over
polynomial functors, as follows:

def

cp = &
f
cC = 1
def
Caxx.x = id
def
€rxe = (€f m)U(Eg 'm2)
dﬁf irhsl.tex — p.38/4!

Example

LetF X =14+ B x X. Then,

C14+BxX

— { € for coproduct bifunctor }

[617 EB><X']

— { € for constant and product (bi)functors }
|-L, (€p *m1) U (Eax.x *m2)]

= { € for constant and identity functor }

[J_, (J_ y 7T1) U (Zd y 7T2)]
{ Land [R,S]=(R-i5)U(S-143) }

7'('2'7;;

irhsl.tex — p.39/4!

Example (pointwise)

Then,
<5 = €14Bxx O
— (7'('2 ¥ Z;) .S
meaning
a <sa = a =mxA(is 7)Sa

For example, for S = [nil, cons|” on finite sequences,
we get

irhsl.tex — p.40/4¢

Accessibility on finite sequences

o - (ig - [nil, cons]”)
= 79 - ([nil, cons| - i9)°

= Ty - CONS"

and therefore

a' = ma(b,a’) A a = cons(b,a’)

b,a’)

/
a < [nil,cons|’ a

VR

/
a < [m’l,cons]o Cons

thL'<[

nil,cons]® @

irhsl.tex — p.41/4¢

Hylo factorization (2)

For such inductive S, we can factor | R, SZ,]]nin two

components Py

pE = F(uF)
N
S ino

A——FA
X1 F X4

7 ZTL 7 ‘

uF ——F uF X1 = n - F'Xq -,
X5 F X5

B——FB
R

irhsl.tex — p.42/4"

Hylo-factorization Theorem

Using (|_|), ()] notation:

pX.(R-FX-5)=(R)-[S5)

S

pF -

(R

Y

S

m

R

Fis)
F uF

F ()
FB

Hylo-factorization Theorem

Taking converses:

pX.(R-FX-5%) =(R)-(S)

(R

A <
(=0

pF -

Y

S

m

R

FA
F(S)"
F uF

F ()
F B

irhsl.tex — p.43/4!

Hylo-factorization Theorem

Entire /simple factorization if both R and S° are
entire /simple (=S surjective /injective)

A

(50"

m

R

FA
F(S)"
F uF

F ()
FB

irhsl.tex — p.43/4!

Virtual data-structuring

= Particular choice of F for sub-problem
organization induces intermediate type uF.

This Is made explicit by hylo-factorization.

= Intermediate data-structure saves the outcome
of a “one go” divide step (|S])” and passes it on

to the conquer step (| 2| for processing.

= In general, people “fuse” things very early In
design, thus virtualizing this structure.

= Factorization helps in spec understanding and
classification.

irhsl.tex — p.44/4"

Final note on Inductive relation <

Is such that the validity of a predicate ¢ can be
proved by structural induction over it:

Va. pa) < (Va.pa<= (Ve<a. ¢c))
N———
Induction step

which corresponds to pointfree definition

<\ XCX = TCX

where X generalizes ¢ such that ¢ a = aXb, for
some fixed b.

irhsl.tex — p.45/4¢

References

	«How» does one specify?
	Divide-and-conquer (formally)
	Relators
	Properties of relators
	Back to divide-and-conquer
	An example first
	In fact
	$mergeSort$ algebra and coalgebra
	Equations and fixpoints
	Equations versus recursion
	Solving (Fixpoint)
Equations I
	Solving (Fixpoint)
Equations II
	Solving (Fixpoint)
Equations III
	Solving (Fixpoint)
Equations IV
	Solving relational equations
	Laws of the Fixpoint Calculus
	Rolling rule
	Hylo rolling rule
	Other rules
	Other rules
	$mu $-fusion theorem
	Applications of $mu $-fusion theorem
	Proof
	Hylo(cata)-fusion
	Hylo(ana)-fusion
	Examples: VDM collective types
	VDM-SL collective type $vdmslSet A$
	VDM-SL collective type $vdmslSet A$
	Relational cata(ana)morphisms
	Relational cata(ana)morphisms
	Inductive coreflexives
	Inductive coreflexives
	Inductive coreflexives
	VDM-SL data type $vdmslMap A B$
	VDM-SL data type $vdmslMap A B$
	Hylos as unique solutions
	Accessibility and membership
	Example
	Example (pointwise)
	Accessibility on finite sequences
	Hylo factorization (2)
	Hylo-factorization Theorem
	Virtual data-structuring
	Final note on inductive relation $prec $

