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Functions are not enough

Partiality (in Haskell):

Mpi> (split head tail)(tail [1])

(

Program error: {head []}

Mpi> 2/0

Program error: {primDivDouble 2.0 0.0}

Functions such as tail, /, head (and many others!)

are partial
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Functions are not enough

VDM-SL notation:

vdm> p tl [ ]

l. 1, c. 4:

Run-Time Error 77: The sequence was empty

vdm> p 2/0

l. 1, c. 3:

Run-Time Error 76: Division with zero

vdm>

Functions such as tl, /, hd (and many others!) are

partial

DIUM/2003 – p.3/84



Functions are not enough

gets : set of nat -> nat * set of nat

gets(s) == let a in set s

in mk_(a,s \ {a}) ;

is not only partial

vdm> p gets({})

/home/jno/work/x.vdm, l. 4, c. 25:

Run-Time Error 53: The binding environment was empty

vdm>

but also non-deterministic:

�� ��� � ���
	 
 � � ��
� 	 

 � �� �� � ��
	 
 � � 	

�
� � 
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Specifications as “properties”

Specification of square root:

� � �� � � � � � �
that is

� �
	 � �� � � � �

(= � �� �

has left inverse � �)

Specification of �
 � �
:

� � � � 
 � � � �� � � ��� � � � � � � � � � � � �� ��� � � 
 � � � �
�
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Relational approach

Need to model

total/partial functions

non-determinism
properties, datatype invariants and
loop-invariants

orders and inductive structures

vagueness or under-specification. . .
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Relational approach

Need to model

total/partial functions

non-determinism
properties, datatype invariants and
loop-invariants

orders and inductive structures

vagueness or under-specification. . .

adoption of binary relations, which have a long

tradition in the. . .
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Pre/post specification style

Sort(l: seq of int) r: seq of int

post IsPermutation(r,l) and IsOrdered(r);

IsPermutation: seq of int * seq of int -> bool

IsPermutation(l1,l2) == .....................

IsOrdered: seq of int -> bool

IsOrdered(l) == .............

gets(s: set of nat) r: nat * set of nat

pre card s > 0

post r.#1 in set s and r.#2 = s \ {r.#1} ;
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Pre/post specification layout

Spec(a: A) r: B

pre Precond(a)

post Postcond(r,a);

where

��� � �� � � � � 	 
 �

� � � � �� � � � ��
 � 	 
 �

leads to the binary relation approach:

� � � � � � � ��� � ��� � � � � � � �� � �� ��
 �
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From predicates to relations

Predicate logic connectives such as eg.

�

are
“overloaded” operators

They can be regarded as models of a more
structured logic — that of binary relations

Functions generalize to binary relations in a
very natural way.

Predicates, sets, functions and relations can all
be combined in a single relational calculus

Usual infix notation, e.g. � � �

, can be
generalized to any relation , e.g. � �

DIUM/2003 – p.9/84



Sets / functions made relational

Strategy: identify every

function � � with the binary relation
relating � and

�

iff

� � � . So,
� � literally

means

� � � .

binary predicate � �
 
 �

�
with binary

relation

� � � � � such that � � � � � � � � � � � �
� �

.

unary predicate

�
 
 �

�
with binary relation� � � � � such that � � � � � � � � � � � � � � � �

.

set

�

with
� �� �
	 � � � � �

. So,
� � � � � � � � � � � � � � �
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Arrows “are” binary relations

“Type” relations in a way consistent with

functions:

�

wherever
� � involves

� � and � � .

From now on, an arrow

�

means a binary relation from (source) to
(target) and write

� � to denote that pair

� �
� � �

is in .
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Relations as Arrows

Ordering on relations:

� � � � � ��

�

means that is either less defined or
more deterministic than

�
.

Extend composition 	 � to 	 �

in the
obvious way

� � 	 � ��� � � � � 	
� � � � ��

Introduce converse

�

� � � � � � � �
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Relational Equality

Pointwise equality:

� � � � � 	 � � � 	 � � �
Pointfree equality:

Cyclic implication (“ping-pong”) rule:

� � � � � � � � � � �

Indirect equality rules:

� � � � � ��
�

� � � � � � � � �

� � ��
�

� �� � � � � � �
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Basic relational combinators

Given

�

and

�

Composition

�	 is s.t.

� � � 	 � �
holds wherever there exists some

� � such
that � � � � � � .

Converse
��

of

�

� � � � � � � �

Meet
� �

— recall set-theoretical intersection
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Basic Relation Calculus (I)

Composition is associative:

	 � �	 � � � 	 � � 	
Identity

	 � � � � �	 �

Empty relation

	 � 	 �

where

�

is the smallest relation of its type.
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Basic Relation Calculus (II)

Composition is monotonic:

�

� 	 � � �	 �

Bottom and top relations:

where

�

is the largest relation of its type.
Pointwise descriptions:

� � � � � � � �

� � � � � � �
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Converse

�

-universal

� � �

�

-monotonicity:

� � � � �

Then:

Involution :

� � � � �

Contravariance :

� 	 � � � � � � 	 �

These can be proved from

�

-universal by (elegant)

indirect proofs (example in next slide): DIUM/2003 – p.17/84



Indirect proof of involution

� � � �

� � �

-universal

� � �

for � �

� �

� � �

-monotonicity
�

� � �

indirection
�

� � � � �
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Meet and converse

�

-universal

� � � � � � � � � � �

Converse distributes over

�

(proof in next slide):

� � � � � � � � � �
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Another indirect proof

�� �� � � �

� � �

-universal

�

� � � ��	 
 � � � � �	

� �

monotonicity and involution

�

� � � � �	 
 � � � � �	

� � �

-universal

�

� � � � � � �	

� �
monotonicity and involution

�

�� � � � �	 �

� � �

indirection

�

�� � � � � � � � �	 �
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Converses of functions

Function converses

�
� � � etc. always exist (as

relations) enjoying the following property:

� � � � � � � � � � � 	 	 � � �

which unfolds to

� � � � � � � � 	 � � � (f := id)

� � � � � � � � 	 � � (g := id)
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Pointwise vs pointfree notation

Function

� � � � �

� � � � � � � � � � �
� � � �

in pointfree notation:

� � 	 � �
� � � � � � � 	 � � � � � � � �

Property

� � � � � � � � � �

( � � � is injective) in pointfree notation?
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Properties in pointfree style (I)

� � is injective:

� � � � � � � � � �

� �

identity function / relation

�

� � � � � � � � � � � � � � � �

� �

rule

� � � � � � � � � � � 	 	 � � � �

� � � � � 	 � �	 � � � � � � � �

� �

dropping variables � and � ; natural-

� � �

� � � 	 � � � �
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Properties in pointfree style (II)

Example property of integer arithmetics:

� �
� �

�
 � � � � � � � � �

� �

using “Haskell section notation”




� �
 � � � � � � � � � � � �

� �

rule
�� 	 � � � � 	 �� � � � � � 


� � � �
 � � � � � � � � � � � � � � � � �

� �
pointwise equality




� �
 � � � � � � � � � � �

Reasoning:

“universal” property
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Orders and their taxonomy (A)

An order (or endo-relation)

�

is

reflexive: iff

� ���

coreflexive: iff
� ��

transitive: iff 	
anti-symmetric: iff

� � � ���

symmetric: iff

� � � � � �

connected: iff

� � �

where

�

is the largest relation of its type.
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Order taxonomy (B)

Preorders are reflexive and transitive orders.

Partial orders are anti-symmetric preorders

Linear orders are connected partial orders

Equivalences are symmetric preorders

Predicates are coreflexive orders: the

“meaning” of a predicate 
 
 �

�

is a
coreflexive relation

� � � �

such that
� � � � � � � �

mapping every � which validates onto itself.
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Order taxonomy (C)

order

symmetric reflexive transitive anti-symmetric connected

preorder

equivalence partial order

linear
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Properties (A)

Dedekind’s rule (also known as the modular law):

� 	 � � � 	 � � � � � 	 � �

Dually (apply converses and rename):

� 	 � � � � � � 	 � � � � 	 �

Symmetrical equivalent statement:

� 	 � � � � � � 	 � � � � 	 � � � � � 	 � �

= “weak right-distribution of meet over composition”.
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Derived combinators

Kernel of

�

is
ker

�

defined by

ker

��� �
� � 	

Image of

�

is
img

�

defined by

img
��� �

� 	 �

Duality:

ker

� � � � img
img

� � � � ker
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Properties of kernel and image

Order-preservation:

�

ker ker
�

�

img img

�

Symmetry:

�

ker
� � � ker

�

img
� � � img

Also:
	 ker

� � img 	 �
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Entireness and simplicity

An entire (or total) relation is such that its kernel is
reflexive:

is entire � � �

ker

A simple (or functional) relation is such that its
image is coreflexive:

is simple � img

� �

Simplicity is the dual of entireness. Simple relations

are also called partial functions.
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(Total) functions

Functions are both simple and entire relations,
usually denoted by lowercase letters :

� � � 	

� �� �

entire

� 	 � � �

� �� �

simple

Thus:

is entire
is simple

In general, “larger than entire means entire” and
“smaller than simple means simple”
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Surjectiveness and injectiveness

More taxonomy:

is surjective iff

�

is entire

is injective iff

�

is simple

Facts:

is entire and injective � ker � � �

is simple and surjective � img � � �

Summary:
Reflexive Coreflexive

ker R entire injective
img R surjective simple
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Bijections

is bijective iff it is an injective and surjective
function (thus simple and entire)

�

bijective � ker � � � �

img � � �

In this case

� � � � 	 � 	 � � � �
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Binary relation taxonomy

relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection
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Reasoning about functions

Shunting rules:

	 � � � 	 �

	 � � � �	

Equality:

� � � � � �

Ping-pong proof of the equality rule follows.
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Proof of functional equality

� � �

� �

identity




� � � �� �

� �

shunting on

� 


� �� � � � �

� �
shunting on � 


� � � � � � � �

� �

converses




� � �
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Adding structure to the calculus

Note a recurrent pattern in several laws above:

�
� �� �

� �

� �
� �� �

� �

�� 	 �
� �� �

� �

� �� �	 �

� �� �

� �

�	 � � �

� � � �

� �

� �	 � �

� � � �

� �

as well as in

� � � � �

� � � �

��

� � � � �� � �

� �� �

��
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Back to the primary school desk

The integer division algorithm

� �

� �

� � � � � �

, “ie.”
� � �� �

However

� �

� �

� � � � � � � � � �� �

� �

� �

� � � � � � � � � �� �
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Quotient is a supremum

� �

� �

� � � � � � � � � �� �

provided � is the
largest such � (� is
smallest)

�� � � � � � � � 	

� � � � � � �

� � � � � � � � �

Maths teachers tell: it takes a while before children
master the “ semantics”!
What about you? Can you easily reason about �� �

in this format?
Try and prove

� �� � � � � � �� � � � � �

.
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“Universal” property instead

Alternative:

� �

� �

� � � � � � �� � “universal”
property of integer
division

Reasoning:

� � �� � � � �

� �
“universal” property

�

� � � �� �
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Reasoning continued

� �

“universal” property again

�

� � � � � � � �

� � � is associative

�

� � � � � � � �

� �

“universal” property again

�

� �� � � � � �
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Indirect equality

So we have

� � �� � � � � � � �� � � � � �

that is,

� �� � � � � � �� � � � � �

by the indirect equality rule:

� � � � � �
� � � � � �
�
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Also easy to check

Cancellation law:

�
 � � � � � � �

� �

universal property




� � � � � � �

� �
reflexive

� 


�� ��

“Reflection”:
�
 � � � � � � � � �

� � �

is the unit of
 


� � � � � � � � �
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Galois connections

�� �

is a Galois connection:

� �

� �

� � �
� �� �

��

� � � �� �
� �� �

��

In general, for preorders
�

�

�
and

�
�

�

and

�
�

� �
�

�

�

�
� � �

are Galois connected iff
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Galois adjoints

� �� �

lower adjoint

� � � � �
� � � �

upper adjoint
�

that is

�	 � 	 �

Remarks:

Galois (connected) adjoints enjoy a number of interesting
generic properties

Very elegant — calculational — way of performing
inequational reasoning (including logical deduction)
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Basic properties

Cancellation:

� 	 � � � � and

� � � 	 � �

Distribution (in case of lattice structures):

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

Conversely,

If

�

distributes over

�

then it has an upper adjoint � (

� �

)

If � distributes over

�

then it has a lower adjoint

�

( �
�

)
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Other properties

If

�
� � �

are Galois connected,

( �) uniquely determines � ( ) — thus the _

�

,
_

�

notations

and � are monotonic

� ��

�

are also Galois connected — reverse the
orderings

� 	 � 	 and � � � 	 	 �

etc

DIUM/2003 – p.48/84



Summary

�� 	 � � � � 	 � � � � �

Description

� � �
�

� � � �

Definition

� 	 � � � � 	 � � � 
 � � � � 	 � � 	 � � 


Cancellation

� � � � � � � 	 � � �� � �

Distribution

� � 	 � 	 � � � � � 	 � � �� 	 � � � � � � � � � � � � � � � � � � �

Monotonicity

	 � 	 � � � 	 � � 	 � � � � � � � � � � � �
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Converse

� � � � � �
Description � � � � � �

Obs.

converse

�

_

� � �

_

� � � � � � � �

Thus:

Cancellation

� � � � �

Monotonicity
� � � � �

Distributions
� � � � � � � � � �

�
� � � � � � � �
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Functions

�� � � � � � � � � � � �
Description

� � �
�

� � � �
Obs.

shunting rule

�� � � �� � � � NB:

�

is a function

“converse” shunting rule

� � � � � � � � �

NB:

�

is a function

Consequences:

Functional equality:

� � � � � � � � � � �

Functional division:

� � � � � � � �

Question: what does

� � �

mean?
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Relational division

�� � � � � � � � � � � �
Description

� � �
�

� � � �

Obs.

right-division

� � � � � � � �
right-factor

left-division

� � � � � � � �
left-factor

Immediate:

� � � � and

� � � �

distribute over union:

� � � ��� � � � � � � � � � � � � � �

� ��� � � � � � � � � � � � � � � � �

Some intuition about relational division operators follows.
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Relational division

The relational division operators are upper-adjoints:

� � � � � � � � � � �

� � � � � � � � � � �

Right division abstracts a (pointwise) universal quantification

� �

� � � � �

�

� � � � � � � � � � � � 	 �
	 � � � 	 � � �

An example follows.
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Example

Recall data division in the relational model:

� �
� � � � � ��� � � � �
	

� � � �� �

� � = flight

�

carries passenger �

� � � = flight

�

belongs to air-company �

� � � � � � = passenger � is faithful to company

� , that is, (s)he only flies company � .
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Left division

By taking converses we arrive at

� � � � � � � � � �

:

� � � � � � � � � �

� �

converses and

� � � � � �

� 	 � � �

� �
converses

�

	 �

ie. Galois connection
	 � � � �
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Meet

�

-universal

� � � � � � � � � � �

is a Galois connection

�
� � �

where � �
�

�

, cf.

�
�

� � � � �
�

� � � � �
�

� �

So

� � �

distributes over itself, etc
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Properties of

From

�

-universal infer:

�

-cancellation ( � � � �

)

� � � � � �

�

-abbreviation ( � � )

� � � � �

�

-idempotency (
� � � )

� �
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More properties of

�

is commutative:

� � � � �

�

is associative:

� � � � � � � � � � �

�

-fusion:

	 � � � � � 	 � � � 	 � �

� � � � 	 � 	 � � � � 	 �
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Meet and join

� � � � � �
Description � � � � � �

Obs.

meet

�

is

� � �

join

�

is

� � �

Join:

� �
�

� � � �
�

� � � � � �
�

�

that is,
� � � � �
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Relational split

Functions:

� � � �
� �
 � ��� � � � � � ��� � � � �

Relations:

� � � �
�

�
 � ��� � � � � � ��� � � � �

�
� � � �



� � � �

�
� 
 � � � �
 � �

�
� �

�
_� _




� � ��� � � 
 � ��� � � � � �
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Properties

�

_� _

�

is an upper-adjoint, so it distributes over
meet

�

�
� � � � �

�
� � � �

�

�

� � � �

� � � �
�

� � �
�

�

etc. Moreover:

�

�
� � � ��� �� 	 � � � � �� 	 � �

(-98)

Why? Again Galois at work:
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Calculation

� � � �
�

�
 � ��� � � � � � ��� � � � �

� �

Galois connected
� �� � � �
�� � � � � 


� � � �� � � � � � � �� � �

� �

Galois connected

��� �
�

� � 


� � � � �� � � � � �� � � �

� � �
indirect equality




� �
�

�
 � � �� � � � � �� � �
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Pointwise �

� � �
� � �

�
� � � � � � �
� � � � � � 	 � � �� 	 � � �

� �

pointwise
� �

� � �
� � � � � � 	 � � � � � �
� � � � �� 	 � � �

� �

rule
� � � � � � � � 	 � � �

� � � � �
� � � � � � � � �
� � ��

� �

projections

�

� � � � ��
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Relational either

Functions:

��
� � � � � � � � � � � � � � � � � � �

Relations:

� �
�

� � � � � � � � � � � � � � � � � � (-102)

Thus

�

_� _

�

is a lower-adjoint, it distributes over

�

, etc.
Moreover,

� �
�

� � � � � � � �
�
� � � � � � �

�
�

(-103)
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Domain and range

�� � � � � � � � � � � �
Description

� � �
�

� � � �

Obs.

domain dom

� � � � lower
�

restricted to coreflexives

range rng

� � � �

lower
�

restricted to coreflexives

cf.

� �dom

� � �

�

� � dom

� � � � � � � � �
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Domain and range

Dualization:

dom � rng

�
Explicit definitions:

rng � img
� � �

dom � img
� � � � � ker

� � �

Facts:
� 	 �

dom

�

� �

rng

� 	
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Domain and split

The following fact holds:

�

�
� � � 	 �

�

� � � � 	 � � � � � 	 �

Corollary:

dom � ker
� � �

�

�

Another consequence of the fact above:

ker ker
� � 	 � �

entire

Corollary:

ker ker

� 	 �
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Comprehending relations

For each

�

define its graph or
comprehension by

� � � �
� � � � � � �

Clearly, � � � � �

and so we often abbreviate
to .
The graph of every coreflexive

�

is made simpler
for obvious reasons:

� � � � � � �� �
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Finite relations

is said to be finite wherever is a finite set.

Finite relations, which can be enumerated,
browsed and stored in a computer, are the
subject of relational database design.

Every finite, simple relation expresses a
functional dependency.

The graphs of finite and simple relations are
called mappings in VDM-SL terminology.

We will use greek identifiers ( �� � etc) to denote
(finite) mappings
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VDM-SL mapping notation

Datatype: map to

Pointwise VDM-SL concrete syntax

� � �

� � �

� � �

replaces

� � �
� � � � �

� � �

.

In VDM-SL notation,
�

� � is furthermore
rephrased as � � dom � � � � �

� � �

— cf.

� � � 	 dom � — that is, we have

� � � � � �
� � � � � � dom �
�
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Meaning of VDM-SL specs

Spec(a: A) r: B

pre precond(a)

post postcond(r,a);

where

�
 
 �
�� � �� � �

�

�
 
 � �

� � � � � � � �

means

�
�� �

where

� � � �

��� �
� � � �
 � �� 
 � � � � 	 � � �� � � 
 � � � �
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VDM-SL � �

spec

Sqrt(x: real) r: real

pre true

post sq(r) = x ;

means

� � � � � � �� � � � � � � � � � � � � �

� �

meaning of a binary predicate




� � �� � � � � � � � � � � �

� �
converse of a function; natural-

� � 


� � � � � � � �

DIUM/2003 – p.72/84



Turning implicit specifications...

Sorting in VDM-SL notation:

Sort(l: seq of int) r: seq of int

post IsOrdered(r) and IsPermutation(r,l);

where

IsPermutation: seq of int * seq of int -> bool

IsPermutation(l1,l2) ==

forall e in set (elems l1 union elems l2) &

card {i | i in set inds l1 & l1(i) = e} =

card {i | i in set inds l2 & l2(i) = e};

DIUM/2003 – p.73/84



. . . into relational models

. . . abbreviates to

�
 � � ��� �
� � �� � � �� � � � � � 	 � � � � �� � � � � 
 �
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. . . into relational models

. . . abbreviates to

�
 � � ��� �
� � �� � � �� � � � � � 	 �

ker � � � � �� � �

assuming

seq2bag: seq of int -> map int to nat1

seq2bag(l) ==

�

e |-> card

�

i | i in set inds l & l(i) = e

�

|

e in set elems l

�

;
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. . . into relational models

. . . abbreviates to

�
 � � ��� �
� � �� � � �� � � � � � 	 �

ker � � � � �� � �

assuming

seq2bag: seq of int -> map int to nat1

seq2bag(l) ==

�

e |-> card

�

i | i in set inds l & l(i) = e

�

|

e in set elems l

�

;

IsPermutation is an equivalence because ker

always is reflexive, symmetric and transitive.
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Relational semantics of VDM-SL

From the VDM-SL on-line manual:

Operator Name Semantics description

s <: m Domain restrict to

Creates the map consisting of
the elements in m whose key is
in s. s need not be a subset of
dom m.

Formal semantics:

� � � <: � � � � � � � � � 	 � � � � �

where
� � � � � is correflexive and

� � � � � is simple. DIUM/2003 – p.75/84



Relational semantics of VDM-SL

From the VDM-SL on-line manual:

Operator Name Semantics description

m1 ++ m2 Override

overrides and merges m1 with m2, i.e. it is
like a merge except that m1 and m2 need
not be compatible; any common ele-
ments are as by m2 (so m2 overrides m1.)

Formal semantics:

� � � � ++ � � � � � � � � � � � � � � � � � �
� � � � � �

cf. relational McCarthy conditional: DIUM/2003 – p.76/84



Relational McCarthy conditional

It is defined by

� 
 �
�

� ��� �
� � � � dom

� � � � � � � � 	 dom

� �

where

�� � � � � � � � � � � �

Description

� � �
�

� � � �

Obs.

difference
�

_ 	 � � � �� �

that is,

� 	 � � � � � � �� �

� 	 � � � � � � � �� � 
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Reasoning about VDM-SL

We want to prove VDM-SL properties such as

<:

�

<: �
� � � � �

<: �

� �

<: � � �
�

�

<:

�
� � ++ � � � � �

<: � � � ++

�

<: � � �

First, some properties of coreflexives:

Coreflexives are symmetric and transitive:

� � � 	 � � � �

Meet of two coreflexives is composition:

� � � 	 �
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Example of proof

� � �

<:

� �

<: �
� � �

� �

relational meaning of <:



� � �

<: �
� � � � � � � �

� �

relational meaning of <:




� � �

�
� � � � � � � � � � � � � � �

� �

associativity of � and coreflexives




� �

�
� � � � � � � � � � � � � � � �

� �

meet of two coreflexives is composition




� �

�
� � � � � � � � � � � � � � � �

DIUM/2003 – p.79/84



Proof continued

� �

�
� � � � � � � � � � � � � � � �

� �

meaning of set intersection




� �

�
� � � � � � � � � �

� �

relational meaning of <:




� � � � � � �

<: �
� �
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Another proof

� � �

<:

�
�� ++ ��
� � �

� �

relational meaning of <: and ++




� � �

��
� � 
 � �

��
� �

�
� �

��
� � � � � � � � �

� �

McCarthy fusion law




� �

��
� � � � � � � � 
 � �

��
� � � � � � � �

�
� �

��
� � � � � � � �

� �

relational meaning of <:




� � �

<: ��
� � 
 � � �

<: ��
� �

�
� � �

<: ��
� �

� �
relational meaning of ++




� � � �

<: ��
�

++

� �

<: ��
� � �
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Etc.

Home work: define the relational semantics of e.g..

Operator Name Semantics description

m <-: s Domain restricted by

Creates the map con-
sisting of the elements in
m whose key is not in s.
s need not be a subset
of dom m.

and prove similar properties.
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Override pointwise

Since

dom

�
� � ++ � � � � dom � � �

dom � �

we have, after expansion of the relational definition:
s1 ++ s2 ==

{ k |-> if k in set dom s2

then s2(k)

else s1(k)

| k in set dom s1 union dom s2 }

The above proof over this definition would have been

far less compact.
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Inductive override

Another version of map override:
s1 ++ s2 ==

if s1 = {|->}

then s2

else let k in set dom s1

in { k |-> if k in set dom s2

then s2(k)

else s1(k) } munion { k } <-: s1 ++ s2

How do we arrive at this recursive scheme?
See next set of slides.
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