An Introduction to Relational
Formal Modelling

DI/UM, 2002

J.N. Oliveira

DIUM/2003 — p.1/8:

Functions are not enough

Partiality (in Haskell):

Mpi > (split head tail)(tail [1])
(

Programerror: {head []}
Mpi > 2/0
Program error: {prinD vDouble 2.0 0.0}

Functions such astail,/, head (and many others!)
are partial

DIUM/2003 — p.2/8:

Functions are not enough

VDM-SL notation:

vdne p tl []
. 1, c. 4.

Run-Tinme Error 77. The sequence was enpty
vdn> p 2/0
. 1, c. 3.

Run-Tinme Error 76: Division wth zero
vdnp

Functions such astl, /, hd (and many others!) are
partial

DIUM/2003 — p.3/8:

Functions are not enough

gets : set of nat -> nat * set of nat
gets(s) == let ain set s
innk (a,s \ {a}) ;

IS not only partial

vdne> p gets({})

[home/j no/work/ x.vdm |. 4, c. 25:
Run-Tinme Error 53: The bi nding environment was enpty
vdnp

but also non-deterministic:

gets{a,b} = (a,{b}) V gets{a,b} = (b, {a})

DIUM/2003 — p.4/8:

Specifications as “properties”

= Specification of square root:

(sqrt x)* =z

that Is
sq - sqrt = 1d

(= sgrt has left inverse sq)
= Specification of sort:

' =sortl < (IsOrderedl’) N\ IsPermutation(l,

DIUM/2003 — p.5/8:

Relational approach

Need to model
= total/partial functions
m hon-determinism

= properties, datatype invariants and
loop-invariants

= orders and inductive structures
= vagueness or under-specification...

DIUM/2003 - p.6/8:

Relational approach

Need to model
= total/partial functions
m hon-determinism

= properties, datatype invariants and
loop-invariants

= orders and inductive structures
= vagueness or under-specification...

= adoption of binary relations, which have a long
tradition in the. ..

DIUM/2003 - p.6/8:

Pre/post specification style

Sort(l: seq of int) r: seq of int
post IsPermutation(r,|l) and IsOrdered(r);

| sPernutation: seq of int * seq of int -> bool
| sPernmutation(l1,12) ==

| sOrdered: seq of int -> bool
| sOrdered(l) ==

gets(s: set of nat) r: nat * set of nat
pre card s >0
post r.#1 in set s and r.#2 = s \ {r.#1} ;

DIUM/2003 — p.7/8:

Pre/post specification layout

Spec(a: A r: B
pre Precond(a)
post Postcond(r, a);

where

Precond : A — 2
Postcond : BxX A — 2

leads to the binary relation approach:

Postcond € 2*4 < Postcond C B x A

DIUM/2003 - p.8/8:

From predicates to relations

= Predicate logic connectives such as eg. A are
“overloaded” operators

= They can be regarded as models of a more
structured logic — that of binary relations

= Functions generalize to binary relations in a
very natural way.

= Predicates, sets, functions and relations can all
pe combined in a single relational calculus

= Usual infix notation, e.g. a < b, can be
generalized to any relation R, e.g. aRb

DIUM/2003 — p.9/8:

Sets / functions made relational

Strategy: identify every

= function f : A — B with the binary relation
relating a and b Iff b = f a. So, bfa literally
means b = f a.

= binary predicate A x B bool with binary
relation [p] such that g[[p]]b = p(a,b).

= unary predicate A bool with binary relation
lq] such that alq]b=a =bA (q a).

mset S C Awith [Aa.a € S]. So,

alS]b=a=bANa€eS

DIUM/2003 — p.10/8:

Arrows “are” binary relations

= “Type” relations in a way consistent with

R
functions: B - A wherever bRa Involves
be Banda e A.

= From now on, an arrow

R
B -~ A

means a binary relation from A (source) to B
(target) and write bRa to denote that pair (b, a)
IS In R.

DIUM/2003 - p.11/8:

Relations as Arrows

= Ordering on relations:
RCS = bRa= bSa

R C § means that R Is elther less defined or
more deterministic than S.

= Extend composition f-gto R- .S In the
obvious way

b(R-S)c=da € AbRa N aSc
» Introduce converse R°

a(R°)b = bRa

DIUM/2003 — p.12/8:

Relational Equality

Pointwise equality:

Pointfree equality:

m Cyclic implication (“ping-pong”) rule:
R=S = RCSASCR
B Indirect equality rules:

R=S = VX XCR=XC?S)
= VX.(RCX=5CX)

DIUM/2003 - p.13/8:

Basic relational combinators

. S R
Given C - B and B - A
m Composition S - RIs s.t.

c(S - R)a
holds wherever there exists some b € B such
that ¢Sb A bRa.
R° R
m Converse A - B of B - A

a(R°)b = bRa
m Meet RN S — recall set-theoretical intersection

DIUM/2003 — p.14/8:

Basic Relation Calculus (I)

Composition Is associative:
R-(S-T)=(R-S)-T
|dentity
R-id=1id-R=R
Empty relation

R-1l=1-R=1

il _ . .
where B - A Is the smallest relation of its type.

DIUM/2003 - p.15/8:

Basic Relation Calculus (ll)

Composition IS monotonic:

RCS
TCvU
(R-T)C (S-U)

Bottom and top relations:

IC RCT

1 | _ .
where B - A Is the largest relation of its type.
Pointwise descriptions:

bla=true , bla = false

DIUM/2003 - p.16/8:

Cconverse

°-universal

°-monotonicity:

Then:
Involution : (R°)° =R
Contravariance : (R-S5)°=5°-R°

These can be proved from °-universal by (elegant)
Indirect proofs (example in next slide):

Indirect proof of involution

(R°)°CY

{°-universal X°CY = X CY° for X :=
R CY

{ °-monotonicity}
RCY

{ indirection}

(R°)" =R

DIUM/2003 — p.18/8:

Meet and converse

N-universal
XC(RNS) = (XCRA(XCS)
Converse distributes over N (proof in next slide):

(RN S)° = R°N S°

DIUM/2003 — p.19/8:

Another Iindirect proof

X CR NS°

{ N-universal}
(X CR)AN(X CS%

{ monotonicity and involution}
(X° CR)A(X®CS)

{ N-universal}
X°C(RNS)

{ monotonicity and involution}
X C(RNS)°

{ indirection}

R°NS° = (RNS)°

DIUM/2003 — p.20/8

Converses of functions

Function converses f°, ¢° etc. always exist (as
relations) enjoying the following property:

(fO)R(ga)=b(f°-R-g)a
which unfolds to

bR(ga) =b(R-g)a (f:=id)
(fO)Ra =b(f°- R)a (g :=id)

DIUM/2003 — p.21/8:

Pointwise vs pointfree notation

Function

fac O 1
facln+1) = (n+1)x* facn

In pointfree notation:
fac - |0, suc] = * - [suc, fac]
Property
facn = facm = n=m
(= fac s injective) in pointfree notation?

DIUM/2003 — p.22/8:

Properties in pointfree style (I)

fac IS Injective:

facn = facm = n=m

{ identity function / relation }
(facn)id (facm) = nidm
{ rule (fb)R(ga) =b(f°-R-g)a}

n(fac® -id- fac)m = nidm

{ dropping variables n and m ; natural-id }

fac® - fac C d

DIUM/2003 — p.23/8

Properties in pointfree style (l1)

Example property of integer arithmetics:

n|d
— dxqg<n=q<n/d

riq

{ using “Haskell section notation” }

(dx)g<n = q<n(/d

{ rule (f b)Ra=0b(f°- R)a }

g((dx)°- <)n = (< -(/d))n

{ pointwise equality }

(dx)°- < = <-(/d)

DIUM/2003 — p.24/8:

Orders and their taxonomy (A)

R .
An order (or endo-relation) A - Als

reflexive: Iff 2dq C R
coreflexive: Iff R C idy

transitive: ff R-RC R
anti-symmetric: Iff RN R° Cdy
symmetric: iff RC R°(=R=R")
connected: fRUR =T

T . . .
where A - A Is the largest relation of its type.

DIUM/2003 — p.25/8:

Order taxonomy (B)

= Preorders are reflexive and transitive orders.
= Partial orders are anti-symmetric preorders
= Linear orders are connected partial orders

= Equivalences are symmetric preorders

m Predicates are coreflexive orderq?: the

“meaning” of a predicate Bool - Alsa
coreflexive relation [¢] such that

pa = afola

mapping every a which validates ¢ onto itself.

DIUM/2003 — p.26/8:

Order taxonomy (C)

/re\

symmetrlc refbxwe /ysmve anti-symmetric connected
/\preorder
equivalence partial order

linear

DIUM/2003 — p.27/8:

Properties (A)

Dedekind’s rule (also known as the modular law):

(R-S)NT C R-(SN(R°-T))
Dually (apply converses and rename).

(R-S)NT C (RN(T-5%)-S
Symmetrical equivalent statement:

(R-S)NT C (RN(T-S°))-(SN(R°-T))

= “weak right-distribution of meet over composition”.

DIUM/2003 — p.28/8:

Derived combinators

R _ ker R _
m Kernel of B - Als A - A defined by

def

ker R = R - R
R _ Img R _

= Image of B -~ Als B - B defined by
iImg R YR R

= Duality:

ker (R°) = img R
img (R°) = ker R

DIUM/2003 — p.29/8:

Properties of kernel and image

Order-preservation:

RCS = kerRCkerS
RCS = imgRCimgsS

Symmetry:

(ker R)° = ker R
(img R)° = Img R

Also:
RCR-kerR (=imgR-R)

DIUM/2003 — p.30/8

Entireness and simplicity
An entire (or total) relation is such that its kernel is
reflexive:
Risentire = id C ker R

A simple (or functional) relation is such that its
Image Is coreflexive:

Rissimple = imgR C id

Simplicity is the dual of entireness. Simple relations
are also called partial functions.

DIUM/2003 - p.31/8:

(Total) functions

Functions are both simple and entire relations,
usually denoted by lowercase letters f:

dC f°-f N f-fCuid
? _]." f f f C 1
entire simple

Thus:

f C R= R Is entire
R C f = Ris simple

In general, “larger than entire means entire” and
“smaller than simple means simple”

DIUM/2003 — p.32/8:

Surjectiveness and injectiveness

More taxonomy:
= R Is surjective Iff R° Is entire
= Ris injective Iff R°Is simple
Facts:

ker R = 1id
Img R = id

R Is entire and injective
R I1s simple and surjective

Summary:

Reflexive | Coreflexive

ker R entire R Injective R
Img R || surjective R | simple R

DIUM/2003 — p.33/8:

Bijections

f Is bijective Iff it Is an Injective and surjective
function (thus simple and entire)

/
B - A bijective = ker f =idANImg f =id
In this case

id=f"-f A f-f =id

DIUM/2003 — p.34/8:

Binary relation taxonomy

- —

injective entire S|mple surjective

representation \fun tlon/ abstraction

injection surjection

ion

bijection

DIUM/2003 - p.35/8:

Reasoning about functions

Shunting rules:

f-RCS
R-f°CS

%
N

11
avjiiey
NN
N
-

Equality:
JC9=r=9=f29

Ping-pong proof of the equality rule follows.

DIUM/2003 — p.36/8

Proof of functional equality

fCyg

{ identity}
fridCyg

{ shunting on f}
dC f-g

{ shunting on ¢}
wd-g” C f°

{ converses}

g<f

DIUM/2003 - p.37/8:

Adding structure to the calculus

Note a recurrent pattern in several laws above:

X CY = XCY

fX gY
()X CY = X C (k)Y
N—— N——

[X gy
X(h)CY = X CY(-h)
N—— N——
[X gy

as well as in

dx)g<n = g<nl(/d

(dx)q < g < n(/d)

fq gmn

DIUM/2003 — p.38/8:

Back to the primary school desk

The integer division algorithm

72

ey 2x3+1="7 %’ 3=7/2

However

2X243=T7 AN 2#T7/2

2X145=7 AN 1#7/2

Ot J W

DIUM/2003 — p.39/8:

Quotient Is a supremum

provided q Is the
n|d .
— dxqg+r=n=q=mn/d | largestsuchgq (ris
m1d smallest)
n/d:\/{q\ﬂr.dxq+fr=n}

= \{gldxq<n}

Maths teachers tell: it takes a while before children
master the *\/ semantics”!
What about you? Can you easily reason about n/d

In this format?
Try and prove (n/m)/d = n/(m x d).

DIUM/2003 — p.40/8:

“Universal” property instead

Alternative:

n | d

r

q

dxqg<n=qg<n/d

Reasoning:

q < (n/m)/d

dxqg<n/m

“universal”
property of integer
division

{ “universal” property }

DIUM/2003 - p.41/8:

Reasoning continued

{ “universal” property again }

m X (dxq) <n

{ x is associative }

(mxd)xq<mn

{ “universal” property again }

g <n/(m xd)

DIUM/2003 — p.42/8:

Indirect equality

So we have

q < (n/m)/d

q < n/(m xd)
that is,

(n/m)/d = n/(m x d)
by the indirect equality rule:

(a<r=q<y) =(z=y)

DIUM/2003 — p.43/8:

Also easy to check

Cancellation law: dx (n/d) <n

{ universal property }
n/d<n/d

{ reflexive < '}

true
“Reflection”: dx1<n=1<n/d
{ 1isthe unit of x}

d<n=1<n/d

DIUM/2003 — p.44/8:

Galols connections

n/d is a Galois connection:

n | d

dxqg<n=qg<n/d
I q gmn

In general, for preorders (A, <) and (B,C) and

—

(4, <) (B,E)

~~—

f

(f, g) are Galois connected iff

DIUM/2003 — p.45/8:

Galois adjoints

fb<a = bC ¢ a
lower adjoint upper adjoint
that Is
[7o< =By
Remarks:

m Galois (connected) adjoints enjoy a number of interesting
generic properties

m Very elegant — calculational — way of performing
Inequational reasoning (including logical deduction)

DIUM/2003 — p.46/8:

Basic properties

Cancellation:
(f-g9)a<a and bL (g-[f)b
Distribution (in case of lattice structures):
flaud) = (fa)V(fa)
gbAb) = (gb)M(gt)
Conversely,

m If f distributes over LI then it has an upper adjoint g (f#)

= If g distributes over A then it has a lower adjoint f (¢°)

DIUM/2003 — p.47/8:

Other properties

If (f,g) are Galois connected,

= f (g) uniquely determines g (f) — thus the ’,
¥ notations

= f and g are monotonic

= (g,) are also Galois connected — reverse the
orderings

mf=f-g-fandg=g-f-g

etc

DIUM/2003 — p.48/8:

Summary

Description f=gq g =/t
Definition fb=Na|bE ga} ga=|{b]| fb<a}
Cancellation flga)<a bC g(f a)

Distribution | f(bUbd)=(fb0)V (/) | g(d'Ta)=(ga")M(gc
Monotonicity bEY = /b [V a<a =galgad

DIUM/2003 — p.49/8:

Cconverse

(fX)SY=XC(gY)
Description | f = ¢° | g = f* Obs.
converse | ()° (()° | bR°a =aRb

Thus:

Cancellation
Monotonicity
Distributions

(R°)° =R
RCS=RCS°

(RNS)° = R°NS°,(RUS)° = R°L

DIUM/2003 — p.50/8:

Functions

(fX)CY=XC(gY)

Description f=¢|g=f* Obs.

shunting rule (h-) (h°-) | NB: his a function

“converse” shunting rule | (-h°) (-+h) | NB: his a function

Consequences:

Functional equality: hCgqg= k

]

>
U
e

h =
Functional division: h\R

Question: what does & \ R mean?

DIUM/2003 — p.51/8:

Relational division

(fX)CY=XC(gY)
Description | f=¢° | g = f! Obs.
right-division | (R:) | (R\) | right-factor
left-division -R) | (/R) | left-factor

Immediate: (R-) and (-R) distribute over union:

R-(SUT) =
(SUT)-R —

Some intuition about relational division operators follows.

DIUM/2003 - p.52/8:

Relational division

The relational division operators are upper-adjoints:

R- XCY=XCR\Y
X-RCY=XCY/X

Right division abstracts a (pointwise) universal guantification

R\ / Y a(R\Y)c = (Vb.bRa= bYc)

An example follows.

DIUM/2003 — p.53/8:

Example

Recall data division in the relational model:

XCR\S

R\ / S a(R\ S)c = (Vb.bRa = bSc)

b R a = flight b carries passenger a

b S ¢ =flight b belongs to air-company c

a (R\ S) ¢ = passenger a is faithful to company
¢, that is, (s)he only flies company c.

DIUM/2003 — p.54/8:

Left division

By taking converses we arrive at S / R = (R° \ S°)°:

XCS/R = XC(R\S

{ converses and (R°\)"}
R°.X°C S

{ converses}

X-RCS

le. Galois connection

X-RCS = XCS/R

DIUM/2003 - p.55/8:

Meet

N-universal

XC(RNS) = (XCRA(XCS)

IS a Galois connection
(A,N)
where A X = (X, X), cf.
(X, X)(Cx O)(R,S) = X CN(R,S9)

So N = A distributes over itself, etc

DIUM/2003 — p.56/8:

Properties of N

From N-universal infer:
m N-cancellation (X := RN S)

RNSCR N RNSCS
m N-abbreviation (X := R)
RCS = R=RNS
m N-idempotency (S := R)
RNR = R

DIUM/2003 - p.57/8:

More properties of N

N IS commutative:
RNS = SNR
N IS associlative:

RN(SNT)

]
E
»
3
»
~

N-fusion:

T-(RNS)
(RNS)-T

Iamie

DIUM/2003 — p.58/8:

Meet and join

(fX)<Y=XLC (gY)
Description | f = ¢° | g = f* Obs.
meet A N <is (C x Q)
join U A Cis (C x C)
Join:

U(R,S) CY = (R,5)(C x C)(Y,Y)
that iIs,
RUSCY=RCYASCY

DIUM/2003 — p.59/8:

Relational split

Functions:

= (f,9)

m-r=f N m-x =g

Relations:

DIUM/2003 — p.60/8:

Properties

(_,)isan upper-adjoint, so it distributes over
meet

(R,SNT)
(SNT,R)

|—
B
e
DD
B
33

etc. Moreover:

(R,S) = (7 - R)N(my-5) (-98)

Why? Again Galois at work:

DIUM/2003 — p.61/8:

Calculation

X C(R,S)

m- X CRAm-XCS

{ Galois connected ((f-),(f°))}
XCrl-RANXCms - S

{ Galois connected (N°,N)}
X C(ni-RNmy-S)

{ indirect equality }
(R,S) =n]-RNmg -8

DIUM/2003 — p.62/8:

Pointwise (R, S)

(a,b)(R,S)c (a,b)(m] - RNmy-S)c
{ pointwise N}
(a,b)(m] - R)c A (a,b)(ms - S)c
= {rule (f b))Ra=b(f°- R)a }
m1(a,b)Rc A\ mo(a, b)Sc
= { projections}

aRc N\ bSc

Relational either

Functions:

fgl=2 = f=2-i1 Ag=xz-1iy
Relations:

R,S)CX = RCX-iy ASCX-iy (-102)

Thus | , |is alower-adjoint, it distributes over U, etc.
Moreover,

R, S] = (R-i))U(S 1) (-103)

DIUM/2003 — p.64/8:

Domain and range

(fX)SY=XC(gY)
Description | f =¢° | g = f* Obs.
domain dom (T-) | lower C restricted to coreflexives
range rng (-T) | lower C restricted to coreflexives
cf.
domX CY

A < A
T\ /X domX CY=XCT.Y
B

DIUM/2003 — p.65/8:

Domain and range

Dualization:

dom R =rng R°

Explicit definitions:

mg R =
domR =

Facts:

Img R N id
Img R° Nid = ker RN id

= R-(domR)
= (g R) - R

DIUM/2003 — p.66/8:

Domain and split

The following fact holds:
(R,S)” - (X,)Y) = (R°-X)N(5°-Y)
Corollary:
dom R = Kker (id, R)
Another consequence of the fact above:
ker R C ker (S-R) « S entire
Corollary:

ker R C ker (f-R)

DIUM/2003 - p.67/8:

Comprehending relations

R
For each B - A define its graph or
comprehension by

G R={(ba)|bRa}

Clearly, R = |G R] and so we often abbreviate G R

to R.
The graph of every coreflexive S is made simpler

for obvious reasons:

GS={al|aSa}

DIUM/2003 — p.68/8:

Finite relations

R 1s said to be finite wherever G R Is a finite set.

= Finite relations, which can be enumerated,
browsed and stored in a computer, are the
subject of relational database design.

= Every finite, simple relation expresses a
functional dependency.

= The graphs of finite and simple relations are
called mappings in VDM-SL terminology.

= We will use greek identifiers (o, 7 etc) to denote
(finite) mappings

DIUM/2003 — p.69/8:

VDM-SL mapping notation

= Datatype: nap Ato B
= Pointwise VDM-SL concrete syntax

{a—b|boa}

replaces {(b,a) | bo a}.
= In VDM-SL notation, b o a IS furthermore

rephrased as a € domo A b= o(a) — cf.

o = o -domo —that is, we have

c = {a~—o(a)|a € domo}

DIUM/2003 — p.70/8:

Meaning of VDM-SL specs

Spec(a: A) r: B
pre precond(a)
post postcond(r, a);

where

recond postcond

p
bool - A . bool < B x A

Spec
means B - A where

Spec & [postcond)] - [precond]

DIUM/2003 - p.71/8:

VDM-SL Sqgrt spec

Sgrt(x: real) r: real
pre true
post sqg(r) = X ;

means

Sqrt = [Ar,x).sqr = 1z]

{ meaning of a binary predicate }

rSqrtx = (sqr)idzx

{ converse of a function; natural-id }

Sqrt = sq°

DIUM/2003 — p.72/8:

Turning implicit specifications.

Sorting in VDM-SL notation:

Sort(l: seq of int) r: seq of int
post IsOrdered(r) and IsPernutation(r,!|);

where

| sPernutation: seq of int * seq of int -> bool
| sPernutation(l1,12) ==
forall e in set (elens |1 union elens |2) &
card {i | I Inset inds I1 &I11(1) = e} =
card {i | 1 Inset inds |2 &I|2(1) = e},;

DIUM/2003 — p.73/8:

... Into relational models

... abbreviates to

Sort & [1sOrdered] - IsPermutation

DIUM/2003 — p.74/8:

... Into relational models

... abbreviates to

Sort & [IsOrdered] - (ker seq2bag)

assuming /

seg2bag: seq of int -> map int to natl
seg2bag(l) ==
{e|->card {i | i inset inds | &I(i) =¢e } |
ein set elens | };

DIUM/2003 — p.74/8:

... Into relational models

... abbreviates to

Sort & [IsOrdered] - (ker seq2bag)

assuming /

seg2bag: seq of int -> map int to natl
seg2bag(l) ==
{e]|]->card {i | | inset inds | &Il(i) =¢e } |
ein set elens | };

| sPer nmut at 1 on is an equivalence because ker f
always Is reflexive, symmetric and transitive.

DIUM/2003 — p.74/8:

Relational semantics of VDM-SL

From the VDM-SL on-line manual:

Operator Name Semantics description

Creates the map consisting of
the elements in mwhose key is
IN S. s need not be a subset of
dom m

s <: m | Domain restrict to

—ormal semantics:
[s <: m] = [m]-[s]

where [s| is correflexive and |[m] is simple.

DIUM/2003 — p.75/8:

Relational semantics of VDM-SL

From the VDM-SL on-line manual:

Operator Name Semantics description

overrides and merges nl with n2, i.e. it
like a merge except that nil and nR nee
not be compatible; any common el
ments are as by n? (so n2 overrides ml

mL ++ n2 | Override

—ormal semantics:

[ma ++mo] = [ma] — [m2], [mi]

cf. relational McCarthy conditional:

DIUM/2003 — p.76/8:

Relational McCarthy conditional

It is defined by

def

R—S,T (S-domR)UT - (id — dom R)

where

(fX)CY=XC(g9Y)
Description | f=¢" | ¢g= f* | Obs.

difference | (_— R) | (RU)

!

that iIs,

X-RCY = XCRUY
X-R = ({Y|XCRUY}

DIUM/2003 - p.77/8:

Reasoning about VDM-SL

We want to prove VDM-SL properties such as

X< (Y<io) = (XNY)<i o
U<io = 1=}

X <! (o1+t09) = (X< o) ++ (X < 09)

First, some properties of coreflexives:
= Coreflexives are symmetric and transitive:

R=R"=R-R=RnNid
= Meet of two coreflexives is composition:

RNS=R-S

DIUM/2003 — p.78/8:

Example of proof

[X <: (Y <: 0)]

— { relational meaning of <: }
Y < o] - [X]

= { relational meaning of <: }

([el-1¥YD) - [X]

= { associativity of - and coreflexives}

lo] - (1XT-TY'D)

{ meet of two coreflexives is composition }

lo] - (XTI IYD)

Proof continued

lo] - (XTI 1Y)

{ meaning of set intersection }
lo] - [X NY]
= { relational meaning of <: }

(X NY)<: o]

DIUM/2003 — p.80/8:

Another proof

[X <t (01 ++ 09)]
— { relational meaning of <: and ++}

(lo2] = loa] ; [on]) - [X]

— { McCarthy fusion law}
lo2] - [X] = o] - 1X], o] - [X]
= { relational meaning of <: }
[X <: oo] = [X < 03], [X <! 0]
— { relational meaning of ++}

[(X < 0q) ++ (X <! 09)]

EtC.

Home work: define the relational semantics of e.g..

Operator Name Semantics description

Creates the map con-
sisting of the elements In
m <-: s | Domain restricted by | mwhose key is not in s.
S need not be a subset
of dom m

and prove similar properties.

DIUM/2003 - p.82/8:

Override pointwise

Since
dom (0'1 ++ 0'2) = dom ¢; U dom o5

we have, after expansion of the relational definition:
Sl ++ s2 ==
{ Kk |->1f kiIn set doms2
t hen s2(k)
el se s1(Kk)
| k 1n set domsl union doms2 }

The above proof over this definition would have been
far less compact.

DIUM/2003 — p.83/8:

Inductive override

Another version of map override:
sl ++ s2 ==
1f s1 = {|->}
t hen s2
else let k in set domsl
in { k |->if kin set doms2
t hen s2(k)
el se s1(k) } nmunion { k } <-: sl ++ .

How do we arrive at this recursive scheme?
See next set of slides.

DIUM/2003 — p.84/8:

	Functions are not enough
	Functions are not enough
	Functions are not enough
	Specifications as «properties»
	Relational approach
	Pre/post specification style
	Pre/post specification layout
	From predicates to relations
	Sets / functions made relational
	Arrows «are» binary relations
	Relations as Arrows
	Relational Equality
	Basic relational combinators
	Basic Relation Calculus (I)
	Basic Relation Calculus (II)
	Converse
	Indirect proof of involution
	Meet and converse
	Another indirect proof
	Converses of functions
	Pointwise vs pointfree notation
	Properties in pointfree style (I)
	Properties in pointfree style (II)
	Orders and their taxonomy (A)
	Order taxonomy (B)
	Order taxonomy (C)
	Properties (A)
	Derived combinators
	Properties of kernel and image
	Entireness and simplicity
	(Total)
functions
	Surjectiveness and injectiveness
	Bijections
	Binary relation taxonomy
	Reasoning about functions
	Proof of functional equality
	Adding structure to the calculus
	Back to the primary school desk
	Quotient is a supremum
	«Universal» property instead
	Reasoning continued
	Indirect equality
	Also easy to check
	Galois connections
	Galois adjoints
	Basic properties
	Other properties
	Summary
	Converse
	Functions
	Relational division
	Relational division
	Example
	Left division
	Meet
	Properties of $cap $
	More properties of $cap $
	Meet and join
	Relational emph {split}
	Properties
	Calculation
	Pointwise $split R S$
	Relational emph {either}
	Domain and range
	Domain and range
	Domain and split
	Comprehending relations
	Finite relations
	VDM-SL mapping notation
	Meaning of VDM-SL specs
	VDM-SL $Sqrt$ spec
	Turning implicit specifications...
	ldots into relational models
	Relational semantics of VDM-SL
	Relational semantics of VDM-SL
	Relational {McCarthy} conditional
	Reasoning about VDM-SL
	Example of proof
	Proof continued
	Another proof
	Etc.
	Override pointwise
	Inductive override

