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“How” does one specify?

General problem solving strategy?

Divide-and-conquer:

Problem
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“How” does one specify?

Divide-and-conquer:

Problem Sub-problems

divide (analysis)

Sub-solutions
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sub-problems
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“How” does one specify?

Divide-and-conquer:

Problem Sub-problems

divide (analysis)

Solution Sub-solutions

solve
sub-problems

combine (synthesis)
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Divide-and-conquer (formally)

Problem space

Sub-problem structure

��� ��� �

Solution space
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Divide-and-conquer (formally)

Problem space Sub-problem structure

�

�� � � �

��� ��� �

�

� �� � ��

� �� ��� �

Questions:

What are the mathematics of

���� � ��� ,

�	� 
� � � ,

� � �� � ?

What do
�� � �

,

�� �	� �� � �

mean?
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Relators

Symbol

�

is overloaded:

�

means a (parametric) datatype, eg.

�

—
seq of A in VDM-SL;

�

means a relation

�
�

�

Example:

�

will be such that

� � �� � �

� len

�
� len

� � � � � � inds

�
	

� � �� � � � ��
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Properties of relators

Every relator

�

is monotone,

� � � � � � ��

and commutes with

��
�

�

,

�

_

� �

and
� �

:

� �

�

��

�

� � �
�

� � ��

� � �

� � �

� � � �

�

� � � �

Terminology:
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Properties of relators

Every relator

�

is monotone,

� � � � � � ��

and commutes with

��
�

�

,

�

_

� �

and
� �

:

� �

�

��

�

� � �
�

� � ��

� � �

� � �

� � � �

�

� � � �

Terminology:

�

�

is called an

�

-coalgebra

irhsl.tex – p.5/45



Back to divide-and-conquer

Divide-and-conquer = relational hylomorphism:

�

�

�

� that is, � �

� � �
�

�

How do we solve this (hylo) equation for ?
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An example first

mergeSort: seq of int -> seq of int

mergeSort(l) ==

cases l :

[e] -> [e] ,

others -> let l1 ˆ l2

in set {l} be st

abs (len l1 - len l2) < 2 in

lmerge(mergeSort(l1), mergeSort(l2))

end;

is a relational hylomorphism for
� � � int

� ��� �
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In fact

seq of int

�

seq of int

�

seq of int
�
seq of int

� ��� � ��� � � � � ��� � �� � �

that is,

� ��� � �� � � � �

� � � ��� � �� � ��
�

�

where �

��� � �� �� � � �� � � � , for � � �� �
�

� �
	

� � �
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�� � � �

algebra and coalgebra

and

�

is

S: seq of int -> ( int | seq of int * seq of int )

S(l) ==

cases l :

[e] -> e ,

others -> let l1 ˆ l2

in set {l} be st

abs (len l1 - len l2) < 2 in

mk_(l1,l2)

end;
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Equations and fixpoints

Given an equation of pattern

� � �

where

�

for some , we will say that any
solution to this equation — that is, any ��� � such
that

�� � ��

is a fixpoint of .
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Equations versus recursion

Equation � � � can also be regarded as a
“recursive” definition of its fixpoints, eg.

� � � �
� is a recursive definition of number

�

.

However,

� �
�

� � �

� has two solutions (=fixpoints)

�

e

�

.
What are we “recursively defining” here?

Furthermore, � � � defines any object!

Last but not least, some equations don’t have
any solution at all. Think eg. of � � � �

in

	

.
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Solving (Fixpoint) Equations I

Let

���

be a partial order. Then, every

� � such that

� � �
is said to be a post-fixpoint of , and every � �

such that

� � �

is said to be a pre-fixpoint of . Clearly,

Every � � which is both a pre-fixpoint and
a post-fixpoint of is a fixpoint of .
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Solving (Fixpoint) Equations II

Function

�

is monotone wherever

� � � �
for partial orders � and �, that is:

��� �� � ��� � �

� �

shunting

�

�� � �	 � ��� � �

� �

going pointwise

�


 �� 
 � � � � 
 � �� � � 
 � �
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Solving (Fixpoint) Equations III

Pointwise ordering on functions

��
�

�

:

�

�� � � ��
meaning

�

�� � � ��

� �

shunting

�

� � �
� � ��

� �

going pointwise

�

� �
	

� �� �
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Solving (Fixpoint) Equations IV

Lattice fixpoint theorem (Tarski 1955) for monotone
as above and � defining a complete lattice:

The set of all fixpoints of ,

�
� � � � � � � �

is non-empty and

�

� � �
is a complete

(sub)lattice.

The least of all fixpoints

� �

and the greatest
one

� �

are as follows:

� � �

� � � � � �

� � �

� � � � � � �
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Solving relational equations

Hylo-equation � �

� � �
�

�

� �� �

� �
and other relational equations such as

� �

�� �� �

� �
(cf. transitive closure) have least solutions

� �

� � � � � �

�� �

�

because both �� are monotone.
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Laws of the Fixpoint Calculus

Computation rule:

� � �

Example: hylo-cancellation law

� � � � � �
� �

� � � � � � �
�

�

Rolling rule:

�
�� �

��

� � �
�

� �
� � � �

Example: �� �

�

where

�

� � and� �

�

. Then
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Rolling rule

� � � � �
� � � �

� �

rolling rule

�

�
� � � � � �
� �

� �

definitions of �
�

� �

� � � � ���
� � � � � � � � �

� � � �� �
is a lower-adjoint

�

� � � ���
� � � � � � � �

Further application of this rule will “factor out”

� �

,

� �

, etc., In

the limit, � � � �	�
 � � 	 � � 

.
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Hylo rolling rule

Let

� � � � �

where

� � � � � � �

and � � � �� �

. Then

� � � � �
� � � � � �

� � � � � �
� �

� �

definitions of �
�

� �

� � � � �� �� � � � � � � � �

� �
relators

�

� � � � �� � � � � � � � �

that is,

� � �
�

� � � � � � � � � �
�

� � �
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Other rules

Square rule:

� � �
� ��

Monotonicity:

� � � ��

Thus

� � � � � � � � � � � � �
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Other rules

Induction rule:

� � � �
Thus

� � � � � �

�

�

�

�

and, in particular (coreflexive hylos):

� � � � � � � �

�

� � �

� � � � � � � �

is simple

Last — but not least — �-fusion:
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-fusion theorem

Let

�

�

�

�

��� be monotonic,

� � �

and

� � �

be complete lattices,

�

be a lower-adjoint.

Then

� �
� ��

� �� �

�

�

�� �

�
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Applications of -fusion theorem

Converse of a hylo

� � �� � � �
�

� � � � � � � �
Proof: let

�

�
�

_

� �

and

�

�

�
�

�

�

� � �

�

�

that is,
� �

�
� � �� � �

�� �
� � � � �
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Proof

Then

� � �� � � �
�

� � � � �

�

�-fusion theorem
�

� �
�

�

�

� �

� �

� � � �
�

� �

converse and

�

is a relator

�

�
�

� �
�

� �
� �

� �
�

�

Leibnitz

�

�

� � � �
�
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Hylo(cata)-fusion

�

� � �� � �
�

� � � � �

�

�
� �

� � �

Proof: since

� �� � � � � � � �

,

� � � � �
�

� � � � � � �
�

� � �

� � � -fusion theorem

�

� � � � � � � � � � � � � � � � � � � � �

� �

associative

� � �

and relator

� �

� � � � � � � � � � � � � �� � � � �� � � � �

� �

Leibnitz

�

� � � � � � �� � �
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Hylo(ana)-fusion

� � �� � �
� �

� � �� � �

� � �

�

Proof:

� � � � � �� � � �

. Then

� � �
�

� � � � � � � � �
�

� � �

� � � -fusion theorem

�

� � � � � � � � � � � � � � � � � � � � �

� �

associative

� � �

and relator

� �

� � � � � � � � � � � � � �� � � � �� � � � �

� �

Leibnitz

�

� � � � � � � �
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Examples: VDM collective types

setof

� � setof

� � � �

� �

� � � � � � � � � � � � �

that is,

� � � �

�

� � � � � � � � �

where � � � ��� �
�

� �� � � � � �

and . . .
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VDM-SL collective type setof

puts[@A] : @A * set of @A -> set of @A

puts(e,s) == {e} union s

pre not e in set s ;

Pointfree version (for �
� �� �

):

shylo[@A,@B] : (@A*@B -> @B) * @B -> set of @A -> @B

shylo(f,u)(s) ==

if s={} then u

else let a in set s,

r = s \ {a}

in f(a,shylo[@A,@B](f,u)(r));
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VDM-SL collective type setof

For shylo(f,u) to be a function the following
must hold:

� �� � �
�

� �� �

�

� �
�

� � �� �� �

Fusion law

�

� � � �

�
� � � � �

� �

�
�

� � �

arises from hylo(cata)-fusion

The reflection law holds:
� � � � � � �

� � �
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Relational cata(ana)morphisms

Define

� � ��

�

� � � � � � � �

� � �� �
�

� � � �� � � �

where

� � � �
� � �

� � �
� �

. For instance,

� � � �� �
� � � � � ��
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Relational cata(ana)morphisms

From

� � �� � � �
�

� � � � � � � �
infer

� � �� �

�

� � � �� � � � � �

�

� � � � � � � � � � �

�

� � � � �� �

(=ana is the converse of the cata of the converse)
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Inductive coreflexives

Recall

� � � � � � � �

�

� � �

which entails

� � �� � � � �

that is,

� � � � � � �� � � � � �

Example (on finite lists):

	� � � �� � �

��� �
�

� � � � �
� � � � �� ��
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Inductive coreflexives

where � �

is the coreflexive induced by predicate

ok(a,x) == forall b in set elems x & a <= b

This leads to

	� � � �� � �

�

� � � �� �� � � � � � �
�

� � � � � � 	� � � �� � ��
�

� � � �� �� � � � �

�

� � � �� �� � � � � �
�

� � � � 	� � � �� � �� �
�

� � � �� �� � � � �
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Inductive coreflexives

. . . and, finally, to

IsOrdered(l) ==

if l = []

then true

else (forall b in set elems tl l & hd l <= b) and

IsOrdered (tl l) ;

Exercise: calculate the above from

� � � � �
� � � � �� ��
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VDM-SL data type map to

map to

� � � � � map to

� � � �

� � � � �

� � � � � � � � � � � �

leading to the following pointwise syntax:
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VDM-SL data type map to

mhylo[@A,@B,@C] : (@A*@C*@B -> @B) * @B ->

map @A to @C ->

@B

mhylo(f,u)(s) ==

if s={|->} then u

else let a in set dom s,

c = s(a),

r = s <-: {a}

in f(c,mhylo[@A,@B,@C](f,u)(r));
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Hylos as unique solutions

A standard result of the relational calculus
establishes the following condition for

�

	
�

�

�

�

��

�

to be a unique solution:

the “accessibility relation” of

�

is required to be
inductive (cf. “well-founded” relations)

This ensures termination insofar as the “size”
of a sub-problem generated by

�

is strictly
smaller than its source.

One can perform induction over

�

.
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Accessibility and membership

Accessibility relation for

� � �

�

:

� �

���

���
��� �� �	� � �

where

� � �

� �

extends

� 
 �

�
inductively over

polynomial functors, as follows:

���

��� �� �

��

��� �� �

�	� ��� �
��� �� � �

� � � �
��� �� � � � � � � � � � � � � � � �

� �  �
��� �� � � � � � � � irhsl.tex – p.38/45



Example

Let

� � � � � � � �

. Then,

� � � � �

� � � for coproduct bifunctor
�

� � � � �� � � �

� � � for constant and product (bi)functors

�

� �
�

� � � � � � � � � �	� � � � � � � � �

� � � for constant and identity functor

�

� �
�

� � � � � � � � � � � � � � �

� � �
and

� �
�

� � � � � � � 	 � � � � � � � 	 � � �

� � � � 	 �
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Example (pointwise)

Then,

��� � ��� � ��� � � �

�

��� � �

� �
�

�
�

�

� � � �

� � �
� �

��

meaning

�
� �	� � � �
�

� � � � � � �
� �� � �

For example, for
�

�
� � � �� �� � � � �

on finite sequences,

we get
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Accessibility on finite sequences

� � �

� � �
� �

� � � � � �� � � � � �

� � � �

� � � � �� �� � � �
�

�
�

� �

� � � � �� � � �

and therefore

� � ��� � � ��� �� �	 
 � � � � �

� � �
� �� � � � � � � �� � � � �� � � �

� �
� ��� � � �� �� � 	 
 � �� � � � �� �
� �

� tl � ��� � � ��� �� �	 
 � �
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Hylo factorization (2)

For such inductive

�

, we can factor

� � � � � �
in two

components
� � �

�

� �
� ��

� �
� � �

�

�

� �

�

� � �

� �

� �

�

�

�

�

� � � � � � �

�

irhsl.tex – p.42/45



Hylo-factorization Theorem

Using

� �

_

�� � � �

_

� �

notation:

�

	
�

�

�

�

��

�
� � ��
�

� � �� �

�

�

� �

� � �� �

� � �

� �

� � � �� �

� � ��

�

� � � ��

irhsl.tex – p.43/45



Hylo-factorization Theorem

Taking converses:

�

	
�

�

�

�

� � � �
� � ��
�

� � � �� �

�

�

� �

� � � �� �

� � �

� �

� � � � �� �

� � ��

�

� � � ��
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Hylo-factorization Theorem

Entire /simple factorization if both and
� �

are
entire /simple (=

�

surjective /injective)

�

�

� �

� � � �� �

� � �

� �

� � � � �� �

� � ��

�

� � � ��
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Virtual data-structuring

Particular choice of

�

for sub-problem
organization induces intermediate type � �

.

This is made explicit by hylo-factorization.

Intermediate data-structure saves the outcome
of a “one go” divide step

� � � �� �

and passes it on
to the conquer step

� � ��
for processing.

In general, people “fuse” things very early in
design, thus virtualizing this structure.

Factorization helps in spec understanding and
classification.
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Final note on inductive relation

Is such that the validity of a predicate can be
proved by structural induction over it:

� � �
	

�� � � �
	

� � �
� � �

	

�
�

� �� �

induction step

�

which corresponds to pointfree definition

� �
where generalizes such that � � � �

, for

some fixed
�

.
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