An Introduction to Relational Formal
Modelling

J.N. Oliveira
September 16, 2004

Functions are not enough

Partiality (in Haskell):

Mpi> (split head tail)(tail [1])
(
Program error: {head [1}

Mpi> 2/0

Program error: {primDivDouble 2.0 0.0}

Functions such as tail, /, head (and many others!) are partial

Functions are not enough

VDM-SL notation:

vdm> p t1 []
1. 1, c. 4:

Run-Time Error 77: The sequence was empty
vdm> p 2/0
1.1, c. 3:

Run-Time Error 76: Division with zero
vdm>

Functions such as t1, /, hd (and many others!) are partial

Functions are not enough

gets : set of nat -> nat * set of nat
gets(s) == let a in set s
in mk_(a,s \ {a}) ;

is not only partial

vdm> p gets({})
/home/jno/work/x.vdm, 1. 4, c. 25:

Run-Time Error 53: The binding environment was empty
vdm>

but also non-deterministic:

gets{a,b} = (a, {b}) V gets{a,b} = (b, {a})

Specifications as “properties”

e Specification of square root:
(sqrt z)? =z
that is
sq - sqrt = id
(= sqrt has left inverse sq)
e Specification of sort:

I'=sortl < (IsOrderedl') A IsPermutation(l',l)

Relational approach

Need to model
e total/partial functions
e non-determinism
e properties, datatype invariants and loop-invariants
e orders and inductive structures
e vagueness or under-specification.. .

= adoption of binary relations, which have a long tradition in
the. ..

Pre/post specification style

Sort(l: seq of int) r: seq of int
post IsPermutation(r,l) and IsOrdered(r);

IsPermutation: seq of int * seq of int -> bool
IsPermutation(11,12) ==cviiiuinnnnnnn

IsOrdered: seq of int -> bool
IsOrdered(l) ==

gets(s: set of nat) r: nat * set of nat
pre card s > 0
post r.#1 in set s and r.#2 = s \ {r.#1} ;

Pre/post specification layout

Spec(a: A) r: B
pre Precond(a)
post Postcond(r,a);

where

Precond : A—2
Postcond : BxA—2

leads to the binary relation approach:

Postcond € 224 & Postcond CBxA

From predicates to relations

e Predicate logic connectives such as eg. A are
“overloaded” operators

e They can be regarded as models of a more structured
logic — that of binary relations

e Functions generalize to binary relations in a very natural
way.

e Predicates, sets, functions and relations can all be
combined in a single relational calculus

e Usual infix notation, e.g. a < b, can be generalized to any
relation R, e.g. aRb

Sets / functions made relational

Strategy: identify every

e function f: A — B with the binary relation relating a
and b iff b= f a. So, bfa literally means b = f a.

p
e binary predicate A x B—>bool with binary relation [p]
such that a[p]b = p(a,b).
q

e unary predicate A—> bool with binary relation [g] such
that afglb=a =b A (¢ a).

e set S C A with [Aa.a € S]. So,

a[SJb=a=bAa€S

Arrows “are” binary relations

. “Typ}%” relations in a way consistent with functions:
B <——— A wherever bRa involves b € B and a € A.

e From now on, an arrow
R
B——A

means a binary relation from A (source) to B (target)
and write bRa to denote that pair (b,a) is in R.

Relations as Arrows

e Ordering on relations:

RCS = bRa=bSa

R C S means that R is either less defined or more

deterministic than S.

e Extend composition f-g to R- S in the obvious way

b(R-S)c=3a € AbRaAaSc

e Introduce converse R°

a(R°)b = bRa

Relational Equality

Pointwise equality:

Pointfree equality:

e Cyclic implication (“ping-pong”) rule:
R=S = RCSASCR
e Indirect equality rules:

R=S = VX(XCR=XCS)

Basic relational combinators

S R
GivenC «<— Band B<—A
e Composition S- R is s.t.
c(S - R)a
holds wherever there exists some b € B such that
¢SbAbRa.

e Converse A<—— Bof B~——A

a(R°)b = bRa

e Meet RN S — recall set-theoretical intersection

Basic Relation Calculus (1)

Composition is associative:
R-(S-T)=(R-5)-T
Identity
R-id=id-R=R
Empty relation
R-1=1-R=1

1
where B < A is the smallest relation of its type.

Basic Relation Calculus (1)

Composition is monotonic:

RCS
TCU
(R-T)C(S-U)
Bottom and top relations:
1C R CT

T
where B <—— A is the largest relation of its type.
Pointwise descriptions:

bTa=true , bla= false

Converse

°_universal

°-monotonicity:
RCS=R°CS°
Then:

Involution : (R°)°=R
Contravariance : (R-S)°=S5°-R°

o

These can be proved from °-universal by (elegant) indirect
proofs (example in next slide):

Indirect proof of involution

(R°)°CY

R°CY®
{ °-monotonicity}
RCY
{ indirection}

(R°)° =R

Meet and converse

{ ®-universal X°CY = X CVY° for X :=R°}

N-universal
XC(RNS) = (XCRA(XCS)
Converse distributes over N (proof in next slide):

(RNS)°=R°NS°

Another indirect proof

X CR°NS®

{ N-universal}

(X CR°) A (X CS5°)

{ monotonicity and involution}

(X°CR)A(X° CS)

{ N-universal}

X° C(RNS)

{ monotonicity and involution}
X C(RNS)°
{ indirection}

R°NS°=(RNS)°

10

Converses of functions

Function converses f°, g° etc. always exist (as relations)
enjoying the following property:

(F b)R(g a) =b(f°-R-g)a

which unfolds to

Pointwise vs pointfree notation

Function

fac0 = 1
fac(n+1) = (n+1)x* facn

in pointfree notation:
fac-10 ,suc] = x - [suc , fac]
Property
facn=facm = n=m

(= fac is injective) in pointfree notation?

11

Properties in pointfree style (I)

fac is injective:

facn=facm = n=m

{ identity function / relation }
(facn) id (facm) = mnidm
= { rule (f b)R(g a) =b(f°-R-g)a }

n(fac®-id- facym = nidm

{ dropping variables n and m ; natural-id }

fac® - fac C id

Properties in pointfree style (Il)

Example property of integer arithmetics:

n|d N
T}T dxg<n=q<mn/d

{ using “Haskell section notation” }
(dx)g<n = q<n(/d)

{ rule (f b)Ra=b(f° - R)a }
q((dx)°- <)n = g(<-(/d))n

{ pointwise equality }
(@x)°-< = <-(/d)

Reasoning:

q < (n/m)/d
= { *universal” property }

dxg<mn/m

12

Orders and their taxonomy (A)

R
An order (or endo-relation) A <——— A is

reflexive: iff idga CR
coreflexive: iff R Cidy

transitive: iff R-RCR
anti-symmetric: iff RNR° Cida
symmetric: iff RCR°(=R=R°)
connected: iff RUR°=T

T
where A < A is the largest relation of its type.

Order taxonomy (B)

e Preorders are reflexive and transitive orders.
e Partial orders are anti-symmetric preorders
e Linear orders are connected partial orders

e Equivalences are symmetric preorders

e Predicates are c%reflexive orders: the “meaning” of a

predicate Bool < A is a coreflexive relation [¢] such
that

pa = a[d]a

mapping every a which validates ¢ onto itself.

Order taxonomy (C)

J]"\%
symmetric veflex'\l\ /m'sitive anti-symmetric connected
, /_—/preo'der

equivalénce partial order

13

Properties (A)

Dedekind'’s rule (also known as the modular law):
(R-S)NT C R-(SN(R°-T))
Dually (apply converses and rename):
(R-S)NnT C (RN(T-S°)-S
Symmetrical equivalent statement:
(R-S)NT C (RNn(T-5°)-(SN(R°-T))

= "weak right-distribution of meet over composition”.

Derived combinators

R ker R
e Kernel of B<—— Ais A < A defined by

kerR R°. R

R img R
e Image of B<—— A is B < B defined by
imgRE R- R°
e Duality:
ker (R°) = imgR
img(R°) = kerR

14

Properties of kernel and image

Order-preservation:

RCS = kerRCkerS
RCS = imgRCimg$§

Symmetry:

(ker R)° = kerR
(imgR)° = imgR

Also:

RCR-kerR (=imgR-R)

Entireness and simplicity

An entire (or total) relation is such that its kernel is reflexive:
Risentire = idCkerR

A simple (or functional) relation is such that its image is
coreflexive:

Rissimple = imgRCid

Simplicity is the dual of entireness. Simple relations are also
called partial functions.

15

(Total) functions

Functions are both simple and entire relations, usually denoted
by lowercase letters f:

def-f N f-f7Cid

entire simple

Thus:

f € R= R is entire
R C f= Rissimple

In general, “larger than entire means entire” and “smaller than
simple means simple”

Surjectiveness and injectiveness

More taxonomy:
e R is surjective iff R° is entire

e R is injective iff R° is simple

Facts:
R is entire and injective = ker R =id
R is simple and surjective = imgR =1id
Summary:
| | Reflexive [Coreflexive]
ker R entire R injective R

img R || surjective R | simple R

16

Bijections

f is bijective iff it is an injective and surjective function (thus
simple and entire)

f
B <—— A bijective = ker f =idANimg f =id
In this case

id=f°-f A f-fo=id

Binary relation taxonomy

rejation

ir\jectwi\ simple surjective
repveseWction

injection surjection

bijection

Reasoning about functions

Shunting rules:

S =
S = RCS-f

N 1N

f-
R-f°
Equality:

fC9g=f=9g=f2g

Ping-pong proof of the equality rule follows.

17

Proof of functional equality

fCyg
{ identity}

f-idCg

{ shunting on f}

idC f°-g

{ shunting on g}

id-g° C f°

{ converses}

gl f

Adding structure to the calculus

Note a recurrent pattern in several laws above:

as well as in

f
X (-h°
——"

~

X° CY
<~

X

X

X

N

(W)X CY
——

Y

= XCY°
~~

i
~
N
S
=

Il
K
IN
3
I
&

18

Back to the primary school desk

The integer division algorithm

712 0 1~ w
I}T 2x3+1="7 " "e. 327/2

However

;}— 2x24+3=7 A 2#£7/2

g}f Ix14+5=7 A 1#£7/2

DO N

=N

Quotient is a supremum

nld provided q is the
}7 dxqg+r=n=q=mn/d | largest such ¢ (ris

r smallest)
nfd = \/{q|3r.dxq+r:n}
= \dgldxg<n}
Maths teachers tell: it takes a while before children master the

“\/ semantics”!

What about you? Can you easily reason about n/d in this
format?

Try and prove (n/m)/d =n/(m x d).

19

“Universal” property instead

Alternative:

n }% dxg<n=q<n/d universal” property

r of integer division

Reasoning:
¢<(n/m)/d
= { *“universal” property }

dxg<n/m

Reasoning continued

“universal” property again
y ag

mx(dxq)<n

{ x is associative }

(mxd)xg<n

“universal” property again
y ag

g<n/(mxd)

Indirect equality

So we have
g<(n/m)/d = g<n/(mxd)
that is,
(n/m)jd = n/(m x d)
by the indirect equality rule:

(¢<=

q<y)=(z=y)

20

Also easy to check

Cancellation law: dx (n/d)<n

{ universal property }
n/d <mn/d
{ reflexive < '}

true
“Reflection”: dx1<n=1<n/d

{ 1 is the unit of x}

d<n=1<n/d

Galois connections

n/d is a Galois connection:

n }i dxg<n=q<n/d
riq ~~ ~~

In general, for preorders (A, <) and (B,C) and

(4,2) (B,E)

/
(f,g) are Galois connected iff

21

Galois adjoints

/ b<a = bLC ¢ a
~— ~—~
lower adjoint upper adjoint
that is
f°-< = Cvg
Remarks:

e Galois (connected) adjoints enjoy a number of interesting
generic properties

e Very elegant — calculational — way of performing
inequational reasoning (including logical deduction)

Basic properties

Cancellation:

(f-9la<a and bC(g-f)b
Distribution (in case of lattice structures):
flaud) = (fa)Vv(fad)
glbAd) = (9b)M(gd)

Conversely,
e If f distributes over LI then it has an upper adjoint g (f#)
e If g distributes over A then it has a lower adjoint f (g°)

22

Other properties

If (f,g) are Galois connected,

e f (g) uniquely determines g (f) — thus the *, _*
notations

e f and g are monotonic
e (g, f) are also Galois connected — reverse the orderings

e f=f-g-fandg=9g-f-g

etc
Summary
| (fb)<a=bLC (ga)
| Description | = | = fF
Definition b=A{a|bC ga} a=|{b|fb<La}
Cancellation (ga)<a bC g(f a)
Distribution GuUY)=(fb)V(fY) (@'na)=(gad)n(
Monotonicity bCV =>fb< f UV a<a =>galgad
Converse
| (fX)CY=XC(gY) |
| Description | f=q | g=f! | Obs. |
| converse | (O)° | ()° |bR°a=aRb]
Thus:

Cancellation (R°)°=R
Monotonicity RCS=RC&S°
Distributions (RNS)°>=R°NS° (RUS)°=R°US"

23

Functions

(fX)CY=XC(@Y) |
Description | f=9 | g=f* | Obs. |
shunting rule (h-) (k) | NB: his a function
“converse” shunting rule | (-h°) (-h) NB: h is a function
Consequences:
Functional equality: hCg= h=k =h2Dk
Functional division: h"-R=h\R

Question: what does i\ R mean?

Relational division

| (fX)CY=XC(gY) |
| Description | f=¢ | g=f* | Obs. |
right-division (R) (R\) | right-factor
left-division (-R) (/R) | left-factor

Immediate: (R-) and (-R) distribute over union:

R-(SUT) = (R-S)U(R-T)
(SUT)-R = (S-R)U(T-R)

Some intuition about relational division operators follows.

Relational division

The relational division operators are upper-adjoints:
R-XCY=XCR\Y
X -RCY=XCY/X

Right division abstracts a (pointwise) universal quantification
XCR\Y

A c
RN, Y a(R\ Y)c = (Vb.bRa = bYc)
B

An example follows.

24

Example

Recall data division in the relational model:

A c
RN, S a(R\ S)c = (Vb.bRa = bSc)

b R a = flight b carries passenger a
b S ¢ = flight b belongs to air-company ¢

a (R\ S) ¢ = passenger a is faithful to company ¢, that
is, (s)he only flies company c.

Left division

By taking converses we arrive at S/ R = (R° \ S°)°:

XCS/R = XC(R°\S%°
= { converses and (R°\)"}
R°-X° g S°
= { converses}
X-RCS
ie. Galois connection
X-RCS = XCS/R

25

Meet

N-universal
XC(RNS) = (XCRA(XCS)
is a Galois connection
(A,n)
where A X = (X, X), cf.
(X, X)(€ x ©)(R,5) = X CN(R,S)

So N = Al distributes over itself, etc

Properties of N

From N-universal infer:

e MN-cancellation (X := RN S)
RNSCR AN RNSCS
e N-abbreviation (X := R)
RCS = R=RNS
e N-idempotency (S := R)

RNR = R

26

More properties of N

N is commutative:
RNS = SNR

N is associative:

RNn(SNT) = (RNS)NT
N-fusion:
T-(RNS) € (T'-R)N(T-S)
(RNS)-T C (R-T)N(S-T)
Meet and join
| fX)<Y=XLC(@gY) |
| Description | f=¢ | g=f* | Obs |
| meet | A | n [<is(Ex9]
| join | U | A JCis(cxQ9]
Join
U(R,S) CY =(R,5)(C x C)(Y,Y)
that is,

RUSCY=RCYASCY

27

Relational split

Functions:
c=(fg) = m-z=f A m-x=g
Relations:
XC(RS) = m-XCR A m-XCS&S
(4—0) T~
(x ,cx9 (Ax B ~——C,C)

#—o

Properties

(-,) is an upper-adjoint, so it distributes over meet

(R,SNT) = (R,S5)N(R,T)
(SNT,R) = (S,R)N(T,R)

etc. Moreover:
(R,S) = (77 -R)N (75 -5)

Why? Again Galois at work:

Calculation

X C(R,S)

m-XCRAm-XCS

{ Galois connected ((f-), (f°*))}
XCn-RAXCmy -8

{ Galois connected (N°,N)}

XC(mi-RNms-S)
{ indirect equality}
(R,S)=n7-RNm3-S

28

Pointwise (R, S)

(a,b)(R,S)¢ = (a,b)(m;-RN75-S)c
{ pointwise N}

(@,b)(x% - R)e A (a,b)(x3 - S)e

= { rule (f b)Ra=b(f°- R)a }
m1(a,b)Rc A m2(a,b)Sc

= { projections}

aRc A bSc
Relational either
Functions:
[f.9l=2 = f==z-i1 Ag=z-i

Relations:

[R,S]CX = RCX-is ASCX iy (2)
Thus [-,] is a lower-adjoint, it distributes over U, etc. Moreover,

[R,S] = (R-i)U(S 143) @)

Domain and range

| (fFX)CY=XC(gY) |

| Description | f=¢ | g=f* | Obs. |
domain dom (T lower C restricted to coreflexiveg
range rng (-T) lower C restricted to coreflexiveg
cf.
domX CY
A A
TN, X domXCY=XCT-Y
B

29

Domain and range

Dualization:
dom R = rng R°
Explicit definitions:
mgR = imgRNid
domR = imgR°Nid= ker RNid

Facts:

R = R-(domR)
R = (mgR)'R

Domain and split

The following fact holds:
(R,9)° - (X,Y) = (R°-X)N(S°-Y)
Corollary:
domR = ker(id,R)
Another consequence of the fact above:
ker R C ker (S-R) <« S entire
Corollary:

kerR C ker(f-R)

Comprehending relations

R
For each B <—— A define its graph or comprehension by
G R ={(b,a)| bRa}

Clearly, R =[G R] and so we often abbreviate G R to R.
The graph of every coreflexive S is made simpler for obvious
reasons:

G S={a|aSa}

30

Finite relations

R is said to be finite wherever G R is a finite set.

e Finite relations, which can be enumerated, browsed and
stored in a computer, are the subject of relational
database design.

o Every finite, simple relation expresses a functional
dependency.

e The graphs of finite and simple relations are called
mappings in VDM-SL terminology.

e We will use greek identifiers (o, 7 etc) to denote (finite)
mappings

VDM-SL mapping notation

e Datatype: map A to B

e Pointwise VDM-SL concrete syntax
{a—b|boa}

replaces {(b,a) |bo a}.

e In VDM-SL notation, b o a is furthermore rephrased as
a € domo Ab=oc(a) — cf. 0 =0 - domo — that is, we
have

o = {a—o(a)|a€domas}

31

Meaning of VDM-SL specs

Spec(a: A) r: B
pre precond(a)
post postcond(r,a);

where

precond postcond
bool <—— A |, bool<——Bx A

Spec
means B <—— A where

Spec ¥ [postcond] - [precond]

VDM-SL Sqrt spec

Sqrt(x: real) r: real
pre true
post sq(r) = x ;

means

Sqrt = [A(r,z).sqr =z]

{ meaning of a binary predicate }

rSqrtx = (sqr)idz

{ converse of a function; natural-id }

Sqrt = sq°

32

Turning implicit specifications...

Sorting in VDM-SL notation:

Sort(1l: seq of int) r: seq of int
post IsOrdered(r) and IsPermutation(r,l);

where

IsPermutation: seq of int * seq of int -> bool
IsPermutation(11,12) ==
forall e in set (elems 11 union elems 12) &
card {i | i in set inds 11 & 11(i) e} =
card {i | i in set inds 12 & 12(i) e};

. .. into relational models

... abbreviates to
Sort %' [IsOrdered] - IsPermutation(ker seq2bag)

assuming

seq2bag: seq of int -> map int to natl
seq2bag(l) ==
{el>card { i | i in set inds 1 & 1(i) = e } |
e in set elems 1 };

IsPermutation is an equivalence because ker f always is
reflexive, symmetric and transitive.

33

Relational semantics of VDM-SL

From the VDM-SL on-line manual:

| Operator | Name | Semantics description

Creates the map consisting of
s <: m | Domain restrict to | the elements in m whose key is in
s. s need not be a subset of dom m.

Formal semantics:

[s<:m] = [m]-[s]

where [s] is correflexive and [m] is simple.

Relational semantics of VDM-SL

From the VDM-SL on-line manual:

| Operator | Name | Semantics description

overrides and merges m1 with m2, i.e. it is likg
a merge except that m1 and m2 need not b
compatible; any common elements are as by
m2 (so m2 overrides m1.)

mi ++ m2 | Override

Formal semantics:
[ma++me] = [m2] = [ma] , [mi]

cf. relational McCarthy conditional:

34

Relational McCarthy conditional

It is defined by

def

R—»S,T = (S-domR)UT - (id—domR)
where
| (fX)CY=XC(@gY) |
Description | f=9¢" | g=f* | Obs.
difference (_—R) | (RU)
that is,
X-RCY = XCRUY
X-R = [({VIXCRUY}

Reasoning about VDM-SL

We want to prove VDM-SL properties such as

X<:(Y<:io) = (XNnY)<:o
fi<io = (o)
X<:(o1++02) = (X<:iop)++(X<:o02)

First, some properties of coreflexives:

e Coreflexives are symmetric and transitive:

R=R°=R-R=RnNnid
e Meet of two coreflexives is composition:

RNS=R-S

35

Example of proof

[X <: (Y<:0)]
{ relational meaning of <:}

[Y <: o] - [X]

{ relational meaning of <:}

([o1- YD - [X]

= { associativity of - and coreflexives}

[o1- (IXT- YD

= { meet of two coreflexives is composition }

[o]- (XTI YD)

Proof continued

[o]- (IXINnI¥D
{ meaning of set intersection }

[o]-[X NY]

{ relational meaning of <:}

[(XNY)<: o]

36

Another proof

[[X <: (0’1 ++ 0'2)]]

{ relational meaning of <: and ++}
(lo2] = lo2] , [o1]) - X1
= { McCarthy fusion law}

[o2]-[X] = [o2] - [X] [on] - [X]

= { relational meaning of <:}

[X<:02] = [X<:02], [X<:01]
= { relational meaning of ++}

[(X <: 01) ++ (X <: 02)]

Etc.

Home work: define the relational semantics of e.g..

Operator Name Semantics description

Creates the map consisting
of the elements in m whose
key is not in s. s need not
be a subset of dom m.

m <-: s | Domain restricted by

and prove similar properties.

Override pointwise

Since
dom (0'1 ++ 0'2) = domo; U domosy

we have, after expansion of the relational definition:

sl ++ s2 ==
{k |-> if k in set dom s2
then s2(k)
else si(k)

| k in set dom s1 union dom s2 }

The above proof over this definition would have been far less
compact.

37

Inductive override

Another version of map override:

sl ++ s2 ==
if s1 = {|->}
then s2
else let k in set dom sl
in { k |-> if k in set dom s2
then s2(k)

else s1(k) } munion { k } <-:

How do we arrive at this recursive scheme?

See next set of slides.

sl ++ s2

38

