
An Introduction to Relational
Formal Modelling

DI/UM, 2002

J.N. Oliveira

DIUM/2003 – p.1/84

Functions are not enough

Partiality (in Haskell):

Mpi> (split head tail)(tail [1])

(

Program error: {head []}

Mpi> 2/0

Program error: {primDivDouble 2.0 0.0}

Functions such as tail, /, head (and many others!)

are partial
DIUM/2003 – p.2/84

Functions are not enough

VDM-SL notation:

vdm> p tl []

l. 1, c. 4:

Run-Time Error 77: The sequence was empty

vdm> p 2/0

l. 1, c. 3:

Run-Time Error 76: Division with zero

vdm>

Functions such as tl, /, hd (and many others!) are

partial

DIUM/2003 – p.3/84

Functions are not enough

gets : set of nat -> nat * set of nat

gets(s) == let a in set s

in mk_(a,s \ {a}) ;

is not only partial

vdm> p gets({})

/home/jno/work/x.vdm, l. 4, c. 25:

Run-Time Error 53: The binding environment was empty

vdm>

but also non-deterministic:

�� ��� � ���
	
 � � ��
� 	

 � �� �� � ��
	
 � � 	

�
� �

DIUM/2003 – p.4/84

Specifications as “properties”

Specification of square root:

� � �� � � � � � �
that is

� �
	 � �� � � � �

(= � �� �

has left inverse � �)

Specification of �
 � �
:

� � � �
 � � � �� � � ��� � � � � � � � � � � � �� ��� � �
 � � � �
�

DIUM/2003 – p.5/84

Relational approach

Need to model

total/partial functions

non-determinism
properties, datatype invariants and
loop-invariants

orders and inductive structures

vagueness or under-specification. . .

DIUM/2003 – p.6/84

Relational approach

Need to model

total/partial functions

non-determinism
properties, datatype invariants and
loop-invariants

orders and inductive structures

vagueness or under-specification. . .

adoption of binary relations, which have a long

tradition in the. . .

DIUM/2003 – p.6/84

Pre/post specification style

Sort(l: seq of int) r: seq of int

post IsPermutation(r,l) and IsOrdered(r);

IsPermutation: seq of int * seq of int -> bool

IsPermutation(l1,l2) ==

IsOrdered: seq of int -> bool

IsOrdered(l) ==

gets(s: set of nat) r: nat * set of nat

pre card s > 0

post r.#1 in set s and r.#2 = s \ {r.#1} ;

DIUM/2003 – p.7/84

Pre/post specification layout

Spec(a: A) r: B

pre Precond(a)

post Postcond(r,a);

where

��� � �� � � � � 	
 �

� � � � �� � � � ��
 � 	
 �

leads to the binary relation approach:

� � � � � � � ��� � ��� � � � � � � �� � �� ��
 �

DIUM/2003 – p.8/84

From predicates to relations

Predicate logic connectives such as eg.

�

are
“overloaded” operators

They can be regarded as models of a more
structured logic — that of binary relations

Functions generalize to binary relations in a
very natural way.

Predicates, sets, functions and relations can all
be combined in a single relational calculus

Usual infix notation, e.g. � � �

, can be
generalized to any relation , e.g. � �

DIUM/2003 – p.9/84

Sets / functions made relational

Strategy: identify every

function � � with the binary relation
relating � and

�

iff

� � � . So,
� � literally

means

� � � .

binary predicate � �

 �

�
with binary

relation

� � � � � such that � � � � � � � � � � � �
� �

.

unary predicate

�

 �

�
with binary relation� � � � � such that � � � � � � � � � � � � � � � �

.

set

�

with
� �� �
	 � � � � �

. So,
� � � � � � � � � � � � � � �

DIUM/2003 – p.10/84

Arrows “are” binary relations

“Type” relations in a way consistent with

functions:

�

wherever
� � involves

� � and � � .

From now on, an arrow

�

means a binary relation from (source) to
(target) and write

� � to denote that pair

� �
� � �

is in .

DIUM/2003 – p.11/84

Relations as Arrows

Ordering on relations:

� � � � � ��

�

means that is either less defined or
more deterministic than

�
.

Extend composition 	 � to 	 �

in the
obvious way

� � 	 � ��� � � � � 	
� � � � ��

Introduce converse

�

� � � � � � � �

DIUM/2003 – p.12/84

Relational Equality

Pointwise equality:

� � � � � 	 � � � 	 � � �
Pointfree equality:

Cyclic implication (“ping-pong”) rule:

� � � � � � � � � � �

Indirect equality rules:

� � � � � ��
�

� � � � � � � � �

� � ��
�

� �� � � � � � �

DIUM/2003 – p.13/84

Basic relational combinators

Given

�

and

�

Composition

�	 is s.t.

� � � 	 � �
holds wherever there exists some

� � such
that � � � � � � .

Converse
��

of

�

� � � � � � � �

Meet
� �

— recall set-theoretical intersection

DIUM/2003 – p.14/84

Basic Relation Calculus (I)

Composition is associative:

	 � �	 � � � 	 � � 	
Identity

	 � � � � �	 �

Empty relation

	 � 	 �

where

�

is the smallest relation of its type.

DIUM/2003 – p.15/84

Basic Relation Calculus (II)

Composition is monotonic:

�

� 	 � � �	 �

Bottom and top relations:

where

�

is the largest relation of its type.
Pointwise descriptions:

� � � � � � � �

� � � � � � �

DIUM/2003 – p.16/84

Converse

�

-universal

� � �

�

-monotonicity:

� � � � �

Then:

Involution :

� � � � �

Contravariance :

� 	 � � � � � � 	 �

These can be proved from

�

-universal by (elegant)

indirect proofs (example in next slide): DIUM/2003 – p.17/84

Indirect proof of involution

� � � �

� � �

-universal

� � �

for � �

� �

� � �

-monotonicity
�

� � �

indirection
�

� � � � �
DIUM/2003 – p.18/84

Meet and converse

�

-universal

� � � � � � � � � � �

Converse distributes over

�

(proof in next slide):

� � � � � � � � � �

DIUM/2003 – p.19/84

Another indirect proof

�� �� � � �

� � �

-universal

�

� � � ��	
 � � � � �	

� �

monotonicity and involution

�

� � � � �	
 � � � � �	

� � �

-universal

�

� � � � � � �	

� �
monotonicity and involution

�

�� � � � �	 �

� � �

indirection

�

�� � � � � � � � �	 �

DIUM/2003 – p.20/84

Converses of functions

Function converses

�
� � � etc. always exist (as

relations) enjoying the following property:

� � � � � � � � � � � 	 	 � � �

which unfolds to

� � � � � � � � 	 � � � (f := id)

� � � � � � � � 	 � � (g := id)

DIUM/2003 – p.21/84

Pointwise vs pointfree notation

Function

� � � � �

� � � � � � � � � � �
� � � �

in pointfree notation:

� � 	 � �
� � � � � � � 	 � � � � � � � �

Property

� � � � � � � � � �

(� � � is injective) in pointfree notation?

DIUM/2003 – p.22/84

Properties in pointfree style (I)

� � is injective:

� � � � � � � � � �

� �

identity function / relation

�

� � � � � � � � � � � � � � � �

� �

rule

� � � � � � � � � � � 	 	 � � � �

� � � � � 	 � �	 � � � � � � � �

� �

dropping variables � and � ; natural-

� � �

� � � 	 � � � �

DIUM/2003 – p.23/84

Properties in pointfree style (II)

Example property of integer arithmetics:

� �
� �

�
 � � � � � � � � �

� �

using “Haskell section notation”

� �
 � � � � � � � � � � � �

� �

rule
�� 	 � � � � 	 �� � � � � �

� � � �
 � � � � � � � � � � � � � � � � �

� �
pointwise equality

� �
 � � � � � � � � � � �

Reasoning:

“universal” property

DIUM/2003 – p.24/84

Orders and their taxonomy (A)

An order (or endo-relation)

�

is

reflexive: iff

� ���

coreflexive: iff
� ��

transitive: iff 	
anti-symmetric: iff

� � � ���

symmetric: iff

� � � � � �

connected: iff

� � �

where

�

is the largest relation of its type.

DIUM/2003 – p.25/84

Order taxonomy (B)

Preorders are reflexive and transitive orders.

Partial orders are anti-symmetric preorders

Linear orders are connected partial orders

Equivalences are symmetric preorders

Predicates are coreflexive orders: the

“meaning” of a predicate

 �

�

is a
coreflexive relation

� � � �

such that
� � � � � � � �

mapping every � which validates onto itself.

DIUM/2003 – p.26/84

Order taxonomy (C)

order

symmetric reflexive transitive anti-symmetric connected

preorder

equivalence partial order

linear

DIUM/2003 – p.27/84

Properties (A)

Dedekind’s rule (also known as the modular law):

� 	 � � � 	 � � � � � 	 � �

Dually (apply converses and rename):

� 	 � � � � � � 	 � � � � 	 �

Symmetrical equivalent statement:

� 	 � � � � � � 	 � � � � 	 � � � � � 	 � �

= “weak right-distribution of meet over composition”.

DIUM/2003 – p.28/84

Derived combinators

Kernel of

�

is
ker

�

defined by

ker

��� �
� � 	

Image of

�

is
img

�

defined by

img
��� �

� 	 �

Duality:

ker

� � � � img
img

� � � � ker

DIUM/2003 – p.29/84

Properties of kernel and image

Order-preservation:

�

ker ker
�

�

img img

�

Symmetry:

�

ker
� � � ker

�

img
� � � img

Also:
	 ker

� � img 	 �

DIUM/2003 – p.30/84

Entireness and simplicity

An entire (or total) relation is such that its kernel is
reflexive:

is entire � � �

ker

A simple (or functional) relation is such that its
image is coreflexive:

is simple � img

� �

Simplicity is the dual of entireness. Simple relations

are also called partial functions.

DIUM/2003 – p.31/84

(Total) functions

Functions are both simple and entire relations,
usually denoted by lowercase letters :

� � � 	

� �� �

entire

� 	 � � �

� �� �

simple

Thus:

is entire
is simple

In general, “larger than entire means entire” and
“smaller than simple means simple”

DIUM/2003 – p.32/84

Surjectiveness and injectiveness

More taxonomy:

is surjective iff

�

is entire

is injective iff

�

is simple

Facts:

is entire and injective � ker � � �

is simple and surjective � img � � �

Summary:
Reflexive Coreflexive

ker R entire injective
img R surjective simple

DIUM/2003 – p.33/84

Bijections

is bijective iff it is an injective and surjective
function (thus simple and entire)

�

bijective � ker � � � �

img � � �

In this case

� � � � 	 � 	 � � � �

DIUM/2003 – p.34/84

Binary relation taxonomy

relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection

DIUM/2003 – p.35/84

Reasoning about functions

Shunting rules:

	 � � � 	 �

	 � � � �	

Equality:

� � � � � �

Ping-pong proof of the equality rule follows.

DIUM/2003 – p.36/84

Proof of functional equality

� � �

� �

identity

� � � �� �

� �

shunting on

�

� �� � � � �

� �
shunting on �

� � � � � � � �

� �

converses

� � �

DIUM/2003 – p.37/84

Adding structure to the calculus

Note a recurrent pattern in several laws above:

�
� �� �

� �

� �
� �� �

� �

�� 	 �
� �� �

� �

� �� �	 �

� �� �

� �

�	 � � �

� � � �

� �

� �	 � �

� � � �

� �

as well as in

� � � � �

� � � �

��

� � � � �� � �

� �� �

��

DIUM/2003 – p.38/84

Back to the primary school desk

The integer division algorithm

� �

� �

� � � � � �

, “ie.”
� � �� �

However

� �

� �

� � � � � � � � � �� �

� �

� �

� � � � � � � � � �� �

DIUM/2003 – p.39/84

Quotient is a supremum

� �

� �

� � � � � � � � � �� �

provided � is the
largest such � (� is
smallest)

�� � � � � � � � 	

� � � � � � �

� � � � � � � � �

Maths teachers tell: it takes a while before children
master the “ semantics”!
What about you? Can you easily reason about �� �

in this format?
Try and prove

� �� � � � � � �� � � � � �

.
DIUM/2003 – p.40/84

“Universal” property instead

Alternative:

� �

� �

� � � � � � �� � “universal”
property of integer
division

Reasoning:

� � �� � � � �

� �
“universal” property

�

� � � �� �

DIUM/2003 – p.41/84

Reasoning continued

� �

“universal” property again

�

� � � � � � � �

� � � is associative

�

� � � � � � � �

� �

“universal” property again

�

� �� � � � � �

DIUM/2003 – p.42/84

Indirect equality

So we have

� � �� � � � � � � �� � � � � �

that is,

� �� � � � � � �� � � � � �

by the indirect equality rule:

� � � � � �
� � � � � �
�

DIUM/2003 – p.43/84

Also easy to check

Cancellation law:

�
 � � � � � � �

� �

universal property

� � � � � � �

� �
reflexive

�

�� ��

“Reflection”:
�
 � � � � � � � � �

� � �

is the unit of

� � � � � � � � �

DIUM/2003 – p.44/84

Galois connections

�� �

is a Galois connection:

� �

� �

� � �
� �� �

��

� � � �� �
� �� �

��

In general, for preorders
�

�

�
and

�
�

�

and

�
�

� �
�

�

�

�
� � �

are Galois connected iff
DIUM/2003 – p.45/84

Galois adjoints

� �� �

lower adjoint

� � � � �
� � � �

upper adjoint
�

that is

�	 � 	 �

Remarks:

Galois (connected) adjoints enjoy a number of interesting
generic properties

Very elegant — calculational — way of performing
inequational reasoning (including logical deduction)

DIUM/2003 – p.46/84

Basic properties

Cancellation:

� 	 � � � � and

� � � 	 � �

Distribution (in case of lattice structures):

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

Conversely,

If

�

distributes over

�

then it has an upper adjoint � (

� �

)

If � distributes over

�

then it has a lower adjoint

�

(�
�

)

DIUM/2003 – p.47/84

Other properties

If

�
� � �

are Galois connected,

(�) uniquely determines � () — thus the _

�

,
_

�

notations

and � are monotonic

� ��

�

are also Galois connected — reverse the
orderings

� 	 � 	 and � � � 	 	 �

etc

DIUM/2003 – p.48/84

Summary

�� 	 � � � � 	 � � � � �

Description

� � �
�

� � � �

Definition

� 	 � � � � 	 � � �
 � � � � 	 � � 	 � �

Cancellation

� � � � � � � 	 � � �� � �

Distribution

� � 	 � 	 � � � � � 	 � � �� 	 � � � � � � � � � � � � � � � � � � �

Monotonicity

	 � 	 � � � 	 � � 	 � � � � � � � � � � � �

DIUM/2003 – p.49/84

Converse

� � � � � �
Description � � � � � �

Obs.

converse

�

_

� � �

_

� � � � � � � �

Thus:

Cancellation

� � � � �

Monotonicity
� � � � �

Distributions
� � � � � � � � � �

�
� � � � � � � �

DIUM/2003 – p.50/84

Functions

�� � � � � � � � � � � �
Description

� � �
�

� � � �
Obs.

shunting rule

�� � � �� � � � NB:

�

is a function

“converse” shunting rule

� � � � � � � � �

NB:

�

is a function

Consequences:

Functional equality:

� � � � � � � � � � �

Functional division:

� � � � � � � �

Question: what does

� � �

mean?
DIUM/2003 – p.51/84

Relational division

�� � � � � � � � � � � �
Description

� � �
�

� � � �

Obs.

right-division

� � � � � � � �
right-factor

left-division

� � � � � � � �
left-factor

Immediate:

� � � � and

� � � �

distribute over union:

� � � ��� � � � � � � � � � � � � � �

� ��� � � � � � � � � � � � � � � � �

Some intuition about relational division operators follows.
DIUM/2003 – p.52/84

Relational division

The relational division operators are upper-adjoints:

� � � � � � � � � � �

� � � � � � � � � � �

Right division abstracts a (pointwise) universal quantification

� �

� � � � �

�

� � � � � � � � � � � � 	 �
	 � � � 	 � � �

An example follows.

DIUM/2003 – p.53/84

Example

Recall data division in the relational model:

� �
� � � � � ��� � � � �
	

� � � �� �

� � = flight

�

carries passenger �

� � � = flight

�

belongs to air-company �

� � � � � � = passenger � is faithful to company

� , that is, (s)he only flies company � .

DIUM/2003 – p.54/84

Left division

By taking converses we arrive at

� � � � � � � � � �

:

� � � � � � � � � �

� �

converses and

� � � � � �

� 	 � � �

� �
converses

�

	 �

ie. Galois connection
	 � � � �

DIUM/2003 – p.55/84

Meet

�

-universal

� � � � � � � � � � �

is a Galois connection

�
� � �

where � �
�

�

, cf.

�
�

� � � � �
�

� � � � �
�

� �

So

� � �

distributes over itself, etc

DIUM/2003 – p.56/84

Properties of

From

�

-universal infer:

�

-cancellation (� � � �

)

� � � � � �

�

-abbreviation (� �)

� � � � �

�

-idempotency (
� � �)

� �

DIUM/2003 – p.57/84

More properties of

�

is commutative:

� � � � �

�

is associative:

� � � � � � � � � � �

�

-fusion:

	 � � � � � 	 � � � 	 � �

� � � � 	 � 	 � � � � 	 �

DIUM/2003 – p.58/84

Meet and join

� � � � � �
Description � � � � � �

Obs.

meet

�

is

� � �

join

�

is

� � �

Join:

� �
�

� � � �
�

� � � � � �
�

�

that is,
� � � � �

DIUM/2003 – p.59/84

Relational split

Functions:

� � � �
� �
 � ��� � � � � � ��� � � � �

Relations:

� � � �
�

�
 � ��� � � � � � ��� � � � �

�
� � � �

� � � �

�
�
 � � � �
 � �

�
� �

�
_� _

� � ��� � �
 � ��� � � � � �

DIUM/2003 – p.60/84

Properties

�

_� _

�

is an upper-adjoint, so it distributes over
meet

�

�
� � � � �

�
� � � �

�

�

� � � �

� � � �
�

� � �
�

�

etc. Moreover:

�

�
� � � ��� �� 	 � � � � �� 	 � �

(-98)

Why? Again Galois at work:

DIUM/2003 – p.61/84

Calculation

� � � �
�

�
 � ��� � � � � � ��� � � � �

� �

Galois connected
� �� � � �
�� � � � �

� � � �� � � � � � � �� � �

� �

Galois connected

��� �
�

� �

� � � � �� � � � � �� � � �

� � �
indirect equality

� �
�

�
 � � �� � � � � �� � �

DIUM/2003 – p.62/84

Pointwise �

� � �
� � �

�
� � � � � � �
� � � � � � 	 � � �� 	 � � �

� �

pointwise
� �

� � �
� � � � � � 	 � � � � � �
� � � � �� 	 � � �

� �

rule
� � � � � � � � 	 � � �

� � � � �
� � � � � � � � �
� � ��

� �

projections

�

� � � � ��

DIUM/2003 – p.63/84

Relational either

Functions:

��
� � � � � � � � � � � � � � � � � � �

Relations:

� �
�

� � � � � � � � � � � � � � � � � � (-102)

Thus

�

_� _

�

is a lower-adjoint, it distributes over

�

, etc.
Moreover,

� �
�

� � � � � � � �
�
� � � � � � �

�
�

(-103)

DIUM/2003 – p.64/84

Domain and range

�� � � � � � � � � � � �
Description

� � �
�

� � � �

Obs.

domain dom

� � � � lower
�

restricted to coreflexives

range rng

� � � �

lower
�

restricted to coreflexives

cf.

� �dom

� � �

�

� � dom

� � � � � � � � �

DIUM/2003 – p.65/84

Domain and range

Dualization:

dom � rng

�
Explicit definitions:

rng � img
� � �

dom � img
� � � � � ker

� � �

Facts:
� 	 �

dom

�

� �

rng

� 	

DIUM/2003 – p.66/84

Domain and split

The following fact holds:

�

�
� � � 	 �

�

� � � � 	 � � � � � 	 �

Corollary:

dom � ker
� � �

�

�

Another consequence of the fact above:

ker ker
� � 	 � �

entire

Corollary:

ker ker

� 	 �

DIUM/2003 – p.67/84

Comprehending relations

For each

�

define its graph or
comprehension by

� � � �
� � � � � � �

Clearly, � � � � �

and so we often abbreviate
to .
The graph of every coreflexive

�

is made simpler
for obvious reasons:

� � � � � � �� �

DIUM/2003 – p.68/84

Finite relations

is said to be finite wherever is a finite set.

Finite relations, which can be enumerated,
browsed and stored in a computer, are the
subject of relational database design.

Every finite, simple relation expresses a
functional dependency.

The graphs of finite and simple relations are
called mappings in VDM-SL terminology.

We will use greek identifiers (�� � etc) to denote
(finite) mappings

DIUM/2003 – p.69/84

VDM-SL mapping notation

Datatype: map to

Pointwise VDM-SL concrete syntax

� � �

� � �

� � �

replaces

� � �
� � � � �

� � �

.

In VDM-SL notation,
�

� � is furthermore
rephrased as � � dom � � � � �

� � �

— cf.

� � � 	 dom � — that is, we have

� � � � � �
� � � � � � dom �
�

DIUM/2003 – p.70/84

Meaning of VDM-SL specs

Spec(a: A) r: B

pre precond(a)

post postcond(r,a);

where

�

 �
�� � �� � �

�

�

 � �

� � � � � � � �

means

�
�� �

where

� � � �

��� �
� � � �
 � ��
 � � � � 	 � � �� � �
 � � � �

DIUM/2003 – p.71/84

VDM-SL � �

spec

Sqrt(x: real) r: real

pre true

post sq(r) = x ;

means

� � � � � � �� � � � � � � � � � � � � �

� �

meaning of a binary predicate

� � �� � � � � � � � � � � �

� �
converse of a function; natural-

� �

� � � � � � � �

DIUM/2003 – p.72/84

Turning implicit specifications...

Sorting in VDM-SL notation:

Sort(l: seq of int) r: seq of int

post IsOrdered(r) and IsPermutation(r,l);

where

IsPermutation: seq of int * seq of int -> bool

IsPermutation(l1,l2) ==

forall e in set (elems l1 union elems l2) &

card {i | i in set inds l1 & l1(i) = e} =

card {i | i in set inds l2 & l2(i) = e};

DIUM/2003 – p.73/84

. . . into relational models

. . . abbreviates to

�
 � � ��� �
� � �� � � �� � � � � � 	 � � � � �� � � � �
 �

DIUM/2003 – p.74/84

. . . into relational models

. . . abbreviates to

�
 � � ��� �
� � �� � � �� � � � � � 	 �

ker � � � � �� � �

assuming

seq2bag: seq of int -> map int to nat1

seq2bag(l) ==

�

e |-> card

�

i | i in set inds l & l(i) = e

�

|

e in set elems l

�

;

DIUM/2003 – p.74/84

. . . into relational models

. . . abbreviates to

�
 � � ��� �
� � �� � � �� � � � � � 	 �

ker � � � � �� � �

assuming

seq2bag: seq of int -> map int to nat1

seq2bag(l) ==

�

e |-> card

�

i | i in set inds l & l(i) = e

�

|

e in set elems l

�

;

IsPermutation is an equivalence because ker

always is reflexive, symmetric and transitive.
DIUM/2003 – p.74/84

Relational semantics of VDM-SL

From the VDM-SL on-line manual:

Operator Name Semantics description

s <: m Domain restrict to

Creates the map consisting of
the elements in m whose key is
in s. s need not be a subset of
dom m.

Formal semantics:

� � � <: � � � � � � � � � 	 � � � � �

where
� � � � � is correflexive and

� � � � � is simple. DIUM/2003 – p.75/84

Relational semantics of VDM-SL

From the VDM-SL on-line manual:

Operator Name Semantics description

m1 ++ m2 Override

overrides and merges m1 with m2, i.e. it is
like a merge except that m1 and m2 need
not be compatible; any common ele-
ments are as by m2 (so m2 overrides m1.)

Formal semantics:

� � � � ++ � � � � � � � � � � � � � � � � � �
� � � � � �

cf. relational McCarthy conditional: DIUM/2003 – p.76/84

Relational McCarthy conditional

It is defined by

�
 �
�

� ��� �
� � � � dom

� � � � � � � � 	 dom

� �

where

�� � � � � � � � � � � �

Description

� � �
�

� � � �

Obs.

difference
�

_ 	 � � � �� �

that is,

� 	 � � � � � � �� �

� 	 � � � � � � � �� �

DIUM/2003 – p.77/84

Reasoning about VDM-SL

We want to prove VDM-SL properties such as

<:

�

<: �
� � � � �

<: �

� �

<: � � �
�

�

<:

�
� � ++ � � � � �

<: � � � ++

�

<: � � �

First, some properties of coreflexives:

Coreflexives are symmetric and transitive:

� � � 	 � � � �

Meet of two coreflexives is composition:

� � � 	 �

DIUM/2003 – p.78/84

Example of proof

� � �

<:

� �

<: �
� � �

� �

relational meaning of <:

� � �

<: �
� � � � � � � �

� �

relational meaning of <:

� � �

�
� � � � � � � � � � � � � � �

� �

associativity of � and coreflexives

� �

�
� � � � � � � � � � � � � � � �

� �

meet of two coreflexives is composition

� �

�
� � � � � � � � � � � � � � � �

DIUM/2003 – p.79/84

Proof continued

� �

�
� � � � � � � � � � � � � � � �

� �

meaning of set intersection

� �

�
� � � � � � � � � �

� �

relational meaning of <:

� � � � � � �

<: �
� �

DIUM/2003 – p.80/84

Another proof

� � �

<:

�
�� ++ ��
� � �

� �

relational meaning of <: and ++

� � �

��
� �
 � �

��
� �

�
� �

��
� � � � � � � � �

� �

McCarthy fusion law

� �

��
� � � � � � � �
 � �

��
� � � � � � � �

�
� �

��
� � � � � � � �

� �

relational meaning of <:

� � �

<: ��
� �
 � � �

<: ��
� �

�
� � �

<: ��
� �

� �
relational meaning of ++

� � � �

<: ��
�

++

� �

<: ��
� � �

DIUM/2003 – p.81/84

Etc.

Home work: define the relational semantics of e.g..

Operator Name Semantics description

m <-: s Domain restricted by

Creates the map con-
sisting of the elements in
m whose key is not in s.
s need not be a subset
of dom m.

and prove similar properties.

DIUM/2003 – p.82/84

Override pointwise

Since

dom

�
� � ++ � � � � dom � � �

dom � �

we have, after expansion of the relational definition:
s1 ++ s2 ==

{ k |-> if k in set dom s2

then s2(k)

else s1(k)

| k in set dom s1 union dom s2 }

The above proof over this definition would have been

far less compact.
DIUM/2003 – p.83/84

Inductive override

Another version of map override:
s1 ++ s2 ==

if s1 = {|->}

then s2

else let k in set dom s1

in { k |-> if k in set dom s2

then s2(k)

else s1(k) } munion { k } <-: s1 ++ s2

How do we arrive at this recursive scheme?
See next set of slides.

DIUM/2003 – p.84/84

	Functions are not enough
	Functions are not enough
	Functions are not enough
	Specifications as «properties»
	Relational approach
	Pre/post specification style
	Pre/post specification layout
	From predicates to relations
	Sets / functions made relational
	Arrows «are» binary relations
	Relations as Arrows
	Relational Equality
	Basic relational combinators
	Basic Relation Calculus (I)
	Basic Relation Calculus (II)
	Converse
	Indirect proof of involution
	Meet and converse
	Another indirect proof
	Converses of functions
	Pointwise vs pointfree notation
	Properties in pointfree style (I)
	Properties in pointfree style (II)
	Orders and their taxonomy (A)
	Order taxonomy (B)
	Order taxonomy (C)
	Properties (A)
	Derived combinators
	Properties of kernel and image
	Entireness and simplicity
	(Total)
functions
	Surjectiveness and injectiveness
	Bijections
	Binary relation taxonomy
	Reasoning about functions
	Proof of functional equality
	Adding structure to the calculus
	Back to the primary school desk
	Quotient is a supremum
	«Universal» property instead
	Reasoning continued
	Indirect equality
	Also easy to check
	Galois connections
	Galois adjoints
	Basic properties
	Other properties
	Summary
	Converse
	Functions
	Relational division
	Relational division
	Example
	Left division
	Meet
	Properties of $cap $
	More properties of $cap $
	Meet and join
	Relational emph {split}
	Properties
	Calculation
	Pointwise $split R S$
	Relational emph {either}
	Domain and range
	Domain and range
	Domain and split
	Comprehending relations
	Finite relations
	VDM-SL mapping notation
	Meaning of VDM-SL specs
	VDM-SL $Sqrt$ spec
	Turning implicit specifications...
	ldots into relational models
	Relational semantics of VDM-SL
	Relational semantics of VDM-SL
	Relational {McCarthy} conditional
	Reasoning about VDM-SL
	Example of proof
	Proof continued
	Another proof
	Etc.
	Override pointwise
	Inductive override

