An Introduction to Relational
Hylomorphisms
José N. Oliveira
Dept. Informatica

Universidade do Minho, 4700 Braga, Portugal
jno@di.uminho.pt

September 16, 2004

“How” does one specify?

General problem solving strategy? Divide-and-conquer:

divide (analysis)

Sub-problems

solve
sub-problems

Colution> Sub-solutions >

combine (synthesis)

Divide-and-conquer (formally)

Problem space Sub-problem structure

m

A FA
Solve ‘ ‘ F Solve
B FB

K/ Conquer

Solution space Questions:
e What are the mathematics of Divide, Conquer, Solve?
e What do (F A), (F Solve) mean?

Relators

Symbol F is overloaded:

e F A means a (parametric) datatype, eg. A* — seq of A
in VDM-SL;

e F X means a relation

A FA
X | | FX
B FB

Example: X* will be such that

X' = lenl=lenl' Vi € indsl.(1)X (I' i)

Properties of relators

Every relator F is monotone,
RCS = (FR)C(FS)
and commutes with () , (1)° and id:

F(R-S) = (FR)-(FS)
Fid = id
F(R) = (FR)

Terminology:

R S
A <——FAis called an F-algebra A——F A is
called an F-coalgebra

Back to divide-and-conquer

Divide-and-conquer = relational hylomorphism:

S
A——FA
that is, X=R-(FX)-S

X FX

B——FB
R

How do we solve this (hylo) equation for X7

An example first

mergeSort: seq of int —> seq of int
mergeSort (1) ==
cases 1 :
[el —> [el ,
others —> let 11 ~ 12
in set {1} be st
abs (len 11 - len 12) < 2 in
Imerge (mergeSort (11), mergeSort(12))

end;

is a relational hylomorphism for

FX = int+XxX

In fact

S

seq of int — Fseq of int
mergeSort F mergeSort
seq of int <—— Fseq of int

that is,

mergeSort = R-(FmergeSort)-S

where R = [singl ,lmerge] , for singl = Ae.[e]

mergeSort algebra and coalgebra

and S'is
S: seq of int -> (int | seq of int * seq of int)
S(1) ==
cases 1 :
[e]l] > e ,
others —-> let 11 ~ 12
in set {1} be st
abs (len 11 - len 12) < 2 in
mk_(11,12)
end;

Equations and fixpoints

Given an equation of pattern
r = fux

where A < A for some A, we will say that any solution to
this equation — that is, any ag € A such that

ap = fao

is a fixpoint of f.

Equations versus recursion

Equation z = f x can also be regarded as a “recursive”
definition of its fixpoints, eg.

e 2 =1+ 7 is a recursive definition of number 2.

However,

= ””zj3 has two solutions (=fixpoints) 1 e 3. What are

we “recursively defining” here?

e Furthermore, x = z defines any object!

e Last but not least, some equations don’t have any
solution at all. Think eg. of x =2z + 1 in IN.

Solving (Fixpoint) Equations I

Let A <S—A A be a partial order. Then, every a € A such
that
a <afa
is said to be a post-fixpoint of f, and every a € A such that
a >afa
is said to be a pre-fixpoint of f. Clearly,

Every a € A which is both a pre-fixpoint and a
post-fixpoint of f is a fixpoint of f.

Solving (Fixpoint) Equations Il

Function B < A is monotone wherever
[+<a C <B-f
for partial orders <4 and <pg, that is:
f<a C <pf
{ shunting}
<a € f<p-f

{ going pointwise}

a<ad = (fa)<s(fd)

Solving (Fixpoint) Equations 11l

f.g

Pointwise ordering on functions B <—— A:

f<sg = f C <p-g
meaning
f<sg = [€ <py
= { shunting}

idC f°-<p-g
{ going pointwise}

Va.fa<p ga

Solving (Fixpoint) Equations IV

Lattice fixpoint theorem (Tarski 1955) for monotone f as
above and <4 defining a complete lattice:

e The set of all fixpoints of f,
P={a€A|la=fa}
is non-empty and (P;<4) is a complete (sub)lattice.

e The least of all fixpoints (A P) and the greatest one
(\/ P) are as follows:

pfo= AP = Mzlz>fa}
vf = VP = V{z|z<afa}

Solving relational equations

Hylo-equation X=R-(FX)-S
—_————
fx
and other relational equations such as

X=RUR-X
—
g9 X

(cf. transitive closure) have least solutions

nf = [R,S]
ng = RT

because both f, g are monotone.

Laws of the Fixpoint Calculus

Computation rule:
nf = fnf
Example: hylo-cancellation law
[R,S] = R-F[R,S]-S
Rolling rule:
mwg-h) = g(uh-g)

Example: f=¢g-hwhere h X = R-X and g X = RUX. Then

Rolling rule

pf = wug-h)
= { rolling rule }
g(u(h - g))
{ definitions of g, h}
RU (pz.(R- (RU))
{ (R-) is a lower-adjoint }

RUpz.(R°UR-z)

Further application of this rule will “factor out” R?, R?, etc., In the
limit, uf = 52, R = R".

Hylo rolling rule

Let f=g-hwhere hX =FX - S and g = (R-). Then
pf = w(g-h) = guh-g)
= { definitions of g,h}
R-(pX.(F(R-X)-95)
= { relators }
R-(uXFR-FX.58)
that is,

I[R’S]] = R[[FRaS]]

10

Other rules

Square rule:
uf = p(f?)
Monotonicity:
f<g = uf<ug
Thus

[T,U]C[R,S] « TCRAUCS

Other rules

Induction rule:
fe<z = pf<z
Thus
[R,S]CT <« R-FT-SCT
and, in particular (coreflexive hylos):

[R,S]Cid « R-SCid
[R,R°] Cid <« Rissimple

Last — but not least — p-fusion:

11

p~fusion theorem

Let
fb
A B
gl | A
A B
fb

e h, g be monotonic,
e (A, <) and (B,C) be complete lattices,
e f” be a lower-adjoint.

Then

fuh)=pg < f-h=g-f

Applications of y-fusion theorem

Converse of a hylo
[S,R]"=[R5]
Proof: let f* = (_)° and

hX = S-FX-R
gX = T-FX-U

that is,

ph=[S,R]
pg=[T,U]

12

Proof

Then

[[SvR]]o:[[T7U]]
= { w-fusion theorem }
(S-FX-R°=T-F(X°)-U

{ converse and F is a relator}
R°-FX°.-85°=T-FX°-U
= { Leibnitz}
R =TAS°=U

Hylo(cata)-fusion

V-[SSR]=[T,R] « V-S=T-(FV)
Proof: since (V-) = (V\)°,
<= { p-fusion theorem }

V- (S-FX-R)=T-F(V-X)-R

{ associative (-) and relator F }
(V-S)-FX-R=T-(FV)-(FX)-R
= { Leibnitz}

V.S=T-(FV)

13

Hylo(ana)-fusion

[SSR]-V=[S,U] <« R-V=FV.U
Proof: (:-V) = (/V)". Then
|IS7R]]V:|IS7U]]

<= { p-fusion theorem }
(S-FX-R)-V=S-F(X-V)-U

{ associative (-) and relator F }
S-FX-(R-V)=S-(FX)-(FV)-U
= { Leibnitz}

R-V=FV.-U

Examples: VDM collective types

ins
setof A 14+ AxsetofA
{R[} id + id x {|R[}
B 1+AxB

R

that is,
{R} = [R,ins®] where ips < [0, puts]

and ...

14

VDM-SL collective type set of A

puts[@A] : Q@A * set of @A -> set of @A
puts(e,s) == {e} union s
pre not e in set s ;

Pointfree version (for R = [u , f]):

shylo[QA,@B] : (@A*@B -> @B) * @B -> set of QA —-> @B
shylo(£f,u) (s) ==
if s={} then u
else let a in set s,
r =s \ {a}
in f(a,shylo[@A,@B] (f,u)(r));

VDM-SL collective type set of A

e For shylo(f,u) to be a function the following must hold:
fa, f(d,b)) = f(a',f(a,D))
e Fusion law
T {Rp={S} « T-R=5-(FT)
arises from hylo(cata)-fusion

e The reflection law holds:

{ins} = 1id

15

Relational cata(ana)morphisms

Define

(R) = [R,in°]
(S [in,S]

where F uF /7:"\ uF . For instance,
_/

elems = (jins))

Relational cata(ana)morphisms

From
[S,R]°=[R"S°]
infer
(5]
= [in,S]°°
— [[So,ino]]o
— (lSOI)O

(=ana is the converse of the cata of the converse)

16

Inductive coreflexives

Recall
[R,S]Cid <« R-SCid
which entails
(R) Cid <« RCin
that is,
(in-S)Cid <« SCid
Example (on finite lists):

IsOrdered (in - (id + ok))

Inductive coreflexives

where ok is the coreflexive induced by predicate

ok(a,x) == forall b in set elems x & a <= b
This leads to
IsOrdered = [nil ,cons - ok] -
(id + id x IsOrdered) -
[nil ,cons]®
= [ndl ,cons - ok - (id x IsOrdered)] -
[nil ,cons]®

17

Inductive coreflexives

...and, finally, to

IsOrdered(l) ==
if 1 =[]
then true
else (forall b in set elems t1 1 & hd 1 <= b) and
IsOrdered (tl1 1) ;

Exercise: calculate the above from (jin - (id + ok)])

VDM-SL data type map A to B

]

ns
map A toC 1+ (AxC) xmap A toC
{R[} id +id x (id,{
B 1+(AxC)xB
R

leading to the following pointwise syntax:

2y

VDM-SL data type map A to B

mhylo[@A,@B,@C] : (@A*Q@Cx@B -> @B) * @B ->
map Q@A to @C ->
@B
mhylo(f,u)(s) ==
if s={|->} then u
else let a in set dom s,
c = s(a),
r =s <—: {a}
in f(c,mhylo[@A,@B,QC] (£f,u) (r));

18

Hylos as unique solutions

A standard result of the relational calculus establishes the
following condition for

uX.(R-FX-S) = X
to be a unique solution:

e the “accessibility relation” of S is required to be inductive
(cf. “well-founded” relations)

e This ensures termination insofar as the “size” of a
sub-problem generated by S is strictly smaller than its
source.

e One can perform induction over S.

Accessibility and membership

S
Accessibility relation for FA <—— A:
<s
A<——A

<s%er- S

€F €
where A < F A extends A <—— P A inductively over polynomial
functors, as follows:

€Ep = €
€c def
€Erx.x L
def
€rxe = (€r-m)U(Eg 'm2)
def
€rt¢ = [€F,€q]

19

Example

Let FX =14+ B x X. Then,

€1+BxX

= { € for coproduct bifunctor }
[€1,€EBxx]

= { € for constant and product (bi)functors }
[L,(€r m)U(Exx.x -m)]

= { € for constant and identity functor }
[L,(L-m1)U (i - m2)]

= { Land[R,S]=(R-i1)U(S-43) }

.0
T2 " 19

Example (pointwise)

Then,
<s = €14Bxx-S
= (my-43)-S
o - (ig - S)
meaning
a <sa = a =m xAl(iy 7)Sa

For example, for S = [nil ,cons]’ on finite sequences, we get

20

Accessibility on finite sequences

o - (i3 - [nil , cons]®)

ma - ([nil ,cons] - ia)°

= my-cons®
and therefore

a '<[nil ,cons]® @ = 2 (b, al) ANa= COTLS(b, a’)

a =
— ' !
= a '<[nz'l ,cons|® cons(b,a)

tla '<[m'l ,cons]® @

Hylo factorization (2)

in
For such inductive S, we can factor [R, S] in twe-components

pF = F(uF)
~_—
in°
A FA
Xll ‘FXl
in
uF —— F uF X1 = in - F
XQI ‘FXQ
B FB

X -

21

Hylo-factorization Theorem

Using (-)), [-] notation:

pX.(R-FX-S)=(R)-[S)

S
A FA
(s |) | Fis)
pF—FuF
) | | Fu)
B = FB

Taking converses:

pX.(R-FX-5°) = (R)-(S)°

* ra

) R
uF ——————FpuF

i) | | Fum
B FB

Entire /simple factorization if both R and S° are entire /simple
(=S surjective /injective)

A S FA
(1" |) | Fisy°
pF <— FuF
| | Fi)
B 7 FB

22

Virtual data-structuring

e Particular choice of F for sub-problem organization
induces intermediate type puF.

This is made explicit by hylo-factorization.

e Intermediate data-structure saves the outcome of a “one
go” divide step (S))° and passes it on to the conquer
step (|R)) for processing.

e In general, people “fuse” things very early in design, thus
virtualizing this structure.

e Factorization helps in spec understanding and
classification.

Final note on inductive relation <

Is such that the validity of a predicate ¢ can be proved by
structural induction over it:

(Va. ¢ a) <« (Ya. pa<s(Ve<a. ¢ cl)

induction step

which corresponds to pointfree definition
<\ XCX = TCX

where X generalizes ¢ such that ¢ a = aXb, for some fixed b.

23

