
Theorems for Free: an
Introduction

DI/UM, 2003

José N. Oliveira

Dept. Informatica

Universidade do Minho, 4700 Braga, Portugal

jno@di.uminho.pt

irhsl.tex – p.1/22

Parametric polymorphism: why?

Less code (specific solution = generic
solution + costumization)

Intelectual reward

Last but not least, quotation (from Theorems for
free!, by Philip Wadler [Wad89]):

From the type of a polymorphic function
we can derive a theorem that is satisfies.
(...) How useful are the theorems so
generated? Only time and experience
will tell (...)

No doubt: free theorems are very useful!

irhsl.tex – p.2/22

Polymorphic type signatures

Polymorphic function signature:

� �

where

�

is a functional type, according to the
following “grammar” of types:

� � � � � � � � �

� � � � � � ���	�

�

��
�

� � � � � type variables �, cf. polymorphism

What does it mean that is parametrically polymor-

phic?
irhsl.tex – p.3/22

Free theorem of type

�

Let

be the set of type variables involved in type

�

�
�

�
� � � be a -indexed family of relations (� in

case all such � are functions).

� be a relation defined inductively as follows:

��� 	
 ���� � � � ��� � � � � ����

� � �

� � � � �

��� � � � � � � � � � � � �

What kind of relation is � � � � �?

irhsl.tex – p.4/22

Reynolds arrow operator

� � �� � � � � �

�
��

�
oo

�

��

�oo

That is to say,

	

�

� �

� � �� � �

For instance,

� �� � � � � ��� � ��� � that is, � � � � � � � �

irhsl.tex – p.5/22

Free theorem (FT) of type

�

The following (remarkable) theorem — due to J.
Reynolds and advertised by P. Wadler — holds:

Given any function

� � �

, and as above,
then

� � �

holds, for any relational
instantiation of type variables in .

Note that this theorem

is a result about

�
holds independently of the actual definition of

�

.

holds about any function of type

�

irhsl.tex – p.6/22

First example

The target function:

� � � � � � � � � � �
.

Calculation of ��� � � � � � :

� � � � �

� �

rule ��� � � � � � � � � � � � � �

� � � �

� �

rule ��� 	
 �� � � � �� � � � � ���

� � �
 �

�
�

�
�

Calculation of FT

� � � � �

� � � � �
 � � � �

follows

irhsl.tex – p.7/22

� �

FT calculation

The FT itself will predict (

��
� abbreviated to

�

):

� �� � � � � � � � � � �� �

� �

definition

� � � � � ��� � �
	 � � �	 � �

� �� � 	 � � � � � � � 	 � �� �
In case R is a function , the FT theorem boils down to

� �� �

’s
natural property:

� �� � 	 � � � 	 � �� �

Further calculation (back to

�

):

irhsl.tex – p.8/22

Pointwise version of FT

� �� � 	 � � � � � � � 	 � �� �

� �

shunting rule

�

� � � � � � � � 	 � � � � 	 � � � �

� �

going pointwise
�

� � � � � � �� � � � � � � � � � �� � � � �

� � �

�� � � � ��� ��
�

� � � � � � � � � �� �� � � � � � � � �� �� � �

irhsl.tex – p.9/22

Pointwise version of FT

For example,

� � � �

will respect orderings:

� � � � � ��� �

� � � � ��� �

�� � � � �� � � � � � �

� � � � � � � � � � � � � � �

Exercise: calculate the FT of

� 	� � � �
�

�
� ��
 �

� � �

(the first parameter stands for the ordering relation.)

irhsl.tex – p.10/22

FT of

�

_

�

��

_

�

has generic type

��

_

� � � � �

� � � �
��

�

where

� � �� � �
��

� �

.

FT-

��

_

�

:

��

_

� � �

�

� �

�� �
 �

�

�

�
 � ��

_

�

FT-

��

_

�

calculation follows (�� � abbreviated to

�

�

):

irhsl.tex – p.11/22

FT-

�

_

�

corollaries

��

_

� � � � � �
�

� � � � � ��
_

�

� �

definition

� � � � � � � � �

� � � �
�

� � �� � � � � �� � �

� �

idem

�

� � �
�

� � � � �� � � � � � �� � �

At this point, we can infer . . .

irhsl.tex – p.12/22

FT-

�

_

�

corollaries

From this, infer

��

_

�

-fusion (�

� � � � �
� �):

� � � � � �
� � � � � � �� � � � � �� � �

��

_

�

-absorption (�

� � � � �

� �
):

� � � � � �

� � � � �� � � � � � �� � �

� �

replacement of � �

�� � � � � � �� � � � � �

� � �

irhsl.tex – p.13/22

Mutual recursion

Consider mutually-dependent and � as follows:

f: nat -> nat
f(n) == if n = 0 then 0 else g(n - 1);

g: nat -> nat
g(n) == if n = 0 then 1

else f(n - 1) + g(n - 1);

How do we reason about mutually-dependent func-

tions?

irhsl.tex – p.14/22

Mutual-recursion law

The situation is handled by the so-called
mutual-recursion law, also called “Fokkinga law”:

� � � � � � � �
� � �

�

� � � � � � � � �
� � �

�
� � � � �� � �
�

� � �

In terms of diagrams: from

�
�

��

� �
	 � � � �

��

��

oo

� � �

	oo

�
�

��

� �
	 � � � �

��

� �

oo

� � �

oo

irhsl.tex – p.15/22

Mutual-recursion law

. . . we get

� �

� � � �

��

� � �
	 � � � �

��

� �

oo

� � � �

� 	
 �oo

Proof:

� ��
� � � 	 � �� ��
�
� � 	 � � �
� � �

� �
by � -fusion

�

� ��
� � � 	 � �� �� 	 � � �
� � �
�
� 	 � � ��
� � � �

� �

by hypothesis

�

irhsl.tex – p.16/22

Proof

�
� � � � � � � � � � �� � � � �

�

� �

by (reverse) � -fusion

�

�
� � � � � � � �
� � � � � �

� �

equality is reflexive

�

T

Applying this to the above pair of and � :

� � �
� � �� � � � �
� � �

� � � �
� � �� � � ���
� � �
� � � �

irhsl.tex – p.17/22

Mutual-recursion law

The mutual dependence can be made more explicit

�
	 � �
� � �� � � � �
� ��� 	 � �
� � � �

� 	 � �
� � �� � � ��
� 	 	 � �
� � � �

The underlying inductive type is

�� �� � 	
� �� �� �

��� �

(1)

which is such that

� ��� � � 	 �

. So we can write

�	 � � � � �
� ��� � 	 � � �
� � �

� 	 � � � ��
� 	 � 	 � � �
� � �

irhsl.tex – p.18/22

Mutual-recursion law

So we identify

� � � �
� � � �

and

� � ��
� 	 � therefore obtaining

� �
� � �

� �

Fokkinga law

�

�� � � �
� ��� �
�

��
� 	 � � � �

� �

exchange law

�

�� � � �
�

� �
�

� ��� � 	 � � � �

which is easily converted into VDM-SL as follows:
fg: nat -> (nat*nat)

fg(n) == if n = 0 then mk_(0,1)

else let p=fg(n - 1)

in mk_(p.#2,p.#1 + p.#2);

irhsl.tex – p.19/22

Corollary: “banana-split”

Let

� � � 	 � � � and

� � � 	 � ��� in Fokkinga law. Then

�	 � �� �� 	 � � �
� 	 � � ��
� � �

� �

composition is associative and

�

is a functor

�

�	 � �� � 	 � � � � 	 � �
� � � �

� �

by � -cancellation
�

�	 � �� � 	 � �

� �

by cata-cancellation

�

� � �� � � �
Similarly, from

� � � 	 � � � we get � � �� � � �

.

irhsl.tex – p.20/22

Corollary: “banana-split”

Then we get

� �� � � �
�

�� � � � � � �� � � 	 � � � �
� 	 � ��� � � �

that is

� �� � � �
�

�� � � � � � �� �� � � � 	 � � � � �
� ��� � � �

(2)

by (reverse) � -absorption.

Comment: This law provides us with a very useful
tool for “parallel loop” inter-combination: “loops”

�� � � �

and

�� � � �

are fused together into a single “loop”�� �� � � � 	 � � � � �
� ��� � � �

. The need for this kind of
calculation arises very often.

irhsl.tex – p.21/22

Bibliography

[Wad89] P. Wadler. Theorems for free! In 4th
International Symposium on Functional
Programming Languages and Computer
Architecture, London, Sep. 1989. ACM.

irhsl.tex – p.22/22

References

[Wad89] P. Wadler. Theorems for free! In 4th Inter-
national Symposium on Functional Program-
ming Languages and Computer Architecture,
London, Sep. 1989. ACM.

22-1

	Parametric polymorphism: why?
	Polymorphic type signatures
	Free theorem of type t
	Reynolds arrow operator
	Free theorem (FT)
of type t
	First example
	$invl$ FT calculation
	Pointwise version of FT
	Pointwise version of FT
	FT of $scata _$
	 FT-$scata _$ corollaries
	 FT-$scata _$ corollaries
	Mutual recursion
	Mutual-recursion law
	Mutual-recursion law
	Proof
	Mutual-recursion law
	Mutual-recursion law
	Corollary: «banana-split»
	Corollary: «banana-split»
	Bibliography

