Theorems for Free: an
Introduction

DI/UM, 2003

José N. Oliveira
Dept. Informatica
Universidade do Minho, 4700 Braga, Portugal
jno@di.uminho.pt

irhsl.tex — p.1/2:

Parametric polymorphism: why?

m Less code (specific solution = generic
solution + costumization)

» Intelectual reward

= Last but not least, quotation (from Theorems for
free!, by Philip Wadler [Wad89])):

From the type of a polymorphic function
we can derive a theorem that Is satisfies.
(...) How useful are the theorems so

generated? Only time and experience
will tell (...)

= No doubt: free theorems are very useful!

irhsl.tex — p.2/2:

Polymorphic type sighatures

Polymorphic function signature:
f ot

where ¢ Is a functional type, according to the
following “grammar” of types:

t = t 1t
t == F(t1,...,tn)
t = v type variables v, cf. polymorphism

What does it mean that f is parametrically polymor-
phic?

irhsl.tex — p.3/2:

Free theorem of type ¢

Let

V' be the set of type variables involved in type t

{R,} . be aV-indexed family of relations (f, in
case all such R, are functions).

R; be a relation defined inductively as follows:

tn) — F(Rtl, « ey Rtn)
Rt—v — Rv
Rt:t’<—t" — Rt’ <— Rt"

What kind of relation is Ry <+ Ry?

irhsl.tex — p.4/2:

Reynolds arrow operator

f(R<S)g = f-SCR-g A< B
I
CTD
_ S
That Is to say, A<—RB
R
C~——D
R+ S

CA‘—DB

For instance, f(id<«+id)g = f =g thatis, id<id = id

irhsl.tex — p.5/2:

Free theorem (FT) of type ¢

The following (remarkable) theorem — due to J.
Reynolds and advertised by P. Wadler — holds:

Given any function 6 : ¢, and V' as above,
then 6 R; 6 holds, for any relational
Instantiation of type variables in V.

Note that this theorem
IS a result about ¢

holds independently of the actual definition of
6.

holds about any function of type ¢

irhsl.tex — p.6/2:

First example

= The target function: 6 = vl : a* < a*.
m Calculation of Ry . 4+:

Ryse s

= { rule Ri—y.y = Ry<+ Ry }
Ry« +— Rg»

= { rule Ri_ry,. 1) = F(Ry,. .., Ry,) }
R+ R/

= Calculation of FT invl (R« 4+) invl follows

irhsl.tex — p.7/2:

vnvl FT calculation

The FT itself will predict (R, abbreviated to R):

invl(R* < R*)invl
{ definiton f(R<S)g = f-SCR-¢g }
invl - R* C (R”) - invl

In case R is a function r, the FT theorem boils down to invl’s
natural property:

invl -r* = r*-invl
Further calculation (back to R):

irhsl.tex — p.8/2:

Pointwise version of FT

invl - R* C (R¥) - invl
{ shunting rule }
R* Cinvl® - (R*) - invl

{ going pointwise }

(R)r = (invll)(R*)(invl r)
9
Vi € inds l.(L1)R(ri) = (invl [)(R*)(invl 1)

irhsl.tex — p.9/2:

Pointwise version of FT

For example, tnvl will respect orderings:

Vi € inds .(1 i) < (r7)
= V7 € inds(invl 1).(invl 1)j < (invl r)j

Exercise: calculate the FT of

sort 1 a* < a* <+ (24 (a X a))

(the first parameter stands for the ordering relation.)

irhsl.tex — p.10/2;

FT of (_|)

= (_)) has generic type
(I_]):b<Fa<+ (b<B(a,b))

where Fa = B (a, Fa).
m FT-(_):

(_) - (Ro =B (Ra, Rp)) S (Bp<FRa)-(_)

= FT-(_|) calculation follows (R,, R, abbreviated to
R, S):

irhsl.tex — p.11/2;

FT-(_| corollaries

(L)-(S<B(R,S)) € (S«<FR)-(_)

{ definition f(R+ S)g = f-SCR-g }
f(S<B(R,S))g = (f)(S < FR)(g)

{ idem }

f-B(R,S)CS-g = (f)-FRCS- (g

At this point, we can infer ...

FT-(_) corollaries

From this, infer
= (_)-fusion (R, S := id, s):

(f-B(id,s)=s-g9) = (f)=s5"(g)
m (|_J)-absorption (R, S := r, id):
(f-B(rid)=g) = (f)-Fr={(g)

{ replacement of g }

(f)-Fr={(f-B(rid)

Mutual recursion

Consider mutually-dependent f and g as follows:

f: nat -> nat
f(n) ==1f n=01then 0 else g(n - 1);

g: nat -> nat

g(n) ==1f n=0then 1
else f(n - 1) + g(n - 1);

How do we reason about mutually-dependent func-
tions?

irhsl.tex — p.14/2:

Mutual-recursion law

The situation is handled by the so-called
mutual-recursion law, also called “Fokkinga law”:

frin="h-F(fg)
A = (f,9) = ({h, k)]
g-in="Fk-F{f g)

In terms of diagrams: from

T-—" FT T-—" FT

irhsl.tex — p.15/2;

Mutual-recursion law

... we get
pF <" F uF
<f,g>l lF (f.9)
A X By F(A X B)
Proof:

(f,9) -in = (h, k) - F(f, 9)
{ by x-fusion }

(f,9) in=(h-F(f,9),k-F(f 9))
{ by hypothesis}

irhsl.tex — p.16/2;

Proof

{ by (reverse) x-fusion }

(f,9)-in={(f,g)in

{ equality is reflexive}

T

Applying this to the above pair of f and g:

f[Qv suc] — [Qag]
g9-10,suc] = [1,4-(f,9)]

irhsl.tex — p.17/2:

Mutual-recursion law

The mutual dependence can be made more explicit

f-10,suc] = (0,7 (f,9)]
g-0,suc] = [1,+-(f,9)

The underlying inductive type Is

Ny, & 1+ IV (1)

F INg

which is such that F f = id + f. So we can write

fein = [0,m] - F(f, g)
g-in = [1,+]-F(f, g)

irhsl.tex — p.18/2;

Mutual-recursion law

So we identify i = [0, m5] and k = [1, +] therefore obtaining

(f,9)

{ Fokkinga law}
(<10, 2], [L, +]))

= { exchange law}

(1€0,1), (m2, +)1)

which is easily converted into VDM-SL as follows:
fg: nat -> (nat*nat)
fg(n) ==if n =0 then nk _(0,1)
else let p=fg(n - 1)
in nk_(p.#2,p. #1 + p. #2);

irhsl.tex — p.19/2;

Corollary: “banana-split”

Leth=1¢-Fm and £ = 5 - F o In Fokkinga law. Then

frin=(i-Fm)-F(f,g)
{ composition is associative and F is a functor}

frin=1-F(m-(f,9)

{ by x-cancellation }

f-in=1-Ff
— { by cata-cancellation}
f = ()

Similarly, from k£ = j - F m, we get g = (/7))

irhsl.tex — p.20/2;

Corollary: “banana-split”

Then we get

(2D, (5D) = (G- Fry, 5 - Frg))

that I1s

(2D, 05D) = ((@ x 7) - (F e, Fa)) (2)

by (reverse) x-absorption.

Comment: This law provides us with a very useful
tool for “parallel loop” inter-combination: “loops” (|:|)
and (7| are fused together into a single “loop”

((¢ x j) - (Fmy, Fma)|). The need for this kind of
calculation arises very often.

irhsl.tex — p.21/2;

Bibliography

[Wad89] P. Wadler. Theorems for free! In 4th
International Symposium on Functional
Programming Languages and Computer

Architecture, London, Sep. 1989. ACM.

irhsl.tex — p.22/2:

References

[Wad89] P. Wadler. Theorems for free! In 4th Inter-
national Symposium on Functional Program-
ming Languages and Computer Architecture,
London, Sep. 1989. ACM.

	Parametric polymorphism: why?
	Polymorphic type signatures
	Free theorem of type t
	Reynolds arrow operator
	Free theorem (FT)
of type t
	First example
	$invl$ FT calculation
	Pointwise version of FT
	Pointwise version of FT
	FT of $scata _$
	 FT-$scata _$ corollaries
	 FT-$scata _$ corollaries
	Mutual recursion
	Mutual-recursion law
	Mutual-recursion law
	Proof
	Mutual-recursion law
	Mutual-recursion law
	Corollary: «banana-split»
	Corollary: «banana-split»
	Bibliography

