Leis do Cálculo Relacional

lsb+jno

June 14, 2004

Axioms: •,\subseteq

(associativity)	$(R \cdot S) \cdot T=R \cdot(S \cdot T)$
(identity)	$R=R \cdot i d=i d \cdot R$
(\subseteq reflexivity)	$R \subseteq R$
(\subseteq transitivity)	$R \subseteq S \wedge S \subseteq T \Rightarrow R \subseteq T$
(\subseteq anti-symmetry)	$R \subseteq S \wedge S \subseteq R \Rightarrow R=S$
(monotonicity)	$S \subseteq T \wedge R \subseteq U \Rightarrow S \cdot R \subseteq T \cdot U$

Axioms: =

(ping-pong)	$R=S \equiv R \subseteq S \wedge S \subseteq R$
(indirection)	$R=S \equiv \forall X \cdot(X \subseteq R \wedge X \subseteq S)$

Axioms: \cap, ○

(\cap universal)	$X \subseteq(R \cap S) \equiv X \subseteq R \wedge X \subseteq S$
(o involution)	$R^{\circ \circ}=R$
(o monotonicity)	$R \subseteq S \equiv R^{\circ} \subseteq S^{\circ}$
(o contravariance)	$(R \cdot S)^{\circ}=S^{\circ} \cdot R^{\circ}$
(left modular)	$(R \cdot S) \cap T \subseteq R \cdot\left(S \cap\left(R^{\circ} \cdot T\right)\right)$

Dedekind Variations

(left modular)	$(R \cdot S) \cap T \subseteq R \cdot\left(S \cap\left(R^{\circ} \cdot T\right)\right)$
(right modular)	$(R \cdot S) \cap T \subseteq\left(R \cap\left(T \cdot S^{\circ}\right)\right) \cdot S$
(weak distr)	$(R \cdot S) \cap T \subseteq\left(R \cap\left(T \cdot S^{\circ}\right) \cdot\left(S \cap\left(R^{\circ} \cdot T\right)\right)\right.$

\cap LAWs

$(\cap$ associativity)	$(R \cap S) \cap T=R \cap(S \cap T)$
(\cap commutativity $)$	$R \cap S=S \cap R$
(\cap idempotence $)$	$R \cap R=R$
(\cap abbreviation $)$	$R \subseteq S \equiv R=R \cap S$
(\cap cancellation $)$	$R \cap S \subseteq R, R \cap S \subseteq S$
(\cap left fusion $)$	$T \cdot(R \cap S) \subseteq T \cdot R \cap T \cdot S$
(\cap right fusion)	$(R \cap S) \cdot T \subseteq R \cdot T \cap S \cdot T$

(reduction)	$R \subseteq R^{\circ} \equiv R=R^{\circ}$
(wrap)	$R \subseteq R \cdot R^{\circ} \cdot R$
$($ dist over $\cap)$	$(S \cap R)^{\circ}=R^{\circ} \cap S^{\circ}$

Misc

$$
\begin{array}{ll}
\text { (Dedekind: } \left.T=i d, R=R^{\circ}\right) & \left(R^{\circ} \cdot S\right) \cap i d \subseteq(R \cap S)^{\circ} \cdot(R \cap S) \\
\text { (Dedekind: } S=i d) & R \cap T \subseteq R \cdot\left(i d \cap\left(R^{\circ} \cdot T\right)\right)
\end{array}
$$

Kernel laws

(definition)	$\operatorname{ker} R=R^{\circ} \cdot R$
(duality)	$\operatorname{ker} R^{\circ}=\operatorname{img} R$
(monotonicity)	$R \subseteq S \Rightarrow \operatorname{ker} R \subseteq \operatorname{ker} S$
(symmetry)	$(\operatorname{ker} R)^{\circ}=\operatorname{ker} R$
(intro)	$R \subseteq R \cdot \operatorname{ker} R$
(• kernel)	$\operatorname{ker}(R \cdot S)=S^{\circ} \cdot \operatorname{ker} R \cdot S$
$(\cap$ kernel $)$	$R^{\circ} \cdot S \cap i d \subseteq \operatorname{ker}(R \cap S)$

Image Laws
(definition)
(duality)
(monotonicity)
(symmetry)
(intro)
$\operatorname{img} R=R \cdot R^{\circ}$
$\operatorname{img} R^{\circ}=\operatorname{ker} R$
$R \subseteq S \Rightarrow \operatorname{img} R \subseteq \operatorname{img} S$
$(\operatorname{img} R)^{\circ}=\operatorname{img} R$
$R=\operatorname{img} R \cdot R$

Order Taxonomy

(reflexive)	$i d_{A} \subseteq R$	
(coreflexive)	$R \subseteq i d_{A}$	
(transitive)	$R \cdot R \subseteq R$	
(symmetric)	$R \subseteq R^{\circ}$	
(anti-symmetric)	$R \cap R^{\circ} \subseteq i d_{A}$	
(connected)	$R \cup R^{\circ}=\top_{A}$	
(entire)	$i d \subseteq$ ker R	(total relation)
(simple)	img $R \subseteq i d$	(partial function)
(surjection)	R° entire	
(injection)	R° simple	

Coreflexives

(symm \& transitive)
(cancellation)
(distributivity) $\quad 2$
$R=R^{\circ}=R \cdot R=R \cap i d$
R coreflexive $\Rightarrow(R \cdot T \subseteq T) \wedge(T \cdot R \subseteq T)$
R coreflexives $\Rightarrow(R \cdot T) \cap S=R \cdot(T \cap S)$

Relational Operators as Galois Conections			
$(f X) \subseteq Y \equiv X \subseteq(g Y)$			
Description	$f=g^{\text {b }}$	$g=f^{\sharp}$	Obs.
converse	(-) ${ }^{\circ}$	($)^{\circ}$	
rightdivision	$(\cdot R)$	(/ R)	\ldots over R
leftdivision	(R.)	$(R \backslash)$	R under ...
shunting rule	(f.)	$\left(f^{\circ}.\right)$	NB: f is a function
"converse" shunting rule	$\left(\cdot f^{\circ}\right)$	$(\cdot f)$	NB: f is a function
range	rng	($\cdot \mathrm{T}$)	lower \subseteq restricted to coreflexives
domain	dom	(T.)	lower \subseteq restricted to coreflexives
implication	$(R \cap)$	($R \Longrightarrow$)	Note that $(R \Longrightarrow)=(\neg R \cup)$
difference	$(--R)$	$(R \cup)$	
definition	$f X=\bigcap\{Y \mid X \subseteq g Y\}$	$g Y=\bigcup\{X \mid f X \subseteq Y\}$	
distributive property	$f(X \cup Y)=(f X) \cup(f Y)$	$g(X \cap Y)=(g X) \cap(g Y)$	$\begin{aligned} & f\left(\bigcup_{i} X_{i}\right)=\bigcup_{i}\left(f X_{i}\right) \\ & g\left(\bigcap_{i} X_{i}\right)=\bigcap_{i}\left(g X_{i}\right) \end{aligned}$

