
Chapter 2

Recursion in the Pointfree Style

How useful from a programmer’s point of view are the abstract concepts presented in
the previous chapter? Recall that a table was presented — table 1.1 — which records an
analogy between abstract type notation and the corresponding data-structures available
in common, imperative languages.

This analogy is precisely our point of departure for extending the abstract notation
towards a most important field of programming:recursion.

2.1 Motivation

Let us consider a very common data-structure in programming: “linked-lists”. In PAS-
CAL one will write

L = ˆN;
N = record

P: A;
S: ˆN

end;

to specify such a data-structureL. This consists of a pointer to anode(N), where a
node is a record structure which puts some predefined typeA together with a pointer to
another node, and so on. In the C programming language, everyx 2 L will be declared
as

L x;

in the context of datatype definition

typedef struct N {
A first;
struct N *next;
} *L;

43

44 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

and so on.
What interests us in such “first year programming course” datatype declarations?

Records and pointers have already been dealt with in table 1.1. So we can use this
table to find the abstract version of datatypeL, by replacing pointers by the “1 + � � �”
notation and records (structs) by the “: : :� : : :” notation:� L = 1 +NN = A� (1 +N) (2.1)

We obtain a system of two equations on unknownsL andN , in whichL’s depen-
dence onN can be removed by substitution:� L = 1 +NN = A� (1 +N)$ f substitutingL for 1 +N in the second equationg� L = 1 +NN = A� L$ f substitutingA� L for N in the first equationg� L = 1 +A� LN = A� L
System (2.1) is thus equivalent to:� L = 1 +A� LN = A� (1 +N) (2.2)

Intuitively, L abstracts the “possibly empty” linked-list of elements of typeA, whileN abstracts the “non-empty” linked-list of elements of typeA. Note thatL andN are
independent of each other, but also that each depends on itself. Can we solve these
equations in a way such that we obtain “solutions” forL andN , in the same way we
do with school equations such as, for instance,x = 1 + x2 ? (2.3)

Concerning this equation, let us recall how we would go about it in schoolmathe-
matics: x = 1 + x2$ f adding�x2 to both sides of the equationgx� x2 = 1 + x2 � x2$ f �x2 cancelsx2gx� x2 = 1

2.1. MOTIVATION 45$ fmultiplying both sides of the equation by2 etc.g2� x� x = 2$ f subtractiongx = 2
We very quickly get solutionx = 2. However, many steps were omitted from the

actual calculation. This unfolds into the longer sequence of more elementarysteps
which follows, in which notationa� b abbreviatesa+ (�b) andab abbreviatesa� 1b ,
for b 6= 0: x = 1 + x2$ f adding�x2 to both sides of the equationgx� x2 = (1 + x2)� x2$ f + is associativegx� x2 = 1 + (x2 � x2)$ f �x2 is the additive inverse ofx2 gx� x2 = 1 + 0$ f 0 is the unit of additiongx� x2 = 1$ fmultiplying both sides of the equation by2g2� (x� x2) = 2� 1$ f 1 is the unit of multiplicationg2� (x� x2) = 2$ fmultiplication distributes over additiong2� x� 2� x2 = 2$ f 2 cancels its inverse12 g2� x� 1� x = 2$ fmultiplication distributes over additiong(2� 1)� x = 2$ f 2� 1 = 1 and1 is the unit of multiplicationgx = 2

46 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

Back to (2.2), we would like to submit each of the equations,e.g.L = 1 +A� L (2.4)

to a similar reasoning. Can we do it? The analogy which can be found between this
equation and (2.3) goes beyond pattern similarity. From chapter 1 we know that many
properties required in the reasoning above hold in the context of (2.4), provided the “=”
sign is replaced by the “�=” sign, that of set-theoretical isomorphism. Recall that, for
instance,+ is associative (1.46),0 is the unit of addition (1.77),1 is the unit of multi-
plication (1.79), multiplication distributes over addition (1.50) etc.Moreover, the first
step above assumed that addition is compatible (monotonic) with respect to equality,a = bc = da+ c = b+ d
a fact which still holds when numeric equality gives place to isomorphism and numeric
addition gives place to coproduct:A �= BC �= DA+ C �= B +D
— recall (1.44) for isosf andg.

Unfortunately, the main steps in the reasoning above are concerned with two basic
cancellation properties x+ b = c $ x = c� bx� b = c $ x = cb (b 6= 0)
which hold about numbers but do not hold about datatypes. In fact, neitherproducts
nor coproducts have arbitrary inverses1, and so we cannot “calculate by cancellation”.
How do we circumvent this limitation?

Just think of how we would have gone about (2.3) in case we didn’t know about
the cancellation properties: we would be bound to thex by 1 + x2 substitution plus
the other properties. By performing such a substitution over and overagain we would
obtain. . . x = 1 + x2$ f x by 1 + x2 substitution followed by simplificationgx = 1 + 1 + x22 = 1 + 12 + x4$ f the same as aboveg

1The initial and terminal datatypes do have inverses —0 is its own “additive inverse” and1 is its own
“multiplicative inverse” — but not all the others.

2.1. MOTIVATION 47x = 1+ 12 + 1 + x24 = 1 + 12 + 14 + x8$ f over and over again,n-timesg� � �$ f simplificationgx = nXi=0 12i + x2n+1$ f sum ofn first terms of a geometric progressiongx = (2� 12n) + x2n+1$ f let n!1gx = (2� 0) + 0$ f simplificationgx = 2
Clearly, this is a much more complicated way of finding solutionx = 2 for equation

(2.3). But we would have loved it in case it were the only known way, and this is
precisely what happens with respect to (2.4). In this case we have:L = 1 +A� L$ f substitution of1 +A� L for LgL = 1 +A� (1 +A� L)$ f distributive property (1.50)gL �= 1 +A� 1 +A� (A� L)$ f unit of product (1.79) and associativity of product (1.32)gL �= 1 +A+ (A�A)� L$ f by (1.80), (1.82) and (1.85)gL �= A0 +A1 +A2 � L$ f another substitution as above and similar simplificationsgL �= A0 +A1 +A2 +A3 � L$ f after(n+ 1)-many similar stepsgL �= nXi=0 Ai +An+1 � L

Bearing a largen in mind, let us deliberately (but temporarily) ignore termAn+1�

48 CHAPTER 2. RECURSION IN THE POINTFREE STYLEL. ThenL will be isomorphic to the sum ofn-many contributionsAi,L �= nXi=0 Ai
each of them consisting ofi-long tuples, orsequences, of values ofA. (Numberi
is said to be thelengthof any sequence inAi.) Such sequences will be denoted by
enumerating their elements between square brackets, for instance theempty sequence[] which is the only inhabitant inA0, the two element sequence[a1; a2] which belongs
to A2 provideda1; a2 2 A, and so on. Note that all such contributions are mutually
disjoint, that is,Ai \Aj = ; whereveri 6= j. (In other words, a sequence of lengthi is
never a sequence of lengthj, for i 6= j.) If we join all contributionsAi into a single set,
we obtain the set of allfinite sequencesonA, denoted byA? and defined as follows:A? def= [i�0Ai (2.5)

The intuition behind taking the limit in the numeric calculation above was that termx2n+1 was getting smaller and smaller asn went larger and larger and, “in the limit”,
it could be ignored. By analogy, taking a similar limit in the calculation just sketched
above will mean that, for a “sufficiently large”n, the sequences inAn are so long that
it is very unlikely that we will ever use them! So, forn!1 we obtainL �= 1Xi=0 Ai
Because

P1i=0Ai is isomorphic to
S1i=0 Ai (see exercise 1.19), we finally have:L �= A?

All in all, we have obtainedA? as a solution to equation (2.4). In other words,
datatypeL is isomorphic to the datatype which contains all finite sequences of some
predefined datatypeA. This corresponds to the HASKELL [a] datatype, in general.
Recall that we started from the “linked-list datatype” expressed in PASCAL or C. In
fact, wherever the C programmer thinks of linked-lists, the HASKELL programmer will
think of finite sequences.

But, what does equation (2.4) mean in fact? IsA? the only solution to this equation?
Back to the numeric field, we know of equations which have more than one solution —
for instancex = x2+34 , which admits two solutions1 and3 —, which have no solution
at all — for instancex = x+1 —, or which admit an infinite number of — for instancex = x.

We will address these topics in the next section aboutinductivedatatypes and in
chapter 3, where the formal semantics of recursion will be made explicit. This is
where the “limit” constructions used informally in this section willbe shown to make
sense.

2.2. INTRODUCING INDUCTIVE DATATYPES 49

2.2 Introducing inductive datatypes

DatatypeL as defined by (2.4) is said to berecursivebecauseL “recurs” in the defi-
nition of L itself 2. From the discussion above, it is clear that set-theoretical equality
“=” in this equation should give place to set-theoretical isomorphism (“�=”):L �= 1 +A� L (2.6)

Which isomorphismL 1 +A� Linoo do we expect to witness (2.4)? This will
depend on which particular solution to (2.4) we are thinking of. So farwe have seen
only one,A?. By recalling the notion ofalgebraof a datatype (section 1.18), so we
may rephrase the question as: which algebraA? 1 +A�A?inoo

do we expect to witness the tautology which arises from (2.4) by replacing unknownL
with solutionA?, that is A? �= 1 +A�A? ?
It will have to be of the formin = [in1; in2] as depicted by the following diagram:1 i1//in1 %%JJ

JJ
JJ

JJ
JJ

J 1 +A�A?in
��

A�A?i2oo in2
wwp p p

p p
p p
p p
p pA? (2.7)

Arrowsin1 andin2 can be guessed rather intuitively:in1 = [], which will express
the “NIL pointer” by the empty sequence, atA? level, andin2 = cons, wherecons is
the standard “left append” sequence constructor, which we for the moment introduce
rather informally as follows:cons : A�A? // A?cons(a; [a1; : : : ; an]) = [a; a1; : : : ; an] (2.8)

In a diagram: 1 i1//[] %%J
JJ

JJ
JJ

JJ
JJ

1 +A�A?[[];cons]
��

A�A?i2oo cons
wwp p p

p p
p p
p p
p pA? (2.9)

Of course, forin to be iso it needs to have an inverse, which is not hard to guess,out def= (! + hhd; tli) . (=[]?) (2.10)

2By analogy, we may regard (2.3) as a “recursive definition” ofnumber2.

50 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

where sequence operatorshd (head of a nonempty sequence) andtl (tail of a nonempty
sequence) are (again informally) described as follows:

hd : A? // A
hd [a1; a2; : : : ; an] = a1 (2.11)

tl : A? // A?
tl [a1; a2; : : : ; an] = [a2; : : : ; an] (2.12)

Showing thatin andout are each other inverses is not a hard task either:in . out = id$ f definitions ofin andoutg[[]; cons] . (! + hhd; tli) . (=[]?) = id$ f +-absorption (1.41) and (1.15)g[[]; cons . hhd; tli] . (=[]?) = id$ f property of sequences:cons(hd s; tl s) = sg[[]; id] . (=[]?) = id$ f going pointwiseg� =[] a) [[]; id] (i1 a):(=[] a)) [[]; id] (i2 a) = a$ f +-cancellation (1.38)g� =[] a) [] a:(=[] a)) id a = a$ f a = [] in one case and identity function (1.9) in the otherg� a = []) a:(a = [])) a = a$ f property(p! f; f) = f holdsga = a
A comment on the particular choice of terminology above: symbolin suggests that

we are going inside, or constructing (synthesizing) values ofA?; symbolout suggests
that we are going out, or destructing (analyzing) values ofA?. We shall often resort to
this duality in the sequel.

Are there more solutions to equation (2.6)? In trying to implementthis equation, a
HASKELL programmer could have written, after the declaration of typeA, the follow-
ing datatype declaration:

data L = Nil () | Cons (A,L)

2.2. INTRODUCING INDUCTIVE DATATYPES 51

which, as we have seen in section 1.18, can be written simply as

data L = Nil | Cons (A,L) (2.13)

and generates diagram1 i1//Nil
$$I

II
II

II
II

II
1 +A� Lin0

��

A� Li2oo Cons
xxq q q

q q
q q
q q
q qL (2.14)

leading to algebrain0 = [Nil; Cons].
HASKELL seems to have generated another solution for the equation, which it callsL. To avoid the inevitable confusion between this symbol denoting the newly created

datatype and symbolL in equation (2.6), which denotes a mathematical variable, let us
use symbolT to denote the former (T stands for “type”). This can be coped with very
simply by writingT instead ofL in (2.13):

data T = Nil | Cons (A,T) (2.15)

In order to makeT more explicit, we will writeinT instead ofin0.
Some questions are on demand at this point. First of all, what is datatypeT? What

are its inhabitants? Next, isT 1 +A� TinToo an iso or not?
HASKELL will help us to answer these questions. Suppose thatA is a primitive

numeric datatype, and that we addderiving Show to (2.15) so that we can “see”
the inhabitants of theT datatype. The information associated toT is thus:

Main> :i T
-- type constructor
data T

-- constructors:
Nil :: T
Cons :: (A,T) -> T

-- instances:
instance Show T
instance Eval T

By typingNil

Main> Nil
Nil :: T

we confirm thatNil is itself an inhabitant ofT, and by typingCons

Main> Cons
<<function>> :: (A,T) -> T

52 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

we realize thatCons is not so (as expected), but it can be used to build such inhabitants,
for instance:

Main> Cons(1,Nil)
Cons (1,Nil) :: T

or

Main> Cons(2,Cons(1,Nil))
Cons (2,Cons (1,Nil)) :: T

etc.We conclude thatexpressionsinvolving Nil andCons are inhabitants of typeT.
Are these theonly ones? The answer isyesbecause, by design of the HASKELL lan-
guage, the constructors of typeT will remain fixed once its declaration is interpreted,
that is, no further constructor can be added toT. DoesinT have an inverse? Yes, its
inverse is coalgebra outT : T // 1 +A� ToutTNil = i1 NILoutT(Cons(a; l)) = i2(a; l) (2.16)

which can be straightforwardly encoded in HASKELL using theEither realization of+ (recall sections 1.9 and 1.18):

outT :: T -> Either () (A,T)
outT Nil = Left ()
outT (Cons(a,l)) = Right(a,l)

In summary, isomorphismT outT
**�= 1 +A� TinThh (2.17)

holds, where datatypeT is inhabited by symbolic expressions which we may visualize
very conveniently as trees, for instancet t��� @@@t��� @@@t t1 Nil

Cons2 Cons

2.3. OBSERVING AN INDUCTIVE DATATYPE 53

picturing expressionCons(2; Cons(1; Nil)). Nil is the empty tree andCons may be
regarded as the operation which adds a new root and a new branch, saya, to a treet:t��� @@@tt��� @@@t t��� @@@tCons(a;) = Consa

The choice of symbolsT, Nil andCons was rather arbitrary in (2.15). Therefore,
an alternative declaration such as, for instance,

data U = Stop | Join (A,U) (2.18)

would have been perfectly acceptable, generating another solution for the equation
under algebra[Stop; Join]. It is easy to check that (2.18) is but a renaming ofNil toStop and ofCons to Join. Therefore, both datatypes are isomorphic, or “abstractly
the same”.

Indeed, any other datatypeX inductivelydefined by a constant and a binary con-
structor acceptingA andX as parameters will be a solution to the equation. Because
we are just renaming symbols in a consistent way, all such solutions areabstractly the
same. All of them capture the abstract notion of alist of symbols.

We wrote “inductively” above because the set of all expressions (trees) which i-
nhabit the type is defined by induction. Such types are calledinductiveand we shall
have a lot more to say about them in chapter 3.

Exercise 2.1Obviously,

either (const []) (:)

does not work as a HASKELL realization of the mediating arrow in diagram (2.9). What doyou need to write

instead?2
2.3 Observing an inductive datatype

Suppose that one is asked to express a particularobservationof an inductive such asT
(2.15), that is, a function of signatureB Tfoo for some target typeB. Suppose,
for instance, thatA is IN0 (the set of all non-negative integers) and that we want to add
all elements which occur in aT-list. Of course, we have to guarantee that addition is
available inIN0, add : IN0 � IN0 // IN0add(x; y) def= x+ y

54 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

and that0 2 IN0 is a value denoting “the addition of nothing”. So constant arrowIN0 10oo is available. Of course,add(0; x) = add(x; 0) = x holds, for allx 2IN0. This property means thatIN0, together with operatoradd and constant0, forms
a monoid, a very important algebraic structure in computing which will be exploited
intensively later in this book. The following arrow “packaging”IN0, add and0,IN0 1 + IN0 � IN0[0;add]

oo (2.19)

is a convenient way to express such a structure. Combining this arrow with the algebraT 1 + IN0 � TinToo (2.20)

which definesT, and the functionf we want to define, the target of which isB = IN0,
we get the almost closed diagram which follows, in which only the dashed arrow is yet
to be filled in: Tf

��

1 + IN0 � TinToo

��IN0 1 + IN0 � IN0[0;add]oo

(2.21)

We know thatinT = [Nil; Cons]. A pattern for the missing arrow is not difficult to
guess: in the same wayf bridgesT andIN0 on the lefthand side, it will do the same
job on the righthand side. So pattern� � �+ � � � � f comes to mind (recall section 1.10),
where the “� � �” are very naturally filled in by identity functions. All in all, we obtain
diagram Tf

��

1 + IN0 � T[Nil;Cons]
oo id+id�f

��IN0 1 + IN0 � IN0[0;add]oo

(2.22)

which pictures the following property offf . [Nil; Cons] = [0; add] . (id+ id� f) (2.23)

and is easy to convert to pointwise notation:f . [Nil; Cons] = [0; add] . (id+ id� f)$ f (1.40) on the lefthand side, (1.41) and identityid on the righthand sideg[f .Nil; f .Cons] = [0; add . (id� f)]$ f eitherstructural equality (1.58)g

2.3. OBSERVING AN INDUCTIVE DATATYPE 55� f .Nil = 0f .Cons = add . (id� f)$ f going pointwiseg� (f .Nil)x = 0x(f .Cons)(a; x) = (add . (id� f))(a; x)$ f composition (1.6), constant (1.12), product (1.22) and definitionof add g� f Nil = 0f(Cons(a; x)) = a+ f x
Note that we could have usedoutT in diagram (2.21),T outT //f

��

1 + IN0 � Tid+id�f
��IN0 1 + IN0 � IN0[0;add]oo

(2.24)

obtaining another version of thedefinitionof f ,f = [0; add] . (id+ id� f) . outT (2.25)

which would lead to exactly the same pointwise recursive definition:f = [0; add] . (id+ id� f) . outT$ f (1.41) and identityid on the righthand sidegf = [0; add . (id� f)] . outT$ f going pointwise onoutT (2.16)g� f Nil = ([0; add . (id� f)] . outT)Nilf(Cons(a; x)) = ([0; add . (id� f)] . outT)(a; x)$ f definition ofoutT (2.16)g� f Nil = ([0; add . (id� f)] . i1)Nilf(Cons(a; x)) = ([0; add . (id� f)] . i2)(a; x)$ f +-cancellation (1.38)g� f Nil = 0Nilf(Cons(a; x)) = (add . (id� f)) (a; x)$ f simplificationg� f Nil = 0f(Cons(a; x)) = a+ f x
Pointwisef mirrors the structure of typeT in having has many definition clauses

as constructors inT. Such functions are said to be definedby induction onthe structure

56 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

of their input type. If we repeat this calculation forIN0? instead ofT, that is, forout = (! + hhd; tli) . (=[]?)
— recall (2.10) — taking place ofoutT, we get a “more algorithmic” version off :f = [0; add] . (id+ id� f) . (! + hhd; tli) . (=[]?)$ f +-functor (1.42), identity and�-absorption (1.25)gf = [0; add] . (! + hhd; f . tli) . (=[]?)$ f +-absorption (1.41) and constant0 gf = [0; add . hhd; f . tli] . (=[]?)$ f going pointwise on guard=[]? (1.60) and simplifyinggf l = � l = []) 0 l:(l = [])) (add . hhd; f . tli) l$ f simplificationgf l = � l = []) 0:(l = [])) hd l + f(tl l)
The outcome of this calculation can be encoded in HASKELL syntax as

f l | l == [] = 0
| otherwise = head l + f (tail l)

or

f l = if l == []
then 0
else head l + f (tail l)

both requiring the equality predicate “==” and destructors “head ” and “tail ”.

2.4 Synthesizing an inductive datatype

The issue which concerns us in this section dualizes what we have just dealtwith:
instead of analyzing orobservingan inductive type such asT (2.15), we want to be
able to synthesize (generate) particular inhabitants ofT. In other words, we want to

be able to specify functions with signatureB f // T for some given source typeB.
LetB = IN0 and suppose we wantf to generate, for a given natural numbern > 0, the
list containing all numbers less or equal ton in decreasing orderCons(n;Cons(n� 1; Cons(: : : ; Nil)))
or the empty listNil, in casen = 0.

2.4. SYNTHESIZING AN INDUCTIVE DATATYPE 57

Let us try and draw a diagram similar to (2.24) applicable to the new situation.
In trying to “re-use” this diagram, it is immediate that arrowf should be reversed.
Bearing duality in mind, we may feel tempted to reverse all arrows just to see what
happens. Identity functions are their own inverses, andinT takes the place ofoutT:T 1 + IN0 � TinTooIN0f OO

// 1 + IN0 � IN0id+id�fOO

Interestingly enough, the bottom arrow is the one which is not obvious to reverse,
meaning that we have to “invent” a particular destructor ofIN0, sayIN0 g // 1 + IN0 � IN0
fitting in the diagram andgeneratingthe particular computational effect we have in
mind. Once we do this, a recursive definition forf will pop out immediately,f = inT . (id+ id� f) . g (2.26)

which is equivalent to: f = [Nil; Cons . (id� f)] . g (2.27)

Because we wantf 0 = Nil to hold,g (the actual generator of the computation) should
distinguish input0 from all the others. One thus decomposesg as follows,IN0 =0?// g 33IN0 + IN0 !+h // 1 + IN0 � IN0
leavingh to fill in. This will be asplit providing, on the lefthand side, for the value to
beCons’ed to the output and, on the righthand side, for the “seed” to the nextrecursive
call. Since we want the output values to be produced contiguously and in decreasing
order, we may defineh = hid; predi where, forn > 0,

predn def= n� 1 (2.28)

computes thepredecessorof n. Altogether, we have synthesizedg = (! + hid; predi) . (=0?) (2.29)

Filling this in (2.27) we getf = [Nil; Cons . (id� f)] . (! + hid; predi) . (=0?)$ f +-absorption (1.41) followed by�-absorption (1.25)etc.gf = [Nil; Cons . hid; f .predi] . (=0?)$ f going pointwise on guard=0? (1.60) and simplifyinggf n = � n = 0) Nil:(n = 0)) Cons(n; f (n� 1))
which matches the function we had in mind:

58 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

f n | n == 0 = Nil
| otherwise = Cons(n,f(n-1))

We shall see briefly that the constructions of thef function adding up a list of
numbers in the previous section and, in this section, of thef function generating a list
of numbers are very standard in algorithm design and can be broadly generalized. Let
us first introduce some standard terminology.

2.5 Introducing (list) catas, anas and hylos

Suppose that, back to section 2.3, we want tomultiply, rather than add, the elements
occurring in lists of typeT (2.15). How much of the program synthesis effort presented
there can be reused in the design of the new function?

It is intuitive that only the bottom arrowIN0 1 + IN0 � IN0[0;add]
oo of dia-

gram (2.24) needs to be replaced, because this is the only place where we can specify
that target datatypeIN0 is now regarded as the carrier of another (multiplicative rather
than additive) monoidal structure,IN0 1 + IN0 � IN0[1;mul]

oo (2.30)

for mul(x; y) def= x y. We are saying that the argument list is now to be reduced by the
multiplication operator and that output value1 is expected as the result of “nothing left
to multiply”.

Moreover, in the previous section we might have wanted our number-list generator
to produce the list of even numbers smaller than a given number, in decreasing order
(see exercise 2.4). Intuition will once again help us in deciding that only arrow g in
(2.26) needs to be updated.

The following diagrams generalize both constructions by leaving such bottom ar-
rows unspecified,T outT //f

��

1 + IN0 � Tid+id�f
��B 1 + IN0 �Bgoo

T 1 + IN0 � TinTooBf OO g // 1 + IN0 �Bid+id�fOO (2.31)

and express their duality (cf. the directions of the arrows). It so happens that, for each
of these diagrams,f is uniquely dependent on theg arrow, that is to say, each particular
instantiation ofg will determine the correspondingf . So bothgs can be regarded as
“seeds” or “genetic material” of thef functions they uniquely define3.

Following the standard terminology, we express these facts by writing f = ([g])
with respect to the lefthand side diagram and by writingf = [(g)] with respect to the
righthand side diagram. Read([g]) as “theT-catamorphisminduced byg” and [(g)] as

3The theory which supports the statements of this paragraph will not be dealt with until chapter 3.

2.5. INTRODUCING (LIST) CATAS, ANAS AND HYLOS 59

“theT-anamorphisminduced byg”. This terminology is derived from the Greek words���� (cata) and��� (ana) meaning, respectively, “downwards” and “upwards” (com-
pare with the direction of thef arrow in each diagram). The exchange of parentheses
“()” and “[]” in double parentheses “([])” and “[()]” is aimed at expressing the duality
of both concepts.

We shall have a lot to say about catamorphisms and anamorphisms of a giventype
such asT. For the moment, it suffices to say that� theT-catamorphism induced byB 1 + IN0 �Bgoo is the unique functionB T([g])oo which obeys to property (or is defined by)([g]) = g . (id+ id� ([g])) . outT (2.32)

which is the same as([g]) . inT = g . (id+ id� ([g])) (2.33)� given B g // 1 + IN0 �B the T-anamorphism induced byg is the unique

function B [(g)] // T which obeys to property (or is defined by)[(g)] = inT . (id+ id� [(g)]) . g (2.34)

From (2.31) it can be observed thatT can act as a mediator between anyT-anamorphism

and anyT-catamorphism, that is to say,B T([g])oo composes withT C[(h)]oo , for

some C h // 1 + IN0 � C . In other words, aT-catamorphism call always observe
(consume) the output of aT-anamorphism. The latter produces a list ofIN0s which is
consumed by the former. This is depicted in the diagram which follows:B 1 + IN0 �BgooT([g]) OO 1 + IN0 � TinToo

id+id�([g])OO

C[(h)] OO h // 1 + IN0 � Cid+id�[(h)]OO

(2.35)

What can we say about the([g]) . [(h)] composition? It is a function fromB to C
which resorts toT as anintermediatedata-structure and can be subject to the following
calculation (cf. outermost rectangle in (2.35)):([g]) . [(h)] = g . (id+ id� ([g])) . (id+ id� [(h)]) .h$ f +-functor (1.42)g

60 CHAPTER 2. RECURSION IN THE POINTFREE STYLE([g]) . [(h)] = g . ((id . id) + (id� ([g])) . (id� [(h)])) .h$ f identity and�-functor (1.28)g([g]) . [(h)] = g . (id+ id� ([g]) . [(h)]) .h
This calculation shows how to defineC B([g]).[(h)]oo in one go, that is to say,
doing without any intermediate data-structure:B 1 + IN0 �BgooC([g]).[(h)] OO h // 1 + IN0 � Cid+id�([g]).[(h)]OO (2.36)

As an example, let us see what comes out of([g]) . [(h)] for h andg respectively given
by (2.29) and (2.30):([g]) . [(h)] = g . (id+ id� ([g]) . [(h)]) .h$ f ([g]) . [(h)] abbreviated tof and instantiatingh andg gf = [1;mul] . (id+ id� f) . (! + hid; predi) . (=0?)$ f +-functor (1.42) and identitygf = [1;mul] . (! + (id� f) . hid; predi) . (=0?)$ f �-absorption (1.25) and identitygf = [1;mul] . (! + hid; f .predi) . (=0?)$ f +-absorption (1.41) and constant1 (1.15)gf = [1;mul . hid; f .predi] . (=0?)$ f McCarthy conditional (1.59)gf = (=0?)! 1;mul . hid; f .predi
Going pointwise, we getf 0 = [1;mul . hid; f . predi](i1 0)= f +-cancellation (1.38)g1 0= f constant function (1.12)g1
andf(n+ 1) = [1;mul . hid; f .predi](i2(n+ 1))

2.5. INTRODUCING (LIST) CATAS, ANAS AND HYLOS 61= f +-cancellation (1.38)gmul . hid; f .predi(n+ 1)= f pointwise definitions ofsplit, identity, predecessor andmul g(n+ 1)� f n
In summary,f is but the well-known factorial function:� f 0 = 1f(n+ 1) = (n+ 1)� f n

This result comes to no surprise if we look at diagram (2.35) for the particularg
andh we have considered above and recall a popular “definition” of factorial:n! = n� (n� 1)� : : :� 1| {z }n times

(2.37)

In fact, [(h)]n producesT-listCons(n;Cons(n� 1; : : : Cons(1; Nil)))
as an intermediate data-structure which is consumed by([g]) , the effect of which is but
the “replacement” ofCons by � andNil by 1, therefore accomplishing (2.37) and
realizing the computation of factorial.

The moral of this example is that a function as simple as factorial can bedecom-
posedinto two components (producer/consumer functions) which share a common in-
termediate inductive datatype. The producer function is an anamorphism which “rep-
resents” or produces a “view” of its input argument as a value of the intermediate
datatype. The consumer function is a catamorphism which reduces this intermedi-
ate data-structure and produces the final result. Like factorial, many functions can be
handsomely expressed by a([g]) . [(h)] composition for a suitable choice of the inter-
mediate type, and ofg andh. The intermediate data-structure is said to bevirtual in
the sense that it only exists as a means to induce the associated pattern of recursion and
disappears by calculation.

The composition([g]) . [(h)] of aT-catamorphism with aT-anamorphism is called
a T-hylomorphism4 and is denoted by[[g; h]]. Becauseg andh fully determine the
behaviour of the[[g; h]] function, they can be regarded as the “genes” of the function
they define. As we shall see, this analogy with biology will prove specially useful for
algorithm analysis and classification.

Exercise 2.2 A way of computingn2, the square of a given natural numbern, is to sum up then first odd
numbers. In fact,12 = 1, 22 = 1 + 3, 32 = 1 + 3 + 5, etc., n2 = (2n� 1) + (n� 1)2 . Following this
hint, express function

sqn def= n2 (2.38)

4This terminology is derived from the Greek wordv�o� (hylos) meaning “matter”.

62 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

as aT-hylomorphism and encode it in HASKELL.2
Exercise 2.3Write functionxn as aT-hylomorphism and encode it in HASKELL.2
Exercise 2.4 The following function in HASKELL computes theT-sequence of all even numbers less or
equal ton:

f n = if n <= 1
then Nil
else Cons(m,f(m-2))

where m = if even n then n else n-1

Find its “genetic material”, that is, functiong such that f=[(g)] inT 1 + IN0 � TinTooIN0[(g)] OO g // 1 + IN0 � IN0id+id�[(g)]OO2
2.6 Inductive types more generally

So far we have focussed our attention exclusively to a particular inductive typeT (2.20)
— that of finite sequences of non-negative integers. This is, of course,of a very lim-
ited scope. First, because one could think of finite sequences of other datatypes,e.g.
Booleans or many others. Second, because other datatypes such as trees, hash-tables
etc.exist which our notation and method should be able to take into account.

Although a generic theory of arbitrary datatypes requires a theoretical elaboration
which cannot be explained at once, we can move a step further by taking the two
observations above as starting points. We shall start from the latter in order to talk
generically about inductive types. Then we introduce parameterization and functorial
behaviour.

Suppose that, as a mere notational convention, we abbreviate every expression of
the form “1+ IN0 � : : :” occurring in the previous section by “F : : :”, e.g.1+ IN0 �B
by FB, e.g.1 + IN0 � T by FTT outT

((�= FTinTgg (2.39)

2.7. FUNCTORS 63

etc.This is the same as introducing a datatype-level operatorFX def= 1 + IN0 �X (2.40)

which maps every datatypeA into datatype1+IN0�A. OperatorF captures the pattern
of recursion which is associated to so-called “right” lists (of non-negative integers), that

is, lists which grow to the right. The slightly different patternGX def= 1+X� IN0 will
generate a different, although related, inductive typeX �= 1 +X � IN0 (2.41)

— that of so-called “left” lists (of non-negative integers). And it isnot difficult to think
of the pattern which is merges both right and left lists and gives rise tobi-linear lists,
better known asbinary trees:X �= 1 +X � IN0 �X (2.42)

One may think of many other expressionsFX and guess the inductive datatype they

generate, for instanceHX def= IN0+IN0�X generating non-empty lists of non-negative
integers (IN+0). The general rule is that, given an inductive datatype definition of the
form X �= FX (2.43)

(also called a domain equation), its pattern of recursion is captured by a so-calledfunc-
tor F.

2.7 Functors

The concept of a functorF, borrowed from category theory, is a most generic and useful
device in programming5. As we have seen,F can be regarded as a datatype constructor
which, given datatypeA, builds a more elaborate datatypeFA; given another datatypeB, builds a similarly elaborate datatypeFB; and so on. But what is more important
and has the most beneficial consequences is that, ifF is regarded as a functor, then its
data-structuring effect extends smoothly to functions in the following way: suppose

that B Afoo is a function which observesA intoB, which are parameters ofFA
andFB, respectively. By definition, ifF is a functor thenFB FAF foo exists for
every suchf : Af

��

FAF f
��B FB

5The category theory practitioner must be warned of the fact that the wordfunctor is used here in a too
restrictive way. A proper (generic) definition of a functor will be provided later in this book.

64 CHAPTER 2. RECURSION IN THE POINTFREE STYLEF f extendsf to F-structures and will, by definition, obey to two very basic properties:
it commutes with identity F idA = id(FA) (2.44)

and with composition F(g .h) = (F g) . (Fh) (2.45)

Two simple examples of a functor follow:� Identity functor: defineFX = X , for every datatypeX , andF f = f . Properties
(2.44) and (2.45) hold trivially just by removing symbolF wherever it occurs.� Constant functors: for a givenC, defineFX = C (for all datatypesX) andF f = idC , as expressed in the following diagram:Af

��

CidC
��B C

Properties (2.44) and (2.45) hold trivially again.

In the same way functions can be unary, binary,etc., we can have functors with
more than one argument. So we get binary functors (also calledbifunctors), ternary
functorsetc.. Of course, properties (2.44) and (2.45) have to hold for every parameter
of ann-ary functor. For a binary functorB, for instance, equation (2.44) becomesB (idA; idB) = idB (A;B) (2.46)

and equation (2.45) becomesB (g .h; i . j) = B (g; i) .B (h; j) (2.47)

Product and coproduct are typical examples of bifunctors. In the former case one
hasB (A;B) = A � B andB (f; g) = f � g — recall (1.22). Properties (1.29) and
(1.28) instantiate (2.46) and (2.47), respectively, and this explains why we called them
the functorial properties of product. In the latter case, one hasB (A;B) = A+ B andB (f; g) = f+g — recall (1.37) — and functorial properties (1.43) and (1.42). Finally,

exponentiation is a functorial construction too: assumingA, one hasFX def= XA andF f def= f . ap and functorial properties (1.71) and (1.72). All this is summarized in
table 2.1.

Such as functions, functors may compose with each other in the obvious way: the
composition ofF andG, denotedF .G, is defined by(F .G)X def= F (GX) (2.48)(F .G)f def= F (G f) (2.49)

2.8. POLYNOMIAL FUNCTORS 65

Data construction Universal construct Functor DescriptionA�B hf; gi f � g ProductA+B [f; g] f + g CoproductBA f fA Exponential

Table 2.1: Datatype constructions and associated operators.

2.8 Polynomial functors

We may put constant, product, coproduct and identity functors together to obtain so-
called polynomial functors, which are described by polynomial expressions, for in-
stance FX = 1 +A�X
— recall (2.6). A polynomial functor is either� a constant functor or the identity functor, or� the (finitary) product or coproduct (sum) of other polynomial functors, or� the composition of other polynomial functors.

So the effect on arrows of a polynomial functor is computed in an easy and structured
way, for instance:F f = (1 +A�X)f= f sum of two functors whereA is a constant andX is a variableg(1)f + (A�X)f= f constant functor and product of two functorsgid1 + (A)f � (X)f= f constant functor and identity functorgid1 + idA � f= f subscripts dropped for simplicitygid+ id� f
So,1 + A� f denotes the same asid1 + idA � f , or even the same asid+ id� f if
one drops the subscripts.

It should be clear at this point that what was referred to in section 1.10 as a “sym-
bolic pattern” applicable to both datatypes and arrows is after all a functorin the math-
ematical sense. The fact that the same polynomial expression is used to denote both
the data and the operators which structurally transform such data is of great conceptual
economy and practical application. For instance, once polynomial functor (2.40) is

66 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

assumed, the diagrams in (2.31) can be written as simply asT outT //f
��

FTF f
��B FBgoo

T FTinTooBf OO g // FBF fOO (2.50)

It is useful to know that, thanks to the isomorphism laws studied in chapter 1, every
polynomial functorF may be put into the canonical form,FX �= C0 + (C1 �X) + (C2 �X2) + � � �+ (Cn �Xn)= Pni=0 Ci �X i (2.51)

and thatNewton’s binomial formula(A+B)n �= nXp=0 nCp �An�p �Bp (2.52)

can be used in such conversions. These are performed up to isomorphism, that is to
say, after the conversion one gets a different but isomorphic datatype. Consider, for
instance, functor FX def= A� (1 +X)2
(whereA is a constant datatype) and check the following reasoning:FX = A� (1 +X)2�= f law (1.85)gA� ((1 +X)� (1 +X))�= f law (1.50)gA� ((1 +X)� 1 + (1 +X)�X))�= f laws (1.79), (1.31) and (1.50)gA� ((1 +X) + (1�X +X �X))�= f laws (1.79) and (1.85)gA� ((1 +X) + (X +X2))�= f law (1.46)gA� (1 + (X +X) +X2)�= f canonical form obtained via laws (1.50) and (1.86)gA|{z}C0 +A� 2| {z }C1 �X + A|{z}C2 �X2

2.9. POLYNOMIAL INDUCTIVE TYPES 67

Exercise 2.5 Synthesize the isomorphismA+A� 2�X + A�X2 A� (1 +X2)�oo implicit

in the above reasoning.2
2.9 Polynomial inductive types

An inductive datatype is said to bepolynomialwherever its pattern of recursion is
described by a polynomial functor, that is to say, whereverF in equation (2.43) is
polynomial. For instance, datatypeT (2.20) is polynomial (n = 1) and its associated
polynomial functor is canonically defined with coefficientsC0 = 1 andC1 = IN0. For
reasons that will become apparent later on, we shall always imposeC0 6= 0 to hold in
apolynomialdatatype expressed in canonical form.

Polynomial types are easy to encode in HASKELL wherever the associated functor
is in canonical polynomial form, that is, wherever one hasT �= Pni=0 Ci � TiinThh (2.53)

Then we have inT def= [f1; : : : ; fn]
where, fori = 1; n, fi is an arrow of typeT Ci � Tioo . Sincen is finite, one
may expand exponentials according to (1.85) and encode this in HASKELL as follows:

data T = C0 |
C1 (C1,T) |
C2 (C2,(T,T)) |
... |
Cn (Cn,(T, ..., T))

Of course the choice of symbolCi to realize eachfi is arbitrary6. Several instances
of polynomial inductive types (in canonical form) will be mentioned insection 2.13.
Section 2.15 will address the conversion between inductive datatypes induced by so-
callednatural transformations.

The concepts of catamorphism, anamorphism and hylomorphism introducedin
section 2.5 can be extended to arbitrary polynomial types. We devote thefollowing
sections to explaining catamorphisms in the polynomial setting. Polynomial anamor-
phisms and hylomorphisms will not be dealt with until chapter 3.

6A more traditional (but less close to (2.53)) encoding will be

data T = C0 | C1 C1 T | C2 C2 T T | ... | Cn Cn T ... T (2.54)

delivering every constructor in curried form.

68 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

2.10 F-algebras andF-homomorphisms

Our interest in polynomial types is basically due to the fact that, for polynomial F,
equation (2.43) always has a particularly interesting solution which corresponds to our
notion of a recursive datatype.

In order to explain this, we need two notions which are easy to understand: first,

that of anF-algebra, which simply is any function� of signatureA FA�oo . A
is called thecarrier of F-algebra� and contains the values which� manipulates by
computing newA-values out of existing ones, according to theF-pattern (the “type”
of the algebra). As examples, consider[0; add] (2.19) andinT (2.20), which are both
algebras of typeFX = 1 + IN0 � X . The type of an algebra clearly determines its
form. For instance, any algebra� of typeFX = 1+X�X will be of form [�1; �2],
where�1 is a constant and�2 is a binary operator. So monoids are algebras of this
type7.

Secondly, we introduce the notion of anF-homomorphismwhich is but a function
observing a particularF-algebra� into anotherF-algebra�:Af

��

FAF f
��

�ooB FB�oo

f .� = � . (F f) (2.55)

Clearly,f can be regarded as a structural translation betweenA andB, that is,A andB have a similar structure8. Note that — thanks to (2.44) — identity functions are al-
ways (trivial)F-homomorphisms and that — thanks to (2.45) — these homomorphisms
compose, that is, the composition of twoF-homomorphisms is anF-homomorphism.

2.11 F-Catamorphisms

An F-algebra can be epic, monic or both, that is, iso. IsoF-algebras are particularly
relevant to our discussion because they describe solutions to theX �= FX equation
(2.43). Moreover, for polynomialF a particular isoF-algebra always exists, which is

denoted by�F F�Finoo and has special properties. First, its carrier is the smallest
among the carriers of other isoF-algebras, and this is why it is denoted by�F — � for
“minimal” 9. Second, it is the so-calledinitial F-algebra. What does this mean?

It means that, for everyF-algebra� there exists one and only oneF-homomorphism
betweenin and�. This unique arrow mediatingin and� is therefore determined by� itself, and is called theF-catamorphismgenerated by�. This construct, which was
introduced in 2.5, is in general denoted by([�])F:

7But not every algebra of this type is a monoid, since the type of an algebra only fixes its syntax and does
not impose any properties such as associativity,etc.

8Cf. homomorphism= homo(the same) +morphos(structure, shape).
9�F means the least fixpoint solution of equationX �= FX, as will be described in chapter 3.

2.11. F-CATAMORPHISMS 69�Ff=([�])F
��

F�FF ([�])F
��

inooA FA�oo

(2.56)

We will drop theF subscript in([�])F wherever deducible from the context, and often
call� the “gene” of([�])F.

As happens withsplits, eithersand transposes, the uniqueness of the catamor-
phism construct is captured by a universal property established in the class of all F-
homomorphisms: k = ([�]) , k . in = � .F k (2.57)

According to the experience gathered from section 1.12 onwards, a few properties can
be expected as consequences of (2.57). For instance, one may wonder about the “gene”
of the identity catamorphism. Just letk = id in (2.57) and see what happens:id = ([�]), id . in = � .F id= f identity (1.10) andF is a functor (2.44)gid = ([�]), in = � . id= f identity (1.10) once againgid = ([�]), in = �= f � replaced byin and simplifyinggid = ([in])
Thus one finds out that the genetic material of the identity catamorphismis the initial
algebrain. Which is the same as establishing thereflection propertyof catamorphisms:

Cata-reflection :�F([in])
��

F�FF ([in])
��

inoo�F F�Finoo

([in]) = id�F (2.58)

In a more intuitive way, one might have observed that([in]) is, by definition ofin, the
unique arrow mediating�F and itself. But another arrow of the same type is already
known: the identityid�F. So these two arrows must be the same.

Another property following immediately from (2.57), fork = ([�]), is

Cata-cancellation : ([�]) . in = � .F ([�]) (2.59)

70 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

Becausein is iso, this law can be rephrased as follows([�]) = � .F ([�]) . out (2.60)

whereout denotes the inverse ofin:�F out
))�= F�Finhh

Now, letf beF-homomorphism (2.55) betweenF-algebras� and�. How does it
relate to([�]) and([�])? Note thatf . ([�]) is an arrow mediating�F andB. ButB is
the carrier of� and([�]) is the unique arrow mediating�F andB. So the two arrows
are the same:

Cata-fusion :�F([�])
��

F�FF([�])
��

inooAf
��

FA�oo F f
��B FB�oo

f . ([�]) = ([�]) if f .� = � .F f (2.61)

Of course, this law is also a consequence of the universal property, fork = f . ([�]):f . ([�]) = ([�]) , (f . ([�])) . in = � .F (f . ([�])), f composition is associative andF is a functor (2.45)gf . ([�]) . in = � .F f .F ([�]), f cata-cancellation (2.59)gf .� .F ([�]) = � .F f .F ([�]), f requiref to be aF-homomorphism (2.55)gf .� .F ([�]) = f .� .F ([�]) ^ f .� = � .F f(f simplify gf .� = � .F f
The presentation of theabsorptionproperty of catamorphisms entails the very im-

portant issue of parameterization and deserves to be treated in a separate section, as
follows.

2.12. PARAMETERIZATION, TYPE FUNCTORS AND CATA-ABSORPTION 71

2.12 Parameterization, type functors and cata-absorption

By analogy with what we have done aboutsplits (product),eithers(coproduct) and
transposes (exponential), we now look forward to identifyingF-catamorphisms which
exhibit functorial behaviour.

Suppose that one wishes to square all numbers which are members of listsof typeT (2.20). It can be checked that([[Nil; Cons . (sq� id)]]) (2.62)

will do this for us, whereIN0 IN0sq
oo is given by (2.38). This catamorphism, which

converted to pointwise notation is nothing but functionh which follows� hNil = Nilh(Cons(a; l)) = Cons(sqa; h l)
maps typeT to itself. This is becausesqmapsIN0 to IN0. Now suppose that, instead of

sq, one would like to apply a given functionB IN0foo (for someB other thanIN0)
to all elements of the argument list. It is easy to see that it suffices to replacef for sq
in (2.62). However, the output type no longer isT, but rather typeT0 �= 1+B � T0.

TypesT andT0 are very close to each other. They share the same “shape” (recursive
pattern) and only differ with respect to the type of elements —IN0 in T andB in T0.
This suggests that these two types can be regarded as instances of a more generic list
datatypeList ListX �= 1 +X � ListXin=[Nil;Cons]jj (2.63)

in which the type of elementsX is allowed to vary. Thus one hasT = List IN0 andT0 = ListB.

It can be seen by inspection that, for anyB Afoo ,([[Nil; Cons . (f � id)]]) (2.64)

mapsListA to ListB. Moreover, forf = id one has:([[Nil; Cons . (id� id)]])= f by the�-functor-id property (1.29) and identityg([[Nil; Cons]])= f cata-reflection (2.58)gid
Therefore, by definingList f def= ([[Nil; Cons . (f � id)]])

72 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

what we have just seen can be written thus:List idA = idListA
This is nothing but law (2.44) forF replaced byList. Moreover, it will not be too
difficult to check that List (g . f) = List g .List f
also holds —cf. (2.45). Altogether, this means thatList can be regarded as a functor.

In programming terminology one says thatListX (the “lists ofXs datatype”) is
parametricand that, by instantiating parameterX , one gets ground lists such as lists of
integers, booleans,etc.The illustration above deepens one’s understanding of param-
eterization by identifying the functorial behaviour of the parametric datatype along its
parameter instantiations.

All this can be broadly generalized and leads to what is commonly known by atype
functor. First of all, it should be clear that the generic formatT �= FT
adopted so far for the definition of an inductive type is not sufficiently detailed because
it does not provide a parametric view ofT. For simplicity, let us suppose that only one
parameter is identified inT. Then we may factor this out viatype variableX and write
(overloading symbolT) TX �= B(X;TX)
whereB is called the type’sbase functor. Binary functorB(X;Y) is given this name
because it is the basis of the whole inductive type definition. By instantiation ofX
one obtainsF. In the example above,B (X;Y) = 1 + X � Y and in factFY =B (IN0; Y) = 1 + IN0 � Y , recall (2.40). Moreover, one hasF f = B (id; f) (2.65)

and so everyF-homomorphism can be written in terms of the base-functor ofF, e.g.f .� = � .B (id; f)
instead of (2.55).TX will be referred to as thetype functorgenerated byB:TX|{z}

type functor

�= B(X;TX)| {z }
base functor

We proceed to the description of its functorial behaviour —T f — for a givenB Afoo .
As far as typing rules are concerned, we shall haveB AfooTB TAT foo

2.12. PARAMETERIZATION, TYPE FUNCTORS AND CATA-ABSORPTION 73

So we should be able to expressT f as aB (A;)-catamorphism([g]):Af
��

TAT f=([g])
��

B (A;TA)inTAoo B (id;T f)
��B TB B (A;TB)goo

As we know thatinTB is the standard constructor of values of typeTB. So we may
put it into the diagram too:Af

��

TAT f=([g])
��

B (A;TA)inTAoo B (id;T f)
��B TB B (A;TB)goo B (B;TB)inTBddJ J J J J J J J J J

The catamorphism’s geneg will be synthesized by filling the dashed arrow in the dia-
gram with the obviousB (f; id). Thus one getsT f def= ([inTB .B (f; id)]) (2.66)

and a final diagram, whereinTA is abbreviated byinA (ibid. inTB by inB):Af
��

TAT f=([inB.B (f;id)])
��

B (A;TA)inAoo B (id;T f)
��B TB B (B;TB)inBoo B (A;TB)B (f;id)oo

Next, we proceed to derive the useful law ofcata-absorption([g]) .T f = ([g .B (f; id)]) (2.67)

as a consequence of the laws studied in section 2.11. Our target is to showthat, fork = ([g]) .T f in (2.57), one gets� = g .B (f; id):([g]) .T f = ([�]), f type-functor definition (2.66)g([g]) . ([inB .B (f; id)]) = ([�])(f cata-fusion (2.61)g([g]) . inB .B (f; id) = � .B (id; ([g]))

74 CHAPTER 2. RECURSION IN THE POINTFREE STYLE, f cata-cancellation (2.59)gg .B (id; ([g])) .B (f; id) = � .B (id; ([g])), f B is a bi-functor (2.47)gg .B (id . f; ([g]) . id) = � .B (id; ([g])), f id is natural (1.11)gg .B (f . id; id . ([g])) = � .B (id; ([g])), f (2.47) again, this time from left to rightgg .B (f; id) .B (id; ([g])) = � .B (id; ([g]))(f obviousgg .B (f; id) = �
The following diagram pictures this property of catamorphisms:Af

��

TAT f
��

B (A;TA)inAoo B (id;T f)
��B TB([g])

��

B (B;TB)inBoo B (B;([g]))
��

B (A;TB)B (f;id)oo B (A;([g]))
��C B (B;C)goo B (A;C)B (f;id)oo

It remains to show that (2.66) indeed defines a functor. This can be verified by
checking properties (2.44) and (2.45) forF = T :� Propertytype-functor-id , cf. (2.44):T id= f by definition (2.66)g([inB .B (id; id)])= f B is a bi-functor (2.46)g([inB . id])= f identity and cata-reflection (2.58)gid� Propertytype-functor, cf. (2.45) :T (f . g)= f by definition (2.66)g

2.13. A CATALOGUE OF STANDARD POLYNOMIAL INDUCTIVE TYPES 75([inB .B (f . g; id)])= f identities andB is a bi-functor (2.47)g([inB .B (f; id) .B (g; id)])= f cata-absorption (2.67)g([inB .B (f; id)]) .T g= f again cata-absorption (2.67)g([inB]) .T f .T g= f cata-reflection (2.58) followed by identitygT f .T g
2.13 A catalogue of standard polynomial inductive types

The following table contains a collection of standard polynomial inductive types and
associated base type bi-functors, which are in canonical form (2.53). Thetable contains
two extra columns which may be used as bookmarks for equations (2.69) and (2.66),
respectively10:

Description TX B (X;Y) B (id; f) B (f; id)
“Right” Lists ListX 1 +X � Y id+ id� f id+ f � id
“Left” Lists LListX 1 + Y �X id+ f � id id+ id� f
Non-empty Lists NListX X +X � Y id+ id� f f + f � id
Binary Trees BTreeX 1 +X � Y 2 id+ id� f2 id+ f � id
“Leaf” Trees LTreeX X + Y 2 id+ f2 f + id (2.68)

All type functorsT in this table are unary. In general, one may think of inductive
datatypes which exhibit more than one parameter. Shouldn parameters be identified
in T, then this will be based on ann+ 1-ary base functorB, cf.T(X1; : : : ; Xn) �= B(X1; : : : ; Xn;T(X1; : : : ; Xn))
So, everyn+1-ary polynomial functorB(X1; : : : ; Xn; Xn+1) can be identified as the
basis of an inductiven-ary type functor (the convention is to stick to the canonical form
and reserve the last variableXn+1 for the “recursive call”). While type bi-functors
(n = 2) are often found in programming, the situation in whichn > 2 is relatively
rare. For instance, the combination of leaf-trees with binary-trees in (2.68) leads to the
so-called “full tree” type bi-functor

Description T(X1; X2) B(X1; X2; Y) B(id; id; f) B(f; g; id)
“Full” Trees FTree(X1; X2) X1 +X2 � Y 2 id+ id� f2 f + g � id (2.69)

10Since(idA)2 = id(A2) one writesid2 to id in this table.

76 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

As we shall see later on, these types are widely used in programming. In the actual
encoding of these types in HASKELL, exponentials are normally expanded to products
according to (1.85), see for instance

data BTree a = Empty | Node(a, (BTree a, BTree a))

Moreover, one may chose to curry the type constructors as in,e.g.

data BTree a = Empty | Node a (BTree a) (BTree a)

Exercise 2.6 Write as a catamorphism the function which counts the numberof elements of a non-empty

list (typeNList in (2.68)).2
Exercise 2.7Write the function which computes the maximum element of a binary-tree of natural numbers

as a catamorphism.2
Exercise 2.8Characterize the function which is defined by([[Nil; h]]) for each of the following definitions
of h: h(x; (y1; y2)) = y1 ++ [x] ++ y2 (2.70)h = ++ . (singl�++) (2.71)h = ++ . (++� singl) . swap (2.72)

assumingsingl a = [a]. What datatype in (2.68) are we talking about?2
Exercise 2.9 Write as a catamorphism the function which computes thefrontier of a tree of typeLTree
(2.68), listed from left to right.2
2.14 Functors and type functors in HASKELL

The concept of a (unary) functor is provided in HASKELL in the form of a particular
class exporting themapoperator:

class Functor f where
map :: (a -> b) -> (f a -> f b)

Somap gencodesF g once we declareF as an instance of classFunctor . The most
popular use ofmaphas to do with HASKELL lists and this is allowed by declaration

instance Functor [] where
map f [] = []
map f (x:xs) = f x : map f xs

2.15. INDUCTIVE DATATYPE CONVERSION AND ISOMORPHISM 77

in the HUGS Standard Prelude.
In order to encode the type functors we have seen so far we have to do thesame

concerning their declaration. For instance, if we write

instance Functor BTree
where map f =

cataBTree (inBTree . (id -|- (f >< id)))

concerning the binary-tree datatype of (2.68) and assuming appropriatedeclarations
of cataBTree andinBTree , thenmap is overloaded and used across such binary-
trees.

Bi-functors can be added easily by writing

class BiFunctor f where
bmap :: (a -> b) -> (c -> d) -> (f a c -> f b d)

Exercise 2.10 Declare all datatypes in (2.68) in HASKELL notation and turn them into HASKELL type

functors, that is, definemap in each case.2
Exercise 2.11Declare datatype (2.69) in HASKELL notation and turn it into an instance of classBiFunctor .2
2.15 Inductive datatype conversion and isomorphism

TheT f “map” operation is a special case of a transformation between two inductive
datatypes (in which the pattern of recursion remains unchanged). In a more general
setting, suppose one is given two inductive datatypesT andU defined by functorsF
andG, respectively: T �= FTinTgg

and U �= GUinUgg

Moreover suppose that recursion patternG can be converted to recursion patternF via

polymorphic mapFX GX�Xoo . It can be checked that([inT . �T])G (2.73)

