Chapter 2

Recursion in the Pointfree Style

How useful from a programmer’s point of view are the abstract concepsepted in
the previous chapter? Recall that a table was presented — table 1.1 — whiatsracor
analogy between abstract type notation and the corresponding data-stsustaitable
in common, imperative languages.

This analogy is precisely our point of departure for extending theatistotation
towards a most important field of programmimgcursion

2.1 Motivation

Let us consider a very common data-structure in programming: “linlgtgl*liin FAs-
CAL one will write

L = °'N;
N = record
P: A;
S: °N
end;

to specify such a data-structuire This consists of a pointer to mode(N), where a

node is a record structure which puts some predefinedAytegether with a pointer to
another node, and so on. In the C programming language, ever will be declared

as

L x;
in the context of datatype definition
typedef struct N {

A first;

struct N *next;

}L

43

44 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

and so on.

What interests us in such “first year programming course” datatype declaation
Records and pointers have already been dealt with in table 1.1. So we carsuse th
table to find the abstract version of datatypeby replacing pointers by the+ - - .”
notation and recordsfructg by the “... x ...” notation:

(2.1)

L = 1+N
N Ax (14 N)

We obtain a system of two equations on unknoirend NV, in which L's depen-
dence onV can be removed by substitution:

L = 1+N
N = Ax(1+N)
© { substitutingZL for 1 + N in the second equati¢n
L = 1+N
N = AxL
“ { substitutingA x L for N in the first equatioh
L = 1+AxL
N = AxL

System (2.1) is thus equivalent to:

{x

Intuitively, L abstracts the “possibly empty” linked-list of elements of typewhile

N abstracts the “non-empty” linked-list of elements of typeNote thatZ and NV are
independent of each other, but also that each depends on itself. Can we soéve thes
equations in a way such that we obtain “solutions” foand V, in the same way we

do with school equations such as, for instance,

1+AxL

Ax (1+N) (2.2)

w:1+§ ? (2.3)

Concerning this equation, let us recall how we would go about it in sanatthe-
matics:

T
r=1+—
T +2

“ { adding— 3 to both sides of the equatipn

2.1. MOTIVATION 45

“ { multiplying both sides of the equation Byetc. }
2xx—x =2

“ { subtraction
r =2

We very quickly get solutiom: = 2. However, many steps were omitted from the
actual calculation. This unfolds into the longer sequence of more elemestegny
which follows, in which notatiom — b abbreviates + (—b) and$ abbreviates x 4,
fordb #£ 0:

T
= 1 —_
T + 5
“ { adding— % to both sides of the equatipn
T T T
r—-==(1+2)-2
v =0+3) 3
© { + is associativg
- =14+(=-2
v =ity
“ { —% is the additive inverse of }
T
—==140
T 2 +
“ { 0 is the unit of additiof
STy
2
“ { multiplying both sides of the equation By
2 —)=2x1
x (x 2) X
“ { 1 is the unit of multiplication
T
2 —=)=2
x (z 2)
“ { multiplication distributes over additign
2x1—2x =2
2
© { 2 cancels its inverse }
2xx—1xxz=2
“ { multiplication distributes over additign
2-1)xz=2
“ {2 -1 =1andl is the unit of multiplication

r =2

46 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

Back to (2.2), we would like to submit each of the equatieng,
L = 1+AxL (2.4)

to a similar reasoning. Can we do it? The analogy which can be found bethisen t
equation and (2.3) goes beyond pattern similarity. From chapter 1 we tkrad many
properties required in the reasoning above hold in the context gf (2avided the “="
sign is replaced by the” sign, that of set-theoretical isomorphism. Recall that, for
instance+ is associative (1.46)) is the unit of addition (1.77)1 is the unit of multi-
plication (1.79), multiplication distributes over addition (1) ®@c. Moreover, the first
step above assumed that addition is compatible (monotonic) with respespaiality,

a = b
c = d
a+c = b+d

a fact which still holds when numeric equality gives place to isomorplaisd numeric
addition gives place to coproduct:

A = B
C > D
A+C = B+D

—recall (1.44) for isog andg.
Unfortunately, the main steps in the reasoning above are concerned witrasic
cancellation properties

r+b=c & z=c—0»
rxb=c & a::% (b#0)

which hold about numbers but do not hold about datatypes. In fact, ngitbeucts
nor coproducts have arbitrary inverseand so we cannot “calculate by cancellation”.
How do we circumvent this limitation?

Just think of how we would have gone about (2.3) in case we didiotwkabout
the cancellation propertieswe would be bound to the by 1 + & substitution plus
the other properties. By performing such a substitution over andaman we would
obtain. ..

xr
r=14 =
T + 5
“ {z by 1 + £ substitution followed by simplification
1+2 1 =z
r=1 2144
x + 5 + 5 + 1
“ { the same as aboye

1The initial and terminal datatypes do have inverse®4is-its own “additive inverse” and is its own
“multiplicative inverse” — but not all the others.

2.1. MOTIVATION 47

SO Sk SRR L B
TTATR T T T TR
“ { over and over agaim-times}
“ { simplification}
_ "1 T
T=2.9i gan
i=0
“ { sum ofn first terms of a geometric progressipn
1 T
m:(272_n)+2n+]
“ {letn — oo}
z=(2-0)+0
“ { simplification}
T =2

Clearly, this is a much more complicated way of finding solutioa 2 for equation
(2.3). But we would have loved it in case it were the only known wayl #mis is
precisely what happens with respect to (2.4). In this case we have:

L=1+AxL

“ { substitution ofl + A x L for L}
L=1+Ax(1+AxL)

“ { distributive property (1.50)
L=1+Ax1+Ax(AxL)

© { unit of product (1.79) and associativity of product (1.32)
L=1+A+(AxA)xL

© { by (1.80), (1.82) and (1.8%)
L=A" 4+ A"+ A2 x L

“ { another substitution as above and similar simplificafjons

LA+ A"+ A2+ A3 x L
© { after(n + 1)-many similar steps

Lgi}M+AM4xL

i=0

Bearing a large. in mind, let us deliberately (but temporarily) ignore tedfit! x

48 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

L. ThenL will be isomorphic to the sum of-many contributionsi?,

L= iA"
=0

each of them consisting aflong tuples, orsequencesof values ofA. (Numberi

is said to be théengthof any sequence id’.) Such sequences will be denoted by
enumerating their elements between square brackets, for instanemte sequence

[] which is the only inhabitant inl®, the two element sequenga , a»] which belongs

to A2 provideda;,a> € A, and so on. Note that all such contributions are mutually
disjoint, that is,A? N A7 = () wherever # j. (In other words, a sequence of lengis
never a sequence of lengihfori # j.) If we join all contributions4? into a single set,
we obtain the set of aflnite sequencesn A, denoted byA* and defined as follows:

AE A (2.5)

i>0

The intuition behind taking the limit in the numeric calculation abaas that term
sagr Was getting smaller and smaller asvent larger and larger and, “in the limit”,
it could be ignored. By analogy, taking a similar limit in the calculatiost sketched
above will mean that, for a “sufficiently large!, the sequences iA™ are so long that
it is very unlikely that we will ever use them! So, far— co we obtain

L = j;ify
i=0

Because ;- A’ is isomorphic td J;°, A (see exercise 1.19), we finally have:
L = A*

All in all, we have obtainedd* as a solution to equation (2.4). In other words,
datatypeL is isomorphic to the datatype which contains all finite sequences of some
predefined datatypd. This corresponds to theA$KELL [a] datatype, in general.
Recall that we started from the “linked-list datatype” expressedaisciRL or C. In
fact, wherever the C programmer thinks of linked-lists, thresKELL programmer will
think of finite sequences.

But, what does equation (2.4) mean in factAtghe only solution to this equation?
Back to the numeric field, we know of equations which have more thanauatos —
for instancer = ””24” , which admits two solutions and3 —, which have no solution
at all —for instance: = x + 1 —, or which admit an infinite number of — for instance
r =0.

We will address these topics in the next section aldictivedatatypes and in
chapter 3, where the formal semantics of recursion will be made explitits i
where the “limit” constructions used informally in this section vii# shown to make
sense.

2.2. INTRODUCING INDUCTIVE DATATYPES 49

2.2 Introducing inductive datatypes

Datatypel. as defined by (2.4) is said to becursivebecausd. “recurs” in the defi-
nition of L itself 2. From the discussion above, it is clear that set-theoretical equality
“="1n this equation should give place to set-theoretical isomorphissi)(*

L =2 1+AXxL (2.6)
Which isomorphism[, < "4 Ax I dowe expect to witness (2.4)? This will
depend on which particular solution to (2.4) we are thinking of. Saviahave seen

only one, A*. By recalling the notion ofilgebraof a datatype (section 1.18), so we
may rephrase the question as: which algebra

A =" 14 A x A

do we expect to witness the tautology which arises from (2.4) by regjaciknownL
with solution A*, that is

A = 14+ Ax A* ?

It will have to be of the formin = [iny,in. | as depicted by the following diagram:

1— 214 Ax A2 Ax A 2.7)
mna R ma
S
Arrowsin; andin, can be guessed rather intuitively:; = [], which will express

the “NIL pointer” by the empty sequence, 4t level, andin, = cons, wherecons is
the standard “left append” sequence constructor, which we for the montexduce
rather informally as follows:

. * -
cons: Ax A = A* (2.8)
cons(a,lar,...,a,]) =la,a1,...,a,]
In a diagram:
1— 14 Ax A2 A xar (2.9)

[[],cons
il < cons
A

Of course, forin to be iso it needs to have an inverse, which is not hard to guess,

out € (14 (hd th)) * (=(;?) (2.10)

2By analogy, we may regard (2.3) as a “recursive definitionfufber2.

50 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

where sequence operatdrd(head of a nonempty sequehaadt/ (tail of a nonempty
sequencgare (again informally) described as follows:

hd: A ——= A
hdla;,as,. .., an] = ay (2.11)
th: A* = A* 2.12)
tl[(lh(lQ,...,(ln]:[(l2,...,(ln] '
Showing thatn andout are each other inverses is not a hard task either:
n *out = id
© { definitions ofin andout}
[[],cons] = (! + (hd t]) = (=;7) = id
“~ { +-absorption (1.41) and (1.1p)
[[],cons = (hd tl)]« (=1?) =id
> { property of sequencesons(hds,tl s) = s}
[[],id] = (=1?) = id
“ { going pointwise}
{ :[] a = [U,Zd](ha) .
=(=(a) = [[]id](i2a)
© { +-cancellation (1.38)
=[] a = Ua —u
ﬁ(:[] (l) = ida
“ { a =[]inone case and identity function (1.9) in the other
{ a=[] = a —u
~la=[]) = a
“ { property(p — f, f) = f holds}

a=a

A comment on the particular choice of terminology above: symbalggests that
we are going inside, or constructing (synthesizing) values*ofsymbolout suggests
that we are going out, or destructing (analyzing) valuegofWe shall often resort to
this duality in the sequel.

Are there more solutions to equation (2.6)? In trying to implenti@istequation, a
HASKELL programmer could have written, after the declaration of tgpthe follow-
ing datatype declaration:

data L = Nil () | Cons (A,L)

2.2. INTRODUCING INDUCTIVE DATATYPES 51

which, as we have seen in section 1.18, can be written simply as
data L = Nil | Cons (A,L) (2.13)

and generates diagram

1— 214+ Ax L2 AL (2.14)
Nil) ‘lnl Cons
1 -
leading to algebrén’ = [Nil, Cons |.

HASKELL seems to have generated another solution for the equation, which it calls
L. To avoid the inevitable confusion between this symbol denotiaghdwly created
datatype and symbdl in equation (2.6), which denotes a mathematical variable, let us
use symboll to denote the formefT{ stands for “type”). This can be coped with very
simply by writingT instead ot in (2.13):

data T = Nil | Cons (AT) (2.15)

In order to makel more explicit, we will writeint instead ofin’.
Some questions are on demand at this point. First of all, what is data/pvhat

in-r

are its inhabitants? Next, i§ 1+ A x T aniso or not?

HaskEeLL will help us to answer these questions. Suppose thit a primitive
numeric datatype, and that we aderiving Show to (2.15) so that we can “see”
the inhabitants of th@ datatype. The information associatedrtés thus:

Main> i T
-- type constructor
data T

-- constructors:
Nil =@ T
Cons :: (AT) > T

-- instances:
instance Show T
instance Eval T

By typing Nil

Main> Nil
Nil = T

we confirm thatVil is itself an inhabitant ofl, and by typingCons

Main> Cons
<<function>> :: (AT) > T

52 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

we realize thaons is not so (as expected), but it can be used to build such inhabitants,
for instance:

Main> Cons(1,Nil)
Cons (L,Nil) == T

or

Main> Cons(2,Cons(1,Nil))
Cons (2,Cons (1,Nil)) = T

etc.We conclude tha¢xpressiongvolving Nil andCons are inhabitants of typé.
Are these thenly ones? The answer jgesbecause, by design of thealdkELL lan-
guage, the constructors of typewill remain fixed once its declaration is interpreted,
that is, no further constructor can be added toDoesint have an inverse? Yes, its
inverse is coalgebra

outt: T =1+AXxT
outt Nil =iy NIL (2.16)
outt(Cons(a,l)) =i2(a,l)

which can be straightforwardly encoded im$KELL using theEither realization of
+ (recall sections 1.9 and 1.18):

outT :: T -> Either () (AT)
outT Nil = Left ()
outT (Cons(a,l)) = Right(a,l)

In summary, isomorphism

outTt

/\
T = 1+AxT (2.17)

_/

inT

holds, where datatypE is inhabited by symbolic expressions which we may visualize
very conveniently as trees, for instance

Cons

Cons

2.3. OBSERVING AN INDUCTIVE DATATYPE 53

picturing expressioffons(2, Cons(1, Nil)). Nil is the empty tree an@ons may be
regarded as the operation which adds a new root and a new braneh tsaytree:

Cons(a, j) =

The choice of symbol$, Nil andCons was rather arbitrary in (2.15). Therefore,
an alternative declaration such as, for instance,

data U = Stop | Join (AU) (2.18)

Cons

would have been perfectly acceptable, generating another solution for theoaquat
under algebr& Stop, Join]. Itis easy to check that (2.18) is but a renaming\vat to
Stop and of Cons to Join. Therefore, both datatypes are isomorphic, or “abstractly
the same”.

Indeed, any other datatype€ inductivelydefined by a constant and a binary con-
structor acceptingl and X as parameters will be a solution to the equation. Because
we are just renaming symbols in a consistent way, all such solutiorabateactly the
same. All of them capture the abstract notion diftof symbols.

We wrote “inductively” above because the set of all expressions (tredshh
nhabit the type is defined by induction. Such types are caflddctiveand we shall
have a lot more to say about them in chapter 3.

Exercise 2.1 Obviously,

either (const []) (:)

does not work as a KSKELL realization of the mediating arrow in diagram (2.9). Whayda need to write
instead?
O

2.3 Observing an inductive datatype

Suppose that one is asked to express a partioblservatiorof an inductive such a$

(2.15), that is, a function of sighaturg < ! T for some target typé3. Suppose,

for instance, thatl is N, (the set of all non-negative integers) and that we want to add
all elements which occur in &-list. Of course, we have to guarantee that addition is
available inNg,

add : Ng x Ng —— Njg

add(z,y) = o + y

54 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

and that0 € INg is a value denoting “the addition of nothing”. So constant arrow

INg = = 1 is available. Of courseydd(0,z) = add(xz,0) = x holds, for allz €
INo. This property means th#l,, together with operataidd and constand, forms
amonoid a very important algebraic structure in computing which will be eitpt
intensively later in this book. The following arrow “packaginlyy, add ando,

[0.add]
Ny ———— 1+ Ny x N (2.19)

is a convenient way to express such a structure. Combining this aritbvthei algebra

T 14Ny xT (2.20)

which definesT, and the functiorf we want to define, the target of whichis= Ny,
we get the almost closed diagram which follows, in which only the dashied és yet
to be filled in:

i

T—" 14NgxT (2.21)

|N0m1+INO X |N0

We know thatint = [Nil, Cons]. A pattern for the missing arrow is not difficult to
guess: in the same walybridgesT andINg on the lefthand side, it will do the same
job on the righthand side. So pattern + - - - x f comes to mind (recall section 1.10),
where the *--" are very naturally filled in by identity functions. All in all, we obtai
diagram

[Nil,Cons]
T - 14+ NgxT (2.22)
¥ ididx f
N, — 1+ No x Ny

which pictures the following property of
f[Nil,Cons] = [0,add] « (id+id x f) (2.23)
and is easy to convert to pointwise notation:
f [Nil,Cons] =1[0,add] * (id + id x f)
“ { (1.40) on the lefthand side, (1.41) and identifyon the righthand sidé

[f*Nil,f *Cons]=1[0,add * (id x f)]
© { eitherstructural equality (1.58)

2.3. OBSERVING AN INDUCTIVE DATATYPE 55
f=Nil=0
f=Cons =add * (id x f)
© { going pointwisé

{(f'ﬁww—Qw
(f = Cons)(a,x) = (add = (id x f))(a,z)

“ { composition (1.6), constant (1.12), product (1.22) and defindgionid }
fNil=0
f(Cons(a,z)) =a+ fx
Note that we could have usedtr in diagram (2.21),
T i NgxT (2.24)
f‘ id+idx f
|N0 m 1+ |N0 X |N0

obtaining another version of thifinitionof f,
f = [0,add] = (id+id x f) = outr (2.25)
which would lead to exactly the same pointwise recursive definition:

f=10,add] = (id +id x f) = outy

“ { (1.41) and identityd on the righthand sid¢
f=10,add * (id x f)] = outr
© { going pointwise orutt (2.16)}

{fNu—QQdemXﬁ]wmﬂNu
f(Cons(a,z)) = ([0,add = (id x f)] » outt)(a, z)

“ { definition ofoutt (2.16)}

{fNu:qQqumXﬁ]ngu
f(Cons(a,z)) = ([0,add = (id x f)] *i2)(a,z)

“ { +-cancellation (1.38)
fNil = ONil
{ f(Cons(a,z)) = (add = (id x f)) (a, z)
“ { simplification}
{fNH—O
f(Cons(a,z)) =a+ fx

Pointwisef mirrors the structure of typ& in having has many definition clauses
as constructors ift. Such functions are said to be defirgdinduction orthe structure

56 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

of their input type. If we repeat this calculation g * instead ofT, that is, for
out = (! + (hd tl)) = (=,?)
— recall (2.10) — taking place ofutt, we get a “more algorithmic” version gf:

f=10,add] « (id +id x f) « (! + (hd tl)) = (=[,?)

~ { +-functor (1.42), identity anck-absorption (1.25}
f=10add] = (' +(hd f = tl)) = (=[7)

~ { +-absorption (1.41) and constdh}
f=10,add (hd f «t)] (=[?)

> { going pointwise on guare;? (1.60) and simplifying

I=[] = 0l
fl_{ﬁ(l:[]) = (add ~ (hd f = tl))1

© { simplification}

Fl= I=[] = 0
Tl (=[] = hdi+ f(tl)
The outcome of this calculation can be encoded A8KELL syntax as

fl]l=1[] =0
| otherwise = head | + f (tail I)

or

fl=1ifl==1
then O
else head | + f (tail I)

both requiring the equality predicate=" and destructorstiead " and “tail

2.4 Synthesizing an inductive datatype

The issue which concerns us in this section dualizes what we have justwdialt
instead of analyzing oobservingan inductive type such ag (2.15), we want to be
able to synthesize (generate) particular inhabitanfg.ofn other words, we want to

be able to specify functions with signature !, T for some given source typg.
Let B = Ny and suppose we wayfitto generate, for a given natural number 0, the
list containing all numbers less or equalidn decreasing order

Cons(n,Cons(n —1,Cons(..., Nil)))

or the empty listVil, in casen = 0.

2.4. SYNTHESIZING AN INDUCTIVE DATATYPE 57

Let us try and draw a diagram similar to (2.24) applicable to the nevatsin.
In trying to “re-use” this diagram, it is immediate that arrgishould be reversed.
Bearing duality in mind, we may feel tempted to reverse all arrows juseééovnghat
happens. Identity functions are their own inverses,iandakes the place afutt:

T—" 14NyxT
fu /\id+z’d><f
(PR =1+ Ny x Ng

Interestingly enough, the bottom arrow is the one which is notals/ito reverse,
meaning that we have to “invent” a particular destructoNgf say

g

|N0 =1+ |N0 X |N0

fitting in the diagram andjeneratingthe particular computational effect we have in
mind. Once we do this, a recursive definition fowill pop out immediately,

f = int(id+idx f)g (2.26)

which is equivalent to:
f = [Nil,Cons=(idx f)]=g (2.27)

Because we want0 = Nil to hold,g (the actual generator of the computation) should
distinguish input) from all the others. One thus decompogess follows,

'+h

No —2 Ng + Ng —=% 1 + Ny x Ng

9

leavingh to fill in. This will be asplit providing, on the lefthand side, for the value to
beCons’ed to the output and, on the righthand side, for the “seed” to therrextsive
call. Since we want the output values to be produced contiguously aretneaking
order, we may defing = (id, pred where, forn > 0,

predn e -1 (2.28)
computes th@redecessoof n. Altogether, we have synthesized
g = (1+(id,pred) * (=0?) (2.29)

Filling this in (2.27) we get
f=|Nil,Cons = (id x f)] = (! + (id, pred) = (=q?)

“ { +-absorption (1.41) followed by-absorption (1.25¢tc.}
f = [Nil,Cons = (id, f = pred | » (=?)
© { going pointwise on guarer,? (1.60) and simplifying}

B n=0 = Nil
fn—{ -(n=0) = Cons(n,f(n—1))

which matches the function we had in mind:

58 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

fnj|]n-== = Nil
| otherwise = Cons(n,f(n-1))

We shall see briefly that the constructions of théunction adding up a list of
numbers in the previous section and, in this section, offthenction generating a list
of numbers are very standard in algorithm design and can be broadly generbézed
us first introduce some standard terminology.

2.5 Introducing (list) catas, anas and hylos

Suppose that, back to section 2.3, we wantidtiply, rather than add, the elements
occurring in lists of typdl (2.15). How much of the program synthesis effort presented
there can be reused in the design of the new function?

0,add
It is intuitive that only the bottom arrowN, # 1+ INg x INg of dia-

gram (2.24) needs to be replaced, because this is the only place where we cBn speci
that target datatypBl, is now regarded as the carrier of another (multiplicative rather
than additive) monoidal structure,

[1,mul]

Ny ———"" 1 + Ny x Ny (2.30)

for mul(z,y) def y. We are saying that the argument list is now to be reduced by the

multiplication operator and that output valué expected as the result of “nothing left
to multiply”.

Moreover, in the previous section we might have wanted our numstegdinerator
to produce the list of even numbers smaller than a given number, in deayeader
(see exercise 2.4). Intuition will once again help us in deciding thit amow ¢ in
(2.26) needs to be updated.

The following diagrams generalize both constructions by leaving sattorn ar-
rows unspecified,

T— 2 14 NexT T—— " 14NyxT (2.31)
! id+idx f f’\ /\id+z’d><f
B————1+NyxB B—————1+NyxB

9 9

and express their dualitgf the directions of the arrows). It so happens that, for each
of these diagramg, is uniquely dependent on tlgearrow, that is to say, each particular
instantiation ofg will determine the correspondinfy So bothgs can be regarded as
“seeds” or “genetic material” of th¢ functions they uniquely define

Following the standard terminology, we express these facts byngriti= (g)
with respect to the lefthand side diagram and by writfng: [(¢] with respect to the
righthand side diagram. Redd) as “theT-catamorphisninduced byg” and [(g) as

3The theory which supports the statements of this paragralphatbe dealt with until chapter 3.

2.5. INTRODUCING (LIST) CATAS, ANAS AND HYLOS 59

“the T-anamorphisninduced byg”. This terminology is derived from the Greek words
rkata (cata) andvwa (ana) meaning, respectively, “downwards” and “upwards” (com-
pare with the direction of thg arrow in each diagram). The exchange of parentheses
“()"and “[]”in double parentheseq")” and “[)" is aimed at expressing the duality
of both concepts.

We shall have a lot to say about catamorphisms and anamorphisms of dygieen
such asT. For the moment, it suffices to say that

e the T-catamorphism induced by ~2 14+ Ny x B is the unique function

B f([g]) T which obeys to property (or is defined by)

(9) = g+ (@id+idx(g) = outt (2.32)
which is the same as

(g) ~int = g+ (id+id x (g]) (2.33)

e given B 1+ INy x B the T-anamorphism induced by is the unique

function B HON T which obeys to property (or is defined by)

(9] = int=(id+idx[g]) g (2.34)

From (2.31) it can be observed thiatan act as a mediator between dngnamorphism

<([9D T composes withT -ﬂ C ,for

and anyT -catamorphism, that is to say
h

some C' =14 INg x C . In other words, & -catamorphism call always observe
(consume) the output of &-anamorphism. The latter produces a list\yfs which is
consumed by the former. This is depicted in the diagram which follows:

B——"1+Ny;xB (2.35)
(o) | |iariaxa

T 14 NgxT
[(R)] | /\id+id><[(h)]

C ~ 14+ Ng x C

What can we say about thlg]) = [(h)] composition? It is a function fronB to C
which resorts td as anintermediatedata-structure and can be subject to the following
calculation €f. outermost rectangle in (2.35)):

(9] = (r)] =g = (id +id x (g]) = (id + id x [h])) * h
“ { +-functor (1.42)}

60 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

(gD * [(h)] = g » ((id »id) + (id x (g)) = (id x [(h))) * h
“ { identity andx-functor (1.28)}

(gD *[(n) =g » (id +id x (g) = [(h)]) * b
(gD "[h)

This calculation shows how to defing’ ——
doing without any intermediate data-structure:

B in one go, that is to say,

B——2 1+NyxB (2.36)
(9D *[() id-+idx (g) *[(h)
C————1+NgxC

As an example, let us see what comes oufgf * [)] for h andg respectively given
by (2.29) and (2.30):

(g) = (M) = g » (id +id x (g) = (B) * h

© { (g) = [(h) abbreviated tgf and instantiating andg }
f=[1mul]=(d+idx f) = (! + (id,pred) = (=0?)

“ { +-functor (1.42) and identity
f=[Lomul] = (+ (idx f) « (id, pred) » (=?)

> { x-absorption (1.25) and identity
f=11mul]«(1+ (id, f = pred) * (=7)

~ { +-absorption (1.41) and constan¢1.15)}
f=[Lmul «(id, f = pred] » (=?)

“ { McCarthy conditional (1.59)

f=(=0?) = 1L, mul = (id, f = pred
Going pointwise, we get
£0 = [Lomul - (id, f = pred](i 0)
= { +-cancellation (1.38)
10

{ constant function (1.12)

and

fn+1) = [1,mul = (id, f=pred](iz(n+ 1))

2.5. INTRODUCING (LIST) CATAS, ANAS AND HYLOS 61

= { +-cancellation (1.38)
mul * (id, f » pred(n + 1)

{ pointwise definitions o$plit, identity, predecessor andul }
(n+1)x fn

In summary,f is but the well-known factorial function:

{ fo=1
fln+1)=(n+1)x fn

This result comes to no surprise if we look at diagram (2.35) for tréiqularg
andh we have considered above and recall a popular “definition” of factorial:

nl = nxn—-1)x...x1 (2.37)

n ti‘rrnes
In fact, [(h] n producesT -list
Cons(n,Cons(n —1,...Cons(1, Nil)))

as an intermediate data-structure which is consumefpythe effect of which is but
the “replacement” oCons by x and Nil by 1, therefore accomplishing (2.37) and
realizing the computation of factorial.

The moral of this example is that a function as simple as factorial catebem-
posedinto two components (producer/consumer functions) which share a corimno
termediate inductive datatype. The producer function is an anamorphigrh tvp-
resents” or produces a “view” of its input argument as a value of thenmadiate
datatype. The consumer function is a catamorphism which reduces this édierm
ate data-structure and produces the final result. Like factorial, manyidaeatan be
handsomely expressed by(a)) = [(h) composition for a suitable choice of the inter-
mediate type, and of andh. The intermediate data-structure is said tovbtual in
the sense that it only exists as a means to induce the associated patézursion and
disappears by calculation.

The compositior{g) = [h) of a T-catamorphism with &-anamorphism is called
a T-hylomorphisnf and is denoted bfg, h]. Because andh fully determine the
behaviour of thd g, h] function, they can be regarded as the “genes” of the function
they define. As we shall see, this analogy with biology will prove splgaieseful for
algorithm analysis and classification.

Exercise 2.2 A way of computingn?, the square of a given natural numbgris to sum up thes first odd
numbers. Infact]? = 1,22 =1+ 3,32 =1+ 3 + 5,etc,n? = (2n — 1) + (n — 1)2. Following this
hint, express function

sqn % 2 (2.38)

4This terminology is derived from the Greek wardloo (hylos) meaning “matter”.

62 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

as aT-hylomorphism and encode it inA$KELL.
O

Exercise 2.3 Write functionz™ as aT-hylomorphism and encode it inA$KELL.
O

Exercise 2.4 The following function in FASKELL computes thél -sequence of all even numbers less or
equal ton:

fn=ifn<=1
then Nil

else Cons(m,f(m-2))
where m = if even n then n else n-1

Find its “genetic material”, that is, functiopsuch that f§g¢)| in

inT

T=———"—"——14+NgxT
[(g) id+idX[(g)
INg —g\ 14+ INg X INg

2.6 Inductive types more generally

So far we have focussed our attention exclusively to a particular inéugpeT (2.20)
— that of finite sequences of non-negative integers. This is, of coofseyery lim-
ited scope. First, because one could think of finite sequences of otherpdetzty.
Booleans or many others. Second, because other datatypes such as trees, émsh-tabl
etc.exist which our notation and method should be able to take into account.
Although a generic theory of arbitrary datatypes requires a theoreticalratabo
which cannot be explained at once, we can move a step further by taking the two
observations above as starting points. We shall start from the lat@der to talk
generically about inductive types. Then we introduce parameterization antbfial
behaviour.
Suppose that, as a mere notational convention, we abbreviate eveegsrprof
the form “1 + INg x ...” occurring in the previous section b¥*“ ..", e.g.1 + Ny x B
byFB,e.g.1+Ng x TbyFT

outt
T~
T =~ FT (2.39)
_/

in-r

2.7. FUNCTORS 63

etc.This is the same as introducing a datatype-level operator

FX 14Ny x X (2.40)

which maps every datatypéinto datatypd + Ny x A. OperatofF captures the pattern
of recursion which is associated to so-called “right” lists (of hon-riegattegers), that

is, lists which grow to the right. The slightly different patteégnX L+ X x INo will
generate a different, although related, inductive type

X =14XxNg (2.41)

— that of so-called “left” lists (of non-negative integers). And inist difficult to think
of the pattern which is merges both right and left lists and gives rige-liaear lists,
better known abinary trees

X 214+ X xNgxX (2.42)

One may think of many other expressidh& and guess the inductive datatype they

generate, for instandé X def INg+INg x X generating non-empty lists of non-negative

integers ;). The general rule is that, given an inductive datatype definition of the
form

X =~ FX (2.43)

(also called a domain equation), its pattern of recursion is captured bygallsdfunc-
tor F.

2.7 Functors

The concept of a functdt, borrowed from category theory, is a most generic and useful
device in programming As we have seelf, can be regarded as a datatype constructor
which, given datatypel, builds a more elaborate datatylpel; given another datatype
B, builds a similarly elaborate datatype3; and so on. But what is more important
and has the most beneficial consequences is thHaisifegarded as a functor, then its
data-structuring effect extends smoothly to functions in the faligwvay: suppose

that B A A is a function which observe4 into B, which are parameters éfA

andF B, respectively. By definition, if is a functor thenF B L F A exists for
every suchy:

A FA
/| i
B FB

5The category theory practitioner must be warned of the faattthe wordfunctoris used here in a too
restrictive way. A proper (generic) definition of a functoitiwe provided later in this book.

64 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

F f extendsf to F-structures and will, by definition, obey to two very basic properties
it commutes with identity

Fida = id a (2.44)
and with composition
Flg=h) = (Fg)(Fh) (2.45)
Two simple examples of a functor follow:

¢ Identity functor: defind X = X, for every datatyp&, andF f = f. Properties
(2.44) and (2.45) hold trivially just by removing symidoWherever it occurs.

¢ Constant functors: for a give@d, defineF X = C (for all datatypesX) and
F f =idc, as expressed in the following diagram:

Properties (2.44) and (2.45) hold trivially again.

In the same way functions can be unary, binatg, we can have functors with
more than one argument. So we get binary functors (also chifadctorg, ternary
functorsetc. Of course, properties (2.44) and (2.45) have to hold for every paeamet
of ann-ary functor. For a binary functads, for instance, equation (2.44) becomes

B (ida,idg) = idg(a,n (2.46)
and equation (2.45) becomes
Blg=hi=j) = Blgi)=B(hJ) (2.47)

Product and coproduct are typical examples of bifunctors. In the formeraras
hasB(A,B) = A x B andB (f,g) = f x g — recall (1.22). Properties (1.29) and
(1.28) instantiate (2.46) and (2.47), respectively, and this explaity we called them
the functorial properties of product. In the latter case, oneBhas, B) = A + B and
B (f,9) = f+g—recall (1.37) — and functorial properties (1.43) and (1.42). Finally,
exponentiation is a functorial construction too: assuringne has X 4 x4 and
F f def f = ap and functorial properties (1.71) and (1.72). All this is summarized in
table 2.1.

Such as functions, functors may compose with each other in the obviougheay
composition off andG, denoted- = G, is defined by

F0)X ¥ FGX) (2.48)
F-Gf % FGS (2.49)

2.8. POLYNOMIAL FUNCTORS 65

| Data construction | Universal construct | Functor | Description |

AxB (f,9) f xg | Product
A+B [f,9] f+g | Coproduct
B* f A Exponential

Table 2.1: Datatype constructions and associated operators.

2.8 Polynomial functors

We may put constant, product, coproduct and identity functors togedhatain so-
called polynomial functorswhich are described by polynomial expressions, for in-
stance

FX=1+AxX

—recall (2.6). A polynomial functor is either
e a constant functor or the identity functor, or
¢ the (finitary) product or coproduct (sum) of other polynomial funstor
¢ the composition of other polynomial functors.

So the effect on arrows of a polynomial functor is computed in an easy ardwsid
way, for instance:

Ff = (1+AxX)f
= { sum of two functors wherd is a constant and’ is a variable}
(Df + (A x X)f
= { constant functor and product of two functgrs
idy + (A)f x (X)f
= { constant functor and identity functér
idy +ida x f
{ subscripts dropped for simplicity
id+id x f

So,1+ A x f denotes the same &$, + id4 x f, or even the same a8 + id x f if
one drops the subscripts.

It should be clear at this point that what was referred to in section 1.10 asma “s
bolic pattern” applicable to both datatypes and arrows is after all a fuimctioe math-
ematical sense. The fact that the same polynomial expression is used te Hetiot
the data and the operators which structurally transform such dataiisaifgpnceptual
economy and practical application. For instance, once polynomial funce&)(i&

66 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

assumed, the diagrams in (2.31) can be written as simply as

T FT T— ™ FT (2.50)
f‘ ‘Ff f’\ Fr
B————FB B—————FB

It is useful to know that, thanks to the isomorphism laws studiezhapter 1, every
polynomial functoif may be put into the canonical form,

= Z?:O C; x Xt)
and thatNewton'’s binomial formula
(A+B)" =) "Cpx A" P x B (2.52)

p=0

can be used in such conversions. These are performed up to isomorgtass, to
say, after the conversion one gets a different but isomorphic datatypesider, for

instance, functor

FX Y Ax(1+X)?

(whereA is a constant datatype) and check the following reasoning:

FX = Ax(1+X)?
{ law (1.85)}
Ax (1+X)x (1+ X))
{ law (1.50)}
Ax(1+X)x1+(1+X)x X))
{ laws (1.79), (1.31) and (1.50Q)
AXx(1+X)+(1x X +X x X))
{ laws (1.79) and (1.85)
Ax(1+X)+ (X +X?)
{ law (1.46)}

IR

1

1

1

1

Ax (14 (X +X)+ X?)

1

{ canonical form obtained via laws (1.50) and (1.86)

A +Ax2xX+ A xX?
Co Ch Ca

2.9. POLYNOMIAL INDUCTIVE TYPES 67

Exercise 2.5 Synthesize the isomorphismi + 4 x 2 x X + A x X2 = Y
in the above reasoning.
O

A x (1+ X2) implicit

2.9 Polynomial inductive types

An inductive datatype is said to h@lynomialwherever its pattern of recursion is
described by a polynomial functor, that is to say, wherdvén equation (2.43) is
polynomial. For instance, datatyde(2.20) is polynomial{ = 1) and its associated
polynomial functor is canonically defined with coefficielits = 1 andC; = INg. For
reasons that will become apparent later on, we shall always inps€ 0 to hold in
apolynomialdatatype expressed in canonical form.

Polynomial types are easy to encode indELL wherever the associated functor
is in canonical polynomial form, that is, wherever one has

T = Y Cix T (2.53)
_/ 2
in-r
Then we have
Z.nT déf [fl:' 7fn]
where, fori = 1,n, f; is an arrow of typeT = C; x T*. Sincen is finite, one

may expand exponentials according to (1.85) and encode this$xELL as follows:

data T = CO |
C1 (C1,T) |
C2 (C2,(T, M) |
e |
Cn (Cn,(T, ..., T))

Of course the choice of symb@ii to realize eacly; is arbitrary®. Several instances
of polynomial inductive types (in canonical form) will be mentionedsécttion 2.13.
Section 2.15 will address the conversion between inductive datatypeseithdhy so-
callednatural transformations

The concepts of catamorphism, anamorphism and hylomorphism introduced
section 2.5 can be extended to arbitrary polynomial types. We devofeltbeing
sections to explaining catamorphisms in the polynomial settingyr®ahial anamor-
phisms and hylomorphisms will not be dealt with until chapter 3.

6A more traditional (but less close to (2.53)) encoding wél b
data T=Co|Cl1CiT|C2C2TT|.. |[ChCnNT.. T (2.54)

delivering every constructor in curried form.

68 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

2.10 F-algebras andF-homomorphisms

Our interest in polynomial types is basically due to the fact that, fdyrmonial F,
equation (2.43) always has a particularly interesting solution whiatesponds to our
notion of a recursive datatype.

In order to explain this, we need two notions which are easy to underdfiast

that of anF-algebra which simply is any functiom of signature 4 —~—F 4. A
is called thecarrier of F-algebran and contains the values whiehmanipulates by
computing newA-values out of existing ones, according to fgattern (the “type”
of the algebra). As examples, considéradd | (2.19) andint (2.20), which are both
algebras of typd X = 1 + INg x X. The type of an algebra clearly determines its
form. For instance, any algebseof typeF X = 1+ X x X will be of form[ay, as],
wherea; is a constant and- is a binary operator. So monoids are algebras of this
type’.

Secondly, we introduce the notion of Bshomomorphismvhich is but a function
observing a particuldf-algebrax into anotheiF-algebrags:

A=—"—FA4 fra=p"(Ff) (2.55)
f“’ \Ff
B‘TFB

Clearly, f can be regarded as a structural translation betweand B, that is,A and

B have a similar structurg Note that — thanks to (2.44) — identity functions are al-
ways (trivial)F-homomorphisms and that — thanks to (2.45) — these homomorphisms
compose, that is, the composition of tivehomomorphisms is aR-homomorphism.

2.11 F-Catamorphisms

An F-algebra can be epic, monic or both, that is, iso. Asalgebras are particularly
relevant to our discussion because they describe solutions t& theF X equation
(2.43). Moreover, for polynomidt a particular isd--algebra always exists, which is

in

denoted byuF F uF and has special properties. First, its carrier is the smallest
among the carriers of other i$ealgebras, and this is why it is denoted fofy — 1 for
“minimal” °. Second, it is the so-calléditial F-algebra. What does this mean?

It means that, for everly-algebrax there exists one and only oRehomomorphism
betweenin anda. This unique arrow mediatingn anda is therefore determined by
« itself, and is called th&-catamorphisngenerated by. This construct, which was
introduced in 2.5, is in general denoted [y :

7But not every algebra of this type is a monoid, since the ty@malgebra only fixes its syntax and does
not impose any properties such as associatietty,

8Cf. homomorphisn® homo(the same) -morphos(structure, shape).

9uF means the least fixpoint solution of equatiinz F X, as will be described in chapter 3.

2.11. F-CATAMORPHISMS 69

uF . F uF (2.56)
f=(e)¢ ‘F([a])p
A=————FA

We will drop theF subscript in(a))r wherever deducible from the context, and often
call o the “gene” of ().

As happens wittsplits eithersand transposes, the uniqueness of the catamor-
phism construct is captured by a universal property established in treaflad F-
homomorphisms:

k=(a) & krvin=a-Fk (2.57)

According to the experience gathered from section 1.12 onwards, a f@enies can
be expected as consequences of (2.57). For instance, one may wonder abaendie “g
of the identity catamorphism. Just let= id in (2.57) and see what happens:

id=(a) ©idvin =a = Fid
{ identity (1.10) and is a functor (2.44}

id=(a) ©in=aid
= { identity (1.10) once agaih
id= (a) &in =«
= { areplaced byn and simplifying}
id = (in)
Thus one finds out that the genetic material of the identity catamorghitim initial

algebrain. Which is the same as establishing tftection propertyf catamorphisms:

Cata-reflection :

pF =" F uF (in) = id,¢ (2.58)
uF = F uF

in

In a more intuitive way, one might have observed tfiad) is, by definition ofin, the
unique arrow mediatingF and itself. But another arrow of the same type is already
known: the identityid,r. So these two arrows must be the same.

Another property following immediately from (2.57), for= («]), is

Cata-cancellation :

(@) in =« = F (o) (2.59)

70

CHAPTER 2. RECURSION IN THE POINTFREE STYLE
Becauseén is iso, this law can be rephrased as follows

(a) = a *F(a) = out

(2.60)
whereout denotes the inverse of:

out

pF CFuF

—

in

Now, let f be F-homomorphism (2.55) betwednalgebrasy and3. How does it

relate to(a]) and(3])? Note thatf = («] is an arrow mediatingF andB. But B is

the carrier ofs and (/) is the unique arrow mediatingF and B. So the two arrows
are the same:

Cata-fusion :

puF " F uF fe(@)=(8) if f-a=p-Ff (261)
(oD ‘/F([a])
A=—"FA
/| |Fs
B~——FB

Of course, this law is also a consequence of the universal properfy~fof = («a)):

fr (o) = (8D

& (fe(a)) in=0-F(f*(a))
& { composition is associative afids a functor (2.45}
fr(a) rin=p3+Ff+F(a)
{ cata-cancellation (2.59)
frarF(la)=p+FfF(a)
{ requiref to be aF-homomorphism (2.55)

fra*Fla)=fra*FlapAfra=p-Ff
&= { simplify }

fra=peFf

The presentation of thabsorptionproperty of catamorphisms entails the very im-
portant issue of parameterization and deserves to be treated in a separate asction
follows.

2.12. PARAMETERIZATION, TYPE FUNCTORS AND CATA-ABSORPTI® 71

2.12 Parameterization, type functors and cata-absorption

By analogy with what we have done abalits (product),eithers(coproduct) and
transposes (exponential), we now look forward to identifyiirgatamorphisms which
exhibit functorial behaviour.

Suppose that one wishes to square all numbers which are members of tigis
T (2.20). It can be checked that

([Nil, Cons » (sqx id)]) (2.62)

s
will do this for us, wherelN, < q IN, is given by (2.38). This catamorphism, which
converted to pointwise notation is nothing but functiowhich follows

h Nil = Nil
h(Cons(a,l)) = Cons(sqa, hl)
maps typeT to itself. This is becaussgmapsiNg to INg. Now suppose that, instead of

sg one would like to apply a given functiom - ! INo (for someB other thariNg)

to all elements of the argument list. It is easy to see that it suffices to replfcesq
in (2.62). However, the output type no longefisbut rather typd’ = 1+ B x T'.

TypesT andT’ are very close to each other. They share the same “shape” (recursive
pattern) and only differ with respect to the type of element§\—in T andB in T'.
This suggests that these two types can be regarded as instances of a madodigener
datatypd.ist

List X ~ 14 X x List X (2.63)
_/
in=[Nil,Cons |

in which the type of element¥ is allowed to vary. Thus one has = ListINg and
T' = List B.

It can be seen by inspection that, for amy < !

A,
([Nil, Cons = (f x id)]) (2.64)
mapsList A to List B. Moreover, forf = id one has:
([Nil, Cons = (id x id)])
{ by the x-functor-id property (1.29) and identity
([Nil,Cons)

= { cata-reflection (2.58)
id

Therefore, by defining

List/ % ([Nil,Cons = (f x id)])

72 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

what we have just seen can be written thus:
Listida = ‘idista

This is nothing but law (2.44) foF replaced byList. Moreover, it will not be too
difficult to check that

List(g = f) = ListgListf

also holds —¢f. (2.45). Altogether, this means tHatt can be regarded as a functor.

In programming terminology one says tHast X (the “lists of X's datatype”) is
parametricand that, by instantiating paramef€r one gets ground lists such as lists of
integers, booleangtc. The illustration above deepens one’s understanding of param-
eterization by identifying the functorial behaviour of the parametai@type along its
parameter instantiations.

All this can be broadly generalized and leads to what is commonly knowrypea
functor. First of all, it should be clear that the generic format

T = FT

adopted so far for the definition of an inductive type is not sufficietiitailed because
it does not provide a parametric view ®f For simplicity, let us suppose that only one
parameter is identified ifi. Then we may factor this out vigpe variableX and write
(overloading symbal’)

TX = B(X,TX)

whereB is called the type'dase functar Binary functorB(X,Y") is given this name
because it is the basis of the whole inductive type definition. Btamgtion of X
one obtaing. In the example aboveB (X,Y) = 1+ X x Y and in factFY =
B (INg,Y) =1+ Ny x Y, recall (2.40). Moreover, one has

Ff = B(d,f) (2.65)
and so every-homomorphism can be written in terms of the base-functér, efg.
fra=p+B(id f)

instead of (2.55).
T X will be referred to as thgype functorgenerated b¥g:

TX ~ B(X,TX)
~—

—_———
type functor base functor

We proceed to the description of its functorial behaviouf—-#+— for a given B S A .
As far as typing rules are concerned, we shall have

B4

Tf
TB——TA

2.12. PARAMETERIZATION, TYPE FUNCTORS AND CATA-ABSORPTI® 73

So we should be able to expréBy as aB (A4, _)-catamorphisnfg)):

A TA—"% B(4,TA)
f T f=(9) 1 B (id,T f)

As we know thatinT g is the standard constructor of values of typ&. So we may
put it into the diagram too:

A TA- mnra B (4, T A)
/ T f=(9) 1 B (id.T /)
B TB- - B(4,TB)
B(B, T B)

The catamorphism’s gengwill be synthesized by filling the dashed arrow in the dia-
gram with the obviou8 (f,id). Thus one gets

Tf Y (inrp «B(f,id) (2.66)
and a final diagram, whet@ 4 is abbreviated byn 4 (ibid. int g by ing):

inA

A TA- B(A,TA)
f T f=(inp "B (f,id)) B (id,T f)
: ' B(B.TB)— B(A.TB
B TB (B,TB) o B(ATE)

N inB
Next, we proceed to derive the useful lawoafta-absorption

(g)=Tf = (9=B(f,id) (2.67)

as a consequence of the laws studied in section 2.11. Our target is tatspvior
kE=(g) * T fin(2.57),0negeta = g = B(f,id):

() *Tf=(a)

& { type-functor definition (2.66)
(9) * (inp * B(f,id)) = (a)

& { cata-fusion (2.61)
(9] »inp B (f,id) = a = B(id, (g])

74 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

=3 { cata-cancellation (2.59)
g * B(id, (g])) = B(f,id) = o » B (id, (g))
=3 { Bisabi-functor (2.47}
g *B(id f,(g) *id) = o » B(id, (g])
& { idis natural (1.11}
g9 *B(f =id,id = (g) = a = B(id, (9])
& { (2.47) again, this time from left to right
g *B(f,id) = B(id, (9)) = a = B(id, (g])
& { obvious}
g*B(f,id) =«

The following diagram pictures this property of catamorphisms:

A TA- ma B (A, T A)
f Tf B (id,T f)

B TB = anB(ByTB)mB(AITB)
() B (B.(9)) B (A,(gD)

C = B (B,C) = B (A,C)

B (f.id)

It remains to show that (2.66) indeed defines a functor. This can be verified b
checking properties (2.44) and (2.45) for=T :

¢ Propertytype-functor-id, cf. (2.44):

Tid
{ by definition (2.66)}

(ing = B (id,id))

= { B s a bi-functor (2.46}
(inp = id)

= { identity and cata-reflection (2.58)
id

¢ Propertytype-functor, cf. (2.45) :

T(f=9)
= { by definition (2.66)}

2.13. A CATALOGUE OF STANDARD POLYNOMIAL INDUCTIVE TYPES 75

(ing *B(f = g,id))

= { identities andB is a bi-functor (2.47}
([7:’]’1/3 *B (f7 Zd) *B (ga Zd)])

= { cata-absorption (2.67)
(ing *B(f,id)) *Tg

= { again cata-absorption (2.67)
(ing) *Tf=Tyg

= { cata-reflection (2.58) followed by identily
Tf-Ty

2.13 A catalogue of standard polynomial inductive types

The following table contains a collection of standard polynomial atie types and
associated base type bi-functors, which are in canonical form (2.53}ableecontains
two extra columns which may be used as bookmarks for equations (2.692 &%),
respectivelyt*:

| Description | TX | B(X,)Y) | B(d,f) | B(fid) |
“Right” Lists List X 1+ X xY | id+idxf |id+ f xid
“Left’ Lists [LstX | 1+Y xX | id+ fxid | id+idx f

. 2.68
Non-empty Lists| NList X | X + X xY | id+idx f | f+ fxid ()

Binary Trees BTreeX | 1+ X x Y2 | id+idx f2 | id+ f x id
“Leaf” Trees LTree X X +Y? id + f? f+id

All type functorsT in this table are unary. In general, one may think of inductive
datatypes which exhibit more than one parameter. Shoyldrameters be identified
in T, then this will be based on an+ 1-ary base functoB, cf.

T(Xll,Xn) = B(Xla"'7Xn7T(X17"'7Xn))

So, everyn + 1-ary polynomial functoB(Xy, ..., X,, X,,11) can be identified as the
basis of an inductive-ary type functor (the convention is to stick to the canonical form
and reserve the last variablé, . for the “recursive call”). While type bi-functors
(n = 2) are often found in programming, the situation in which> 2 is relatively
rare. For instance, the combination of leaf-trees with binary-trees iBY2&ds to the
so-called “full tree” type bi-functor

| Description | T(X;, X») | B(X1,X,,Y) | B(id,id, f) | B(f.g,id) |
| “Full” Trees | FTree(X;,X,) | X + Xo xY? Jid+idx f7 | f+gx idT '

69)

19Since(ida)* = id 42, one writesid” toid in this table.

76 CHAPTER 2. RECURSION IN THE POINTFREE STYLE

As we shall see later on, these types are widely used in programminge bcthal
encoding of these types inA$KELL, exponentials are normally expanded to products
according to (1.85), see for instance

data BTree a = Empty | Node(a, (BTree a, BTree a))
Moreover, one may chose to curry the type constructors &sdn,

data BTree a = Empty | Node a (BTree a) (BTree a)

Exercise 2.6 Write as a catamorphism the function which counts the nurabetements of a non-empty
list (type NList in (2.68)).
O

Exercise 2.7 Write the function which computes the maximum element ofralyi-tree of natural numbers
as a catamorphism.
O

Exercise 2.8Characterize the function which is defined @yNVil, h]]) for each of the following definitions
of h:

h(z,(y1,92)) = w1+ [z] Hy2 (2.70)
h =+ =(singlx +) (2.71)
h = +H *(H xsingl) * swap (2.72)

assumingsingl a = [a]. What datatype in (2.68) are we talking about?
O

Exercise 2.9 Write as a catamorphism the function which computesfitietier of a tree of typelLTree
(2.68), listed from left to right.
O

2.14 Functors and type functors in HASKELL

The concept of a (unary) functor is provided im8KEeLL in the form of a particular
class exporting thenap operator:

class Functor f where
map :: (a ->b) -> (fa->fbh

Somap gencode$ g once we declar€ as an instance of clagsinctor . The most
popular use ofmaphas to do with FASKELL lists and this is allowed by declaration

instance Functor [] where

map f [] =1
map f (xxxs) = f x : map f xs

2.15. INDUCTIVE DATATYPE CONVERSION AND ISOMORPHISM 77

in the HuGs Standard Prelude
In order to encode the type functors we have seen so far we have to darttee
concerning their declaration. For instance, if we write

instance Functor BTree
where map f =
cataBTree (inBTree . (id -|- (f >< id)))

concerning the binary-tree datatype of (2.68) and assuming approgeel@rations
of cataBTree andinBTree ,thenmapis overloaded and used across such binary-
trees.

Bi-functors can be added easily by writing

class BiFunctor f where
bmap : (@ ->b) > (c ->d) > (fac->fbd

Exercise 2.10 Declare all datatypes in (2.68) inA$4KELL notation and turn them into ASKELL type
functors, that is, definmapin each case.
O

Exercise 2.11Declare datatype (2.69) inA$KELL notation and turn it into an instance of cl&§unctor

O

2.15 Inductive datatype conversion and isomorphism

TheT f “map” operation is a special case of a transformation between two inductive
datatypes (in which the pattern of recursion remains unchanged). In a reoeead
setting, suppose one is given two inductive datatypesidU defined by functor§
andG, respectively:

T FT

~_ -

int
and

U = GU
_/

inU

Moreover suppose that recursion pattéroan be converted to recursion patt€raia
G X . It can be checked that

vx

polymorphic mapF X

([Z"I’I/T . VT])G (273)

