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Software Engineering

Fact:
The recent increase on both the availability of processor power
and the complexity of the problems computers are requested
to solve is unprecedented in other technologies
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Software Engineering

Fact:
The recent increase on both the availability of processor power
and the complexity of the problems computers are requested
to solve is unprecedented in other technologies

But still software remains

hard to develop

unreliable (≡ ‘faulty goods over budget and behind
schedule’)

difficult to re-use

excessively costly to maintain

... the larger the project, the worse the picture ...
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Some Development Catastrophes

Denver Airport baggage handling system $ 200 million

CONFIRM travel information system $ 160 million

London Ambulance Service dispatching £ 9 million

Formal Methods in Software Engineering – p.3/14



Some Development Catastrophes

Denver Airport baggage handling system $ 200 million

CONFIRM travel information system $ 160 million

London Ambulance Service dispatching £ 9 million

Average schedule slips by 50%

[Sci. American, Sep. 1994]

Formal Methods in Software Engineering – p.3/14



Some Development Catastrophes

Denver Airport baggage handling system $ 200 million

CONFIRM travel information system $ 160 million

London Ambulance Service dispatching £ 9 million

Average schedule slips by 50%

25% of all large systems are cancelled

[Sci. American, Sep. 1994]
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Anatomy of a Disaster

The London Ambulance Service

developers inexperienced in safety-critical systems
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Anatomy of a Disaster

The London Ambulance Service

developers inexperienced in safety-critical systems

users excluded from the design process

incomplete and flawed system design

extreme time pressure, with no realistic testing

deficient management determined to push through
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Critical Software Failures

US Telephone Network [switching software failures, 1991]

Bank of New York [90 minutes failure, Nov. 20 1985

lost information on $ 32 b in transactions

forced to borrow $ 23.6 b from the FR

at a cost in interest of $ 5 m]

GM Detroit Automated Factory [1 year working at half its capacity]

THERAC-25 Radiotherapy [2 killed by overdose]

[Digital Woes, Wiener, L., 1993]
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Some Challenges

A main economic challenge is the cost of rework :
How much software gets used as delivered?
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Some Challenges

A main economic challenge is the cost of rework :
How much software gets used as delivered?

This cost is related to the ‘distance’ between the commission and
the discovery of the error.

Improved requirements analysis and rigorous design could reduce
some of the most critical costs.

But besides costs ... software industry has to deal mainly with
safety-critical and mission-critical applications.

But is Software Engineering (SE) ... Engineering?

Formal Methods in Software Engineering – p.6/14



Hardware vs Software Engineering

Reusable Components “Flat” & Unrelated Tons of Code

Catalogue of specifications ... formal?

Refinement Methods Why reuse, if it is easy to begin again?

Development stations Debug = (Edit;Compile;Test)*

Standard Methodologies and Notation Proliferation ...

Production and Maintenance:

Production Plans & Data Bases

Components’ Families — classifica-
tion, equivalences, etc.

Cubic meters of

unreadable programs

unhelpful manuals
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Software Engineering

Traditional “paper & pencil” development has created the illusion
that Software Engineering was little more than a balanced compromise
between intuition and craft
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Software Engineering

Traditional “paper & pencil” development has created the illusion
that Software Engineering was little more than a balanced compromise
between intuition and craft

Informal design methods emphasise textual descriptions.

CASE tools are mostly oriented toward the production process
(e.g., goal analysis, planning, version control, etc.), but have modest
success in addressing the product itself.

There is a need for a software technology with a sound
mathematical basis, coping with composition and refine-
ment, in which a program would be unacceptable unless
accompanied by a guarantee that it respects its specified
behaviour.
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SE as Mathematical Modelling

SE is not concerned with physical artifacts , but with...
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SE as Mathematical Modelling

SE is not concerned with physical artifacts , but with...
systems’ descriptions

diagramatical or textual,
vague or precise,

well documented or unreadable,
formal or informal,
even executable

Precise , abstract descriptions ≡ mathematical models
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From school physics, recall a basic problem solving strategy :
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SE as Mathematical Modelling

From school physics, recall a basic problem solving strategy :

Understand the problem

Create a mathematical model

Reason within the model

Calculate a solution (≡ an implementation )
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SE as Mathematical Modelling

Suitable models are:

abstract (≡ concise and precise descriptions)
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SE as Mathematical Modelling

Suitable models are:

abstract (≡ concise and precise descriptions)

formal (≡ mathematical, thus suitable for formal analysis)

 Formal Specification & Development Methods

Model-Oriented : VDM, Z, B, RAISE, CAMILA, ...

Property-Oriented : CLEAR, OBJ, ...

Links:
www.fmeurope.org (includes an applications database)
www.comlab.ox.ac.uk/archive/formal-methods (huge FM Archive)
shemesh.larc.nasa.gov/fm.html (NASA FM Page; generalistic)
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SE as Mathematical Modelling

The target of Formal Methods is to drive software production into
solid engineering standards.
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SE as Mathematical Modelling

The target of Formal Methods is to drive software production into
solid engineering standards.

Engineering means:

Standard modelling notation (with an unambiguous semantics)

Formal calculi (to reason about and validate designs)

Re-use (of both models and calculations)

‘There is a big difference between good, sound reasons, ...
... and reasons that sound good’ (Haldane)
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Why Maths?
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Need for Tool Support

Most systems grow up from an unstructured collection of informal
requirements
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Need for Tool Support

Most systems grow up from an unstructured collection of informal
requirements

‘Going formal’ requires more and more precision from people

Industry is slow in adopting mathematical based design methods

There is a need for tools to validate software formal descriptions:
type checkers, syntax-oriented editors, theorem provers, proto-
typing environments...
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