
Haskell Hierarchical Libraries (base package) Contents Index

Data.Set
Portability portable
Stability provisional
Maintainer libraries@haskell.org

Contents

Set type
Operators
Query
Construction
Combine
Filter
Map
Fold
Min/Max
Conversion

List
Ordered list

Debugging
Old interface, DEPRECATED

Description
An efficient implementation of sets.

This module is intended to be imported qualified, to avoid name clashes with Prelude
functions. eg.

 import Data.Set as Set

The implementation of Set is based on size balanced binary trees (or trees of bounded
balance) as described by:

Stephen Adams, "Efficient sets: a balancing act", Journal of Functional Programming
3(4):553-562, October 1993, http://www.swiss.ai.mit.edu/~adams/BB.
J. Nievergelt and E.M. Reingold, "Binary search trees of bounded balance", SIAM
journal of computing 2(1), March 1973.

Note that the implementation is left-biased -- the elements of a first argument are always
perferred to the second, for example in union or insert. Of course, left-biasing can only be
observed when equality is an equivalence relation instead of structural equality.

Synopsis
data Set a

(\\) :: Ord a => Set a -> Set a -> Set a

null :: Set a -> Bool

size :: Set a -> Int

member :: Ord a => a -> Set a -> Bool

isSubsetOf :: Ord a => Set a -> Set a -> Bool

isProperSubsetOf :: Ord a => Set a -> Set a -> Bool

empty :: Set a

singleton :: a -> Set a

insert :: Ord a => a -> Set a -> Set a

delete :: Ord a => a -> Set a -> Set a

union :: Ord a => Set a -> Set a -> Set a

unions :: Ord a => [Set a] -> Set a

difference :: Ord a => Set a -> Set a -> Set a

intersection :: Ord a => Set a -> Set a -> Set a

filter :: Ord a => (a -> Bool) -> Set a -> Set a

partition :: Ord a => (a -> Bool) -> Set a -> (Set a, Set a)

split :: Ord a => a -> Set a -> (Set a, Set a)

splitMember :: Ord a => a -> Set a -> (Set a, Bool, Set a)

map :: (Ord a, Ord b) => (a -> b) -> Set a -> Set b

mapMonotonic :: (a -> b) -> Set a -> Set b

fold :: (a -> b -> b) -> b -> Set a -> b

findMin :: Set a -> a

findMax :: Set a -> a

deleteMin :: Set a -> Set a

deleteMax :: Set a -> Set a

deleteFindMin :: Set a -> (a, Set a)

deleteFindMax :: Set a -> (a, Set a)

elems :: Set a -> [a]

toList :: Set a -> [a]

fromList :: Ord a => [a] -> Set a

toAscList :: Set a -> [a]

fromAscList :: Eq a => [a] -> Set a

fromDistinctAscList :: [a] -> Set a

showTree :: Show a => Set a -> String

showTreeWith :: Show a => Bool -> Bool -> Set a -> String

valid :: Ord a => Set a -> Bool

emptySet :: Set a

mkSet :: Ord a => [a] -> Set a

setToList :: Set a -> [a]

unitSet :: a -> Set a

elementOf :: Ord a => a -> Set a -> Bool

isEmptySet :: Set a -> Bool

cardinality :: Set a -> Int

unionManySets :: Ord a => [Set a] -> Set a

minusSet :: Ord a => Set a -> Set a -> Set a

mapSet :: (Ord a, Ord b) => (b -> a) -> Set b -> Set a

intersect :: Ord a => Set a -> Set a -> Set a

addToSet :: Ord a => Set a -> a -> Set a

delFromSet :: Ord a => Set a -> a -> Set a

Set type
data Set a

A set of values a.
 Instances
Typeable1 Set
(Data a, Ord a) => Data (Set a)
Eq a => Eq (Set a)
Ord a => Monoid (Set a)
Ord a => Ord (Set a)
Show a => Show (Set a)

Operators
(\\) :: Ord a => Set a -> Set a -> Set a
O(n+m). See difference.

Query
null :: Set a -> Bool
O(1). Is this the empty set?

size :: Set a -> Int
O(1). The number of elements in the set.

member :: Ord a => a -> Set a -> Bool
O(log n). Is the element in the set?

isSubsetOf :: Ord a => Set a -> Set a -> Bool
O(n+m). Is this a subset? (s1 isSubsetOf s2) tells whether s1 is a subset of s2.

isProperSubsetOf :: Ord a => Set a -> Set a -> Bool
O(n+m). Is this a proper subset? (ie. a subset but not equal).

Construction
empty :: Set a
O(1). The empty set.

singleton :: a -> Set a
O(1). Create a singleton set.

insert :: Ord a => a -> Set a -> Set a
O(log n). Insert an element in a set.

delete :: Ord a => a -> Set a -> Set a
O(log n). Delete an element from a set.

Combine
union :: Ord a => Set a -> Set a -> Set a
O(n+m). The union of two sets. Uses the efficient hedge-union algorithm. Hedge-union is
more efficient on (bigset union smallset).

unions :: Ord a => [Set a] -> Set a
The union of a list of sets: (unions == foldl union empty).

difference :: Ord a => Set a -> Set a -> Set a
O(n+m). Difference of two sets. The implementation uses an efficient hedge algorithm
comparable with hedge-union.

intersection :: Ord a => Set a -> Set a -> Set a
O(n+m). The intersection of two sets. Intersection is more efficient on (bigset intersection
smallset).

Filter
filter :: Ord a => (a -> Bool) -> Set a -> Set a
O(n). Filter all elements that satisfy the predicate.

partition :: Ord a => (a -> Bool) -> Set a -> (Set a, Set a)
O(n). Partition the set into two sets, one with all elements that satisfy the predicate and one
with all elements that don't satisfy the predicate. See also split.

split :: Ord a => a -> Set a -> (Set a, Set a)
O(log n). The expression (split x set) is a pair (set1,set2) where all elements in set1 are
lower than x and all elements in set2 larger than x. x is not found in neither set1 nor set2.

splitMember :: Ord a => a -> Set a -> (Set a, Bool, Set a)
O(log n). Performs a split but also returns whether the pivot element was found in the
original set.

Map
map :: (Ord a, Ord b) => (a -> b) -> Set a -> Set b

O(n*log n). map f s is the set obtained by applying f to each element of s.

It's worth noting that the size of the result may be smaller if, for some (x,y), x /= y && f x
== f y

mapMonotonic :: (a -> b) -> Set a -> Set b

O(n). The

mapMonotonic f s == map f s, but works only when f is monotonic. The precondition is not
checked. Semi-formally, we have:

 and [x < y ==> f x < f y | x <- ls, y <- ls]
 ==> mapMonotonic f s == map f s
 where ls = toList s

Fold
fold :: (a -> b -> b) -> b -> Set a -> b
O(n). Fold over the elements of a set in an unspecified order.

Min/Max
findMin :: Set a -> a
O(log n). The minimal element of a set.

findMax :: Set a -> a
O(log n). The maximal element of a set.

deleteMin :: Set a -> Set a
O(log n). Delete the minimal element.

deleteMax :: Set a -> Set a
O(log n). Delete the maximal element.

deleteFindMin :: Set a -> (a, Set a)

O(log n). Delete and find the minimal element.

 deleteFindMin set = (findMin set, deleteMin set)

deleteFindMax :: Set a -> (a, Set a)

O(log n). Delete and find the maximal element.

 deleteFindMax set = (findMax set, deleteMax set)

Conversion

List
elems :: Set a -> [a]
O(n). The elements of a set.

toList :: Set a -> [a]
O(n). Convert the set to a list of elements.

fromList :: Ord a => [a] -> Set a
O(n*log n). Create a set from a list of elements.

Ordered list
toAscList :: Set a -> [a]
O(n). Convert the set to an ascending list of elements.

fromAscList :: Eq a => [a] -> Set a
O(n). Build a set from an ascending list in linear time. The precondition (input list is ascending)
is not checked.

fromDistinctAscList :: [a] -> Set a
O(n). Build a set from an ascending list of distinct elements in linear time. The precondition
(input list is strictly ascending) is not checked.

Debugging
showTree :: Show a => Set a -> String
O(n). Show the tree that implements the set. The tree is shown in a compressed, hanging
format.

showTreeWith :: Show a => Bool -> Bool -> Set a -> String

O(n). The expression (showTreeWith hang wide map) shows the tree that implements the set.
If hang is True, a hanging tree is shown otherwise a rotated tree is shown. If wide is True, an
extra wide version is shown.

 Set> putStrLn $ showTreeWith True False $ fromDistinctAscList [1..5]
 4
 +--2
 | +--1
 | +--3
 +--5

 Set> putStrLn $ showTreeWith True True $ fromDistinctAscList [1..5]
 4
 |
 +--2
 | |

 | +--1
 | |
 | +--3
 |
 +--5

 Set> putStrLn $ showTreeWith False True $ fromDistinctAscList [1..5]
 +--5
 |
 4
 |
 | +--3
 | |
 +--2
 |
 +--1

valid :: Ord a => Set a -> Bool
O(n). Test if the internal set structure is valid.

Old interface, DEPRECATED
emptySet :: Set a
Obsolete equivalent of empty.

mkSet :: Ord a => [a] -> Set a
Obsolete equivalent of fromList.

setToList :: Set a -> [a]
Obsolete equivalent of elems.

unitSet :: a -> Set a
Obsolete equivalent of singleton.

elementOf :: Ord a => a -> Set a -> Bool
Obsolete equivalent of member.

isEmptySet :: Set a -> Bool
Obsolete equivalent of null.

cardinality :: Set a -> Int
Obsolete equivalent of size.

unionManySets :: Ord a => [Set a] -> Set a
Obsolete equivalent of unions.

minusSet :: Ord a => Set a -> Set a -> Set a
Obsolete equivalent of difference.

mapSet :: (Ord a, Ord b) => (b -> a) -> Set b -> Set a
Obsolete equivalent of map.

intersect :: Ord a => Set a -> Set a -> Set a
Obsolete equivalent of intersection.

addToSet :: Ord a => Set a -> a -> Set a
Obsolete equivalent of flip insert.

delFromSet :: Ord a => Set a -> a -> Set a
Obsolete equivalent of flip delete.

Produced by Haddock version 0.7

UMinho Haskell Libraries (1.0) Contents Index

Data.SetExtras
Portability experimental
Stability experimental
Maintainer João Ferreira, Alexandra Mendes

Contents

Sets' basic functions
File IO

Description
Extra functions to use with Sets

Synopsis
filterSet :: Ord a => (a -> Bool) -> Set a -> Set a

dunion :: Ord a => Set (Set a) -> Set a

readFile_Set :: (Read a, Ord a, Show c) => FilePath -> (Set a -> c) -> IO c

interact_Set :: (Read a, Ord a, Show c) => FilePath -> FilePath -> (Set a -> c) -> IO ()

Sets' basic functions
filterSet :: Ord a => (a -> Bool) -> Set a -> Set a
Given a predicate p and a set, yields a set whose elements validate p.

dunion :: Ord a => Set (Set a) -> Set a
Given a set of sets ss, the resulting set is the union of all the elements (these are sets themselves)
of ss, i.e. it contains all the elements of all the sets of ss.

File IO
readFile_Set :: (Read a, Ord a, Show c) => FilePath -> (Set a -> c) -> IO c
Applies a given function to a set read from a given file.

interact_Set :: (Read a, Ord a, Show c) => FilePath -> FilePath -> (Set a -> c) -> IO ()
Applies readFile_Set and writes the result in a given file.

Produced by Haddock version 0.6

Haskell Hierarchical Libraries (base package) Contents Index

Data.Map
Portability portable
Stability provisional
Maintainer libraries@haskell.org

Contents

Map type
Operators
Query
Construction

Insertion
Delete/Update

Combine

Union
Difference
Intersection

Traversal

Map
Fold

Conversion

Lists
Ordered lists

Filter
Submap
Indexed
Min/Max
Debugging

Description
An efficient implementation of maps from keys to values (dictionaries).

This module is intended to be imported qualified, to avoid name clashes with Prelude
functions. eg.

 import Data.Map as Map

The implementation of Map is based on size balanced binary trees (or trees of bounded
balance) as described by:

Stephen Adams, "Efficient sets: a balancing act", Journal of Functional Programming
3(4):553-562, October 1993, http://www.swiss.ai.mit.edu/~adams/BB.
J. Nievergelt and E.M. Reingold, "Binary search trees of bounded balance", SIAM

journal of computing 2(1), March 1973.

Synopsis
data Map k a

(!) :: Ord k => Map k a -> k -> a

(\\) :: Ord k => Map k a -> Map k b -> Map k a

null :: Map k a -> Bool

size :: Map k a -> Int

member :: Ord k => k -> Map k a -> Bool

lookup :: (Monad m, Ord k) => k -> Map k a -> m a

findWithDefault :: Ord k => a -> k -> Map k a -> a

empty :: Map k a

singleton :: k -> a -> Map k a

insert :: Ord k => k -> a -> Map k a -> Map k a

insertWith :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a

insertWithKey :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a

insertLookupWithKey :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> (Maybe
a, Map k a)

delete :: Ord k => k -> Map k a -> Map k a

adjust :: Ord k => (a -> a) -> k -> Map k a -> Map k a

adjustWithKey :: Ord k => (k -> a -> a) -> k -> Map k a -> Map k a

update :: Ord k => (a -> Maybe a) -> k -> Map k a -> Map k a

updateWithKey :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a

updateLookupWithKey :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> (Maybe a,
Map k a)

union :: Ord k => Map k a -> Map k a -> Map k a

unionWith :: Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a

unionWithKey :: Ord k => (k -> a -> a -> a) -> Map k a -> Map k a -> Map k a

unions :: Ord k => [Map k a] -> Map k a

unionsWith :: Ord k => (a -> a -> a) -> [Map k a] -> Map k a

difference :: Ord k => Map k a -> Map k b -> Map k a

differenceWith :: Ord k => (a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a

differenceWithKey :: Ord k => (k -> a -> b -> Maybe a) -> Map k a -> Map k b -> Map
k a

intersection :: Ord k => Map k a -> Map k b -> Map k a

intersectionWith :: Ord k => (a -> b -> c) -> Map k a -> Map k b -> Map k c

intersectionWithKey :: Ord k => (k -> a -> b -> c) -> Map k a -> Map k b -> Map k c

map :: (a -> b) -> Map k a -> Map k b

mapWithKey :: (k -> a -> b) -> Map k a -> Map k b

mapAccum :: (a -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)

mapAccumWithKey :: (a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)

mapKeys :: Ord k2 => (k1 -> k2) -> Map k1 a -> Map k2 a

mapKeysWith :: Ord k2 => (a -> a -> a) -> (k1 -> k2) -> Map k1 a -> Map k2 a

mapKeysMonotonic :: (k1 -> k2) -> Map k1 a -> Map k2 a

fold :: (a -> b -> b) -> b -> Map k a -> b

foldWithKey :: (k -> a -> b -> b) -> b -> Map k a -> b

elems :: Map k a -> [a]

keys :: Map k a -> [k]

keysSet :: Map k a -> Set k

assocs :: Map k a -> [(k, a)]

toList :: Map k a -> [(k, a)]

fromList :: Ord k => [(k, a)] -> Map k a

fromListWith :: Ord k => (a -> a -> a) -> [(k, a)] -> Map k a

fromListWithKey :: Ord k => (k -> a -> a -> a) -> [(k, a)] -> Map k a

toAscList :: Map k a -> [(k, a)]

fromAscList :: Eq k => [(k, a)] -> Map k a

fromAscListWith :: Eq k => (a -> a -> a) -> [(k, a)] -> Map k a

fromAscListWithKey :: Eq k => (k -> a -> a -> a) -> [(k, a)] -> Map k a

fromDistinctAscList :: [(k, a)] -> Map k a

filter :: Ord k => (a -> Bool) -> Map k a -> Map k a

filterWithKey :: Ord k => (k -> a -> Bool) -> Map k a -> Map k a

partition :: Ord k => (a -> Bool) -> Map k a -> (Map k a, Map k a)

partitionWithKey :: Ord k => (k -> a -> Bool) -> Map k a -> (Map k a, Map k a)

split :: Ord k => k -> Map k a -> (Map k a, Map k a)

splitLookup :: Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)

isSubmapOf :: (Ord k, Eq a) => Map k a -> Map k a -> Bool

isSubmapOfBy :: Ord k => (a -> b -> Bool) -> Map k a -> Map k b -> Bool

isProperSubmapOf :: (Ord k, Eq a) => Map k a -> Map k a -> Bool

isProperSubmapOfBy :: Ord k => (a -> b -> Bool) -> Map k a -> Map k b -> Bool

lookupIndex :: (Monad m, Ord k) => k -> Map k a -> m Int

findIndex :: Ord k => k -> Map k a -> Int

elemAt :: Int -> Map k a -> (k, a)

updateAt :: (k -> a -> Maybe a) -> Int -> Map k a -> Map k a

deleteAt :: Int -> Map k a -> Map k a

findMin :: Map k a -> (k, a)

findMax :: Map k a -> (k, a)

deleteMin :: Map k a -> Map k a

deleteMax :: Map k a -> Map k a

deleteFindMin :: Map k a -> ((k, a), Map k a)

deleteFindMax :: Map k a -> ((k, a), Map k a)

updateMin :: (a -> Maybe a) -> Map k a -> Map k a

updateMax :: (a -> Maybe a) -> Map k a -> Map k a

updateMinWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a

updateMaxWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a

showTree :: (Show k, Show a) => Map k a -> String

showTreeWith :: (k -> a -> String) -> Bool -> Bool -> Map k a -> String

valid :: Ord k => Map k a -> Bool

Map type
data Map k a

A Map from keys k to values a.
 Instances
Typeable2 Map
Functor (Map k)
(Data k, Data a, Ord k) => Data (Map k a)
(Eq k, Eq a) => Eq (Map k a)
Ord k => Monoid (Map k v)
(Ord k, Ord v) => Ord (Map k v)
(Show k, Show a) => Show (Map k a)

Operators
(!) :: Ord k => Map k a -> k -> a
O(log n). Find the value at a key. Calls error when the element can not be found.

(\\) :: Ord k => Map k a -> Map k b -> Map k a
O(n+m). See difference.

Query
null :: Map k a -> Bool
O(1). Is the map empty?

size :: Map k a -> Int

O(1). The number of elements in the map.

member :: Ord k => k -> Map k a -> Bool
O(log n). Is the key a member of the map?

lookup :: (Monad m, Ord k) => k -> Map k a -> m a
O(log n). Lookup the value at a key in the map.

findWithDefault :: Ord k => a -> k -> Map k a -> a
O(log n). The expression (findWithDefault def k map) returns the value at key k or returns
def when the key is not in the map.

Construction
empty :: Map k a
O(1). The empty map.

singleton :: k -> a -> Map k a
O(1). A map with a single element.

Insertion
insert :: Ord k => k -> a -> Map k a -> Map k a
O(log n). Insert a new key and value in the map.

insertWith :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
O(log n). Insert with a combining function.

insertWithKey :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
O(log n). Insert with a combining function.

insertLookupWithKey :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> (Maybe a,
Map k a)

O(log n). The expression (insertLookupWithKey f k x map) is a pair where the first element is
equal to (lookup k map) and the second element equal to (insertWithKey f k x map).

Delete/Update
delete :: Ord k => k -> Map k a -> Map k a
O(log n). Delete a key and its value from the map. When the key is not a member of the map,
the original map is returned.

adjust :: Ord k => (a -> a) -> k -> Map k a -> Map k a
O(log n). Adjust a value at a specific key. When the key is not a member of the map, the
original map is returned.

adjustWithKey :: Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
O(log n). Adjust a value at a specific key. When the key is not a member of the map, the
original map is returned.

update :: Ord k => (a -> Maybe a) -> k -> Map k a -> Map k a

O(log n). The expression (update f k map) updates the value x at k (if it is in the map). If (f x)
is Nothing, the element is deleted. If it is (Just y), the key k is bound to the new value y.

updateWithKey :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
O(log n). The expression (updateWithKey f k map) updates the value x at k (if it is in the map).
If (f k x) is Nothing, the element is deleted. If it is (Just y), the key k is bound to the new
value y.

updateLookupWithKey :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> (Maybe a, Map
k a)

O(log n). Lookup and update.

Combine

Union
union :: Ord k => Map k a -> Map k a -> Map k a
O(n+m). The expression (union t1 t2) takes the left-biased union of t1 and t2. It prefers t1
when duplicate keys are encountered, i.e. (union == unionWith const). The implementation
uses the efficient hedge-union algorithm. Hedge-union is more efficient on (bigset union
smallset)?

unionWith :: Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a
O(n+m). Union with a combining function. The implementation uses the efficient hedge-union
algorithm.

unionWithKey :: Ord k => (k -> a -> a -> a) -> Map k a -> Map k a -> Map k a
O(n+m). Union with a combining function. The implementation uses the efficient hedge-union
algorithm. Hedge-union is more efficient on (bigset union smallset).

unions :: Ord k => [Map k a] -> Map k a
The union of a list of maps: (unions == foldl union empty).

unionsWith :: Ord k => (a -> a -> a) -> [Map k a] -> Map k a
The union of a list of maps, with a combining operation: (unionsWith f == foldl (unionWith
f) empty).

Difference
difference :: Ord k => Map k a -> Map k b -> Map k a
O(n+m). Difference of two maps. The implementation uses an efficient hedge algorithm
comparable with hedge-union.

differenceWith :: Ord k => (a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a
O(n+m). Difference with a combining function. The implementation uses an efficient hedge
algorithm comparable with hedge-union.

differenceWithKey :: Ord k => (k -> a -> b -> Maybe a) -> Map k a -> Map k b -> Map
k a

O(n+m). Difference with a combining function. When two equal keys are encountered, the
combining function is applied to the key and both values. If it returns Nothing, the element is
discarded (proper set difference). If it returns (Just y), the element is updated with a new

value y. The implementation uses an efficient hedge algorithm comparable with hedge-union.

Intersection
intersection :: Ord k => Map k a -> Map k b -> Map k a
O(n+m). Intersection of two maps. The values in the first map are returned, i.e. (intersection
m1 m2 == intersectionWith const m1 m2).

intersectionWith :: Ord k => (a -> b -> c) -> Map k a -> Map k b -> Map k c
O(n+m). Intersection with a combining function.

intersectionWithKey :: Ord k => (k -> a -> b -> c) -> Map k a -> Map k b -> Map k c
O(n+m). Intersection with a combining function. Intersection is more efficient on (bigset
intersection smallset)

Traversal

Map
map :: (a -> b) -> Map k a -> Map k b
O(n). Map a function over all values in the map.

mapWithKey :: (k -> a -> b) -> Map k a -> Map k b
O(n). Map a function over all values in the map.

mapAccum :: (a -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
O(n). The function mapAccum threads an accumulating argument through the map in ascending
order of keys.

mapAccumWithKey :: (a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
O(n). The function mapAccumWithKey threads an accumulating argument through the map in
ascending order of keys.

mapKeys :: Ord k2 => (k1 -> k2) -> Map k1 a -> Map k2 a

O(n*log n). mapKeys f s is the map obtained by applying f to each key of s.

The size of the result may be smaller if f maps two or more distinct keys to the same new key.
In this case the value at the smallest of these keys is retained.

mapKeysWith :: Ord k2 => (a -> a -> a) -> (k1 -> k2) -> Map k1 a -> Map k2 a

O(n*log n). mapKeysWith c f s is the map obtained by applying f to each key of s.

The size of the result may be smaller if f maps two or more distinct keys to the same new key.
In this case the associated values will be combined using c.

mapKeysMonotonic :: (k1 -> k2) -> Map k1 a -> Map k2 a

O(n). mapKeysMonotonic f s == mapKeys f s, but works only when f is strictly monotonic. The

precondition is not checked. Semi-formally, we have:

 and [x < y ==> f x < f y | x <- ls, y <- ls]
 ==> mapKeysMonotonic f s == mapKeys f s
 where ls = keys s

Fold
fold :: (a -> b -> b) -> b -> Map k a -> b

O(n). Fold the values in the map, such that fold f z == foldr f z . elems. For example,

 elems map = fold (:) [] map

foldWithKey :: (k -> a -> b -> b) -> b -> Map k a -> b

O(n). Fold the keys and values in the map, such that foldWithKey f z == foldr (uncurry f)
z . toAscList. For example,

 keys map = foldWithKey (\k x ks -> k:ks) [] map

Conversion
elems :: Map k a -> [a]
O(n). Return all elements of the map in the ascending order of their keys.

keys :: Map k a -> [k]
O(n). Return all keys of the map in ascending order.

keysSet :: Map k a -> Set k
O(n). The set of all keys of the map.

assocs :: Map k a -> [(k, a)]
O(n). Return all key/value pairs in the map in ascending key order.

Lists
toList :: Map k a -> [(k, a)]
O(n). Convert to a list of key/value pairs.

fromList :: Ord k => [(k, a)] -> Map k a
O(n*log n). Build a map from a list of key/value pairs. See also fromAscList.

fromListWith :: Ord k => (a -> a -> a) -> [(k, a)] -> Map k a
O(n*log n). Build a map from a list of key/value pairs with a combining function. See also
fromAscListWith.

fromListWithKey :: Ord k => (k -> a -> a -> a) -> [(k, a)] -> Map k a
O(n*log n). Build a map from a list of key/value pairs with a combining function. See also
fromAscListWithKey.

Ordered lists
toAscList :: Map k a -> [(k, a)]
O(n). Convert to an ascending list.

fromAscList :: Eq k => [(k, a)] -> Map k a
O(n). Build a map from an ascending list in linear time. The precondition (input list is
ascending) is not checked.

fromAscListWith :: Eq k => (a -> a -> a) -> [(k, a)] -> Map k a
O(n). Build a map from an ascending list in linear time with a combining function for equal
keys. The precondition (input list is ascending) is not checked.

fromAscListWithKey :: Eq k => (k -> a -> a -> a) -> [(k, a)] -> Map k a
O(n). Build a map from an ascending list in linear time with a combining function for equal
keys. The precondition (input list is ascending) is not checked.

fromDistinctAscList :: [(k, a)] -> Map k a
O(n). Build a map from an ascending list of distinct elements in linear time. The precondition is
not checked.

Filter
filter :: Ord k => (a -> Bool) -> Map k a -> Map k a
O(n). Filter all values that satisfy the predicate.

filterWithKey :: Ord k => (k -> a -> Bool) -> Map k a -> Map k a
O(n). Filter all keys/values that satisfy the predicate.

partition :: Ord k => (a -> Bool) -> Map k a -> (Map k a, Map k a)
O(n). partition the map according to a predicate. The first map contains all elements that
satisfy the predicate, the second all elements that fail the predicate. See also split.

partitionWithKey :: Ord k => (k -> a -> Bool) -> Map k a -> (Map k a, Map k a)
O(n). partition the map according to a predicate. The first map contains all elements that
satisfy the predicate, the second all elements that fail the predicate. See also split.

split :: Ord k => k -> Map k a -> (Map k a, Map k a)
O(log n). The expression (split k map) is a pair (map1,map2) where the keys in map1 are
smaller than k and the keys in map2 larger than k. Any key equal to k is found in neither map1
nor map2.

splitLookup :: Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
O(log n). The expression (splitLookup k map) splits a map just like split but also returns
lookup k map.

Submap
isSubmapOf :: (Ord k, Eq a) => Map k a -> Map k a -> Bool
O(n+m). This function is defined as (isSubmapOf = isSubmapOfBy (==)).

isSubmapOfBy :: Ord k => (a -> b -> Bool) -> Map k a -> Map k b -> Bool

O(n+m). The expression (isSubmapOfBy f t1 t2) returns True if all keys in t1 are in tree t2,
and when f returns True when applied to their respective values. For example, the following
expressions are all True:

 isSubmapOfBy (==) (fromList [('a',1)]) (fromList [('a',1),('b',2)])
 isSubmapOfBy (<=) (fromList [('a',1)]) (fromList [('a',1),('b',2)])
 isSubmapOfBy (==) (fromList [('a',1),('b',2)]) (fromList [('a',1),('b',2)])

But the following are all False:

 isSubmapOfBy (==) (fromList [('a',2)]) (fromList [('a',1),('b',2)])
 isSubmapOfBy (<) (fromList [('a',1)]) (fromList [('a',1),('b',2)])
 isSubmapOfBy (==) (fromList [('a',1),('b',2)]) (fromList [('a',1)])

isProperSubmapOf :: (Ord k, Eq a) => Map k a -> Map k a -> Bool
O(n+m). Is this a proper submap? (ie. a submap but not equal). Defined as (isProperSubmapOf
= isProperSubmapOfBy (==)).

isProperSubmapOfBy :: Ord k => (a -> b -> Bool) -> Map k a -> Map k b -> Bool

O(n+m). Is this a proper submap? (ie. a submap but not equal). The expression
(isProperSubmapOfBy f m1 m2) returns True when m1 and m2 are not equal, all keys in m1 are in
m2, and when f returns True when applied to their respective values. For example, the
following expressions are all True:

 isProperSubmapOfBy (==) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
 isProperSubmapOfBy (<=) (fromList [(1,1)]) (fromList [(1,1),(2,2)])

But the following are all False:

 isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1),(2,2)])
 isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1)])
 isProperSubmapOfBy (<) (fromList [(1,1)]) (fromList [(1,1),(2,2)])

Indexed
lookupIndex :: (Monad m, Ord k) => k -> Map k a -> m Int
O(log n). Lookup the index of a key. The index is a number from 0 up to, but not including, the
size of the map.

findIndex :: Ord k => k -> Map k a -> Int
O(log n). Return the index of a key. The index is a number from 0 up to, but not including, the
size of the map. Calls error when the key is not a member of the map.

elemAt :: Int -> Map k a -> (k, a)
O(log n). Retrieve an element by index. Calls error when an invalid index is used.

updateAt :: (k -> a -> Maybe a) -> Int -> Map k a -> Map k a
O(log n). Update the element at index. Calls error when an invalid index is used.

deleteAt :: Int -> Map k a -> Map k a
O(log n). Delete the element at index. Defined as (deleteAt i map = updateAt (k x ->

Nothing) i map

Min/Max
findMin :: Map k a -> (k, a)
O(log n). The minimal key of the map.

findMax :: Map k a -> (k, a)
O(log n). The maximal key of the map.

deleteMin :: Map k a -> Map k a
O(log n). Delete the minimal key.

deleteMax :: Map k a -> Map k a
O(log n). Delete the maximal key.

deleteFindMin :: Map k a -> ((k, a), Map k a)
O(log n). Delete and find the minimal element.

deleteFindMax :: Map k a -> ((k, a), Map k a)
O(log n). Delete and find the maximal element.

updateMin :: (a -> Maybe a) -> Map k a -> Map k a
O(log n). Update the value at the minimal key.

updateMax :: (a -> Maybe a) -> Map k a -> Map k a
O(log n). Update the value at the maximal key.

updateMinWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a
O(log n). Update the value at the minimal key.

updateMaxWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a
O(log n). Update the value at the maximal key.

Debugging
showTree :: (Show k, Show a) => Map k a -> String
O(n). Show the tree that implements the map. The tree is shown in a compressed, hanging
format.

showTreeWith :: (k -> a -> String) -> Bool -> Bool -> Map k a -> String

O(n). The expression (showTreeWith showelem hang wide map) shows the tree that
implements the map. Elements are shown using the showElem function. If hang is True, a
hanging tree is shown otherwise a rotated tree is shown. If wide is True, an extra wide version
is shown.

 Map> let t = fromDistinctAscList [(x,()) | x <- [1..5]]
 Map> putStrLn $ showTreeWith (\k x -> show (k,x)) True False t
 (4,())
 +--(2,())
 | +--(1,())
 | +--(3,())

 +--(5,())

 Map> putStrLn $ showTreeWith (\k x -> show (k,x)) True True t
 (4,())
 |
 +--(2,())
 | |
 | +--(1,())
 | |
 | +--(3,())
 |
 +--(5,())

 Map> putStrLn $ showTreeWith (\k x -> show (k,x)) False True t
 +--(5,())
 |
 (4,())
 |
 | +--(3,())
 | |
 +--(2,())
 |
 +--(1,())

valid :: Ord k => Map k a -> Bool
O(n). Test if the internal map structure is valid.

Produced by Haddock version 0.7

UMinho Haskell Libraries (1.0) Contents Index

Data.FiniteMapExtras
Portability experimental
Stability experimental
Maintainer Joao Ferreira, Alexandra Mendes

Contents

FiniteMaps' basic functions
Extra functions
File IO

Description
Extra functions to use with FiniteMaps (includes all VDM-SL functions)

Synopsis
domFM :: Ord a => FiniteMap a b -> Set a

rngFM :: (Ord a, Ord b) => FiniteMap a b -> Set b

munion :: Ord a => FiniteMap a b -> FiniteMap a b -> Maybe (FiniteMap a b)

munionRel :: (Ord a, Ord b) => FiniteMap a b -> FiniteMap a b -> Rel a b

(+++) :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b

override :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b

merge :: Ord a => Set (FiniteMap a b) -> Maybe (FiniteMap a b)

(<:) :: Ord a => Set a -> FiniteMap a b -> FiniteMap a b

(<-:) :: Ord a => Set a -> FiniteMap a b -> FiniteMap a b

(>:) :: (Ord a, Ord b) => FiniteMap a b -> Set b -> FiniteMap a b

(>-:) :: (Ord a, Ord b) => FiniteMap a b -> Set b -> FiniteMap a b

compFM :: Ord a => FiniteMap a a -> FiniteMap a a -> Maybe (FiniteMap a a)

(***) :: (Ord a, Num b) => FiniteMap a a -> b -> Maybe (FiniteMap a a)

inverse :: (Ord key, Ord elt) => FiniteMap key elt -> Maybe (FiniteMap elt key)

inverse2 :: (Ord key, Ord elt) => FiniteMap key elt -> Maybe (FiniteMap elt key)

m :: Ord key => FiniteMap key elt -> key -> Maybe elt

injective :: (Ord key, Ord elt) => FiniteMap key elt -> Bool

mkr :: (Ord key, Ord elt) => FiniteMap key elt -> Rel key elt

fmToSet :: (Ord key, Ord elt) => FiniteMap key elt -> Set (key, elt)

setOfKeysFM :: (Ord key, Ord elt) => FiniteMap key elt -> Set key

setOfEltsFM :: (Ord key, Ord elt) => FiniteMap key elt -> Set elt

readFile_FM :: (Read a, Read b, Ord a, Show c) => FilePath -> (FiniteMap a b -> c) -> IO c

interact_FM :: (Read a, Read b, Ord a, Show c) => FilePath -> FilePath -> (FiniteMap a b -> c) -> IO ()

FiniteMaps' basic functions
domFM :: Ord a => FiniteMap a b -> Set a
Yields the domain (the set of keys) of a map.

VDM: dom m

rngFM :: (Ord a, Ord b) => FiniteMap a b -> Set b

VDM: rng m

munion :: Ord a => FiniteMap a b -> FiniteMap a b -> Maybe (FiniteMap a b)
Yields a map combined by two other maps, such that the resulting map maps the elements of the domain of both
maps. The two maps must have disjoint domains.

VDM: munion m1 m2

munionRel :: (Ord a, Ord b) => FiniteMap a b -> FiniteMap a b -> Rel a b
Yields a relation that has all pairs (key,elt) of the two given maps.

(+++) :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b
Overrides and merges two maps. It is like munion, except that both maps don't need to be compatible; the values of
the second map override the ones of the first.

override :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b
Same as (+++).

VDM: m1 ++ m2

merge :: Ord a => Set (FiniteMap a b) -> Maybe (FiniteMap a b)
Given a set of maps, yields the map that is contructed by merging them all. The maps must be compatible.

VDM: merge ms

(<:) :: Ord a => Set a -> FiniteMap a b -> FiniteMap a b
Given a set and a map, creates the map consisting of the elements whose key is in the set. The set don't need to be
a subset of the given map's domain.

VDM: s <: m

(<-:) :: Ord a => Set a -> FiniteMap a b -> FiniteMap a b
Given a set and a map, creates the map consisting of the elements whose key is not in the set. The set don't need
to be a subset of the given map's domain.

VDM: s <-: m

(>:) :: (Ord a, Ord b) => FiniteMap a b -> Set b -> FiniteMap a b
Given a map and a set, creates the map consisting of the elements whose information value is in the set. The set
don't need to be a subset of the given map's range.

VDM: m :> s

(>-:) :: (Ord a, Ord b) => FiniteMap a b -> Set b -> FiniteMap a b
Given a map and a set, creates the map consisting of the elements whose information value is not in the set. The
set don't need to be a subset of the given map's range.

VDM: m :-> s

compFM :: Ord a => FiniteMap a a -> FiniteMap a a -> Maybe (FiniteMap a a)
Given two maps m1 and m2, yields the map that is created by composing m2 elements with m1 elements. The
resulting map is a map with the same domain as m2. The information value corresponding to a key is the one found
by first applying m2 to the key and then applying m1 to the result. rngFM m2 must be a subset of domFM m1.

VDM: m1 comp m2

(***) :: (Ord a, Num b) => FiniteMap a a -> b -> Maybe (FiniteMap a a)
Given a map m and a positive integer n, yields the map where m is composed with itself n times. n=0 yields the
identity map where each element of domFM m is map into itself; n=1 yields m itself. For n>1, the range of m must
be a subset of domFM m.

VDM: m ** n

inverse :: (Ord key, Ord elt) => FiniteMap key elt -> Maybe (FiniteMap elt key)
Given a map m, yields the inverse map of m. m must be a 1-to-1 mapping.

VDM: inverse m

inverse2 :: (Ord key, Ord elt) => FiniteMap key elt -> Maybe (FiniteMap elt key)
Given a map m, yields the inverse map of m. m must be a 1-to-1 mapping. This is a slightly more efficient version
than inverse.

VDM: inverse m

m :: Ord key => FiniteMap key elt -> key -> Maybe elt
Given a map and a key, yields the information value associated with that key, which must be in the domain of m.

VDM: m(d)

injective :: (Ord key, Ord elt) => FiniteMap key elt -> Bool
Given a map m, returns true if m is injective.

Extra functions
mkr :: (Ord key, Ord elt) => FiniteMap key elt -> Rel key elt
Given a map m, yields the set of pairs (key,elt) where m(key)=elt, ie, builds the relation defined by the map. mkr
means 'make relation'.

fmToSet :: (Ord key, Ord elt) => FiniteMap key elt -> Set (key, elt)
Same as mkr.

setOfKeysFM :: (Ord key, Ord elt) => FiniteMap key elt -> Set key
Given a map, yields the set of keys. It is the same as domFM.

setOfEltsFM :: (Ord key, Ord elt) => FiniteMap key elt -> Set elt
Given a map, yields the set of elements. It is the same as rngFM.

File IO
readFile_FM :: (Read a, Read b, Ord a, Show c) => FilePath -> (FiniteMap a b -> c) -> IO c
Applies a given function to a map read from a given file.

interact_FM :: (Read a, Read b, Ord a, Show c) => FilePath -> FilePath -> (FiniteMap a b -> c) -> IO ()
Applies readFile_FM and writes the result in a given file.

Produced by Haddock version 0.6

