Data.Set

Contents

Set type
Operators
Query
Construction
Combine
Filter
Map
Fold
Min/Max
Conversion
List
Ordered list
Debugging
Old interface, DEPRECATED

Description

An efficient implementation of sets.
This module is intended to be imported qualified, to avoid name clashes with Prelude functions. eg.

```
import Data.Set as Set
```

The implementation of set is based on size balanced binary trees (or trees of bounded balance) as described by:

- Stephen Adams, "Efficient sets: a balancing act", Journal of Functional Programming 3(4):553-562, October 1993, http://www.swiss.ai.mit.edu/~adams/BB.
- J. Nievergelt and E.M. Reingold, "Binary search trees of bounded balance", SIAM journal of computing 2(1), March 1973.

Note that the implementation is left-biased -- the elements of a first argument are always perferred to the second, for example in union or insert. Of course, left-biasing can only be observed when equality is an equivalence relation instead of structural equality.

Synopsis

```
data Set a
```

(
) : : Ord a => Set a -> Set a -> Set a

```
null :: Set a -> Bool
size :: Set a -> Int
member :: Ord a => a -> Set a -> Bool
isSubsetOf :: Ord a => Set a -> Set a -> Bool
isProperSubsetOf :: Ord a => Set a -> Set a -> Bool
empty :: Set a
singleton :: a -> Set a
insert :: Ord a => a -> Set a -> Set a
delete :: Ord a => a -> Set a -> Set a
union :: Ord a => Set a -> Set a -> Set a
unions :: Ord a => [Set a] -> Set a
difference :: Ord a => Set a -> Set a -> Set a
intersection :: Ord a => Set a -> Set a -> Set a
filter :: Ord a => (a -> Bool) -> Set a -> Set a
partition :: Ord a => (a -> Bool) -> Set a -> (Set a, Set a)
split :: Ord a => a -> Set a -> (Set a, Set a)
splitMember :: Ord a => a -> Set a -> (Set a, Bool, Set a)
map :: (Ord a, Ord b) => (a -> b) -> Set a -> Set b
mapMonotonic :: (a -> b) -> Set a -> Set b
fold :: (a -> b -> b) -> b -> Set a -> b
findMin :: Set a -> a
findMax :: Set a -> a
deleteMin :: Set a -> Set a
deleteMax :: Set a -> Set a
deleteFindMin :: Set a -> (a, Set a)
deleteFindMax :: Set a -> (a, Set a)
elems :: Set a -> [a]
toList :: Set a -> [a]
fromList :: Ord a => [a] -> Set a
toAscList :: Set a -> [a]
fromAscList :: Eq a => [a] -> Set a
fromDistinctAscList :: [a] -> Set a
showTree :: Show a => Set a -> String
showTreeWith :: Show a => Bool -> Bool -> Set a -> String
valid :: Ord a => Set a -> Bool
emptySet :: Set a
```

```
mkSet :: Ord a => [a] -> Set a
setToList :: Set a -> [a]
unitSet :: a -> Set a
elementOf :: Ord a => a -> Set a -> Bool
isEmptySet :: Set a -> Bool
cardinality :: Set a -> Int
unionManySets :: Ord a => [Set a] -> Set a
minusSet :: Ord a => Set a -> Set a -> Set a
mapSet :: (Ord a, Ord b) => (b -> a) -> Set b -> Set a
intersect :: Ord a => Set a -> Set a -> Set a
addToSet :: Ord a => Set a -> a -> Set a
delFromSet :: Ord a => Set a -> a -> Set a
```


Set type

data Set a
A set of values a.

\square Instances

Typeable1 Set
(Data a, Ord a) => Data (Set a)
Eq a => Eq (Set a)
Ord a => Monoid (Set a)
Ord a => Ord (Set a)
Show a => Show (Set a)

Operators

(
) : O Ord a => Set a -> Set a -> Set a
$O(n+m)$. See difference.

Query

```
null :: Set a -> Bool
```

$O(1)$. Is this the empty set?

size :: Set a -> Int

$O(1)$. The number of elements in the set.

```
member :: Ord a => a -> Set a -> Bool
```

$O(\log n)$. Is the element in the set?

```
isProperSubsetOf :: Ord a => Set a -> Set a -> Bool
```

$O(n+m)$. Is this a proper subset? (ie. a subset but not equal).

Construction

empty : : Set a

$O(1)$. The empty set.
singleton : : a -> Set a
$O(1)$. Create a singleton set.

```
insert :: Ord a => a -> Set a -> Set a
```

$O(\log n)$. Insert an element in a set.
delete : : Ord a => a -> Set a -> Set a
$O(\log n)$. Delete an element from a set.

Combine

```
union :: Ord a => Set a -> Set a -> Set a
```

$O(n+m)$. The union of two sets. Uses the efficient hedge-union algorithm. Hedge-union is more efficient on (bigset union smallset).

```
unions :: Ord a => [Set a] -> Set a
```

 The union of a list of sets: (unions \(==\) foldl union empty).
 difference : O Ord a => Set a -> Set a -> Set a
$O(n+m)$. Difference of two sets. The implementation uses an efficient hedge algorithm comparable with hedge-union.

intersection : O Ord a => Set a -> Set a -> Set a

$O(n+m)$. The intersection of two sets. Intersection is more efficient on (bigset intersection smallset).

Filter

filter : : Ord a => (a -> Bool) -> Set a -> Set a
$O(n)$. Filter all elements that satisfy the predicate.
partition : O Ord a => (a -> Bool) $->$ Set a $->$ (Set a, Set a)
$O(n)$. Partition the set into two sets, one with all elements that satisfy the predicate and one with all elements that don't satisfy the predicate. See also split.
split : : Ord a => a $->$ Set a $->$ (Set a, Set a)
$O(\log n)$. The expression (split x set) is a pair (set1, set2) where all elements in set1 are lower than x and all elements in set 2 larger than $\mathrm{x} . \mathrm{x}$ is not found in neither set 1 nor set 2 .
splitMember : : Ord a => a -> Set a -> (Set a, Bool, Set a)
O(log n). Performs a split but also returns whether the pivot element was found in the original set.

Map

map : : (Ord a, Ord b) $=>(\mathrm{a}->\mathrm{b})$-> Set $\mathrm{a}->$ Set b
$O\left(n^{*} \log n\right)$. map f s is the set obtained by applying f to each element of s .
It's worth noting that the size of the result may be smaller if, for some $(x, y), x /=y \& \& f x$ == f y

```
mapMonotonic :: (a -> b) -> Set a -> Set b
```

$O(n)$. The
mapMonotonic $\mathrm{f} \mathrm{s}==\operatorname{map} \mathrm{f} \mathrm{s}$, but works only when f is monotonic. The precondition is not checked. Semi-formally, we have:

```
and [x < y ==> f x < f y | x <- ls, y <- ls]
                ==> mapMonotonic f s == map f s
    where ls = toList s
```


Fold

fold :: (a -> b -> b) -> b -> Set a -> b

$O(n)$. Fold over the elements of a set in an unspecified order.

Min/Max

findMin :: Set a -> a

$O(\log n)$. The minimal element of a set.

findMax :: Set a -> a

$O(\log n)$. The maximal element of a set.

```
deleteMin :: Set a -> Set a
```

$O(\log n)$. Delete the minimal element.

deleteMax : : Set a -> Set a

$O(\log n)$. Delete the maximal element.

```
deleteFindMin :: Set a -> (a, Set a)
```

$O(\log n)$. Delete and find the minimal element.

```
    deleteFindMin set = (findMin set, deleteMin set)
```

deleteFindMax : : Set $a \operatorname{l}$ (a, Set $a)$
$O(\log n)$. Delete and find the maximal element.

Conversion

List

```
elems :: Set a -> [a]
```

$O(n)$. The elements of a set.

```
toList :: Set a -> [a]
```

$O(n)$. Convert the set to a list of elements.

fromList : : Ord a => [a] -> Set a

$O\left(n^{*} \log n\right)$. Create a set from a list of elements.

Ordered list

toAscList : : Set a -> [a]

$O(n)$. Convert the set to an ascending list of elements.

fromAscList : : Eq a => [a] -> Set a

$O(n)$. Build a set from an ascending list in linear time. The precondition (input list is ascending) is not checked.

```
fromDistinctAscList :: [a] -> Set a
```

$O(n)$. Build a set from an ascending list of distinct elements in linear time. The precondition (input list is strictly ascending) is not checked.

Debugging

```
showTree :: Show a => Set a -> String
```

$O(n)$. Show the tree that implements the set. The tree is shown in a compressed, hanging format.

```
showTreeWith :: Show a => Bool -> Bool -> Set a -> String
```

$O(n)$. The expression (showTreewith hang wide map) shows the tree that implements the set. If hang is true, a hanging tree is shown otherwise a rotated tree is shown. If wide is true, an extra wide version is shown.

```
Set> putStrLn $ showTreeWith True False $ fromDistinctAscList [1..5]
4
+--2
+ +--1
| +--3
+--5
Set> putStrLn $ showTreeWith True True $ fromDistinctAscList [1..5]
4
|
+--2
```

```
+--1
+--3
\(+--5\)
```

Set> putStrLn \$ showTreeWith False True \$ fromDistinctAscList [1..5]

```
+--3
```

$+--2$
|
$+--1$
valid :: Ord a => Set a -> Bool
$O(n)$. Test if the internal set structure is valid.

Old interface, DEPRECATED

emptySet : : Set a
Obsolete equivalent of empty.
mkSet : : Ord a => [a] -> Set a
Obsolete equivalent of fromList.

```
setToList :: Set a -> [a]
```

Obsolete equivalent of elems.
unitSet : : a -> set a
Obsolete equivalent of singleton.

```
elementOf :: Ord a => a -> Set a -> Bool
```

Obsolete equivalent of member.
isEmptySet :: Set a -> Bool
Obsolete equivalent of null.
cardinality : : Set a -> Int
Obsolete equivalent of size.
unionManySets : : Ord a => [Set a] -> Set a
Obsolete equivalent of unions.
minusSet : : Ord a => Set a -> Set a -> Set a
Obsolete equivalent of difference.
mapSet : : (Ord a, Ord b) $=>(b->a)$ $->$ Set b-> Set a
Obsolete equivalent of map.
intersect : O Ord a => Set a -> Set a -> Set a
Obsolete equivalent of intersection.
addToSet : : Ord a => Set a -> a -> Set a
Obsolete equivalent of flip insert.
delFromSet : : Ord a => Set a -> a -> Set a Obsolete equivalent of flip delete.

Produced by Haddock version 0.7

Data.SetExtras

Portability experimental

Stability experimental
Maintainer João Ferreira, Alexandra Mendes

Contents

Sets' basic functions
File IO

Description

Extra functions to use with Sets

Synopsis

```
filterSet :: Ord a => (a -> Bool) -> Set a -> Set a
dunion :: Ord a => Set (Set a) -> Set a
readFile_Set :: (Read a, Ord a, Show c) => FilePath -> (Set a -> c) -> IO c
interact_Set :: (Read a, Ord a, Show c) => FilePath -> FilePath -> (Set a -> c) -> IO ()
```


Sets' basic functions

```
filterSet :: Ord a => (a -> Bool) -> Set a -> Set a
```

Given a predicate p and a set, yields a set whose elements validate p .

```
dunion :: Ord a => Set (Set a) -> Set a
```

Given a set of sets ss, the resulting set is the union of all the elements (these are sets themselves) of ss, i.e. it contains all the elements of all the sets of ss.

File IO

readFile_Set : : (Read a, Ord a, Show c) => FilePath -> (Set a -> c) -> IO c
Applies a given function to a set read from a given file.

```
interact_Set :: (Read a, Ord a, Show c) => FilePath -> FilePath -> (Set a -> c) -> IO ()
```

Applies readFile_Set and writes the result in a given file.
Produced by Haddock version 0.6

Data.Map

Contents

Map type
Operators
Query
Construction
Insertion
Delete/Update
Combine
Union
Difference
Intersection
Traversal
Map
Fold
Conversion
Lists
Ordered lists
Filter
Submap
Indexed
Min/Max
Debugging

Description

An efficient implementation of maps from keys to values (dictionaries).
This module is intended to be imported qualified, to avoid name clashes with Prelude functions. eg.

```
import Data.Map as Map
```

The implementation of map is based on size balanced binary trees (or trees of bounded balance) as described by:

- Stephen Adams, "Efficient sets: a balancing act", Journal of Functional Programming 3(4):553-562, October 1993, http://www.swiss.ai.mit.edu/~adams/BB.
- J. Nievergelt and E.M. Reingold, "Binary search trees of bounded balance", SIAM

Synopsis

data Map k a
(!) : : Ord k => Map k a -> k -> a
(
) : : Ord k => Map k a -> Map k b -> Map k a
null :: Map k a -> Bool
size :: Map k a -> Int
member : : Ord k => k -> Map k a -> Bool
lookup : : (Monad m, Ord k) => k -> Map k a -> ma
findWithDefault : : Ord k => a -> k -> Map k a -> a
empty :: Map k a
singleton : : k -> a -> Map k a
insert : : Ord k => k -> a -> Map k a -> Map k a

 a, Map ka)
delete : : Ord k => k -> Map k a -> Map k a
adjust : : Ord k => (a -> a) -> k -> Map k a -> Map k a

update : : Ord k => (a -> Maybe a) -> k -> Map k a -> Map k a
updateWithKey : : Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
updateLookupWithKey : : Ord $k=>(k \quad->~ a ~->~ M a y b e ~ a) ~->~ k ~->~ M a p ~ k ~ a ~->~(M a y b e ~ a, ~$ Map ka)
union : : Ord k => Map k a -> Map k a -> Map k a

unions : : Ord k => [Map k a] -> Map k a
unionsWith : : Ord k => (a -> a -> a) -> [Map k a] -> Map k a
difference : : Ord k => Map k a -> Map k b -> Map k a
differenceWith : : Ord $k=>(\mathrm{a} \mathrm{->} \mathrm{~b}->$ Maybe a) -> Map k a -> Map k b -> Map k a
differenceWithKey : : Ord k $=>$ (k -> a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a
intersection : : Ord $k=>\operatorname{Map} k a \quad->\operatorname{Map} k \quad b \quad->$ Map $k a$
intersectionWith : $:$ Ord $k=>(\mathrm{a}->\mathrm{b}->\mathrm{c})$-> Map k a $->$ Map k b $->$ Map k c

map : : ($\mathrm{a}->\mathrm{b})$-> Map k a $->$ Map $k \quad b$
mapWithKey :: (k -> a -> b) -> Map k a -> Map k b

mapAccumWithKey : : (a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapKeys : : Ord k2 => (k1 -> k2) -> Map k1 a -> Map k2 a
mapKeysWith : : Ord k2 => (a -> a $->$ a) $->(k 1->k 2)$-> Map k1 a -> Map k2 a
mapKeysMonotonic :: (k1 -> k2) -> Map k1 a -> Map k2 a
fold : : (a -> b -> b) -> b -> Map k a -> b
foldWithKey : : (k -> a -> b -> b) -> b -> Map k a -> b
elems :: Map k a -> [a]
keys :: Map k a -> [k]
keysSet : : Map k a -> Set k
assocs :: Map k a -> [(k, a)]
toList : : Map k a -> [(k, a)]
fromList : : Ord k => [(k, a)] -> Map k a
fromListWith : : Ord k => (a -> a -> a) -> [(k, a)] -> Map k a
fromListWithKey : : Ord k => (k -> a -> a -> a) -> [(k, a)] -> Map k a
toAscList : : Map k a -> [(k, a)]
fromAscList : : Eq k => [(k, a)] -> Map k a
fromAscListWith :: Eq k => (a -> a -> a) -> [(k, a)] -> Map k a
fromAscListWithKey : : Eq k => (k -> a -> a -> a) -> [(k, a)] -> Map k a
fromDistinctAscList : : [(k, a)] -> Map k a
filter : : Ord k => (a -> Bool) -> Map k a -> Map k a
filterWithKey : : Ord k => (k -> a -> Bool) -> Map k a -> Map k a
partition : : Ord k => (a -> Bool) -> Map k a -> (Map k a, Map k a)
partitionWithKey : : Ord k => (k -> a -> Bool) -> Map k a -> (Map k a, Map k a)
split : : Ord k => k -> Map k a -> (Map k a, Map k a)
splitLookup : : Ord k => k-> Map k a -> (Map k a, Maybe a, Map k a)
isSubmapOf : : (Ord k, Eq a) => Map k a -> Map k a -> Bool
isSubmapOfBy : : Ord k => (a -> b -> Bool) -> Map k a -> Map k b -> Bool
isProperSubmapOf : : (Ord k, Eq a) => Map k a -> Map k a -> Bool
isProperSubmapOfBy : : Ord k => (a -> b -> Bool) -> Map k a -> Map k b -> Bool
lookupIndex : : (Monad m, Ord k) $=>\mathrm{k}$-> Map k a -> m Int
findIndex : : Ord k => k -> Map k a -> Int
elemAt : : Int -> Map k a -> (k, a)
updateAt : : (k -> a -> Maybe a) -> Int -> Map k a -> Map k a

```
deleteAt :: Int -> Map k a -> Map k a
findMin :: Map k a -> (k, a)
findMax :: Map k a -> (k, a)
deleteMin :: Map k a -> Map k a
deleteMax :: Map k a -> Map k a
deleteFindMin :: Map k a -> ((k, a), Map k a)
deleteFindMax :: Map k a -> ((k, a), Map k a)
updateMin :: (a _> Maybe a) -> Map k a -> Map k a
updateMax :: (a -> Maybe a) -> Map k a -> Map k a
updateMinWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a
updateMaxWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a
showTree :: (Show k, Show a) => Map k a -> String
showTreeWith :: (k -> a -> String) -> Bool -> Bool -> Map k a -> String
valid :: Ord k => Map k a -> Bool
```


Map type

data Map k a
A Map from keys k to values a.

Instances

Typeable2 Map
Functor (Map k)
(Data k, Data a, Ord k) => Data (Map k a)
(Eq k, Eq a) => Eq (Map k a)
Ord k => Monoid (Map k v)
(Ord k, Ord v) => Ord (Map k v)
(Show k, Show a) => Show (Map k a)

Operators

(!) :: Ord k => Map k a -> k -> a
$O(\log n)$. Find the value at a key. Calls error when the element can not be found.
(
) : : Ord k => Map k a -> Map k b -> Map k a
$O(n+m)$. See difference.

Query

null : : Map k a $->$ Bool
$O(1)$. Is the map empty?
size : : Map k a -> Int
$O(1)$. The number of elements in the map.

```
member :: Ord k => k -> Map k a -> Bool
```

$O(\log n)$. Is the key a member of the map?
lookup : : (Monad m, Ord k) => k \rightarrow Map k a \quad ma
$O(\log n)$. Lookup the value at a key in the map.

```
findWithDefault :: Ord k => a -> k -> Map k a -> a
```

$O(\log n)$. The expression (findwithDefault def k map) returns the value at key k or returns def when the key is not in the map.

Construction

empty : : Map k a

$O(1)$. The empty map.

```
singleton :: k -> a -> Map k a
```

$O(1)$. A map with a single element.

Insertion

insert : : Ord k => k -> a -> Map k a -> Map k a

$O(\log n)$. Insert a new key and value in the map.

```
insertWith :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
```

$O(\log n)$. Insert with a combining function.

```
insertWithKey : : Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
```

$O(\log n)$. Insert with a combining function.

```
insertLookupWithKey : O Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> (Maybe a,
```

Map k a)
$O(\log n)$. The expression (insertLookupwithKey f k x map) is a pair where the first element is equal to (lookup k map) and the second element equal to (insertwithKey $f \mathrm{k} x$ map).

Delete/Update

delete : : Ord $k=>k$-> Map k a -> Map k a

$O(\log n)$. Delete a key and its value from the map. When the key is not a member of the map, the original map is returned.

```
adjust :: Ord k => (a -> a) -> k -> Map k a -> Map k a
```

$O(\log n)$. Adjust a value at a specific key. When the key is not a member of the map, the original map is returned.

$O(\log n)$. Adjust a value at a specific key. When the key is not a member of the map, the original map is returned.

```
update :: Ord k => (a -> Maybe a) -> k -> Map k a -> Map k a
```

$O(\log n)$. The expression (update $\mathrm{f} k$ map) updates the value x at k (if it is in the map). If (f x) is Nothing, the element is deleted. If it is (Just y), the key k is bound to the new value y.

$O(\log n)$. The expression (updateWithkey $f \mathrm{kmap}$) updates the value x at k (if it is in the map). If ($\mathrm{f} k \mathrm{x}$) is Nothing, the element is deleted. If it is (Just y), the key k is bound to the new value y .
 k a)
O(log n). Lookup and update.

Combine

Union

```
union :: Ord k => Map k a -> Map k a -> Map k a
```

 \(O(n+m)\). The expression (union \(t 1 \mathrm{t} 2\)) takes the left-biased union of t 1 and t 2 . It prefers t 1
 when duplicate keys are encountered, i.e. (union \(==\) unionwith const). The implementation
 uses the efficient hedge-union algorithm. Hedge-union is more efficient on (bigset union
 smallset)?

$O(n+m)$. Union with a combining function. The implementation uses the efficient hedge-union
algorithm.
unionWithKey : : Ord k => (k -> a -> a -> a) -> Map k a -> Map k a -> Map k a
$O(n+m)$. Union with a combining function. The implementation uses the efficient hedge-union
algorithm. Hedge-union is more efficient on (bigset union smallset).
unions : : Ord $k=>$ [Map k a] -> Map k a
The union of a list of maps: (unions == foldl union empty).
unionsWith : : Ord k => (a -> a $->$ a) $->$ [Map k a] -> Map k a

The union of a list of maps, with a combining operation: (unionsWith $f==$ foldl (unionWith f) empty).

Difference

difference : : Ord $k=>$ Map $k a \operatorname{Map} k \quad b->M a p k a$
$O(n+m)$. Difference of two maps. The implementation uses an efficient hedge algorithm comparable with hedge-union.
 $O(n+m)$. Difference with a combining function. The implementation uses an efficient hedge algorithm comparable with hedge-union.

```
differenceWithKey : : Ord k => (k -> a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a
```

$O(n+m)$. Difference with a combining function. When two equal keys are encountered, the combining function is applied to the key and both values. If it returns Nothing, the element is discarded (proper set difference). If it returns (Just y), the element is updated with a new
value y . The implementation uses an efficient hedge algorithm comparable with hedge-union.

Intersection

```
intersection :: Ord k => Map k a -> Map k b -> Map k a
    O(n+m). Intersection of two maps. The values in the first map are returned, i.e. (intersection
    m1 m2 == intersectionWith const m1 m2).
intersectionWith :: Ord k => (a -> b -> c) -> Map k a -> Map k b -> Map k c
    O(n+m). Intersection with a combining function.
intersectionWithKey :: Ord k => (k -> a -> b -> c) -> Map k a -> Map k b -> Map k c
    O(n+m). Intersection with a combining function. Intersection is more efficient on (bigset
    intersection Smallset)
```


Traversal

Map

map : : ($\mathrm{a}->\mathrm{b}$) -> Map k a $->$ Map $k \quad b$ $O(n)$. Map a function over all values in the map.
mapWithKey : : (k -> a -> b) -> Map k a -> Map $k \quad b$ $O(n)$. Map a function over all values in the map.
mapAccum : : ($\mathrm{a}->\mathrm{b}->(\mathrm{a}, \mathrm{c})$) $->\mathrm{a}->\operatorname{Map} \mathrm{k} \mathrm{b}->(\mathrm{a}, \operatorname{Map} \mathrm{k} \mathrm{c})$
$O(n)$. The function mapAccum threads an accumulating argument through the map in ascending order of keys.

```
mapAccumWithKey :: (a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
```

$O(n)$. The function mapAccumbithKey threads an accumulating argument through the map in ascending order of keys.
mapKeys : : Ord k2 $=>$ (k1 -> k2) $->$ Map k1 a $->$ Map k2 a
$O\left(n^{*} \log n\right)$. mapkeys f s is the map obtained by applying f to each key of s .
The size of the result may be smaller if f maps two or more distinct keys to the same new key. In this case the value at the smallest of these keys is retained.
mapKeysWith : : Ord k2 => (a -> a -> a) \rightarrow (k 1 -> k2) $->$ Map k1 a -> Map k2 a
$O\left(n^{*} \log n\right)$. mapKeysWith c f s is the map obtained by applying f to each key of s .
The size of the result may be smaller if f maps two or more distinct keys to the same new key. In this case the associated values will be combined using c.
mapKeysMonotonic : : (k1 -> k2) -> Map k1 a -> Map k2 a
$O(n)$. mapKeysMonotonic $\mathrm{f} \mathrm{s}==$ mapKeys f s, but works only when f is strictly monotonic. The
precondition is not checked. Semi-formally, we have:

```
and [x < y ==> f x < f y | x <- ls, y <- ls]
    ==> mapKeysMonotonic f s == mapKeys f s
    where ls = keys s
```


Fold

```
fold :: (a -> b -> b) -> b -> Map k a -> b
```

$O(n)$. Fold the values in the map, such that fold $f z==$ foldr $f z$. elems. For example,

```
elems map = fold (:) [] map
```

foldWithKey : : (k -> a -> b -> b) -> b -> Map k a -> b
$O(n)$. Fold the keys and values in the map, such that foldwithkey $\mathrm{f} z==$ foldr (uncurry f) z. toAscList. For example,
keys map $=$ foldWithKey ($\backslash \mathrm{k} \mathrm{x}$ ks -> k:ks) [] map

Conversion

elems :: Map k a -> [a]

$O(n)$. Return all elements of the map in the ascending order of their keys.

```
keys :: Map k a -> [k]
```

$O(n)$. Return all keys of the map in ascending order.

```
keysSet :: Map k a -> Set k
\(O(n)\). The set of all keys of the map.
```

assocs : : Map k a \rightarrow [$(k, a)]$
$O(n)$. Return all key/value pairs in the map in ascending key order.

Lists

toList : : Map k a -> [(k, a)]

$O(n)$. Convert to a list of key/value pairs.
fromList : : Ord $k=>[(k, a)]->\operatorname{Map} k a$
$O\left(n^{*} \log n\right)$. Build a map from a list of key/value pairs. See also fromAscList.
fromListWith : : Ord k => (a -> a -> a) -> [(k, a)] -> Map k a
$O\left(n^{*} \log n\right)$. Build a map from a list of key/value pairs with a combining function. See also fromAscListWith.

$O\left(n^{*} \log n\right)$. Build a map from a list of key/value pairs with a combining function. See also fromAscListWithKey.

Ordered lists

toAscList : : Map k a -> [$k, ~ a)]$
$O(n)$. Convert to an ascending list.
fromAscList : : Eq $k=>[(k, a)] \quad->\operatorname{Map} k a$
$O(n)$. Build a map from an ascending list in linear time. The precondition (input list is ascending) is not checked.

```
fromAscListWith : : Eq k => (a -> a -> a) -> [(k, a)] -> Map k a
```

$O(n)$. Build a map from an ascending list in linear time with a combining function for equal keys. The precondition (input list is ascending) is not checked.

```
fromAscListWithKey : : Eq k => (k -> a -> a -> a) -> [(k, a)] -> Map k a
```

$O(n)$. Build a map from an ascending list in linear time with a combining function for equal keys. The precondition (input list is ascending) is not checked.

fromDistinctAscList : : [(k, a)] -> Map k a

$O(n)$. Build a map from an ascending list of distinct elements in linear time. The precondition is not checked.

Filter

```
filter :: Ord k => (a -> Bool) -> Map k a -> Map k a
```

$O(n)$. Filter all values that satisfy the predicate.

```
filterWithKey :: Ord k => (k -> a -> Bool) -> Map k a -> Map k a
```

$O(n)$. Filter all keys/values that satisfy the predicate.

```
partition :: Ord k => (a -> Bool) -> Map k a -> (Map k a, Map k a)
```

$O(n)$. partition the map according to a predicate. The first map contains all elements that satisfy the predicate, the second all elements that fail the predicate. See also split.
 $O(n)$. partition the map according to a predicate. The first map contains all elements that satisfy the predicate, the second all elements that fail the predicate. See also split.

```
split :: Ord k => k -> Map k a -> (Map k a, Map k a)
```

$O(\log n)$. The expression (split k map) is a pair (map1,map2) where the keys in map 1 are smaller than k and the keys in map2 larger than k . Any key equal to k is found in neither map1 nor map2.

```
splitLookup :: Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
```

O(log n). The expression (splitLookup k map) splits a map just like split but also returns lookup k map.

Submap

isSubmapOf : : (Ord k, Eq a) => Map k a -> Map k a -> Bool
$O(n+m)$. This function is defined as (issubmapOf = isSubmapOfBy (==)).
$O(n+m)$. The expression (issubmapofby $f t 1 \mathrm{t} 2$) returns True if all keys in t 1 are in tree t 2 , and when f returns true when applied to their respective values. For example, the following expressions are all True:

```
isSubmapOfBy (==) (fromList [('a',1)]) (fromList [('a',1),('b',2)])
isSubmapOfBy (<=) (fromList [('a',1)]) (fromList [('a',1),('b',2)])
isSubmapOfBy (==) (fromList [('a',1),('b',2)]) (fromList [('a',1),('b',2)])
```

But the following are all False:

```
isSubmapOfBy (==) (fromList [('a',2)]) (fromList [('a',1),('b',2)])
isSubmapOfBy (<) (fromList [('a',1)]) (fromList [('a',1),('b',2)])
isSubmapOfBy (==) (fromList [('a',1),('b',2)]) (fromList [('a',1)])
```

isProperSubmapof : : (Ord k, Eq a) => Map k a -> Map k a -> Bool
$O(n+m)$. Is this a proper submap? (ie. a submap but not equal). Defined as (isProperSubmapof
= isProperSubmapOfBy (==)).
isProperSubmapOfBy : : Ord k => (a -> b -> Bool) -> Map k a -> Map k b -> Bool
$O(n+m)$. Is this a proper submap? (ie. a submap but not equal). The expression
(isPropersubmapofby f m 1 m 2) returns $\mathrm{True}^{\text {when }} \mathrm{m} 1$ and m 2 are not equal, all keys in m 1 are in m 2 , and when f returns true when applied to their respective values. For example, the following expressions are all true:

```
isProperSubmapOfBy (==) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
isProperSubmapOfBy (<=) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
```

But the following are all False:

```
isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1),(2,2)])
isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1)])
isProperSubmapOfBy (<) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
```


Indexed

lookupIndex : : (Monad m, Ord k) $=>\mathrm{k}$-> Map k a -> m Int
$O(\log n)$. Lookup the index of a key. The index is a number from O up to, but not including, the size of the map.
findIndex : : Ord $k=>k$ map k a -> Int
$O(\log n)$. Return the index of a key. The index is a number from 0 up to, but not including, the size of the map. Calls error when the key is not a member of the map.
elemAt : : Int $->$ Map k a $->(k, a)$
$O(\log n)$. Retrieve an element by index. Calls error when an invalid index is used.
updateAt : : (k -> a -> Maybe a) -> Int -> Map k a -> Map k a
$O(\log n)$. Update the element at index. Calls error when an invalid index is used.
deleteAt : : Int -> Map k a -> Map $k a$
$O(\log n)$. Delete the element at index. Defined as (deleteAt i map = updateAt (k x ->

Min/Max

findMin :: Map k a -> (k, a)
$O(\log n)$. The minimal key of the map.
findMax :: Map k a -> (k, a)
$O(\log n)$. The maximal key of the map.
deleteMin :: Map k a -> Map k a
$O(\log n)$. Delete the minimal key.

deletemax :: Map k a -> Map k a

$O(\log n)$. Delete the maximal key.

```
deleteFindMin :: Map k a -> ((k, a), Map k a)
```

$O(\log n)$. Delete and find the minimal element.
deletefindMax : : Map k a $->((k, a)$, Map $k a)$
$O(\log n)$. Delete and find the maximal element.
updatemin : : (a -> Maybe a) -> Map k a -> Map k a
$O(\log n)$. Update the value at the minimal key.
updateMax : : (a -> Maybe a) -> Map k a -> Map k a
$O(\log n)$. Update the value at the maximal key.
updateMinWithKey : : (k -> a -> Maybe a) -> Map k a -> Map k a
$O(\log n)$. Update the value at the minimal key.

```
updateMaxWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a
```

$O(\log n)$. Update the value at the maximal key.

Debugging

showTree : : (Show k, Show a) => Map k a -> String
$O(n)$. Show the tree that implements the map. The tree is shown in a compressed, hanging format.

```
showTreeWith :: (k -> a -> String) -> Bool -> Bool -> Map k a -> String
```

$O(n)$. The expression (showTreeWith showelem hang wide map) shows the tree that implements the map. Elements are shown using the showelem function. If hang is True, a hanging tree is shown otherwise a rotated tree is shown. If wide is true, an extra wide version is shown.

```
Map> let t = fromDistinctAscList [(x,()) | x <- [1..5]]
Map> putStrLn $ showTreeWith (\k x -> show (k,x)) True False t
(4,())
+--(2,())
| +--(1,())
| +--(3,())
```

+--(5,())

```
Map> putStrLn \$ showTreeWith (\k x -> show (k,x)) True True t
(4, ())
|
+--(2,())
    +--(1, ())
    |
    \(+--(3,())\)
+--(5,())
Map> putStrLn \$ showTreeWith ( l k x -> show (k,x)) False True t
+--(5, ())
|
(4, () )
\(\left\lvert\, \begin{gathered}+-(3,()) \\ +-(2,()) \\ +--(1,())\end{gathered}\right.\)
```

valid : : Ord k => Map k a -> Bool
$O(n)$. Test if the internal map structure is valid.
Produced by Haddock version 0.7

Data.FiniteMapExtras

Contents

FiniteMaps' basic functions
Extra functions
File IO

Description

Extra functions to use with FiniteMaps (includes all VDM-SL functions)

Synopsis

```
domFM :: Ord a => FiniteMap a b -> set a
rngFM :: (Ord a, Ord b) => FiniteMap a b -> Set b
munion :: Ord a => FiniteMap a b -> FiniteMap a b -> Maybe (FiniteMap a b)
munionRel :: (Ord a, Ord b) => FiniteMap a b -> FiniteMap a b -> Rel a b
(+++) : : Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b
override :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b
merge :: Ord a => Set (FiniteMap a b) -> Maybe (FiniteMap a b)
(<:) :: Ord a => Set a -> FiniteMap a b -> FiniteMap a b
(<-:) : : Ord a => Set a -> FiniteMap a b -> FiniteMap a b
(>:) :: (Ord a, Ord b) => FiniteMap a b -> Set b -> FiniteMap a b
(>-:) :: (Ord a, Ord b) => FiniteMap a b -> Set b -> FiniteMap a b
compFM :: Ord a => FiniteMap a a -> FiniteMap a a -> Maybe (FiniteMap a a)
(***) :: (Ord a, Num b) => FiniteMap a a -> b -> Maybe (FiniteMap a a)
inverse : (Ord key, Ord elt) => FiniteMap key elt -> Maybe (FiniteMap elt key)
inverse2 : (Ord key, Ord elt) => FiniteMap key elt -> Maybe (FiniteMap elt key)
m :: Ord key => FiniteMap key elt -> key -> Maybe elt
injective :: (Ord key, Ord elt) => FiniteMap key elt -> Bool
mkr :: (Ord key, Ord elt) => FiniteMap key elt -> Rel key elt
fmToSet : (Ord key, Ord elt) => FiniteMap key elt -> Set (key, elt)
setOfKeysFM : (Ord key, Ord elt) => FiniteMap key elt -> Set key
setOfEltsFM : (Ord key, Ord elt) => FiniteMap key elt -> Set elt
readFile_FM : ( Read a, Read b, Ord a, Show c) => FilePath -> (FiniteMap a b -> c) -> IO c
interact_FM : ( Read a, Read b, Ord a, Show c) => FilePath m FilePath m> (FiniteMap a b -> c) -> IO ()
```


FiniteMaps' basic functions

```
domFM :: Ord a => FiniteMap a b -> Set a
    Yields the domain (the set of keys) of a map.
```

VDM: dom m
rngFM :: (Ord a, Ord b) => FiniteMap $a \operatorname{b}$-> Set b

VDM: rng m
munion : : Ord a => FiniteMap $a \operatorname{b}->$ FiniteMap $a \operatorname{b}->$ Maybe (FiniteMap a b)
Yields a map combined by two other maps, such that the resulting map maps the elements of the domain of both maps. The two maps must have disjoint domains.

VDM: munion m1 m2
munionRel : : (Ord a, Ord b) $=>$ FiniteMap a b $->$ FiniteMap a b $->$ Rel a b
Yields a relation that has all pairs (key,elt) of the two given maps.
(+++) : : Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b
Overrides and merges two maps. It is like munion, except that both maps don't need to be compatible; the values of the second map override the ones of the first.
override : : Ord a => FiniteMap $a \operatorname{b}->$ FiniteMap a b -> FiniteMap a b
Same as (+++).
VDM: m1 ++ m2
merge : : Ord $a=>$ Set (FiniteMap a b) $->$ Maybe (FiniteMap a b)
Given a set of maps, yields the map that is contructed by merging them all. The maps must be compatible.
VDM: merge ms
(<:) :: Ord a => Set a -> FiniteMap a b -> FiniteMap a b
Given a set and a map, creates the map consisting of the elements whose key is in the set. The set don't need to be a subset of the given map's domain.

VDM: $\mathrm{s}<\mathrm{m}$
(<-:) : : Ord $\mathrm{a}=>$ Set a -> FiniteMap a b -> FiniteMap a b
Given a set and a map, creates the map consisting of the elements whose key is not in the set. The set don't need to be a subset of the given map's domain.

VDM: s <-: m
(>:) : : (Ord a, Ord b) => FiniteMap $a \operatorname{b} \rightarrow$ Set b-> FiniteMap $a b$
Given a map and a set, creates the map consisting of the elements whose information value is in the set. The set don't need to be a subset of the given map's range.

VDM: m :> s
(>-:) : : (Ord a, Ord b) => FiniteMap $a \mathrm{~b}$-> Set b -> FiniteMap a b
Given a map and a set, creates the map consisting of the elements whose information value is not in the set. The set don't need to be a subset of the given map's range.

VDM: m :-> s
compFM :: Ord a => FiniteMap a a -> FiniteMap a a -> Maybe (FiniteMap a a)
Given two maps m 1 and m 2 , yields the map that is created by composing m 2 elements with m 1 elements. The resulting map is a map with the same domain as m2. The information value corresponding to a key is the one found by first applying m 2 to the key and then applying m 1 to the result. rngFM m 2 must be a subset of domFM m 1 .

VDM: m1 comp m2

```
(***) :: (Ord a, Num b) => FiniteMap a a -> b -> Maybe (FiniteMap a a)
```

Given a map m and a positive integer n, yields the map where m is composed with itself n times. $n=0$ yields the identity map where each element of domFM m is map into itself; $n=1$ yields m itself. For $n>1$, the range of m must be a subset of domFM m.

VDM: m ** n
inverse : : (Ord key, Ord elt) => FiniteMap key elt -> Maybe (FiniteMap elt key)
Given a map m , yields the inverse map of $\mathrm{m} . \mathrm{m}$ must be a 1 -to- 1 mapping.

VDM: inverse m
inverse2 :: (Ord key, Ord elt) => FiniteMap key elt -> Maybe (FiniteMap elt key)
Given a map m , yields the inverse map of m . m must be a 1-to-1 mapping. This is a slightly more efficient version than inverse.

VDM: inverse m
m :: Ord key => FiniteMap key elt -> key -> Maybe elt
Given a map and a key, yields the information value associated with that key, which must be in the domain of m.
VDM: m(d)
injective : (Ord key, Ord elt) => FiniteMap key elt -> Bool
Given a map m, returns true if m is injective.

Extra functions

mkr : : (Ord key, Ord elt) => FiniteMap key elt -> Rel key elt
Given a map m, yields the set of pairs (key,elt) where m (key)=elt, ie, builds the relation defined by the map. mkr means 'make relation'.
fmToSet : : (Ord key, Ord elt) => FiniteMap key elt -> Set (key, elt)
Same as mkr.

```
setOfKeysFM :: (Ord key, Ord elt) => FiniteMap key elt -> Set key
```

Given a map, yields the set of keys. It is the same as domFM.

```
setOfEltsFM :: (Ord key, Ord elt) => FiniteMap key elt -> Set elt
```

Given a map, yields the set of elements. It is the same as rngFM.

File 10

```
readFile_FM :: (Read a, Read b, Ord a, Show c) => FilePath -> (FiniteMap a b m c) -> IO c
``` Applies a given function to a map read from a given file.
```

interact_FM :: (Read a, Read b, Ord a, Show c) => FilePath -> FilePath -> (FiniteMap a b -> c) -> IO ()
Applies readFile_FM and writes the result in a given file.

```
```

