MICE]
EDES-0405

A Brief Introduction to

VDM-SL

Nuno Rodrigues — nfr@di.uminho.pt

Grupo de Logica e Métodos Formais
Dept. Informatica, Universidade do Minho

Braga, Portugal

Tel.: +351.253.60 44 44 ; Fax.: +351.253.600 44 71; E-Mail: nfr@di.uminho.pt ;
URL: http://wiki.di.uminho.pt/twiki/bin/view/Nuno

Introduction to VDM-SL

. Overview of VDMTools®

- Formal Development with

VDMTools®
e Types

e Functions

e EXpressions

VVDMT ools® Overview...

Syntax & Type Checker

The Rose-VDM++ Link Interpreter (Debugger)

IFAD

VDMTools

Document Generator API (Corba), DL Facility

C++/Java Code Generator

The Rose-VDM++ Link

Syntax & Type checking

Syntax checking

r_""’ Mew Project - The IFAD YDM++UML Toolbox

Project Tools Options

Syntax Check | Type Cheek ! GEnerate C++ | Pretty Print |

Type checking

[. Filas

| BHCOMexkamples\newsaferdemoisatara |
|| [GHCcOMexamplesinews aferdeninisafer++ |
GACOMexamplesinews arerdemotsafer++

GACOMNexamplesinewsaferdemotsaier++y
Cammand ‘

Thriictor H_ |

Type checking IntegratedCommand .. done LOg IMesSsages

Type checking TranslaticnCammand .. done
Type checking YakeDriveAssembly ... done
Type checking ThrusterSelectionTable .. done

]

Debugging with VDM eols”

T_"‘.' Mew Project - The IFAD YDM++UML Toolbox
Project Tools Options

¥ |nterpreter tool

St

nt | step | stepin | singestep | continue | Finish |

Dialog
Callstmt

Execution
In GACONexamplesinewsaferdemothsafer++wWorkspace if, | 37, C. 6
| p clock

ohjiClack):

< Clock’ count = 3 =

Value inspection

Display 5 5
ControlCycle © Command’ Direction * Command Direction * Command Direction = Slngle Steppl ng
Command Direction *

HandControlUnit™Mode * HandCaontralUnit” Buttan *
Command” Axiskap ==
set of ThrusterControl® ThrusterPositic:s

ControlCycle(s, pitch yaw_y roll 7 meseswitch, aanbutton aahcmd) ==
clack.IncrTimer);

hou. SetAAH{aahbutton); .
hou SetGrip(x, pitch, yaw v, roll z); Breakpoints

M

Function Trace

#0: BigTest {)
#1: controlCycle { ...)

Breakpoints

- | [WWorkSpace ControlCycle
ThrusterControl’ InitTable

[M

Documentation in MS Word

One compound document:
6. IntegratedCommand Class

Documentation

class In

instance variabhles
agh @ AAn:

Specification
Test coverage

Test coverage

statistics

C++ Code Generator

s Platforms and

Compilers

e GNU egcs version
1.1:

= Sun SPARC SunOS
running 4.1.x or
Solaris 2.6

= HP9000/700 running
HP-UX 10

= PC’s running Linux
e Visual C++ version
5.0 or higher:
= Windows NT
= Windows 95/98

C--2)

Int vdm_Conta::vdm_Levantamento
(const TYPE Conta String &vdm dt,

const Int &vdm_lev) {
it (((Bool)
((vdm_saldo.GetValue()) >=
(vdm_lev.GetValue()))) -Getvalue()
) {
vdm_saldo = vdm_saldo -
vdm_lev;

vdm_movimentos. ImpModify(vdm_dt,
-vdm_lev);
return (Generic) vdm saldo;
+
else
return (Generic) (-(Int) 1);

Toolbox API

File Edit

" PFitch up
Lo} Qe

Right

W saferpri - The IFAD VDM++UML Toolbox
Project Tools Options
" Pitch up Riall left
& 0 Lo} arf

right " Pit Fall right

+# Safer backpack
dit

Dynamic Link Eacility

VDM [
Specification '

Dynamic Link
Module

External
Code Type
Conversion
Module

Introduction to VDM-SL

v Overview of VDMTools®

> Formal Development with

VDMTooIs®
e Types

e Functions

e EXpressions

Mathematical Foundations

Abstract
Notation

C/C++

Description

AXB

struct {
A fst;
B snd;

¥s

Products
(records)

Struct {
iInt tag; /7* 1,2
*/
union {
A 1TA;
B 1fB;
} data;

Coproducts
(variant records)

. Y

Exponentials (arrays)

Pointers (null
alternative)

Introduction to VDM-SL

v Overview of VDMTools®

v Formal Development with

VDMTools®
» Types

e Functions

e EXpressions

Type Definitions

e Basic Data Types = Derived Data Types
e Boolean

= Numeric v setiypes

e Tokens e Sequence types
= Characters e Map types
e Quotations

= Primitive Data Types

Product (record)
types Data Type invariants

Coproduct (union) must also be added!
types

Function types

Optional types

Basic Data Types

s Boolean: ool

x NUmeric: real
rat
INt
nat

natl
s Tokens: token
s Characters: char
» Quotations: <RED> (e.q.)

Primitive Data Types

Product (record) types:
/* cartesian product */ T = A *B * . * Z

/> labeled tuples */ T - a: A
b :

z - Z
Coproduct (union) types:
/* disjoint union */
Function types:
/* partial functions */
/* total functions */
Optional types:
/* pointers */
/> T | nil */

Derived Data Types

m Set types:
/* sets */ set of A

m Sequence types:
/* sequences */ seg of A
/* non-empty sequences */ Seql of A
s Map types:
/* general maps */ map A to B
/* Injective maps */ inmap A to B

17

Data Type Operators

s [he different data types (basic, primitive and
derived) have operations specific to those

types:
e not X

X <Y
sl union s2
e head |
e dom T

e Etc.
s For each such type we’ll list these operations

18

Boolean Data Type Operators

not b Negation bool -> bool
and b Conjunction bool * bool
or b Disjunction bool * bool
Implication bool * bool
Biimplication bool * bool

Equality bool bool

Inequality oJo]e] | oJe]o] |

Numeric Data Types Operators

Unary minus real -> real
Absolute value real -> real
Tloor x Floor real -> 1Int
+y Sum real * real real
— Difference real * real real
Product real * real real
Division real * real real
Power real real real
Less than real real bool
Greater than real real bool
Less or equal real real bool
Greater or equal real * real bool
Equal real * real bool
Not equal real * real bool
Integer division Int * Int -> iInt
Remainder int * Int -> iInt
Modulus int * Int -> iInt

X X X X X X X X X X X X X X

Product Data Type Operators

s Product type definition:
Al * A2 * .. * An
Construction of a tuple:
mk (al,az2,..,an)

s Record type definition:
A -: fst :© Al
snd : A2

nNth - An
Construction of a record:
mk A(al,a2,...,an)

Set Operators

e In set sl Membership set of A -> bool

e not 1In set sl Not membership set of A -> bool

* set of A set of A
* set of set of A
* set of set of A
* set of bool

* set of oJe]o] |

* set of bool

* set of bool

-> nat

sl union s2 Union of
sl inter s2 Intersection (0] j
sl \ s2 Difference of
sl subset s2 Subset of
sl psubset s2 Proper subset of
sl = s2 Equality of
sl <> s2 Inequality of

A
A
A
A
A
A
A
A

card sl Cardinality of
dunion sl Distr. union of set of A -> set of A
dinter sl Distr. intersection of set of A -> set of A

power sl Finite power set of A -> set of set of A

Sequence Operators

Head segl of A -> A

Tail segl of A -> seq of A

Length seqg of A -> nat

Elements seqg of A -> set of A

Indexes seq of A -> set of natl

Concatenation seq of A * seq of A -> seq of A

Distr. conc. seq of seq of A -> seq of A

Seq. application segl of A * natl -> A

Seq. modification seqg of A * map natl to A -> seqg of A
Equality seqg of A * seq of A -> bool

Inequality seq of A * seq of A —> bool

Map Operators

dom m

rng m

ml munion m2

ml ++ m2

merge ms
<: m
<-Im
> s

m i-> s

m(d)

INVEerse m

ml = m2

ml <> m2

Domain
Range
Merge
Override
Distr. merge
Dom. restr. to
Dom. restr. by
Rng. restr. to
Rng. restr. by
Map apply
Map inverse
Equality
Inequality

(map A
(map A
(map A
(map A
set of

to B) -> set
to B) -> set
to B) * (map
to B) * (map
(map A to B)

of A
of B

A to B) -> map A to B
A to B) -> map A to B

-> map

set of A * (map A to B) ->
set of A * (map A to B) ->
to B) * set of A >
to B) * set of A >

((UETOA
(map A
(map A

to B) * A —>

B

inmap A to B -> 1nmap B to
(map A to B) * (map A to B) ->
(map A to B) * (map A to B) ->

A to B

map A to
map A to
map A to
map A to

A

Comprenension Notation

s Convenient comprehensions exist for sets,
seguences and maps:

e Set-comprehension

{ elem | bind-li1st & pred }
e Sequence-comprehension

| elem | setbind & pred]

The set binding Is restricted to sets of

numeric values, which are used to find
the order of the resulting seguence

e Map-comprehension
{ maplet | bind-list & pred }

Data Type Invariants

Data Type Data Type

Invariant
Even = nat

INV h == n mod 2 = 0

SpecialPair = nat * real
inv mk_ (n,r) == n < r

DisjointSets = set of set of A
Inv ss == forall s1, s2 In set ss &
sl <> s2 => sl1 1Inter s2

Introduction to VDM-SL

v Overview of VDMTools®

v Formal Development with

VDMTools®
v Types

» Functions

e EXpressions

Function Definitions

s Explicit Functions:
f- A*B* . *Z ->R
f(a,b,..,z) == expression
[pre pre-expression]
[post post-expression]

Implicit Functions:

f(a:A, b:B, .., z:Z) r:R
[pre pre-expression]
posSt post-expression
Implicit functions cannot be executed by the VDM
Interpreter.

28

Function Examples

s EXplicit Function:

maplnter: (map nat to nat) * (map nat to nat) -> map nat to nat
maplInter(mli,m2) == (dom ml inter dom m2) <: ml
pre forall d In set (dom ml Inter dom m2) & mi(d) = m2(d);

Implicit Function:

maplInter: (m1,m2: map nat to nat) m: map nat to nat
pre forall d In set (dom ml inter dom m2) & mi1(d) = m2(d)

post dom m = (dom ml Enter dom m2) and
forall d 1n set dom m & m(d) = m1(d);

Polymorphic Functions

s Generic functions that can be used on values of
several different types

emptyBag[@elem]: () +> (map @elem to natl)
emptyBag() == { |-> }:

numBag[@elem] : @elem * (map @elem to natl)
+> pat

numBag(e,m) == 1T e In set dom m then m(e)
else O;

Type instantiation
emptylnt = emptyBag[int]
numlnt = numBag[int]

High Order Functions

s Functions that receive other
functions as arguments

natFrlter - (nat -> bool) * seqg of nat -> seq of nat
natFilter(p,1) == [I(x1) | 1 1n set inds I & p(I(r)) 1,

5i:ter[@elem] - (@elem -> bool) * seq of @elem -> seq of
f?l%gr(p,s) == [I(r) | 1 1n set inds I & p(I(1)) 1;

Example

f - nat -> bool
fn==nmod 2 =20
natFilter (f, [1,2,3,4,5]) = ?

Introduction to VDM-SL

v Overview of VDMTools®

v Formal Development with

VDMTools®
v Types

v Functions

» EXpressions

EXpressions

Let-in and Let-be
expressions

If-then-else
expressions

Cases expressions

Quantified
expressions

Set expressions
Sequence expressions

Map expressions

Tuple
expressions

Record
expressions

Is expressions

Lambda
expressions

Let-inland Let-be Expressions

Let-in expressions are used for naming complicated constructs and
for decomposing complex structures
let cs” {c |-> cs(c) union {s}},
ct’ {s |-> ct(s) union {c}}
in .. cs” .. ct” .

Let-be-such-that expressions are even more powerful. A free choice
can be expressed.:

I In set 1inds | be st Largest (elems 1, 1(1))
1

I In set Permutations(list) be st
forall 1,J Inset inds I &1 <3 == 1(1) < I1Q)

34

[f-Then-Else Expressions

s If-Then-Else expressions are similar to those
Known from programming languages:

IT ¢ In set dom rgq then rg(c)
else {}

s Nested If-Then-Else expressions are also
available:

1T 1 = 0 then <Zero>
elseif 1 <= 1 and <= 9
then <Digit>
else <Number>

Cases Expressions

s Cases expressions are very powerful because of pattern
matching:

cases com:
mk Loan(a,b) -> a”” has borrowed “/*b,
mk_Receilve(a,b) -> a™” has returned “/b,
mk_Status(l) -> 1" are borrowing “~Borrows(l),
others -> ”some other command Is used”

Quantified Expressions

= Quantification can be over sets:

forall s1,s2 In set ss &
sl <> s2 => sl Inter s2 = {}

= Quantification can be over types as well:
forall x: Int &
existsl y: Int &
X *> 2 =y
» Quantifications over types cannot be evaluated
by the VDM Iinterpreter

Set Expressions

s Set enumeration:
{a,3,3,true}

s Set comprehension can either use set
binding:
{a+2 | mk (a,a) In set
{mk_(true,1),mk (1,1)}}
or type binding:
{a | a: nat & a<10}

m Set range expression:
{3,...,10}

Seguence Expressions

s Sequence enumeration:
[7.7,true,” I’ ,true]

s Sequence comprehension can only use a set
bind with numeric values:
[1*1 | 1 1In set {1,2,4,6}]
and
[1 | 1 In set {6,3,2,7} & 1 mod 2 = 0}

s Subsequence expression:
[4,true,”string”’,9,4]1(2,.--,4)

Map Expressions

s Map enumeration:
{1]|-> true, 7 |-> 6}

s Map comprehension can either use type
binding:
{1]-> mk_(r,true) | 1: bool}
or set binding:
{a+tb |-> b-a | a In set {1,2},
b In set {3,6}}
and
{1]->1] 1 In set {1,...,10} &
1 mod 3 = 0}
One must be careful to ensure that every

domain element maps uniquely to one range
element.

Tuple Expressions

s A tuple expression looks like:
mk (2,7,true,{|->})

x Remember that tuple values from a tuple
type will always

e have the same length and

e Use the same types (possible union
types) at corresponding positions.

= On the other hand the length of a
seguence value may vary but the
elements of the sequence will always be of
the same type.

41

Record Expression

Given two type definitions like:
A - n: nat
b: bool
s: set of nat;
2> n: nat
r: real

one can write expressions like:
mk_A(1,true,{8})
mk B(3,3)
mu (mk _A(7,false,{1,4}), n|->1, s|->{})
mu (mk B(3,4), r]->5.5)

The mu operator is called “the record modifier”.

Apply Expressions

s Map applications
let m = {2]->1, 1]|->2}
in m(l)

s Sequence applications

[2,7.3]1(2)

s Fleld Select applications
let r = mk A(2,false,{6,9})
in r.b

Is Expressions

s Basic values and record values can be
tested by Is- expressions:

e IS _nat(5)

1s C(mk _C(5))

i1s A(mk B(3,7))
e 1s A(6)

Lambda Expressions

s Lambda expressions are an alternative way.
of defining explicit functions:

lambda n: nat & n * n

s [hey can take a type bind list:
lambda a: nat, b: bool &
1T b then a else 0O

= Or use more complex types:
lambda mk (a,b): nat * nat & a + b

45

Exercises

npush : 1INt * seqg of Int —> seq of Int

npush(n, s) == [n] 2 [s(1) | 1 In set Inds s
& n <> s(1)] ;

npushl0 - Int * seq of Int -> seq of Int
npushl0(n, s) == [n] ~
[s(i)) | 1 In set Inds s &
n <> s(1) and
1T n<>s() then 1 <=9 else 1 <=10] ;

Chemical Plant Alarm System

A chemical plant Is equipped with a
number of sensors which are able to
raise alarms In response to
conditions In the plant. When an
alarm iIs raised, an expert must be
called to the scene. Experts have
different qualifications for coping
with different kinds of alarm.

CPAS Reqguirements

R1 — A computer-based system is to be developed to
manage the alarms of this plant

R2 — Four Kinds ofi gualification are needed to cope with the
alarms. These are electrical, mechanical, biological, and
chemical.

R3 — There must be experts on duty all periods which have
been allocated in the system.

R4 — Each expert can have a list of qualifications

R5 — Each alarm reported to the system has a qualification
associated with it along with a description of the alarm
which can be understood by the expert

R6 — Whenever an alarm is received by the system an
expert with the right qualification should be found so that
he or she can be paged.

R7 — The experts should be able to use the system
database to check when they will be on duty

R8 — It must be possible to assess the number of experts
on duty

