
ChopaChops
Patrick Machado

Contents

Objectives
Work already done
My contribution - Call Graphs

General
Declarations
Type Inference System
Algorithm

Real-World application
Future work
Conclusion

Objectives

To derive method invocation relations on Java
Programs
To build graphs
To compute some graph-based program metrics
To improve the interactive interface

Contribute actively to UMinho Haskell Library

Work already done
Package Graphs

Java parsing
Derivation of package and
class-based relations:

Imports
Inheritance
Implementation
Nesting

Visualization of relations in a
graph
Some metrics implementation
Implementation of slicing and
chopping in the graphs

My Contribution
Call Graphs

Show method invocation relations

Show method nesting relations

Call Graphs
General

Without generic programming, it’s necessary to
handle most of the Java AST

Used strafunsky to traverse the AST

Supports (little) variations on the syntax tree
without breaking out

Built a type inference system to (try to) find out
which classes were getting method invocations

Call Graphs
java2ccg

type CallGraph
 = LRel CGNode CGNode CGEdgeType

-- | The type of call graph nodes.
data CGNode = CGClass ClassName
 | CGMethod ClassName MethodName [ParameterType]
...
java2ccg :: (Term a, MonadPlus m) => CGNode -> Declarations -> a -> m CallGraph
java2ccg node@(CGClass cname) decs = ...
java2ccg node@(CGMethod cname mname pars) decs = applyTU $ stop_tdTU worker2
 where
 worker2 = failTU `adhocTU` call2ccg
 call2ccg (NameMethodInvocation ident args) = ...
 call2ccg (SuperMethodInvocation ident args) = ...
 call2ccg (PrimaryMethodInvocation prim ident args)
 = do
 cg <- java2ccg node decs (prim, args)
 let ab = findTypeOf decs cname prim
 let tp = maybe "unknown" (\x -> if (x=="") then "unknown" else x) ab
 let targs = args2str $ findTypeOfArgs decs cname args
 return $ addCallEdge node (CGMethod tp ident targs) cg

Call Graphs
Declarations

Used FiniteMaps to boost lookups
type GlobalDeclarations = FiniteMap (ClassName, MemberName) TypeName

type LocalDeclarations = FiniteMap VarName TypeName

type Declarations = (GlobalDeclarations, LocalDeclarations)

API
emptyDec :: Declarations

appendDec :: Declarations -> Declarations -> Declarations

addGlobalDec :: Declarations -> (ClassName, MemberName)

-> TypeName -> Declarations

...

getType :: (MonadPlus m) =>

Declarations -> ClassName -> MemberName -> m TypeName

Call Graphs
Type Inference System

findTypeOf :: (Term a, MonadPlus m) => Declarations
-> ClassName -> a -> m TypeName

findTypeOf decs tn = applyTU (once_tdTU worker)
 where
 worker = failTU
 `adhocTU` arrayaccess
 `adhocTU` newcalls
 `adhocTU` methods

 ...

 arrayaccess (Name_Expression name index) = ...
 arrayaccess _ = mzero

 newcalls (New_comma (ClassOrInterfaceType1 (Name n)) pars)
 = return (name2str n)
 newcalls _ = mzero

 methods (PrimaryMethodInvocation prim ident args) = ...
 ...

Call Graphs
The Algorithm

Parse the files -> AST
Traverse AST, collecting type information for methods
and fields of the classes
Traverse AST, building a graph with relations
Perform slicing and chopping on that graph
Compute graph metrics
Print the graph to dot notation
Invoke GraphViz to generate an image

Example

The Tool
ChopaChops Online

Online Interface using
WASH

Extended
ChopaChopsOnline to
Call Graphs

Added zip archive
functionality

Added metrics

Problems

Hard to understand big graphs (real world java
programs)
Type inference system not fully implemented
Not working with compiled classes
Does not handle some java features

Inheritance / Implementation
Static methods
Exception handling
...

!

Real World Application

Applicable to real-world java applications

To big programs, it generates graphs not much
readable by humans

Getting more accurate as we support more
language features

Future Work
Extension

Extend the type inference system to support
more types

Compute more graph metrics

Continue to move to lower level relations:

Data flow

Control

Conclusion
Nice progresses towards full program slicing in
Java
At the moment there is no support for many Java
features
Easy to extend

Part of the UHL
ChopaChopsOnline (tools)
Language.Java.CallGraph

Much work to do in the future...

Demo

