Patrick Machado -

Contents

Objectives

Work already done

My contribution - Call Graphs
e General

® Declarations

o Type Inference System

o Algorithm

Real-World application
Future work

Conclusion

Objectives

To derive method invocation relations on Java
Programs

To build graphs
To compute some graph-based program metrics

To improve the interactive interface

Contribute actively to UMinho Haskell Library

Work already done

Package Graphs

Java parsing
Derivation of package and
class-based relations:

e Imports

e Inheritance

® Implementation
e Nesting

Visualization of relations in a
graph

Some metrics implementation
Implementation of slicing and

chopping in the graphs

test ,Bar

Java. lang.5tring

My Contribution
Call Graphs

e Show method invocation relations

o Show method nesting relations

Foo.aaalFool])

Foo.main()

NI~

Bar.bbb{Foo)

Bar.bbb({Bar)

Foo.aaa(Int)

Foo .aaa(String)

Foo.aaa(Float)

[:—'i'}fl AaalFoo)

Call Graphs

General

o Without generic programming, it’s necessary to
handle most of the Java AST

o Used strafunsky to traverse the AST

o Supports (little) variations on the syntax tree
without breaking out

o Built a type inference system to (try to) find out
which classes were getting method invocations

Call Graphs

javagccs

type CallGraph
= LRel CGNode CGNode CGEdgeType

-- | The type of call graph nodes.
data CGNode = CGClass ClassName
| CGMethod ClassName MethodName [ParameterType]

java2ccg :: (Term a, MonadPlus m) => CGNode -> Declarations -> a -> m CallGraph
java2ccg node@ (CGClass cname) decs = :
java2ccg node@ (CGMethod cname mname pars) decs = applyTU $ stop tdTU worker2
where
worker2 = failTU "adhocTU call2ccg
call2ccg (NameMethodInvocation ident args) =
call2ccg (SuperMethodInvocation ident args) =
call2ccg (PrimaryMethodInvocation prim ident args)
= do
cg <- java2ccg node decs (prim, args)
let ab = findTypeOf decs cname prim
let tp = maybe "unknown" (\x -> if (x=="") then "unknown" else x) ab
let targs = args2str $ findTypeOfArgs decs cname args
return $ addCallEdge node (CGMethod tp ident targs) cg

Call Graphs

Declarations

® Used FiniteMaps to boost lookups

type GlobalDeclarations = FiniteMap (ClassName, MemberName) TypeName
type LocalDeclarations = FiniteMap VarName TypeName

type Declarations = (GlobalDeclarations, LocalDeclarations)

o API

emptyDec :: Declarations
appendDec :: Declarations -> Declarations -> Declarations
addGlobalDec :: Declarations -> (ClassName, MemberName)

-> TypeName -> Declarations

getType :: (MonadPlus m) =>

Declarations -> ClassName -> MemberName -> m TypeName

Call Graphs

Type Inference System

findTypeOf :: (Term a, MonadPlus m) => Declarations
-> ClassName -> a -> m TypeName
findTypeOf decs tn = applyTU (once_ tdTU worker)
where
worker = failTU
"adhocTU arrayaccess
"adhocTU newcalls
"adhocTU methods

arrayaccess (Name Expression name index) =
arrayaccess = mzero

newcalls (New comma (ClassOrInterfaceTypel (Name n)) pars)
= return (name2str n)
newcalls = mzero

methods (PrimaryMethodInvocation prim ident args) =

Call Graphs

The Algorithm

Parse the files -> AST

Traverse AST, collecting type information for methods
and fields of the classes

Traverse AST, building a graph with relations
Perform slicing and chopping on that graph
Compute graph metrics

Print the graph to dot notation

Invoke GraphViz to generate an image

n
s
-
L]
a
L
-
-
L
w
=
=
a
*
-
L
-
-
-
L
L)
L]
®
L]
L]
-
L]
-
L]
L)
L]
L]
L
L]
*
"
L]
-
L]
-
*
-
=
-
-
w
&
-
*
=
=
*
L]
L]
-
-
-
-
L]
*
-
L}
-
"
-
*
-
*
L]
=
-
]
L)
-
#
=

LI A N O I I O S

IR EFEREEEEEE EE RS

FIFBREFERFEAT R EPETAERD

Example

package te=zt;

public class Foo
i
vold maini)
i
Fool | =
Bar d
float v;
aaa ld.bb

Ear aaal(floa
float aaalin

BEar aaal(lFoo

int aaalZtrin

Bar aaa(Fool |

null;

I'._.' | ddd | ddd |
g args) |

£t al |

raturn null;|
t x){ return null;|
a) { raturn null; |
a) { return null; |

aaa("ola")l

raeaturn 1;|

package test;

class Bar

Foo bbb (Bar
BEar bhbbhiFoo

{ raturn null; |
{ raturn null; |

Foo.main{)

Foo,aaa(Fooll)

Bar.bbb{Foo) Bar.

bbb {Bar)

Foo.aaa{String)

Foo,aaa({float)

Foo,aaal{int)

Foo.aaalFoo)

The Tool

ChopaChops Online

‘F_ Ini‘t_\‘ ‘F_Call Craphj" ‘f_ Package Eraph;“ ";_Chnp EaHGraph_\" ‘F_ Chop Packageﬂmphj“

Online Interface using
WASH

-
Bar.bbb{Foo) Bar.bbb{Bar) Foo.aaa(S5tring)
Extended

[Tree Impurity: [5.4545455| Sources

ChopaChopsOnline to |[edeom —n) | [E5er
|Nnrmaﬂizcd level munt:”IUU 0 | CGMethod “Bar” "bbb" [*Bar”)
C all Gr aphs ISize of largest level: |1 | Eg:::z::g: E;Lgﬁg E:g}
|Nnn singleton levels: ||1'J | CGMethod "Foo” "aaa" ["Foo[]"]
CCMethod “Foo” "aaa" [*String”]

CCMethod "Foo” "aaa" ["float”)
CCMethod "Foo” "aaa" ["int")

Added Zip arChive CGMethod "Foo" "main” []

Sinks

f : 1 - CGClass “Bar”
unctionality cCctass oo
CCMethod "Bar” "bbb" [*Bar”)

CCMethod "Bar” “bbb" [*Foo”]
CCMethod "Foo” "aaa” [*Foo”]
CCMethod “Foo” "aaa” ["Fool]"]
Add d . CGMethod “Foo” “aaa" ["String”]

e metrlcs CCGMethod "Foo” "aaa” ["float”)
CCMethod "Foo” "aaa" ["int")
CCMethod "Foo" "main” [)

i) |
(Go)

Problems

Hard to understand big graphs (real world java
programs)

Type inference system not fully implemented
Not working with compiled classes

Does not handle some java features

® Inheritance / Implementation

e Static methods

o Exception handling

Real World Application

e Applicable to real-world java applications

o To big programs, it generates graphs not much
readable by humans

e (Getting more accurate as we support more
language features

Future Work

Extension

o Extend the type inference system to support
more types

o Compute more graph metrics

e (Continue to move to lower level relations:

e Data flow

e (Control

Conclusion

® Nice progresses towards full program slicing in
Java

At the moment there is no support for many Java
features

Easy to extend
Part of the UHL
o ChopaChopsOnline (tools)

o Language.Java.CallGraph

Much work to do in the future...

R R N N N N N R e PR R R R LN N R R

