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Objectives

To derive method invocation relations on Java
Programs

To build graphs
To compute some graph-based program metrics

To improve the interactive interface

Contribute actively to UMinho Haskell Library




Work already done

Package Graphs

Java parsing
Derivation of package and
class-based relations:

e Imports

e Inheritance

® Implementation
e Nesting

Visualization of relations in a
graph

Some metrics implementation
Implementation of slicing and

chopping in the graphs

test ,Bar

Java. lang.5tring




My Contribution
Call Graphs

e Show method invocation relations

o Show method nesting relations
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Call Graphs

General

o Without generic programming, it’s necessary to
handle most of the Java AST

o Used strafunsky to traverse the AST

o Supports (little) variations on the syntax tree
without breaking out

o Built a type inference system to (try to) find out
which classes were getting method invocations




Call Graphs

javagccs

type CallGraph
= LRel CGNode CGNode CGEdgeType

-- | The type of call graph nodes.
data CGNode = CGClass ClassName
| CGMethod ClassName MethodName [ParameterType]

java2ccg :: (Term a, MonadPlus m) => CGNode -> Declarations -> a -> m CallGraph
java2ccg node@ (CGClass cname) decs = :
java2ccg node@ (CGMethod cname mname pars) decs = applyTU $ stop tdTU worker2
where
worker2 = failTU "adhocTU call2ccg
call2ccg (NameMethodInvocation ident args) =
call2ccg (SuperMethodInvocation ident args) =
call2ccg (PrimaryMethodInvocation prim ident args)
= do
cg <- java2ccg node decs (prim, args)
let ab = findTypeOf decs cname prim
let tp = maybe "unknown" (\x -> if (x=="") then "unknown" else x) ab
let targs = args2str $ findTypeOfArgs decs cname args
return $ addCallEdge node (CGMethod tp ident targs) cg




Call Graphs

Declarations

® Used FiniteMaps to boost lookups

type GlobalDeclarations = FiniteMap (ClassName, MemberName) TypeName
type LocalDeclarations = FiniteMap VarName TypeName

type Declarations = (GlobalDeclarations, LocalDeclarations)

o API

emptyDec :: Declarations
appendDec :: Declarations -> Declarations -> Declarations
addGlobalDec :: Declarations -> (ClassName, MemberName)

-> TypeName -> Declarations

getType :: (MonadPlus m) =>

Declarations -> ClassName -> MemberName -> m TypeName




Call Graphs

Type Inference System

findTypeOf :: (Term a, MonadPlus m) => Declarations
-> ClassName -> a -> m TypeName
findTypeOf decs tn = applyTU (once_ tdTU worker)
where
worker = failTU
"adhocTU  arrayaccess
"adhocTU  newcalls
"adhocTU methods

arrayaccess (Name Expression name index) =
arrayaccess = mzero

newcalls (New comma (ClassOrInterfaceTypel (Name n)) pars)
= return (name2str n)
newcalls = mzero

methods (PrimaryMethodInvocation prim ident args) =




Call Graphs

The Algorithm

Parse the files -> AST

Traverse AST, collecting type information for methods
and fields of the classes

Traverse AST, building a graph with relations
Perform slicing and chopping on that graph
Compute graph metrics

Print the graph to dot notation

Invoke GraphViz to generate an image
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Example
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The Tool

ChopaChops Online
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Problems

Hard to understand big graphs (real world java
programs)

Type inference system not fully implemented
Not working with compiled classes

Does not handle some java features

® Inheritance / Implementation

e Static methods

o Exception handling




Real World Application

e Applicable to real-world java applications

o To big programs, it generates graphs not much
readable by humans

e (Getting more accurate as we support more
language features




Future Work

Extension

o Extend the type inference system to support
more types

o Compute more graph metrics

e (Continue to move to lower level relations:

e Data flow

e (Control




Conclusion

® Nice progresses towards full program slicing in
Java

At the moment there is no support for many Java
features

Easy to extend
Part of the UHL
o ChopaChopsOnline (tools)

o Language.Java.CallGraph

Much work to do in the future...
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