
Advanced Functional Programming
LMCC & LESI, Universidade do Minho

Strafunski: Exercises

1 Preliminaries

The subdirectory StrategyLib contains (version 4.0 of) Strafunski’s strategy library. We
assume you have either Hugs or GHC installed.

2 Your first strategic program

To get acquainted with the basics of strategic programming you will construct your first
strategic program in a few simple steps.

2.1 Load the library

Exercise 2.1 Create the file MyFirstStrategicProgram.hs with the following initial
content:

module MyFirstStrategicProgram where
import StrategyLib

Load this program into Hugs or GHCi as follows:

ghci -fglasgow-exts -fallow-overlapping-instances \
-fallow-undecidable-instances -package data \

-iStrategyLib-4.0/library:StrategyLib-4.0/models/drift-default: \
MyFirstStrategicProgram

hugs +o -98 +N \
-PStrategyLib-4.0/library:StrategyLib-4.0/models/drift-default: \
MyFirstStrategicProgram

If all is well, the strategy library will be loaded into the interpreter, ready for use. With the
:t command, you can ask the interpreter for the types of the library’s combinators. Try
this for idTP, applyTP, adhocTP, and topdown.

1

MyFirstStrategicProgram> :t idTP
idTP :: ...
MyFirstStrategicProgram> :t applyTP
applyTP :: ...
MyFirstStrategicProgram> :t adhocTP
adhocTP :: ...
MyFirstStrategicProgram> :t topdown
topdown :: ...

You will use these combinator in the next exercise.

In these types, you see occurances of the type constructor TP, and the type class Term. The
constraint Term a basically means: strategic functionality is activated for type a. If you
are using Hugs, the command :i Term will reveal that this is the case for most of Haskell’s
predefined types. The type TP m, where m is a monad, is the type of (monadic) strategic
functions that takes a term of any type x into a result of type x, i.e. it is a type-preserving
generic function.

2.2 A type-preserving strategic function

Next, you will construct a simple type-preserving strategic function using the combinators
mentioned above.

Exercise 2.2 Add the following import and function declaration to your first strategic
program:

import MonadIdentity

increment :: Term a => a -> a
increment = runIdentity . applyTP strategy
where
strategy = topdown (adhocTP idTP inc)
inc x = return (x + 1::Int)

As the type indicates, the function increment works on terms of any type, and maps them
to a result of the same type. Apply it to terms of several types, and inspect the results:

MyFirstStrategicProgram> increment True
...
MyFirstStrategicProgram> increment (42::Int)
...
MyFirstStrategicProgram> increment [42::Int]
...
MyFirstStrategicProgram> increment ([42::Int],True,Just (7::Int))
...

2

As you can see, increment returns its argument unchanged, except that 1 has been added
to any Int that occurs in it. The shape of the term, and the place where the Ints occur in
it, are not important, and remain unchanged.

Note that, if increment had been an ordinary parametric polymorphic function of type a

-> a, it could only have been the identity function. But the constraint Term a indicates
that increment is not paramteric polymorphic, but that it is a strategic function, which
exhibits a mixture of generic and type-specifc behaviour. The generic behaviour is the
identity, as expressed with the idTP combinator. The type specific behaviour is adding 1,
as expressed by the local inc function. The adhocTP combinator combines these two into
a single generic function with mixed behaviour. Finally, the topdown combinator applies
this mixed behaviour to all subterms in a top-down fashion.

2.3 Traversal variations

The topdown combinator is a synonym for the full tdTP combinator. As the latter name
indicates, it performs a full traversal, i.e. it visits every subterm, in a top-down fashion.

Exercise 2.3 Inspect the types of the following combinators:

MyFirstStrategicProgram> :t full_tdTP
full_tdTP :: ...
MyFirstStrategicProgram> :t full_buTP
full_buTP :: ...
MyFirstStrategicProgram> :t stop_tdTP
stop_tdTP :: (MonadPlus m) => ...
MyFirstStrategicProgram> :t once_tdTP
once_tdTP :: ...
MyFirstStrategicProgram> :t once_buTP
once_buTP :: ...

Note the occurrance of MonadPlus in the context of some of these combinators. An example
of MonadPlus is the Maybe type constructor. It is used to indicate that a strategic function
succeeds (Just a) or fails (Nothing).

To see these traversal variations in action, we will use a tree datatype Tree defined in
the module Tree as:

data Tree = Tree Int [Tree]

Add an import Tree to your first strategic program, as well as the following function:

flip :: Term a => (TP Maybe -> TP Maybe) -> a -> a
flip traversal a = maybe a id (applyTP strategy a)
where

strategy = traversal (adhocTP failTP flp)
flp (Tree i []) = mzero
flp (Tree i ts) = return (Tree i (reverse ts))

3

The flip function takes as first argument the traversal combinator to be applied. The
type-specific behaviour defined by the local flp function is the reversal of the list of subtrees.
The strategy combinator failTP is the dual of idTP: it fails to produce a result for any
input term.

Now, apply flip to a tree, using various traversal combinators as arguments:

MyFirstStrategicProgram> flip once_tdTP myTree
...
MyFirstStrategicProgram> flip once_buTP myTree
...
MyFirstStrategicProgram> flip stop_tdTP myTree
...
MyFirstStrategicProgram> flip full_tdTP myTree
Tree 1 [Tree 2 [Tree 3 [],Tree 4 []],Tree 5 [Tree 6 [],Tree 7 []]]
MyFirstStrategicProgram> flip (full_tdTP.tryTP) myTree
...
MyFirstStrategicProgram> flip (full_buTP.tryTP) myTree
...

For example, define myTree as follows:

myTree = Tree 1 [Tree 2 [Tree 3 [],Tree 4 []],Tree 5 [Tree 6 [],Tree 7 []]]

Looking at the results, you should be able to understand the behaviour of each traversal
combinator. Consult the online Haddock documentation of Strafunski (TraversalTheme) to
verify your understanding.

Note the use of tryTP. This combinator attempts to apply its argument strategy. If this
fails, it does not propagate the failure, but returns the input term. We use tryTP in
combination with the full traversals, since these need their argument strategies to succeed
on every term to succeed themselves.

2.4 A type-unifying strategic function

So far, we have seen only one side of Strafunski: type-preserving strategies. To complement
these, the library also offers type-unifying strategies.

Exercise 2.4 Inspect the types of the following combinators:

4

MyFirstStrategicProgram> :t constTU
constTU :: ...
MyFirstStrategicProgram> :t applyTU
applyTU :: ...
MyFirstStrategicProgram> :t adhocTU
adhocTU :: ...
MyFirstStrategicProgram> :t collect
collect :: ...
MyFirstStrategicProgram> :t crush
crush :: ...
MyFirstStrategicProgram> :t full_tdTU
full_tdTU :: ...
MyFirstStrategicProgram> :t once_tdTU
once_tdTU :: ...
MyFirstStrategicProgram> :t once_buTU
once_buTU :: ...

Consult the online Haddock documentation of Strafunski to find out what these combinators
do.

The type TU a m, where m is a monad, is the type of (monadic) strategic functions that
takes a term of any type x into a result of the designated type a, i.e. it is a type-unifying
generic function. While type-preserving strategies perform transformations of terms, type-
unifying strategies are used to program queries of terms.

Exercise 2.5 Add the following function definition to your first strategic program:

list :: Term a => a -> [Int]
list = runIdentity . applyTU strategy

where
strategy = collect (adhocTU (constTU []) lst)
lst x = return [x]

As you can see, this function employs type-unifying strategy combinators. The type-specific
behaviour defined by the local function lst is to put an integer into a singleton list. The
generic behaviour of constTU [] is to return an empty list. The collect strategy takes care
of traversing the term in bottom-up fashion and appending all the singleton and empty lists
into a final result.

Try the list function on various terms of various types. Create variations on list

that employ different type-unifying traversal strategies, and test them on various terms.

So far, we have applied our strategies on terms built from Haskell’s predefined types and the
simple user-defined Tree type. But the power of strategic programming is best experienced
when processing terms build from large sets of mutually recursive datatypes. Examples of
these are language syntaxes and file formats. The following sections demonstrate this on
the abstract syntax of Haskell itself, and on XML document trees.

5

3 Refactoring of Haskell Programs

One of the examples included in the Strafunski distribution is a program HsTransform that
transforms haskell source code. It performs two simple transformations: the elimination of
the do constructor and the introduction of a new type definition. You can run the program
(in hugs) as follows:

runhugs +o -98 +N
-P<StrategyLib>/examples/haskell:<StrategyLib>/library:<StrategyLib>/models/drift-default:
HsTransform <inputfile> <outputfile>

where StrategyLib is the location where you installed Strafunski’s StrategyLib (version
4.0-beta), and inputfile and outputfile are the names of the Haskell program to be
transformed, and the file where you want the transformed program to be written to.

Exercise 3.1 Write a little test program that makes use of various do constructions. Run
the transformation program on your test program and inspect the resulting program. Run
your test program as well as the transformed program to see if they behave the same.

Note: Be sure to test nested do-expression and monadic let-expressions inside do’s.

For instance, consider the following example Haskell program:

Put your input test module here

Running the HsTransform program on it produces the following output:

Put the transformed module here

The elimination of do expressions is defined in the Haskell Report, in section 3.14. This
transformation is expressed in Strafunski as follows:

doElim :: (Term a, MonadPlus m) => a -> m a
doElim h = applyTP (innermost (monoTP doElim1)) h

doElim1 :: MonadPlus m => HsExp -> m HsExp
doElim1 (HsDo [HsQualifier e])

= return e
doElim1 (HsDo (HsQualifier e:stmts))

= return (HsInfixApp e (HsVar (hsSymbol ">>")) (HsDo stmts))
doElim1 (HsDo (HsGenerator p e:stmts))

= do ok <- new_name
return (letPattern ok p e stmts)

doElim1 (HsDo (HsLetStmt decls:stmts))
= return (HsLet decls (HsDo stmts))

doElim1 _
= mzero

6

The function doElim1 implements a single do-elimination rewrite step. It follows the
definition in the Haskell Report quite closely, except that instead of Haskell’s concrete
surface syntax, it’s abstract syntax is used.

The function doElim completes the rewrite step doElim1 into a complete transforma-
tion. The monoTP combinator lifts the rewrite step to a generic rewrite step, and the
innermost combinator applies this generic rewrite step repeatedly according to the inner-
most traversal strategy, until a fixpoint is reached (no more redexes remain).

Exercise 3.2 In section 3.6 of the Haskell report a translation of the if_then_else con-
struct is presented. Implement this translation in a strategic function named ifElim. In
order to incorporate this transformation in the distributed package, just modify the Main
module to import module IfElim, and modify one line in the main function into:

iowrap (mpipe [doElim,data2newtypeConv,ifElim])

For instance, consider the following example Haskell program:

module TestIfElim where
f a = if (a > 1)

then a
else -a

Running the HsTransform program on it produces the following output:

module TestIfElim where
f a

= case (a > 1) of
True -> a
False -> - a

This transformation is expressed in Strafunski as follows:

module IfElim where

import Datatypes
import DatatypesTermInstances
import StrategyLib
import Monad

ifElim :: (Term a, MonadPlus m) => a -> m a
ifElim h = ...

ifElim1 :: MonadPlus m => HsExp -> m HsExp

7

Exercise 3.3 Implement the list comprehension elimination according to the rules defined
in section 3.11 of the haskell report. (if you solve this exercise please email Joost the
solution to be included in the next Strafunski distribution).

4 Querying and transforming XML Documents

Using the XML support from the HaXml project, you can easily import XML documents
into Haskell, and export them from Haskell. If you can supply a DTD for your documents,
you can additionally, inside Haskell, marshall between a generic representation of XML
documents (verified only) and a typed Haskell representation of XML documents (validated
by the Haskell type system).

As a running example, we will use documents that contain course descriptions. An
example document is given in teste.xml, and its DTD is given in Curso.dtd.

To get things running you need to run DtdToHaskell on the given DTD to obtain a file
Curso.hs containing the Haskell datatypes that will represent your document. Addition-
ally, this file will contain instances of the XmlContent class that provides the marshalling
functionality.

Exercise 4.1 Run DtdToHaskell and inspect the content of the resulting file. Try to
understand the relationship between the DTD and the Haskell types, and between XML
documents and Haskell terms.

After generating the code, we can define some wrapper functions for performing queries
and transformations on given XML documents:

8

module XMLExercise where

import Curso
import Text.XML.HaXml.Parse (xmlParse)
import Text.XML.HaXml.Types (Document(..),Content(..))
import Text.XML.HaXml.Xml2Haskell (showXml,fromElem,XmlContent(..))

processQ q xmlFile
= do xmlInput <- readFile xmlFile

let curso = fromString xmlInput :: Curso
result <- q curso
putStrLn (show result)

processT t xmlFile
= do xmlInput <- readFile xmlFile

let curso = fromString xmlInput :: Curso
result <- t curso
putStrLn (showXml result)

-- Helper for parsing

fromString :: XmlContent a => String -> a
fromString s

= forceResult (fst (fromElem [getElem (xmlParse "hoi" s)]))
where

getElem (Document _ _ e) = CElem e
forceResult Nothing = error "XML PARSE ERROR"
forceResult (Just r) = r

Exercise 4.2 Run a minimal query and a minimal transformation on the given example
document teste.xml to see if everything is working properly. Use ghci as follows:

ghci -cpp -fglasgow-exts -fallow-overlapping-instances\

-fallow-undecidable-instances -package data \

-i<StrategyLib>/library:<StrategyLib>/models/drift-default:

-i<HaXml>/src: XMLExercise

where <HaXml> is the place where you installed HaXml. At the prompt, try:

*Main> processQ (const . putStrLn $ "Nada") "teste.xml"

*Main> processT return "teste.xml"

Make sure you understand what is going on. For instance, do you understand why the type
annotation (:: Curso) is used?

9

If we make use of HaXml’s marshalling functionality, writing queries and transforma-
tions on XML documents can be done by plain functional programming on the Haskell
terms that represent these documents. But, since these documents can contain large num-
bers of different element tags and attributes, plain functional programming may quickly
turn out to be clumsy.

Exercise 4.3 Program a query that extracts all student names from a given XML docu-
ment, using standard functional programming techniques. Run the query with processQ.

The following code shows how we can extract student names from a given XML docu-
ment using a set of recursive functions:

studentNames
= processQ (return . qCurso) "teste.xml"

where
qCurso (Curso _ _ cadeiras)

= ...
qCadeira (Cadeira _ _ _ inscritos _)

= ...
qInscritos (Inscritos _ alunos)

= ...
qAluno (Aluno _ nome)

= nome

Note that the recursive functions do pattern matching on all the parent types of Aluno.
If the definition of Curso, Cadeira, or Inscritos is changed (for instance by allowing
further elements inside them), the code above will need to be adapted as well.

Using the strategic function combinators of Strafunski, we can improve on this situation.
To use Strafunski, we need to generate instances of the Term class from the datatypes in
Curso.hs, using DrIFT.

Exercise 4.4 Generate the file CursoTermInstances.hs with an invocation of DrIFT, as
follows:

> echo "module CursoTermInstances where" > CursoTermInstances.hs

> echo "import Curso" >> CursoTermInstances.hs

> echo "import TermRep" >> CursoTermInstances.hs

> DrIFT -g Term -g Typeable -r Curso.hs >> CursoTermInstances.hs

The instances of class Term and Typeable are used only internally by the strategy com-
binators of Strafunski. As a user of these combinators, you do not need to understand
them.

Using Strafunski, the same query can be implemented more concisely as follows:

10

...
import StrategyLib
import CursoTermInstances
...

studentNames’
= processQ (applyTU q) "teste.xml"

where
q = stop_tdTU (monoTU qAluno)
qAluno (Aluno _ nome) = return [nome]

The traversal strategy stop_tdTU is used to search for students in a top down fashion,
without continuing the search on the subelements of a student. The monoTU combinator
turns the monomorphic function qAluno into a generic function that succeeds on students,
but fails on other elements.

Exercise 4.5 Verify that the reformulated query produces the same results as the original
one. Make sure you understand the reformulated query.

Apart from querying the document, we can transform it. For instance, we can update
the attribute n of the element Inscritos such that we are sure that it matches the actual
number of students registred for the course.

Exercise 4.6 Complete the following code. And run it on the document teste.xml.

The following code traverses the document to find elements of type Inscritos. These
elements are subsequently queried to find the number of students that it holds. Finally,
the attribute of the element Inscritos is updated to the computed number of students.

countAlunos
= applyTU (...)

where
countAluno (a::Aluno) = return (1::Int)

updateInscritosN
= applyTP(...)

where
update (Inscritos attrs alunos)

= do n <- countAlunos alunos
let attrs’ = attrsinscritosN=Just (show n)
return (Inscritos attrs’ alunos)

Note the use of record update to perform attribute updating.

11

