
A brief Introduction to Category Theory

Dirk Hofmann

CIDMA, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

Office: 11.3.10, dirk@ua.pt, http://sweet.ua.pt/dirk/

October 9, 2017

dirk@ua.pt
http://sweet.ua.pt/dirk/

Motivation I

John Hughes (1989). “Why functional programming matters”. In: The

Computer Journal 32.(2), pp. 98–107

Modular design is the key to successful programming

. . . The ways in which one can divide up the original problem depend
directly on the ways in which one can glue solutions together. Therefore,
to increase ones ability to modularise a problem conceptually, one must
provide new kinds of glue in the programming language.
. . .
Now let us return to functional programming. We shall argue in the
remainder of this paper that functional languages provide two new, very
important kinds of glue.

Motivation I

Whitehead, Alfred North

Mathematics as a science, commenced when first someone, probably a

Greek, proved propositions about “any” things or about “some” things,

without specifications of definite particular things.

Motivation I

Whitehead, Alfred North

Mathematics as a science, commenced when first someone, probably a

Greek, proved propositions about “any” things or about “some” things,

without specifications of definite particular things.

Saunders MacLane

The basic insight is that a mathematical structure is a scientific structure

but one which has many different empirical realizations. Mathematics

provides common overreaching forms, each of which can and does serve

to describe different aspects of the external world. Thus mathematics is

that part of science which applies in more than one empirical context.

Saunders MacLane (1997). “Despite physicist, proof is essential in
mathematics”. In: Synthese 111.(2), pp. 147–154.

Motivation II

A seemingly paradoxical observation

“. . . an equation is only interesting or useful to the extent that the two
sides are different!”

John Baez and James Dolan (2001). “From finite sets to Feynman
diagrams”. In: Mathematics Unlimited - 2001 and Beyond. Springer,
Berlin, pp. 29–50

Motivation II

A seemingly paradoxical observation

“. . . an equation is only interesting or useful to the extent that the two
sides are different!”

John Baez and James Dolan (2001). “From finite sets to Feynman
diagrams”. In: Mathematics Unlimited - 2001 and Beyond. Springer,
Berlin, pp. 29–50

Just compare:

Numbers: 3 = 3 vs. eiω = cos(ω) + i sin(ω).

Motivation II

A seemingly paradoxical observation

“. . . an equation is only interesting or useful to the extent that the two
sides are different!”

John Baez and James Dolan (2001). “From finite sets to Feynman
diagrams”. In: Mathematics Unlimited - 2001 and Beyond. Springer,
Berlin, pp. 29–50

Just compare:

Numbers: 3 = 3 vs. eiω = cos(ω) + i sin(ω).

Spaces: V ≃ V vs. V ≃ R
n (for dim V = n).

Motivation II

A seemingly paradoxical observation

“. . . an equation is only interesting or useful to the extent that the two
sides are different!”

John Baez and James Dolan (2001). “From finite sets to Feynman
diagrams”. In: Mathematics Unlimited - 2001 and Beyond. Springer,
Berlin, pp. 29–50

Just compare:

Numbers: 3 = 3 vs. eiω = cos(ω) + i sin(ω).

Spaces: V ≃ V vs. V ≃ R
n (for dim V = n).

More general: “linear maps = matrices”.

A comercial break

Vladimir Voevodsky (Fields Medal in 2002)

“At the heart of 20th century mathematics lies one particular notion, and
that is the notion of a category.”

A comercial break

Vladimir Voevodsky (Fields Medal in 2002)

“At the heart of 20th century mathematics lies one particular notion, and
that is the notion of a category.”

Jean Bénabou

“Analogies are useful in mathematics for generalising a class of
well-known examples to a wider class of equally or even more useful
structures. Category Theory is particularly well suited for this purpose
which is no wonder as it has been developed for precisely this purpose”

A comercial break

Vladimir Voevodsky (Fields Medal in 2002)

“At the heart of 20th century mathematics lies one particular notion, and
that is the notion of a category.”

Jean Bénabou

“Analogies are useful in mathematics for generalising a class of
well-known examples to a wider class of equally or even more useful
structures. Category Theory is particularly well suited for this purpose
which is no wonder as it has been developed for precisely this purpose”

Bill Lawvere

“The kinds of structures which actually arise in the practice of geometry
and analysis are far from being ‘arbitrary’ . . . , as concentrated in the
thesis that fundamental structures are themselves categories.”

Category Theory

Sammy Eilenberg (1913 – 1998) and Saunders MacLane (1909 – 2005)

Started in the 1940’s in their work about algebraic topology.

Category Theory

Sammy Eilenberg (1913 – 1998) and Saunders MacLane (1909 – 2005)

Started in the 1940’s in their work about algebraic topology.

Is by now present in (almost) all areas of mathematics and also
extensively used in physics and in computer science.

Bibliography

Saunders MacLane (1998). Categories for the working mathemati-

cian. 2nd ed. New York: Springer-Verlag, pp. ix + 262. Graduate
Texts in Mathematics, Vol. 5.

Tom Leinster (2014a). Basic Category Theory. Cambridge Univer-
sity Press. 190 pp.

Tom Leinster (2014b). “Rethinking set theory”. In: American Math-

ematical Monthly 121.(5), pp. 403–415.
F. William Lawvere and Robert Rosebrugh (2003). Sets for

mathematics. English. Cambridge: Cambridge University Press,
pp. xi + 261.

F. William Lawvere and Stephen H. Schanuel (2009). Con-

ceptual mathematics. A first introduction to categories. English.
2nd ed. Cambridge University Press, pp. xii + 390.

Andrea Asperti and Giuseppe Longo (1991). Categories, types,

and structures. Foundations of Computing Series. Cambridge, MA:
MIT Press, pp. xii+306. An introduction to category theory for the
working computer scientist.

So what is it about?

So what is it about?

Definition

A category X consists of

So what is it about?

Definition

A category X consists of

a collection of objects X , Y , . . . ,

Think of

vector spaces, ordered sets, topological spaces, . . .

So what is it about?

Definition

A category X consists of

a collection of objects X , Y , . . . ,

arrows (morphisms) f : X → Y between objects,

Think of

vector spaces, ordered sets, topological spaces, . . .

linear maps, monotone maps, continuous maps, . . .

So what is it about?

Definition

A category X consists of

a collection of objects X , Y , . . . ,

arrows (morphisms) f : X → Y between objects,

arrows can be composed (associativity)

X
f //

g ·f

''
Y

g // Z

Think of

vector spaces, ordered sets, topological spaces, . . .

linear maps, monotone maps, continuous maps, . . .

the composite of linear maps is linear, . . .

So what is it about?

Definition

A category X consists of

a collection of objects X , Y , . . . ,

arrows (morphisms) f : X → Y between objects,

arrows can be composed (associativity)

X
f //

g ·f

''
Y

g // Z

for every object there is an identity arrow 1X : X → X .

Think of

vector spaces, ordered sets, topological spaces, . . .

linear maps, monotone maps, continuous maps, . . .

the composite of linear maps is linear, . . .

The identity map is linear,

So what is it about?

Every field of mathematics defines (at least) one category

Top, Grp, Vecfin,

So what is it about?

Every field of mathematics defines (at least) one category

Top, Grp, Vecfin, Ban,

So what is it about?

Every field of mathematics defines (at least) one category

Top, Grp, Vecfin, Ban, Met,

So what is it about?

Every field of mathematics defines (at least) one category

Top, Grp, Vecfin, Ban, Met, Met, . . .

So what is it about?

Every field of mathematics defines (at least) one category

Top, Grp, Vecfin, Ban, Met, Met, . . . , Rel, Mat . . .

So what is it about?

Every field of mathematics defines (at least) one category

Top, Grp, Vecfin, Ban, Met, Met, . . . , Rel, Mat . . .

An abstract category . . .

• //

''

''
• //

//

��

•

•

So what is it about?

Every field of mathematics defines (at least) one category

Top, Grp, Vecfin, Ban, Met, Met, . . . , Rel, Mat . . .

An abstract category . . .

• //

''

''
• //

//

��

•

•

Definition

For every category X, there is the dual category Xop with the same
objects but all arrows point in the opposite direction.

So what is it about?

Every field of mathematics defines (at least) one category

Top, Grp, Vecfin, Ban, Met, Met, . . . , Rel, Mat . . .

An abstract category . . .

• //

''

''
• //

//

��

•

•

Definition

For every category X, there is the dual category Xop with the same
objects but all arrows point in the opposite direction.

Examples

Topop, Grpop, Vec
op
fin, . . . , Relop, Matop . . .

So what is it about?

Every field of mathematics defines (at least) one category

Top, Grp, Vecfin, Ban, Met, Met, . . . , Rel, Mat . . .

An abstract category . . .

• //

''

''
• //

//

��

•

•

. . . and its dual

• •oo •
oo
oo

xx

•

__gg

Definition

For every category X, there is the dual category Xop with the same
objects but all arrows point in the opposite direction.

Examples

Topop, Grpop, Vec
op
fin, . . . , Relop, Matop . . .

Some typical categorical notions

Some typical categorical notions

Isomorphism

An arrow f : X → Y in a category X is called an isomorphism whenever
there is some arrow g : Y → X with

g · f = 1X and f · g = 1Y

Some typical categorical notions

Isomorphism

An arrow f : X → Y in a category X is called an isomorphism whenever
there is some arrow g : Y → X with

g · f = 1X and f · g = 1Y

Product in X

X

Z
pairing //

<<

""

X × Y

π1

OO

π2

��
Y

Some typical categorical notions

Isomorphism

An arrow f : X → Y in a category X is called an isomorphism whenever
there is some arrow g : Y → X with

g · f = 1X and f · g = 1Y

Product in X

X

Z
pairing //

<<

""

X × Y

π1

OO

π2

��
Y

Sum in X

X

""

i1

��
X + Y

if then else // Z

Y

<<

i2

OO

Some typical categorical notions

Isomorphism

An arrow f : X → Y in a category X is called an isomorphism whenever
there is some arrow g : Y → X with

g · f = 1X and f · g = 1Y

Product in X

X

Z
pairing //

<<

""

X × Y

π1

OO

π2

��
Y

Sum in X = product in Xop

X

""

i1

��
X + Y

if then else // Z

Y

<<

i2

OO

When are two categories “equal”?

Equivalence X ∼ Y of categories

When are two categories “equal”?

Equivalence X ∼ Y of categories

A functor F : X −→ Y:

(X1
f
−→ X2) 7−→ (FX1

Ff
−→ FX2)

so that F (g · f) = Fg · Ff and F1X = 1FX .

When are two categories “equal”?

Equivalence X ∼ Y of categories

A functor F : X −→ Y:

(X1
f
−→ X2) 7−→ (FX1

Ff
−→ FX2)

so that F (g · f) = Fg · Ff and F1X = 1FX .

A functor G : Y −→ X.

When are two categories “equal”?

Equivalence X ∼ Y of categories

A functor F : X −→ Y:

(X1
f
−→ X2) 7−→ (FX1

Ff
−→ FX2)

so that F (g · f) = Fg · Ff and F1X = 1FX .

A functor G : Y −→ X.

Natural isomorphisms ηX : X → GFX and εY : FGY → Y . . .

When are two categories “equal”?

Equivalence X ∼ Y of categories

A functor F : X −→ Y:

(X1
f
−→ X2) 7−→ (FX1

Ff
−→ FX2)

so that F (g · f) = Fg · Ff and F1X = 1FX .

A functor G : Y −→ X.

Natural isomorphisms ηX : X → GFX and εY : FGY → Y . . .

Adjunction

As above but the arrows ηX : X → GFX and εY : FGY → Y need not be
isomorphisms . . .

When are two categories “equal”?

Equivalence X ∼ Y of categories

A functor F : X −→ Y:

(X1
f
−→ X2) 7−→ (FX1

Ff
−→ FX2)

so that F (g · f) = Fg · Ff and F1X = 1FX .

A functor G : Y −→ X.

Natural isomorphisms ηX : X → GFX and εY : FGY → Y . . .

Adjunction

As above but the arrows ηX : X → GFX and εY : FGY → Y need not be
isomorphisms . . .

Definition

Let F , G : X −→ Y be functors. An natural transformation α is a family
(αX : FX → GX)X which commutes with arrows in X.

An elementary example

Linear algebra via matrices

Let X = Vecfin be the category of finite dimensional vector spaces
(over R) and linear maps.

An elementary example

Linear algebra via matrices

Let X = Vecfin be the category of finite dimensional vector spaces
(over R) and linear maps.

Let Y = Mat be the category of natural numbers and matrices.
(Here A : n → m means A is a matrix of type m × n.)

An elementary example

Linear algebra via matrices

Let X = Vecfin be the category of finite dimensional vector spaces
(over R) and linear maps.

Let Y = Mat be the category of natural numbers and matrices.
(Here A : n → m means A is a matrix of type m × n.)

Theorem. Vecfin ∼ Mat.

An elementary example

Linear algebra via matrices

Let X = Vecfin be the category of finite dimensional vector spaces
(over R) and linear maps.

Let Y = Mat be the category of natural numbers and matrices.
(Here A : n → m means A is a matrix of type m × n.)

Theorem. Vecfin ∼ Mat.

F : Mat −→ Vecfin, (A : n → m) 7−→ (fA : Rn
→ R

m).

An elementary example

Linear algebra via matrices

Let X = Vecfin be the category of finite dimensional vector spaces
(over R) and linear maps.

Let Y = Mat be the category of natural numbers and matrices.
(Here A : n → m means A is a matrix of type m × n.)

Theorem. Vecfin ∼ Mat.

F : Mat −→ Vecfin, (A : n → m) 7−→ (fA : Rn
→ R

m).
G : Vecfin −→ Mat,
(f : V → W) 7−→ (matrix of f : dim V → dim W).
Requires choosing a base for every space.

An elementary example

Linear algebra via matrices

Let X = Vecfin be the category of finite dimensional vector spaces
(over R) and linear maps.

Let Y = Mat be the category of natural numbers and matrices.
(Here A : n → m means A is a matrix of type m × n.)

Theorem. Vecfin ∼ Mat.

F : Mat −→ Vecfin, (A : n → m) 7−→ (fA : Rn
→ R

m).
G : Vecfin −→ Mat,
(f : V → W) 7−→ (matrix of f : dim V → dim W).
Requires choosing a base for every space.
n = dimR

n and V ≃ R
n

An elementary example

Linear algebra via matrices

Let X = Vecfin be the category of finite dimensional vector spaces
(over R) and linear maps.

Let Y = Mat be the category of natural numbers and matrices.
(Here A : n → m means A is a matrix of type m × n.)

Theorem. Vecfin ∼ Mat.

F : Mat −→ Vecfin, (A : n → m) 7−→ (fA : Rn
→ R

m).
G : Vecfin −→ Mat,
(f : V → W) 7−→ (matrix of f : dim V → dim W).
Requires choosing a base for every space.
n = dimR

n and V ≃ R
n

Theorem. Mat ∼ Matop.
Here: (A : n → m) 7−→ (AT : m → n), (B · A)T = AT

· BT ; IT = I.

An elementary example

Linear algebra via matrices

Let X = Vecfin be the category of finite dimensional vector spaces
(over R) and linear maps.

Let Y = Mat be the category of natural numbers and matrices.
(Here A : n → m means A is a matrix of type m × n.)

Theorem. Vecfin ∼ Mat.

F : Mat −→ Vecfin, (A : n → m) 7−→ (fA : Rn
→ R

m).
G : Vecfin −→ Mat,
(f : V → W) 7−→ (matrix of f : dim V → dim W).
Requires choosing a base for every space.
n = dimR

n and V ≃ R
n

Theorem. Mat ∼ Matop.
Here: (A : n → m) 7−→ (AT : m → n), (B · A)T = AT

· BT ; IT = I.

Corollary. Vecfin ∼ Vec
op
fin.

A brief Introduction to Category Theory
Aula 2

Dirk Hofmann

CIDMA, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

Office: 11.3.10, dirk@ua.pt, http://sweet.ua.pt/dirk/

October 16, 2017

dirk@ua.pt
http://sweet.ua.pt/dirk/

Recall from last week

1. A category X consists of

a collection of objects X , Y , . . . ;
for each pair of objects, a set of arrows (morphisms) f : X → Y

(denoted as X(X , Y) or hom(X , Y));
arrows can be composed (associativity) and for every object
there is an identity arrow 1X : X → Y .

Recall from last week

1. A category X consists of

a collection of objects X , Y , . . . ;
for each pair of objects, a set of arrows (morphisms) f : X → Y

(denoted as X(X , Y) or hom(X , Y));
arrows can be composed (associativity) and for every object
there is an identity arrow 1X : X → Y .

2. For every category X, there is the dual category Xop with the same
objects but all arrows point in the opposite direction.

Recall from last week

1. A category X consists of

a collection of objects X , Y , . . . ;
for each pair of objects, a set of arrows (morphisms) f : X → Y

(denoted as X(X , Y) or hom(X , Y));
arrows can be composed (associativity) and for every object
there is an identity arrow 1X : X → Y .

2. For every category X, there is the dual category Xop with the same
objects but all arrows point in the opposite direction.

3. Functor F : X −→ Y:

(X1
f
−→ X2) 7−→ (FX1

Ff
−→ FX2)

so that F (g · f) = Fg · Ff and F1X = 1FX .

Recall from last week

1. A category X consists of

a collection of objects X , Y , . . . ;
for each pair of objects, a set of arrows (morphisms) f : X → Y

(denoted as X(X , Y) or hom(X , Y));
arrows can be composed (associativity) and for every object
there is an identity arrow 1X : X → Y .

2. For every category X, there is the dual category Xop with the same
objects but all arrows point in the opposite direction.

3. Functor F : X −→ Y:

(X1
f
−→ X2) 7−→ (FX1

Ff
−→ FX2)

so that F (g · f) = Fg · Ff and F1X = 1FX .

4. Let F , G : X −→ Y be functors. An natural transformation α is a
family (αX : FX → GX)X of Y-arrows which commutes with arrows
in X.

Two elementary examples

Ordered sets

Every ordered set (X , ≤) can be viewed as a category X:

Two elementary examples

Ordered sets

Every ordered set (X , ≤) can be viewed as a category X:

Objects of X = elements of X .

Two elementary examples

Ordered sets

Every ordered set (X , ≤) can be viewed as a category X:

Objects of X = elements of X .

There is an arrow x → y whenever x ≤ y .

Two elementary examples

Ordered sets

Every ordered set (X , ≤) can be viewed as a category X:

Objects of X = elements of X .

There is an arrow x → y whenever x ≤ y .

Transitivity composition.

Two elementary examples

Ordered sets

Every ordered set (X , ≤) can be viewed as a category X:

Objects of X = elements of X .

There is an arrow x → y whenever x ≤ y .

Transitivity composition.

Reflexivity identities.

Two elementary examples

Ordered sets

Every ordered set (X , ≤) can be viewed as a category X:

Objects of X = elements of X .

There is an arrow x → y whenever x ≤ y .

Transitivity composition.

Reflexivity identities.

Then: Functor means monotone map.

Two elementary examples

Ordered sets

Every ordered set (X , ≤) can be viewed as a category X:

Objects of X = elements of X .

There is an arrow x → y whenever x ≤ y .

Transitivity composition.

Reflexivity identities.

Then: Functor means monotone map.

Monoids

Every monoid (M, ·, e) can be viewed as a category X:

Two elementary examples

Ordered sets

Every ordered set (X , ≤) can be viewed as a category X:

Objects of X = elements of X .

There is an arrow x → y whenever x ≤ y .

Transitivity composition.

Reflexivity identities.

Then: Functor means monotone map.

Monoids

Every monoid (M, ·, e) can be viewed as a category X:

X has one object (denoted here as ⋆).

Two elementary examples

Ordered sets

Every ordered set (X , ≤) can be viewed as a category X:

Objects of X = elements of X .

There is an arrow x → y whenever x ≤ y .

Transitivity composition.

Reflexivity identities.

Then: Functor means monotone map.

Monoids

Every monoid (M, ·, e) can be viewed as a category X:

X has one object (denoted here as ⋆).

X(⋆, ⋆) = M.

Two elementary examples

Ordered sets

Every ordered set (X , ≤) can be viewed as a category X:

Objects of X = elements of X .

There is an arrow x → y whenever x ≤ y .

Transitivity composition.

Reflexivity identities.

Then: Functor means monotone map.

Monoids

Every monoid (M, ·, e) can be viewed as a category X:

X has one object (denoted here as ⋆).

X(⋆, ⋆) = M.

Composition of X = multiplication · of the monoid.

Two elementary examples

Ordered sets

Every ordered set (X , ≤) can be viewed as a category X:

Objects of X = elements of X .

There is an arrow x → y whenever x ≤ y .

Transitivity composition.

Reflexivity identities.

Then: Functor means monotone map.

Monoids

Every monoid (M, ·, e) can be viewed as a category X:

X has one object (denoted here as ⋆).

X(⋆, ⋆) = M.

Composition of X = multiplication · of the monoid.

identity e : ⋆ → ⋆.

Two elementary examples

Ordered sets

Every ordered set (X , ≤) can be viewed as a category X:

Objects of X = elements of X .

There is an arrow x → y whenever x ≤ y .

Transitivity composition.

Reflexivity identities.

Then: Functor means monotone map.

Monoids

Every monoid (M, ·, e) can be viewed as a category X:

X has one object (denoted here as ⋆).

X(⋆, ⋆) = M.

Composition of X = multiplication · of the monoid.

identity e : ⋆ → ⋆.

Then: Functor means monoid homomorphism.

Special morphisms

Definition

An arrow f : X → Y in a category X is called an isomorphism whenever
there is some arrow g : Y → X with g · f = 1X and f · g = 1Y .

Special morphisms

Definition

An arrow f : X → Y in a category X is called an isomorphism whenever
there is some arrow g : Y → X with g · f = 1X and f · g = 1Y .

More arrows f : X → Y

Special morphisms

Definition

An arrow f : X → Y in a category X is called an isomorphism whenever
there is some arrow g : Y → X with g · f = 1X and f · g = 1Y .

More arrows f : X → Y

f monomorphism:
f · h = f · k =⇒ h = k.

Special morphisms

Definition

An arrow f : X → Y in a category X is called an isomorphism whenever
there is some arrow g : Y → X with g · f = 1X and f · g = 1Y .

More arrows f : X → Y

f monomorphism:
f · h = f · k =⇒ h = k.

f split monomorphism:
exists g : Y → X with
g · f = 1X .

Special morphisms

Definition

An arrow f : X → Y in a category X is called an isomorphism whenever
there is some arrow g : Y → X with g · f = 1X and f · g = 1Y .

More arrows f : X → Y

f monomorphism:
f · h = f · k =⇒ h = k.

f split monomorphism:
exists g : Y → X with
g · f = 1X .

f epimorphism:
h · f = k · f =⇒ h = k.

Special morphisms

Definition

An arrow f : X → Y in a category X is called an isomorphism whenever
there is some arrow g : Y → X with g · f = 1X and f · g = 1Y .

More arrows f : X → Y

f monomorphism:
f · h = f · k =⇒ h = k.

f split monomorphism:
exists g : Y → X with
g · f = 1X .

f epimorphism:
h · f = k · f =⇒ h = k.

f split epimorphism:
exists g : Y → X with
f · g = 1Y .

Special morphisms

Definition

An arrow f : X → Y in a category X is called an isomorphism whenever
there is some arrow g : Y → X with g · f = 1X and f · g = 1Y .

More arrows f : X → Y

f monomorphism:
f · h = f · k =⇒ h = k.

f split monomorphism:
exists g : Y → X with
g · f = 1X .

f epimorphism:
h · f = k · f =⇒ h = k.

f split epimorphism:
exists g : Y → X with
f · g = 1Y .

Some properties

Special morphisms

Definition

An arrow f : X → Y in a category X is called an isomorphism whenever
there is some arrow g : Y → X with g · f = 1X and f · g = 1Y .

More arrows f : X → Y

f monomorphism:
f · h = f · k =⇒ h = k.

f split monomorphism:
exists g : Y → X with
g · f = 1X .

f epimorphism:
h · f = k · f =⇒ h = k.

f split epimorphism:
exists g : Y → X with
f · g = 1Y .

Some properties

split mono =⇒ mono (and split epi =⇒ epi).

Special morphisms

Definition

An arrow f : X → Y in a category X is called an isomorphism whenever
there is some arrow g : Y → X with g · f = 1X and f · g = 1Y .

More arrows f : X → Y

f monomorphism:
f · h = f · k =⇒ h = k.

f split monomorphism:
exists g : Y → X with
g · f = 1X .

f epimorphism:
h · f = k · f =⇒ h = k.

f split epimorphism:
exists g : Y → X with
f · g = 1Y .

Some properties

split mono =⇒ mono (and split epi =⇒ epi).

(split mono & epi) =⇒ iso ⇐= (split epi & mono).

Special morphisms

Definition

An arrow f : X → Y in a category X is called an isomorphism whenever
there is some arrow g : Y → X with g · f = 1X and f · g = 1Y .

More arrows f : X → Y

f monomorphism:
f · h = f · k =⇒ h = k.

f split monomorphism:
exists g : Y → X with
g · f = 1X .

f epimorphism:
h · f = k · f =⇒ h = k.

f split epimorphism:
exists g : Y → X with
f · g = 1Y .

Some properties

split mono =⇒ mono (and split epi =⇒ epi).

(split mono & epi) =⇒ iso ⇐= (split epi & mono).

Every functor preserves split monos/split epis/isos.

Limits and colimits

Some constructions in categories

terminal object

Limits and colimits

Some constructions in categories

terminal object

product

Limits and colimits

Some constructions in categories

terminal object

product

initial object

sum

Limits and colimits

Some constructions in categories

terminal object

product

pullback

initial object

sum

Limits and colimits

Some constructions in categories

terminal object

product

pullback

initial object

sum

pushout

Limits and colimits

Some constructions in categories

terminal object

product

pullback

equaliser

initial object

sum

pushout

Limits and colimits

Some constructions in categories

terminal object

product

pullback

equaliser

initial object

sum

pushout

coequaliser

Limits and colimits

Some constructions in categories

terminal object

product

pullback

equaliser

limit

initial object

sum

pushout

coequaliser

Limits and colimits

Some constructions in categories

terminal object

product

pullback

equaliser

limit

initial object

sum

pushout

coequaliser

colimit

Limits and colimits

Some constructions in categories

terminal object

product

pullback

equaliser

limit

initial object

sum

pushout

coequaliser

colimit

Definition

A category X is called (co)complete whenever X has all (co)limits.

Limits and colimits

Some constructions in categories

terminal object

product

pullback

equaliser

limit

initial object

sum

pushout

coequaliser

colimit

Definition

A category X is called (co)complete whenever X has all (co)limits.

Some facts

Limit = terminal object in some category (uniqueness!!).

Limits and colimits

Some constructions in categories

terminal object

product

pullback

equaliser

limit

initial object

sum

pushout

coequaliser

colimit

Definition

A category X is called (co)complete whenever X has all (co)limits.

Some facts

Limit = terminal object in some category (uniqueness!!).

X is complete ⇐⇒ X has products and equalisers.

Limits and colimits

Some constructions in categories

terminal object

product

pullback

equaliser

limit

initial object

sum

pushout

coequaliser

colimit

Definition

A category X is called (co)complete whenever X has all (co)limits.

Some facts

Limit = terminal object in some category (uniqueness!!).

X is complete ⇐⇒ X has products and equalisers.

X is finitely complete ⇐⇒ X has a terminal object and pullbacks.

Limits and colimits

Some constructions in categories

terminal object

product

pullback

equaliser

limit

initial object

sum

pushout

coequaliser

colimit

Definition

A category X is called (co)complete whenever X has all (co)limits.

Some facts

Limit = terminal object in some category (uniqueness!!).

X is complete ⇐⇒ X has products and equalisers.

X is finitely complete ⇐⇒ X has a terminal object and pullbacks.

mono vs. pullback.

Representable functors

Example

For every category X, X(−, −) : Xop × X → Set is a functor.

Representable functors

Example

For every category X, X(−, −) : Xop × X → Set is a functor.

Remark

X(X , −) ≃ X(Y , −) =⇒ X ≃ Y .

Representable functors

Example

For every category X, X(−, −) : Xop × X → Set is a functor.

Remark

X(X , −) ≃ X(Y , −) =⇒ X ≃ Y .

Definition

A functor F : X → Set is called representable whenever F ≃ X(X , −).

Representable functors

Example

For every category X, X(−, −) : Xop × X → Set is a functor.

Remark

X(X , −) ≃ X(Y , −) =⇒ X ≃ Y .

Definition

A functor F : X → Set is called representable whenever F ≃ X(X , −).

Examples

For F : Ord → Set: F ≃ Vec(1, −).

Representable functors

Example

For every category X, X(−, −) : Xop × X → Set is a functor.

Remark

X(X , −) ≃ X(Y , −) =⇒ X ≃ Y .

Definition

A functor F : X → Set is called representable whenever F ≃ X(X , −).

Examples

For F : Ord → Set: F ≃ Vec(1, −).

For F : Vec → Set: F ≃ Vec(R, −).

Representable functors

Example

For every category X, X(−, −) : Xop × X → Set is a functor.

Remark

X(X , −) ≃ X(Y , −) =⇒ X ≃ Y .

Definition

A functor F : X → Set is called representable whenever F ≃ X(X , −).

Examples

For F : Ord → Set: F ≃ Vec(1, −).

For F : Vec → Set: F ≃ Vec(R, −).

Some facts

Representable functors

Example

For every category X, X(−, −) : Xop × X → Set is a functor.

Remark

X(X , −) ≃ X(Y , −) =⇒ X ≃ Y .

Definition

A functor F : X → Set is called representable whenever F ≃ X(X , −).

Examples

For F : Ord → Set: F ≃ Vec(1, −).

For F : Vec → Set: F ≃ Vec(R, −).

Some facts

Representable functors preserve limits.

Representable functors

Example

For every category X, X(−, −) : Xop × X → Set is a functor.

Remark

X(X , −) ≃ X(Y , −) =⇒ X ≃ Y .

Definition

A functor F : X → Set is called representable whenever F ≃ X(X , −).

Examples

For F : Ord → Set: F ≃ Vec(1, −).

For F : Vec → Set: F ≃ Vec(R, −).

Some facts

Representable functors preserve limits.

Representable functors preserve monos.

Adjunction

The slogan is “Adjoint functors arise everywhere”.a

aSaunders MacLane (1998). Categories for the working mathematician.
2nd ed. New York: Springer-Verlag, pp. ix + 262.

Adjunction

The slogan is “Adjoint functors arise everywhere”.a

aSaunders MacLane (1998). Categories for the working mathematician.
2nd ed. New York: Springer-Verlag, pp. ix + 262.

Definition

Let G : B → A and F : B → A be functors. Then F is left adjoint to G ,
or G is right adjoint to F , written as F ⊣ G , whenever

B(FA, B) ≃ A(A, GB), (f 7−→ f)

naturally in A and B. An adjunction between F and G is a choice of
such a natural isomorphism.

Adjunction

The slogan is “Adjoint functors arise everywhere”.a

aSaunders MacLane (1998). Categories for the working mathematician.
2nd ed. New York: Springer-Verlag, pp. ix + 262.

Definition

Let G : B → A and F : B → A be functors. Then F is left adjoint to G ,
or G is right adjoint to F , written as F ⊣ G , whenever

B(FA, B) ≃ A(A, GB), (f 7−→ f)

naturally in A and B. An adjunction between F and G is a choice of
such a natural isomorphism.

Remark

The naturality of f 7→ f can be expressed as:

Adjunction

The slogan is “Adjoint functors arise everywhere”.a

aSaunders MacLane (1998). Categories for the working mathematician.
2nd ed. New York: Springer-Verlag, pp. ix + 262.

Definition

Let G : B → A and F : B → A be functors. Then F is left adjoint to G ,
or G is right adjoint to F , written as F ⊣ G , whenever

B(FA, B) ≃ A(A, GB), (f 7−→ f)

naturally in A and B. An adjunction between F and G is a choice of
such a natural isomorphism.

Remark

The naturality of f 7→ f can be expressed as:

1. For every h : A′ → A: f · Fh = f · h.

Adjunction

The slogan is “Adjoint functors arise everywhere”.a

aSaunders MacLane (1998). Categories for the working mathematician.
2nd ed. New York: Springer-Verlag, pp. ix + 262.

Definition

Let G : B → A and F : B → A be functors. Then F is left adjoint to G ,
or G is right adjoint to F , written as F ⊣ G , whenever

B(FA, B) ≃ A(A, GB), (f 7−→ f)

naturally in A and B. An adjunction between F and G is a choice of
such a natural isomorphism.

Remark

The naturality of f 7→ f can be expressed as:

1. For every h : A′ → A: f · Fh = f · h.

2. For every k : B → B′: k · f = Gk · f .

Adjunction via (co)units

Theorem

Let G : B → A and F : B → A be functors. There is a bijective

correspondence between

1. Adjunctions F ⊣ G.

2. Natural transformations η : 1 → GF and ε : FG → 1 so that

F
Fη

//

1
!!

FGF

εF

��

F

and G
εG

//

1
""

GFG

Gε

��

G

Adjunction via (co)units

Theorem

Let G : B → A and F : B → A be functors. There is a bijective

correspondence between

1. Adjunctions F ⊣ G.

2. Natural transformations η : 1 → GF and ε : FG → 1 so that

F
Fη

//

1
!!

FGF

εF

��

F

and G
εG

//

1
""

GFG

Gε

��

G

Corollary

F ⊣ G and F ′ ⊣ G implies F ≃ F ′.

Adjunction via (co)units

Theorem

Let G : B → A and F : B → A be functors. There is a bijective

correspondence between

1. Adjunctions F ⊣ G.

2. Natural transformations η : 1 → GF and ε : FG → 1 so that

F
Fη

//

1
!!

FGF

εF

��

F

and G
εG

//

1
""

GFG

Gε

��

G

Corollary

F ⊣ G and F ′ ⊣ G implies F ≃ F ′.

Remark

A category C has limits of type I if and only if ∆: C → CI has a right
adjoint.

Adjunctions via initial objects

Theorem

A functor G : B → A is right adjoint if and only if the category (A ⇒ G)
has an initial object.

Theorem (General Adjoint Functor Theorem)

Let G : B → A be a functor so that (A ⇒ G) has a weak initial set. Then

G is right adjoint if and only if G preserves limits.

Adjunctions via initial objects

Theorem

A functor G : B → A is right adjoint if and only if the category (A ⇒ G)
has an initial object.

Theorem (General Adjoint Functor Theorem)

Let G : B → A be a functor so that (A ⇒ G) has a weak initial set. Then

G is right adjoint if and only if G preserves limits.

The proof is based on the following lemmas.

Adjunctions via initial objects

Theorem

A functor G : B → A is right adjoint if and only if the category (A ⇒ G)
has an initial object.

Theorem (General Adjoint Functor Theorem)

Let G : B → A be a functor so that (A ⇒ G) has a weak initial set. Then

G is right adjoint if and only if G preserves limits.

The proof is based on the following lemmas.

Lemma

Let C be a complete category with a weak initial set S. Then C has an

initial object.

Adjunctions via initial objects

Theorem

A functor G : B → A is right adjoint if and only if the category (A ⇒ G)
has an initial object.

Theorem (General Adjoint Functor Theorem)

Let G : B → A be a functor so that (A ⇒ G) has a weak initial set. Then

G is right adjoint if and only if G preserves limits.

The proof is based on the following lemmas.

Lemma

Let C be a complete category with a weak initial set S. Then C has an

initial object.

Lemma

Let G : B → A be a limit-preserving functor and assume that B is

complete. Then (A ⇒ G) is complete.

