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Motivation I

John Hughes (1989). “Why functional programming matters”. In: The

Computer Journal 32.(2), pp. 98–107

Modular design is the key to successful programming

. . . The ways in which one can divide up the original problem depend
directly on the ways in which one can glue solutions together. Therefore,
to increase ones ability to modularise a problem conceptually, one must
provide new kinds of glue in the programming language.
. . .
Now let us return to functional programming. We shall argue in the
remainder of this paper that functional languages provide two new, very
important kinds of glue.
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Whitehead, Alfred North

Mathematics as a science, commenced when first someone, probably a

Greek, proved propositions about “any” things or about “some” things,

without specifications of definite particular things.

Saunders MacLane

The basic insight is that a mathematical structure is a scientific structure

but one which has many different empirical realizations. Mathematics

provides common overreaching forms, each of which can and does serve

to describe different aspects of the external world. Thus mathematics is

that part of science which applies in more than one empirical context.

Saunders MacLane (1997). “Despite physicist, proof is essential in
mathematics”. In: Synthese 111.(2), pp. 147–154.
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Motivation II

A seemingly paradoxical observation

“. . . an equation is only interesting or useful to the extent that the two
sides are different!”

John Baez and James Dolan (2001). “From finite sets to Feynman
diagrams”. In: Mathematics Unlimited - 2001 and Beyond. Springer,
Berlin, pp. 29–50

Just compare:

Numbers: 3 = 3 vs. eiω = cos(ω) + i sin(ω).

Spaces: V ≃ V vs. V ≃ R
n (for dim V = n).

More general: “linear maps = matrices”.
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A comercial break

Vladimir Voevodsky (Fields Medal in 2002)

“At the heart of 20th century mathematics lies one particular notion, and
that is the notion of a category.”

Jean Bénabou

“Analogies are useful in mathematics for generalising a class of
well-known examples to a wider class of equally or even more useful
structures. Category Theory is particularly well suited for this purpose
which is no wonder as it has been developed for precisely this purpose”

Bill Lawvere

“The kinds of structures which actually arise in the practice of geometry
and analysis are far from being ‘arbitrary’ . . . , as concentrated in the
thesis that fundamental structures are themselves categories.”
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Category Theory

Sammy Eilenberg (1913 – 1998) and Saunders MacLane (1909 – 2005)

Started in the 1940’s in their work about algebraic topology.

Is by now present in (almost) all areas of mathematics and also
extensively used in physics and in computer science.
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Definition

A category X consists of

a collection of objects X , Y , . . . ,

arrows (morphisms) f : X → Y between objects,

arrows can be composed (associativity)

X
f //

g ·f

''
Y

g // Z

for every object there is an identity arrow 1X : X → X .

Think of

vector spaces, ordered sets, topological spaces, . . .

linear maps, monotone maps, continuous maps, . . .

the composite of linear maps is linear, . . .

The identity map is linear, . . . .
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Top, Grp, Vecfin, Ban, Met, Met, . . . , Rel, Mat . . .

An abstract category . . .

• //

''
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. . . and its dual

• •oo •
oo
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xx

•

__gg

Definition

For every category X, there is the dual category Xop with the same
objects but all arrows point in the opposite direction.

Examples

Topop, Grpop, Vec
op
fin, . . . , Relop, Matop . . .
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Some typical categorical notions

Isomorphism

An arrow f : X → Y in a category X is called an isomorphism whenever
there is some arrow g : Y → X with

g · f = 1X and f · g = 1Y

Product in X

X

Z
pairing //

<<

""

X × Y

π1

OO

π2

��
Y

Sum in X = product in Xop

X

""

i1

��
X + Y

if then else // Z

Y

<<

i2

OO
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Equivalence X ∼ Y of categories

A functor F : X −→ Y:

(X1
f
−→ X2) 7−→ (FX1

Ff
−→ FX2)

so that F (g · f ) = Fg · Ff and F1X = 1FX .

A functor G : Y −→ X.

Natural isomorphisms ηX : X → GFX and εY : FGY → Y . . .

Adjunction

As above but the arrows ηX : X → GFX and εY : FGY → Y need not be
isomorphisms . . .

Definition

Let F , G : X −→ Y be functors. An natural transformation α is a family
(αX : FX → GX )X which commutes with arrows in X.
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An elementary example

Linear algebra via matrices

Let X = Vecfin be the category of finite dimensional vector spaces
(over R) and linear maps.

Let Y = Mat be the category of natural numbers and matrices.
(Here A : n → m means A is a matrix of type m × n.)

Theorem. Vecfin ∼ Mat.

F : Mat −→ Vecfin, (A : n → m) 7−→ (fA : Rn
→ R

m).
G : Vecfin −→ Mat,
(f : V → W ) 7−→ (matrix of f : dim V → dim W ).
Requires choosing a base for every space.
n = dimR

n and V ≃ R
n

Theorem. Mat ∼ Matop.
Here: (A : n → m) 7−→ (AT : m → n), (B · A)T = AT

· BT ; IT = I.

Corollary. Vecfin ∼ Vec
op
fin.
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1. A category X consists of

a collection of objects X , Y , . . . ;
for each pair of objects, a set of arrows (morphisms) f : X → Y

(denoted as X(X , Y ) or hom(X , Y ));
arrows can be composed (associativity) and for every object
there is an identity arrow 1X : X → Y .

2. For every category X, there is the dual category Xop with the same
objects but all arrows point in the opposite direction.

3. Functor F : X −→ Y:

(X1
f
−→ X2) 7−→ (FX1

Ff
−→ FX2)

so that F (g · f ) = Fg · Ff and F1X = 1FX .

4. Let F , G : X −→ Y be functors. An natural transformation α is a
family (αX : FX → GX )X of Y-arrows which commutes with arrows
in X.
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Ordered sets

Every ordered set (X , ≤) can be viewed as a category X:

Objects of X = elements of X .

There is an arrow x → y whenever x ≤ y .

Transitivity  composition.

Reflexivity  identities.

Then: Functor means monotone map.

Monoids

Every monoid (M, ·, e) can be viewed as a category X:

X has one object (denoted here as ⋆).

X(⋆, ⋆) = M.

Composition of X = multiplication · of the monoid.

identity e : ⋆ → ⋆.

Then: Functor means monoid homomorphism.
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Special morphisms

Definition

An arrow f : X → Y in a category X is called an isomorphism whenever
there is some arrow g : Y → X with g · f = 1X and f · g = 1Y .

More arrows f : X → Y

f monomorphism:
f · h = f · k =⇒ h = k.

f split monomorphism:
exists g : Y → X with
g · f = 1X .

f epimorphism:
h · f = k · f =⇒ h = k.

f split epimorphism:
exists g : Y → X with
f · g = 1Y .

Some properties

split mono =⇒ mono (and split epi =⇒ epi).

(split mono & epi) =⇒ iso ⇐= (split epi & mono).

Every functor preserves split monos/split epis/isos.
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Some constructions in categories
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product

pullback

equaliser

limit
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sum

pushout

coequaliser

colimit

Definition

A category X is called (co)complete whenever X has all (co)limits.

Some facts

Limit = terminal object in some category (uniqueness!!).

X is complete ⇐⇒ X has products and equalisers.

X is finitely complete ⇐⇒ X has a terminal object and pullbacks.

mono vs. pullback.
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For every category X, X(−, −) : Xop × X → Set is a functor.

Remark

X(X , −) ≃ X(Y , −) =⇒ X ≃ Y .

Definition

A functor F : X → Set is called representable whenever F ≃ X(X , −).

Examples

For F : Ord → Set: F ≃ Vec(1, −).

For F : Vec → Set: F ≃ Vec(R, −).

Some facts

Representable functors preserve limits.

Representable functors preserve monos.
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The slogan is “Adjoint functors arise everywhere”.a

aSaunders MacLane (1998). Categories for the working mathematician.
2nd ed. New York: Springer-Verlag, pp. ix + 262.

Definition

Let G : B → A and F : B → A be functors. Then F is left adjoint to G ,
or G is right adjoint to F , written as F ⊣ G , whenever

B(FA, B) ≃ A(A, GB), (f 7−→ f )

naturally in A and B. An adjunction between F and G is a choice of
such a natural isomorphism.

Remark

The naturality of f 7→ f can be expressed as:

1. For every h : A′ → A: f · Fh = f · h.

2. For every k : B → B′: k · f = Gk · f .
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Theorem

Let G : B → A and F : B → A be functors. There is a bijective

correspondence between

1. Adjunctions F ⊣ G.

2. Natural transformations η : 1 → GF and ε : FG → 1 so that

F
Fη

//

1
!!

FGF

εF

��

F

and G
εG

//

1
""

GFG

Gε

��

G

Corollary

F ⊣ G and F ′ ⊣ G implies F ≃ F ′.

Remark

A category C has limits of type I if and only if ∆: C → CI has a right
adjoint.
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Theorem

A functor G : B → A is right adjoint if and only if the category (A ⇒ G)
has an initial object.

Theorem (General Adjoint Functor Theorem)

Let G : B → A be a functor so that (A ⇒ G) has a weak initial set. Then

G is right adjoint if and only if G preserves limits.

The proof is based on the following lemmas.

Lemma

Let C be a complete category with a weak initial set S. Then C has an

initial object.

Lemma

Let G : B → A be a limit-preserving functor and assume that B is

complete. Then (A ⇒ G) is complete.


