Coalgebra

Luis Soares Barbosa

L4 l ~
J'\ UNITEDSNATIONS
UNIVERSITY
. @ HAsLab
iversidade do Minho

Uni UNU-EGOV

Algebraic and Coalgebraic Methods in Software Development

MAP-i, 23.X.2017

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

Reactive systems

Systems whose internal configurations are only partially accessible, and
are, therefore, characterised by their emergent behaviour which encodes a

continued interaction with their environment

“From being a prescription for how to do something — in Turing's
terms a 'list of instructions’, software becomes much more akin to
a description of behaviour, not only programmed on a computer,
but also occurring by hap or design inside or outside it.”

[Robin Milner, Turing Award Lecture, 1991]

Why coalgebra matters?

«O»r <« F»

it
-

DA

Coalgebra

Automata, coalgebraically

Behaviour and equivalences

Modalities and properties
Why coalgebra matters?

‘trés malade’

o

T

N

Concluding

Coalgebra

Automata, coalgebraically

‘trés malade’

Behaviour and equivalences

Modalities and properties
Why coalgebra matters?

‘pas un mouton!”

N

Concluding

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

Why coalgebra matters?

‘trés malade’ ‘pas un mouton!’ ‘trop vieux'
oy P :
Q3 4 N i

R

, §

b

[Antoine de Saint-Exupéry, Le Petit Prince, 1943]

Coalgebra

Automata, coalgebraically Behaviour and equivalences

Modalities and properties
Why coalgebra matters?

Concluding

an observation shape, a transition type, an interface

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties

Construction vs observation

Models are typically arrows from/to structured objects.
For example, to build an (inductive) data structure one specifies:

an assembly process

a:1+DxU——U
| S —

/

a tool box the artifact

The structured domain captures a signature of constructors composed
additively: a = [nil, cons]

Concluding

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

Construction vs observation

Reversing the arrow swaps structure from its domain to the codomain,
specifying

an observation process

p:U—1+DxU
—_———

|

the state space a pair of glasses

observers are paired in parallel: p = x < empty? > (head, tail)

Coalgebra

Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

Construction vs observation

U can be thought as a state space

its elements are no longer distinguished by construction, but rather
identified when generating the same behaviour;

finiteness is no longer required,;

the observation shape reveals the type of an underlying transition
structure

1+Dx—

the pair of glasses ——— - --

//—— a
i et |
o © o ;)
%

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

Different glasses capture different transition strucutres
p:U— DxU
p = {5+ (337))7 — (ba4))4 — (3)7)}

b
5—a>7f> p:U— P(DxU)

p = {5 — {(337)})7 — {(b) 4‘)) (b)7)}>4 — @}

Coalgebra

Different glasses capture different transition strucutres

Recall the models of reactive systems we met so far:

’ :S — P(S) \ unlabelled TS ‘
:S§— NxS§5+1 partial LTS (generative)
:S— (S+ 1N partial LTS (reactive)
:S— P(NxS) non deterministic LTS (generative)
'S — P(S)N non deterministic LTS (reactive)
[x:5— DS | simple PTS (Markov chain) ‘

:S—DNxS+1

generative PTS

S — (DS+ 1N

reactive PTS

:S— DS+ (NxS)+1

|

stratified PTS

:S — P(DN x S)

strict Segala PTS

:S— P(NxDS)

simple Segala PTS

RIRIRRIR R R[[R|R[[RR]|R

:S — P(DP(N x S))

Pnueli-Zuck PTS

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

The general pattern

In general, we need

a lens: O~0O

an observation tool: state space —— ()—~() state space

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

The general pattern

In general, we need

a lens: O~0O

an observation tool: state space —— ()—~() state space

Models of reactive systems are coalgebras
e T is the shape of the behaviour (mathematically a functor)

e abstract behavioural structures are (final) coalgebras

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

What coalgebra brings?

functor F transition type / observation shape
coalgebra p:U— F(U) generic transition system
morphism u—2- F(U) behaviour preserving map

J Tf(h)

v—55(v)
finality Qs 27 F(Q) behaviour

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties

What coalgebra brings?

equivalence u=5v & [plu=I[qlv observational reasoning

operators the structure of Cy composition

modality Op = p°-F(d)-p generic modal logic

Concluding

® a conceptual tool for the working software engineer to deal with the
(emergent) behaviour of computing systems, in a compositional and

uniform way;

® an intuitive symmetry made into a mathematical duality.

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties

Automata

state space U
transition function m:U— U
attribute (or label) at: U — B

Concluding

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties

Automata

state space U
transition function m:U— U
attribute (or label) at: U — B
ie.,
p = (atym)y: U — Bx U

Concluding

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties

Automata

The behaviour of p at (from) a state u € U is revealed by
successive observations (experiments):

(plu = latu, at (mu), at (m(mu)),...]

Concluding

Automata, coalgebraically

Automata

The behaviour of p at (from) a state u € U is revealed by
successive observations (experiments):

(plu = latu, at (mu), at (m(mu)),...]
[pl = cons-(at,[p)-m)

which means that

‘Automata behaviours are elements of B (i.e., streams)

Coalgebra Automata, coalgebraically

Behaviour and equivalences Modalities and properties

Automata

Example: A twist automata ‘

state space

U=NxN
transition function ~ m(n,n’) (n’, n)
attribute at(n,n’) = n

ie.,

twist = (my,s)

Concluding

Automata, coalgebraically Behaviour and equivalences Modalities and properties

Automata

Example: A stream automata‘

U=BY
ms = tails
ats = heads

state space
transition function

attribute

w = (hd,tl)

Concluding

Automata, coalgebraically Behaviour and equivalences

Automata

Example: A stream automata‘

U=BY
ms = tails
ats = heads

state space
transition function

attribute

w = (hd,tl)

Modalities and properties

Concluding

Automata behaviours form themselves an automata

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties

Automata morphisms

A morphism
h:p—gq

where

p= J(at,m:U— BxU
g= (at'ym"):V-—BxV

is a function h: U — V such that

U—L-.Bxu

hJ [

v—2.BxV

ie.,
at=at'-h and h-m=m'-h

Concluding

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

Behaviour as a morphism

Th: Behaviour [p)] is an automata morphism from p to w

because
at = hd - cons - (at,[p] - m)
= { hd-cons =m }
at = my - (at,[p) - m)
= { X cancellation }
at = at
and

[p)-m = tl- cons- (at,[p) - m)
= { tl-cons =m}

(p):m = mo-(at,[p] - m)

{ X cancellation }

(pl-m = (p)-m

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

The final automata

Automata behaviours form themselves an automata w with a
particular characteristic: from each other automata p there is one
and only one morphism

(pl:p— w
Automata w is the final automata, i.e., the universal one in the

category of automata and automata morphisms.

Question
How to reason about automata behaviours?

Automata, coalgebraically

Induction & Coinduction

Reasoning about B*

len(mapfl) = lenl

where functions are defined inductively by their effect on B*
constructors

len]] =0
len(h:t) = 1+lent

mapfll = [
mapf(h:t) = f(h): mapft

These equations are indeed a functional program ...

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties

Induction & Coinduction

Proof (by structural induction).

Base case is trivial.

Then,

len(mapf(h:t))

= { mapf definition }
len(f(h) : mapft)

= { len definition }
1+ len(mapf t)

= { induction hypothesis }
1+ lent

= { len definition }

len(h: t)

Concluding

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

Induction & Coinduction

Inductive reasoning requires that, by repeatedly unfolding the
definition, arguments become smaller, i.e., closer to the elementary
constructors

... but what happens if this unfolding process does not
terminate?

Automata, coalgebraically

Induction & Coinduction
Consider

mapf(h:t) = (fh): mapft
genfx = x:genf (fx)

e definition unfolding does not terminate but ...

e ... reveals longer and longer prefixes of the result: every
element in the result gets uniquely determined along this
process

Strategy

To reason about circular definitions over infinite structures,
our attention shifts from argument’s structural shrinking to
the progressive construction of the result which becomes
richer in informational contents.

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

Induction & Coinduction

Reasoning about B%: the local view‘

Two streams s and r are observationally the same if

e they have identical head observations: head s = head r,

e and their tails — tail s and tail r — support a similar
verification.

Automata, coalgebraically

Induction & Coinduction

Reasoning about B%: the local view‘

Two streams s and r are observationally the same if

e they have identical head observations: head s = head r,

e and their tails — tail s and tail r — support a similar
verification.

Relation R : B® — B is a (stream) bisimulation iff
(x,y) € R = head x = head y N (tail x,tail y) € R

(i.e., R is closed under the computational dynamics)

Automata, coalgebraically

Induction & Coinduction

Coinduction as a proof principle:
e a systematic way of strengthening the statement to prove:
from equality s = r to a larger set R which contains pair (s, r)

e ensuring that such a set is a bisimulation, i.e., the closure of
the original set under taking derivatives

e moreover, as a proof principle, it generalises from streams to a
large class of behaviour types

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties

Induction & Coinduction

maps - gens = geny.f

Check that R below is a bisimulation

R = {{(mapf (genfx), genf (fx))|xe€..,fe.}

Concluding

Automata, coalgebraically

Induction & Coinduction

maps - gens = geny.f

Check that R below is a bisimulation

R = {{(mapf (genfx), genf (fx))|xe€..,fe.}

e head (mapf (genfx)) = fx = head (genf (f x))
e tail (mapf (genfx)) = mapf tail (genfx) =
map f (genf f x) tail (genf (fx)) = genf (ffx). Thus,
(tail (mapf (genf x)),tail (genf (fx))) € R

Remark:
In general, however, much larger relations have to be considered
and the construction of bisimulations is not trivial

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

Example: FX = XA x B

Objects are Moore machines

p= (m,at): U — U'xB

U—L5UAxB boilingdownto U—25B UxA—">U
hJ/ lh“ x id hl lid hx idJ(lh
v vAxB V258 vxA-"v

m'-(hxid) = h-m N at'-h = at

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

Example: Moore behaviours
Triggered by input sequences s = [ag, a1,...] in A*, the behaviour of p is
revealed by successive observations:

at u, at (M uag), at (M (M uag) ar),...

(pPlunil = atu and [p) u(cons (a,1)) = [p) (m(u,a))t

behaviours organise themselves into a Moore machine over BA":

wy = (M, atw) : B — (B x B

where

atw f f nil the attribute before any input

I

meyfa = As. f(cons(a, S)) input determines subsequent evolution

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties

Observational equivalence

u=gv & [plu=I[qlv

In general, seek for a cocongruence, i.e.

/S\
%4

&

q

v
p FS
N
F(U) F(V)

even if F does not admit a final coalgebra wy

Concluding

o Looking for duals: congruent terms vs cocongruent behaviours

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

Bisimulation
U~V & Jbisimulationr - U =pit and v =pst fora tER

Bisimulation: a (monic) span p &~ p 25 g in Cy
/ X

U P 14

p FR q
>N

F(U) F(v)

o analogue but not dual to a compatible relation

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

Bisimilarity vs observational equivalence

An example: bisimulation for Moore machines
(uyv) €R = atpu=atqgv and (Mpuamgva)€R, forallacA.

e Bisimilarity is amenable to automation; efficient, iterative
algorithms.

e Provides a a technique for coinductive proofs: from argument’s
structural shrinking to the progressive construction of the behaviour
which becomes richer in informational contents.

& ~g and =5 coincide for most functors of interest in SE

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

Bisimilarity vs observational equivalence

F(U) F(S)
P/R T?(Pl) 7\
U—‘rl)S F(r)
ny FR) — | F(V)
J q
R~~~ v

 No need for o to be unique: F must only preserve weak pullbacks.

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

[llustration: Hybrid automata

t>c

— =0

e
t:=0

... models capturing the interaction of discrete (computational) systems
with continuous (physical) processes ...

p:U— G(U) x H(O)

where H captures the continuous evolution of a quantity O over time.

H(X) = {(f,d) e XT x[0,00] | f-Ag=Ff} and F(h) = h' x id

c Renato Neves's forthcoming PhD thesis

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

[llustration: Hybrid automata

b:VxP—(VxP)xH(P)= (bg,b.)

ba (v, p) = (velg(v, zposg (v, p)) x —0.5, 0)
be = (posg (v, p), zposg)

1st evolution 2nd evolution 3rd evolution aggregated

5 5 5 8
4 4 at .

6
3 3 3b .
@ ol o M

g g g g ¢
2 2 2 g

1 1 1 102

0 0 0 o

0 02 04 06 08 10 02 04 06 08 10 02 04 06 08 1 % 05 1 5 2 25

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

[llustration: Hybrid automata

p:U— G(U) x H(O)

| coalgebra p | functor §
U= (UxHO) | ldX=X

U— (AU x HO) AX =X xX
U= (PUXxHO) | PX —{ACX)
U—(
U—(

DU X HO) | DX ={uel0,1X|ulx] =1}
PDU x HO) | PD

o ‘black-box’ view: discrete transitions are kept internal; continuous
evolutions make up the observable behaviour.

Modalities and properties

Properties

Modal assertions, i.e. properties to be interpreted across a transition
system capturing its dynamics, are pervasive in Software Engineering.

Modalities in Coalgebra also acquire a shape

i.e. their definition becomes parametric on whatever type of behaviour
seems appropriate for addressing the problem at hand.

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

Example: invariants

Predicates preserved along the system'’s evolution:

Veu - udu = (pu)F(d)(pu)

which, by eliminating variables, is equivalent to
¢ C p*-F(d)-p
| ——

U

o regarding ¢ as a coreflexive relation and J as a relator

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

[] acquires a shape

Example: F(X) = P(X)

U = {veUl(pu)P(d) (pu)} ={uecUlpucd}

i.e. the standard interpretation of the 1 modality in Kripke semantics

Example: F(X) =14+ X

Op = {wuelUpu=wu = u e}

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

Going generic: Coalgebraic logic

[is relative to the ‘global’ dynamics of p.

However, depending on applications one may be interested in other types
of modalities:

e For F(X) = A x X x X, follow right or left successors.

e For F(X) = (PX)A, define one ‘box’ operator per each action a € A.

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties

Going generic

F-coalgebras generate modalities by predicate lifting

O = 2U Yu 2ff(U) 4 2U

O¢ = {ve Ul pucyud}

Example
e Afamily {y?:27 = 2?(7)A| a € A} of predicate liftings
Vi = {sePWU)sac)
induces the indexed modalities of Hennessy—Milner logic:

[alp ={u e Ul (pu) aC d}

Concluding

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

Why coalgebra matters?

The message

‘ Coalgebra is the mathematics for dynamical, state-based systems

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

Why coalgebra matters?

The message

Coalgebra is the mathematics for dynamical, state-based systems

The method

From a suitable characterisation of the type of a system’s dynamics,
canonical notions of behaviour, observational reasoning (equational and
inequational), composition and modality can be derived in a uniform way.

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

Why coalgebra matters?

The message

Coalgebra is the mathematics for dynamical, state-based systems

The method

From a suitable characterisation of the type of a system’s dynamics,
canonical notions of behaviour, observational reasoning (equational and
inequational), composition and modality can be derived in a uniform way.

The crucial design choice

The type of a system’s dynamics is the pair of glasses through which it is
observed

u]
o)
I
i
it

Coalgebra

Automata, coalgebraically

Behaviour and equivalences

Modalities and properties

Which pair of glasses?

Concluding
From the coarsest ...

[Antoine de Saint-Exupéry, Le Petit Prince, 1943)]

Coalgebra

Automata, coalgebraically

Behaviour and equivalences

Modalities and properties
Which pair of glasses?
From the coarsest ...

Concluding

to the most detailed

[m]

=

[Antoine de Saint-Exupéry, Le Petit Prince, 1943)]

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

Coalgebra for the working software engineer

modelling complex systems
Software Engineering < architecting their composition Coalgebra

reasoning about their behaviour

Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties
Epilogue
Engineering < HOW WHAT » Mathematics

Doing Software Engineering in lighter, more informal ways,
is like talking about electricity without using calculus: Good
enough to replace a fuse, not enough to design an amplifier.

[attributed to Vlad Patryshev]

Concluding

	Coalgebra
	Automata, coalgebraically
	Behaviour and equivalences
	Modalities and properties
	Concluding

