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Reactive systems

Systems whose internal configurations are only partially accessible, and
are, therefore, characterised by their emergent behaviour which encodes a

continued interaction with their environment

“From being a prescription for how to do something — in Turing's
terms a 'list of instructions’, software becomes much more akin to
a description of behaviour, not only programmed on a computer,
but also occurring by hap or design inside or outside it.”

[Robin Milner, Turing Award Lecture, 1991]
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Why coalgebra matters?

‘trés malade’ ‘pas un mouton!’ ‘trop vieux'
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[Antoine de Saint-Exupéry, Le Petit Prince, 1943]
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an observation shape, a transition type, an interface
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Construction vs observation

Models are typically arrows from/to structured objects.
For example, to build an (inductive) data structure one specifies:

an assembly process

a:1+DxU——U
| S —

/

a tool box the artifact

The structured domain captures a signature of constructors composed
additively: a = [nil, cons]

Concluding
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Construction vs observation

Reversing the arrow swaps structure from its domain to the codomain,
specifying

an observation process

p:U—1+DxU
—_———

|

the state space a pair of glasses

observers are paired in parallel: p = x < empty? > (head, tail)



Coalgebra

Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

Construction vs observation

U can be thought as a state space

its elements are no longer distinguished by construction, but rather
identified when generating the same behaviour;

finiteness is no longer required,;

the observation shape reveals the type of an underlying transition
structure

1+Dx—

the pair of glasses ——— - --

//—— a
i et |
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Different glasses capture different transition strucutres
p:U— DxU
p = {5+ (337))7 — (ba4))4 — (3)7)}

b
5—a>7f> p:U— P(DxU)

p = {5 — {(337)})7 — {(b) 4‘)) (b)7)}>4 — @}
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Different glasses capture different transition strucutres

Recall the models of reactive systems we met so far:

’ :S — P(S) \ unlabelled TS ‘
:S§— NxS§5+1 partial LTS (generative)
:S— (S+ 1N partial LTS (reactive)
:S— P(NxS) non deterministic LTS (generative)
'S — P(S)N non deterministic LTS (reactive)
[x:5— DS | simple PTS (Markov chain) ‘

:S—DNxS+1

generative PTS

S — (DS+ 1N

reactive PTS

:S— DS+ (NxS)+1

|

stratified PTS

:S — P(DN x S)

strict Segala PTS

:S— P(NxDS)

simple Segala PTS

RIRIRRIR R R[[R|R[[RR]|R

:S — P(DP(N x S))

Pnueli-Zuck PTS
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The general pattern

In general, we need

a lens: O~0O

an observation tool: state space —— ()—~() state space
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The general pattern

In general, we need

a lens: O~0O

an observation tool: state space —— ()—~() state space

Models of reactive systems are coalgebras
e T is the shape of the behaviour (mathematically a functor)

e abstract behavioural structures are (final) coalgebras
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What coalgebra brings?

functor F transition type / observation shape
coalgebra p:U— F(U) generic transition system
morphism u—2- F(U) behaviour preserving map

J Tf(h)

v—55(v)
finality Qs 27 F(Q) behaviour
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What coalgebra brings?

equivalence u=5v & [plu=I[qlv observational reasoning

operators the structure of Cy composition

modality Op = p°-F(d)-p generic modal logic

Concluding

® a conceptual tool for the working software engineer to deal with the
(emergent) behaviour of computing systems, in a compositional and

uniform way;

® an intuitive symmetry made into a mathematical duality.
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Automata

state space U
transition function m:U— U
attribute (or label)  at: U — B

Concluding
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Automata

state space U
transition function m:U— U
attribute (or label)  at: U — B
ie.,
p = (atym)y: U — Bx U

Concluding
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Automata

The behaviour of p at (from) a state u € U is revealed by
successive observations (experiments):

(plu = latu, at (mu), at (m(mu)),...]

Concluding
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Automata

The behaviour of p at (from) a state u € U is revealed by
successive observations (experiments):

(plu = latu, at (mu), at (m(mu)),...]
[pl = cons-(at,[p)-m)

which means that

‘Automata behaviours are elements of B (i.e., streams)
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Automata

Example: A twist automata ‘

state space

U=NxN
transition function ~ m(n,n’) (n’, n)
attribute at(n,n’) = n

ie.,

twist = (my,s)

Concluding
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Automata

Example: A stream automata‘

U=BY
ms = tails
ats = heads

state space
transition function

attribute

w = (hd,tl)

Concluding
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Automata

Example: A stream automata‘

U=BY
ms = tails
ats = heads

state space
transition function

attribute

w = (hd,tl)

Modalities and properties

Concluding

Automata behaviours form themselves an automata
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Automata morphisms

A morphism
h:p—gq

where

p= J(at,m:U— BxU
g= (at'ym"):V-—BxV

is a function h: U — V such that

U—L-.Bxu

hJ [

v—2.BxV

ie.,
at=at'-h and h-m=m'-h

Concluding
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Behaviour as a morphism

Th: Behaviour [p)] is an automata morphism from p to w

because
at = hd - cons - (at,[p] - m)
= { hd-cons =m }
at = my - (at,[p) - m)
= { X cancellation }
at = at
and

[p)-m = tl- cons- (at,[p) - m)
= { tl-cons =m}

(p):m = mo-(at,[p] - m)

{ X cancellation }

(pl-m = (p)-m
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The final automata

Automata behaviours form themselves an automata w with a
particular characteristic: from each other automata p there is one
and only one morphism

(pl:p— w
Automata w is the final automata, i.e., the universal one in the

category of automata and automata morphisms.

Question
How to reason about automata behaviours?
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Induction & Coinduction

Reasoning about B*

len(mapfl) = lenl

where functions are defined inductively by their effect on B*
constructors

len]] =0
len(h:t) = 1+lent

mapfll = [
mapf(h:t) = f(h): mapft

These equations are indeed a functional program ...
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Induction & Coinduction

Proof (by structural induction).

Base case is trivial.

Then,

len(mapf(h:t))

= { mapf definition }
len(f(h) : mapft)

= { len definition }
1+ len(mapf t)

= { induction hypothesis }
1+ lent

= { len definition }

len(h: t)

Concluding
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Induction & Coinduction

Inductive reasoning requires that, by repeatedly unfolding the
definition, arguments become smaller, i.e., closer to the elementary
constructors

... but what happens if this unfolding process does not
terminate?
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Induction & Coinduction
Consider

mapf(h:t) = (fh): mapft
genfx = x:genf (fx)

e definition unfolding does not terminate but ...

e ... reveals longer and longer prefixes of the result: every
element in the result gets uniquely determined along this
process

Strategy

To reason about circular definitions over infinite structures,
our attention shifts from argument’s structural shrinking to
the progressive construction of the result which becomes
richer in informational contents.




Coalgebra Automata, coalgebraically Behaviour and equivalences Modalities and properties Concluding

Induction & Coinduction

Reasoning about B%: the local view‘

Two streams s and r are observationally the same if

e they have identical head observations: head s = head r,

e and their tails — tail s and tail r — support a similar
verification.
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Induction & Coinduction

Reasoning about B%: the local view‘

Two streams s and r are observationally the same if

e they have identical head observations: head s = head r,

e and their tails — tail s and tail r — support a similar
verification.

Relation R : B® — B is a (stream) bisimulation iff
(x,y) € R = head x = head y N (tail x,tail y) € R

(i.e., R is closed under the computational dynamics )
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Induction & Coinduction

Coinduction as a proof principle:
e a systematic way of strengthening the statement to prove:
from equality s = r to a larger set R which contains pair (s, r)

e ensuring that such a set is a bisimulation, i.e., the closure of
the original set under taking derivatives

e moreover, as a proof principle, it generalises from streams to a
large class of behaviour types
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Induction & Coinduction

maps - gens = geny.f

Check that R below is a bisimulation

R = {{(mapf (genfx), genf (fx))|xe€..,fe.}

Concluding
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Induction & Coinduction

maps - gens = geny.f

Check that R below is a bisimulation

R = {{(mapf (genfx), genf (fx))|xe€..,fe.}

e head (mapf (genfx)) = fx = head (genf (f x))
e tail (mapf (genfx)) = mapf tail (genfx) =
map f (genf f x) tail (genf (fx)) = genf (ffx). Thus,
(tail (mapf (genf x)),tail (genf (fx))) € R

Remark:
In general, however, much larger relations have to be considered
and the construction of bisimulations is not trivial
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Example: FX = XA x B

Objects are Moore machines

p= (m,at): U — U'xB

U—L5UAxB boilingdownto U—25B UxA—">U
hJ/ lh“ x id hl lid hx idJ( lh
v vAxB V258  vxA-"v

m'-(hxid) = h-m N at'-h = at
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Example: Moore behaviours
Triggered by input sequences s = [ag, a1,...] in A*, the behaviour of p is
revealed by successive observations:

at u, at (M uag), at (M (M uag) ar),...

(pPlunil = atu  and  [p) u(cons (a,1)) = [p) (m(u,a))t

behaviours organise themselves into a Moore machine over BA":

wy = (M, atw) : B — (B x B

where

atw f f nil the attribute before any input

I

meyfa = As. f(cons(a, S)) input determines subsequent evolution
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Observational equivalence

u=gv & [plu=I[qlv

In general, seek for a cocongruence, i.e.

/S\
%4

&

q

v
p FS
N
F(U) F(V)

even if F does not admit a final coalgebra wy

Concluding

o Looking for duals: congruent terms vs cocongruent behaviours
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Bisimulation
U~V & Jbisimulationr - U =pit and v =pst fora tER

Bisimulation: a (monic) span p &~ p 25 g in Cy
/ X

U P 14

p FR q
>N

F(U) F(v)

o analogue but not dual to a compatible relation
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Bisimilarity vs observational equivalence

An example: bisimulation for Moore machines
(uyv) €R = atpu=atqgv and (Mpuamgva)€R, forallacA.

e Bisimilarity is amenable to automation; efficient, iterative
algorithms.

e Provides a a technique for coinductive proofs: from argument’s
structural shrinking to the progressive construction of the behaviour
which becomes richer in informational contents.

& ~g and =5 coincide for most functors of interest in SE
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Bisimilarity vs observational equivalence

F(U) F(S)
P/R T?(Pl) 7\
U—‘rl)S F(r)
ny FR) — | F(V)
J q
R~~~ v

 No need for o to be unique: F must only preserve weak pullbacks.
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[llustration: Hybrid automata

t>c

— =0

e
t:=0

... models capturing the interaction of discrete (computational) systems
with continuous (physical) processes ...

p:U— G(U) x H(O)

where H captures the continuous evolution of a quantity O over time.

H(X) = {(f,d) e XT x[0,00] | f-Ag=Ff} and F(h) = h' x id

c Renato Neves's forthcoming PhD thesis
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[llustration: Hybrid automata

b:VxP—(VxP)xH(P)= (bg,b.)

ba (v, p) = (velg(v, zposg (v, p)) x —0.5, 0)
be = (posg (v, p), zposg)

1st evolution 2nd evolution 3rd evolution aggregated

5 5 5 8
4 4 at .

6
3 3 3b .
@ ol o M

g g g g ¢
2 2 2 g

1 1 1 102

0 0 0 o

0 02 04 06 08 10 02 04 06 08 10 02 04 06 08 1 % 05 1 5 2 25
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[llustration: Hybrid automata

p:U— G(U) x H(O)

| coalgebra p | functor §
U= (UxHO) | ldX=X

U— (AU x HO) AX =X xX
U= (PUXxHO) | PX —{ACX)
U—(
U—(

DU X HO) | DX ={uel0,1X|ulx] =1}
PDU x HO) | PD

o ‘black-box’ view: discrete transitions are kept internal; continuous
evolutions make up the observable behaviour.



Modalities and properties

Properties

Modal assertions, i.e. properties to be interpreted across a transition
system capturing its dynamics, are pervasive in Software Engineering.

Modalities in Coalgebra also acquire a shape

i.e. their definition becomes parametric on whatever type of behaviour
seems appropriate for addressing the problem at hand.
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Example: invariants

Predicates preserved along the system'’s evolution:

Veu - udu = (pu)F(d)(pu)

which, by eliminating variables, is equivalent to
¢ C p*-F(d)-p
| ——

U

o regarding ¢ as a coreflexive relation and J as a relator
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[] acquires a shape

Example: F(X) = P(X)

U = {veUl(pu)P(d) (pu)} ={uecUlpucd}

i.e. the standard interpretation of the 1 modality in Kripke semantics

Example: F(X) =14+ X

Op = {wuelUpu=wu = u e}
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Going generic: Coalgebraic logic

[ is relative to the ‘global’ dynamics of p.

However, depending on applications one may be interested in other types
of modalities:

e For F(X) = A x X x X, follow right or left successors.

e For F(X) = (PX)A, define one ‘box’ operator per each action a € A.
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Going generic

F-coalgebras generate modalities by predicate lifting

O = 2U Yu 2ff(U) 4 2U

O¢ = {ve Ul pucyud}

Example
e Afamily {y?:27 = 2?(7)A| a € A} of predicate liftings
Vi = {sePWU)sac )
induces the indexed modalities of Hennessy—Milner logic:

[alp ={u e Ul (pu) aC d}

Concluding
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Why coalgebra matters?

The message

‘ Coalgebra is the mathematics for dynamical, state-based systems
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Why coalgebra matters?

The message

Coalgebra is the mathematics for dynamical, state-based systems

The method

From a suitable characterisation of the type of a system’s dynamics,
canonical notions of behaviour, observational reasoning (equational and
inequational), composition and modality can be derived in a uniform way.
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Why coalgebra matters?

The message

Coalgebra is the mathematics for dynamical, state-based systems

The method

From a suitable characterisation of the type of a system’s dynamics,
canonical notions of behaviour, observational reasoning (equational and
inequational), composition and modality can be derived in a uniform way.

The crucial design choice

The type of a system’s dynamics is the pair of glasses through which it is
observed

u]
o)
I
i
it
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Which pair of glasses?

Concluding
From the coarsest ...

[Antoine de Saint-Exupéry, Le Petit Prince, 1943)]
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Which pair of glasses?
From the coarsest ...

Concluding

to the most detailed

[m]

=

[Antoine de Saint-Exupéry, Le Petit Prince, 1943)]
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Coalgebra for the working software engineer

modelling complex systems
Software Engineering < architecting their composition Coalgebra

reasoning about their behaviour
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Epilogue
Engineering < HOW ...... WHAT » Mathematics

Doing Software Engineering in lighter, more informal ways,
is like talking about electricity without using calculus: Good
enough to replace a fuse, not enough to design an amplifier.

[attributed to Vlad Patryshev]

Concluding
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