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Reactive systems

Reactive system

system that computes by reacting to stimuli from its environment
along its overall computation

State vs behaviour

• in contrast to sequential systems whose meaning is defined by the
results of finite computations, the behaviour of reactive systems is
mainly determined by interaction and mobility of non-terminating
processes, evolving concurrently.

• observation ≡ interaction

• behaviour ≡ a structured record of interactions
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Labelled Transition System

A model
A LTS over a set N of actions is a tuple 〈S ,N,−→〉 where

• S = {s0, s1, s2, ...} is a set of states

• −→⊆ S × N × S is the transition relation, often given as an
N-indexed family of binary relations

s
a−→ s ′ ≡ 〈s ′, a, s〉 ∈−→

Actions
to be regarded as transition labels or names, abstracting some observable
(e.g. action name, event, input/output data, etc)
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Labelled Transition System

Morphism
A morphism relating two LTS over N, 〈S ,N,−→〉 and 〈S ′,N,−→ ′〉, is a
function h : S −→ S ′ st

s
a−→ s ′ ⇒ h s

a

−→ ′ h s ′

morphisms preserve transitions
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Behavioural equivalence

Two LTS should be equivalent if they cannot be distinguished by
interacting with them.

Equality of functional behaviour
is not preserved by parallel composition: non compositional semantics, cf,

x:=4; x:=x+1 and x:=5

Graph isomorphism
is too strong (why?)
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Trace

Definition
Let T = 〈S ,N,−→〉 be a labelled transition system. The set of traces
Tr(s), for s ∈ S is the minimal set satisfying

(1) ε ∈ Tr(s)

(2) aσ ∈ Tr(s) ⇒ 〈∃ s ′ : s ′ ∈ S : s
a−→ s ′ ∧ σ ∈ Tr(s ′)〉
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Trace equivalence

Definition
Two states s, r are trace equivalent iff Tr(s) = Tr(r)
(i.e. if they can perform the same finite sequences of transitions)

Example

2.3 Equivalence of behaviours
When do two systems have the same behaviour? Or stated differently, when are two labelled transition
systems behaviourally equivalent? The initial answer to this question is simple. Whenever the difference
in behaviour cannot be observed, we say that the behaviour is the same. The obvious next question is how
behaviour is observed? The answer to this latter question is that there are many ways to observe behaviour
and consequently many different behavioural equivalences exist. We present the most important ones here.
For an overview see [20].

2.3.1 Trace equivalence
One of the coarsest (most unifying) notions of behavioural equivalence is trace equivalence. The essential
idea is that two transition systems are equivalent if the same sequences of actions can be performed from
their respective initial states. Traces are sequences of actions, typically denoted as a1a2a3 . . . an. We
typically use letters σ and ρ to represent traces. The termination symbol ! can also be part of a trace. The
symbol ε represents the empty trace.

Definition 2.3.1 (Trace equivalence). Let A = (S,Act ,−→, s, T ) be a labelled transition system. The set
of traces (runs, sequences) Traces(t) for a state t ∈ S is the minimal set satisfying:

1. ε ∈ Traces(t), i.e. the empty trace is a member of Traces(t),

2. ! ∈ Traces(t) iff t ∈ T , and

3. if there is a state t′ ∈ S such that t
a−→ t′ and σ ∈ Traces(t′) then aσ ∈ Traces(t).

Two states t, u ∈ S are called trace equivalent if and only if (iff) Traces(t) = Traces(u). Two transition
systems are trace equivalent iff their initial states are trace equivalent.

The sets of traces of the two transition systems in figure 2.1 are respectively {ε, a, ab, abc, abcd} and
{ε, a, ab, abc, abcd, abcd!}. The two transition systems are not trace equivalent.

set

set

reset

alarm

set

alarm

reset

Figure 2.5: Two trace-equivalent alarm clocks

Consider the labelled transition systems for the two alarm clocks depicted in figure 2.5. The alarm
clock at the left-hand side has a nondeterministic choice between two transitions labelled with set : if it
moves with the set transition to right, it behaves the same as the right-hand-side labelled transition system.
However, if it moves to left with the other set transition, it deadlocks. Hence, the observational behaviour
of the two transition systems is different: in the left-hand-side one sometimes is blocked while in the right-
hand-side one can keep doing actions. This is the reason why trace equivalence generally is not used and a
finer notions of equivalence are used which refine trace equivalence by taking deadlocks into account.

However, there are cases where trace equivalence is useful. If the only observations are that one can
see what is happening without being able to influence the behaviour and one cannot observe that no more
actions are possible, trace equivalence is the right notion. In other words, trace equivalence is appropriate
when one can neither interact with a system, nor distinguish a slow system from one that has come to a
stand still.

Also, many properties only regard the traces of processes. A property can for instance be that before
every b an a action must be done. This property is preserved by trace equivalence. So, in order to determine

20

Trace equivalence applies when one can neither interact with a system,
nor distinguish a slow system from one that has come to a stand still.
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Simulation

the quest for a behavioural equality:
able to identify states that cannot be distinguished by any realistic

form of observation

Simulation

A state q simulates another state p if every transition from q is
corresponded by a transition from p and this capacity is kept along
the whole life of the system to which state space q belongs to.
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Simulation

Definition
Given 〈S1,N,−→1〉 and 〈S2,N,−→2〉 over N, relation R ⊆ S1 × S2 is a
simulation iff, for all 〈p, q〉 ∈ R and a ∈ N,

p
a−→1 p

′ ⇒ 〈∃ q ′ : q ′ ∈ S2 : q
a−→2 q

′ ∧ 〈p ′, q ′〉 ∈ R〉

p

a

��

R q ⇒ q

a

��

p ′ p ′ R q ′
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Similarity

Definition

p . q ≡ 〈∃ R :: R is a simulation and 〈p, q〉 ∈ R〉

Lemma
The similarity relation is a preorder
(ie, reflexive and transitive)
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Example

q1
d // q2 p2

q0

a
>>

a
  

p0
a // p1

d
>>

e
  

q4 e
// q3 p3

q0 . p0 cf. {〈q0, p0〉, 〈q1, p1〉, 〈q4, p1〉, 〈q2, p2〉, 〈q3, p3〉}
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Bisimulation

Definition
Given 〈S1,N,−→1〉 and 〈S2,N,−→2〉 over N, relation R ⊆ S1 × S2 is a
bisimulation iff both R and its converse R◦ are simulations.
I.e., whenever 〈p, q〉 ∈ R and a ∈ N,

p
a−→1 p

′ ⇒ 〈∃ q ′ : q ′ ∈ S2 : q
a−→2 q

′ ∧ 〈p ′, q ′〉 ∈ R〉
q

a−→2 q
′ ⇒ 〈∃ p ′ : p ′ ∈ S1 : p

a−→1 p
′ ∧ 〈p ′, q ′〉 ∈ R〉

Note
From now on instead of comparing states of two different systems
〈S1,N,−→1〉 and 〈S2,N,−→2〉, we will consider a one joint system
〈S ,N,−→〉, where S = S1 + S2 and −→ is the union of −→1 and −→2.
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Bisimulation

Definition
Given 〈S1,N,−→1〉 and 〈S2,N,−→2〉 over N, relation R ⊆ S1 × S2 is a
bisimulation iff both R and its converse R◦ are simulations.
I.e., whenever 〈p, q〉 ∈ R and a ∈ N,

p
a−→1 p

′ ⇒ 〈∃ q ′ : q ′ ∈ S2 : q
a−→2 q

′ ∧ 〈p ′, q ′〉 ∈ R〉
q

a−→2 q
′ ⇒ 〈∃ p ′ : p ′ ∈ S1 : p

a−→1 p
′ ∧ 〈p ′, q ′〉 ∈ R〉

Note
From now on instead of comparing states of two different systems
〈S1,N,−→1〉 and 〈S2,N,−→2〉, we will consider a one joint system
〈S ,N,−→〉, where S = S1 + S2 and −→ is the union of −→1 and −→2.
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Examples

q1
a

~~

a

  

m

a

��
q2

c // q3 c
gg

n cdd

q1
a // q2

a // q3
a // · · · h add
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Examples

q1
a

~~

a

  

p1

a

��
q2

c

��

q3

c

��

p2
c

~~

c

  
q4 q5 p4 p5

q1
a

~~

a

  

p1

a

��
q2

c

��

q3

b

��

p2
c

~~

b

  
q4 q5 p4 p5
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Bisimilarity

Definition

p ∼ q ≡ 〈∃ R :: R is a bisimulation and 〈p, q〉 ∈ R〉

Lemma
The bisimilarity relation is an equivalence relation
(ie, reflexive, symmetric and transitive)
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... because

Lemma

1. The identity relation id is a bisimulation

2. The converse R◦ of a bisimulation is a bisimulation

3. The composition S · R of two bisimulations S and R is a
bisimulation

Thus, bisimilarity can be also established by the existence of a
bisimulation equivalence, i.e. an equivalence relation such that for all
〈p, q〉 ∈ R and a ∈ N,

p
a−→ p ′ ⇒ 〈∃ q ′ : q ′ ∈ S : q

a−→ q ′ ∧ 〈p ′, q ′〉 ∈ R〉
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After thoughts

• Follows a ∀,∃ pattern: p in all its transitions challenge q which is
called to find a matchh to each of those (and conversely)

• Tighter correspondence with transitions

• Based on the information that the transitions convey, rather than on
the shape of the LTS

• Local checks on states

• Lack of hierarchy on the pairs of the bisimulation (no temporal
order on the checks is required)

which means bisimilarity can be used to reason about infinite or circular
behaviours.
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Properties

Lemma

1. The empty relation ⊥ is a bisimulation

2. The
⋃

i∈I Ri of a family of bisimulations {Ri | i ∈ I } is a bisimulation

Lemma
The class of all bisimulations between two LTS has the structure of a
complete lattice, ordered by set inclusion, whose top is the bisimilarity
relation ∼.
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Properties

Warning
The bisimilarity relation ∼ is not the symmetric closure of .

Example

q0 . p0, p0 . q0 but p0 6∼ q0

q1

q0

a
>>

a

  

p0
a // p1

b // p3

q2
b // q3
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Modal logic (from P. Blackburn, 2007)

Over the years modal logic has been applied in many different ways. It
has been used as a tool for reasoning about time, beliefs, computational
systems, necessity and possibility, and much else besides.

These applications, though diverse, have something important in
common: the key ideas they employ (flows of time, relations between
epistemic alternatives, transitions between computational states,
networks of possible worlds) can all be represented as simple graph-like
structures.

Modal logics are

• tools to talk about relational, or graph-like structures.

• fragments of classical ones, with restricted forms of quantification ...

• ... which tend to be decidable and described in a pointfree
notations.
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The language

Syntax

φ ::= p | true | false | ¬φ | φ1 ∧ φ2 | φ1 → φ2 | 〈m〉φ | [m]φ

where p ∈ PROP and m ∈ MOD

Disjunction (∨) and equivalence (↔) are defined by abbreviation. The
signature of the basic modal language is determined by sets PROP of
propositional symbols (typically assumed to be denumerably infinite) and
MOD of modality symbols.
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The language

Notes

• if there is only one modality in the signature (i.e., MOD is a
singleton), write simply ♦φ and �φ

• the language has some redundancy: in particular modal connectives
are dual (as quantifiers are in first-order logic): [m]φ is equivalent
to ¬〈m〉¬φ
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Semantics

Semantics
A model for the language is a pair M = 〈F,V 〉, where

• F = 〈W , {Rm}m∈MOD〉
is a Kripke frame, ie, a non empty set W and a family of binary
relations over W , one for each modality symbol m ∈ MOD.
Elements of W are called points, states, worlds or simply vertices in
directed graphs.

• V : PROP −→ P(W ) is a valuation.

Hennessy-Milner Theorem: Modal equivalence and bisimilarity coincide
on mild conditions.
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Semantics

Safistaction: for a model M and a point w

M,w |= true

M,w 6|= false

M,w |= p iff w ∈ V (p)

M,w |= ¬φ iff M,w 6|= φ
M,w |= φ1 ∧ φ2 iff M,w |= φ1 and M,w |= φ2

M,w |= φ1 → φ2 iff M,w 6|= φ1 or M,w |= φ2

M,w |= 〈m〉φ iff there exists v ∈W st vRmw and M, v |= φ

M,w |= [m]φ iff for all v ∈W st vRmw and M, v |= φ
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Examples

Modal formulas reflect properties of accessibility relations:

• transitive frames: �φ→ � � φ

• simple frames: ♦φ→ �φ

• frames consisting of isolated reflexive points: φ↔ �φ

• frames consisting of isolated irreflexive points: �false

But there are classes of frames which are not modally definable,
eg, connected, irreflexive, containing a isolated irreflexive point
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Examples

An automaton

A = 1
a // 2

a

��
b // 3

b

ZZ

• two modalities 〈a〉 and 〈b〉 to explore the corresponding classes of
transitions

• note that
1 |= 〈a〉 · · · 〈a〉〈b〉 · · · 〈b〉t

where t is a proposition valid only at the (terminal) state 3.

• all modal formulas of this form correspond to the strings accepted
by the automaton, i.e. in language L = {ambn| m, n > 0}
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Examples

(P , <) a strict partial order with infimum 0

• P, x |= �false if x is a maximal element of P

• P, 0 |= ♦� false iff ...

• P, 0 |= �♦� false iff ...
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Examples

Process logic (Hennessy-Milner logic)

• PROP = ∅
• W = is a set of states, typically process terms, in a labelled

transition system

• each subset K ⊆ Act of actions generates a modality corresponding
to transitions labelled by an element of K

Assuming the underlying LTS F = 〈, {p K−→ p ′| K ⊆ Act}〉 as the modal
frame, satisfaction is abbreviated as

p |= 〈K 〉φ iff ∃
q∈{p ′| p

a−→p ′ ∧ a∈K}
. q |= φ

p |= [K ]φ iff ∀
q∈{p ′| p

a−→p ′ ∧ a∈K}
. q |= φ
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Example

Express the following properties in Process Logic

• inevitability of a: 〈−〉true ∧ [−a]false

• progress: 〈−〉true
• deadlock or termination: [−]false

• what about
〈−〉false and [−]true ?
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An alternative characterisation

The isomorphism between
relations R ⊆ A× B and functions f : A −→ PB, given by

〈a, b〉 ∈ R ≡ b ∈ f a

supports an alternative, functional characterisation of LTS:

〈S ,N,−→〉 ≡ α : S −→ P(N× S)

given by
s

a−→ s ′ ≡ 〈a, s ′〉 ∈ α s

which allows us to easily draw a taxonomy of simple transition systems



Introduction Labelled Transition Systems Bisimulation Modal logic Bisimulation and modal equivalence A taxonomy The zoo

A taxonomy of simple transition systems

α : S −→ P(S) unlabelled TS

α : S −→ N× S + 1 partial LTS (generative)
α : S −→ (S + 1)N partial LTS (reactive)

α : S −→ P(N× S) non deterministic LTS (generative)

α : S −→ P(S)N non deterministic LTS (reactive)

Notation for sets

A× B Cartesian product

A+ B disjoint union

BA function space

1 Singular set: 1 ∼= {∗}
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A zoo of transition systems

Simple transition systems can be extended with actions and suited to
different sorts of behaviours (e.g. partial, non deterministic, etc).
... but the zoo is much broader, capturing

• probabilistic transitions (Prism)

• timed transitions (Uppaal, mCRL2)

• continuous evolutions (e.g. of physical processes) (KeYmaera)

• ... and several combinations thereof

(typical support tools are indicated in brown)
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Bringing probabilities into the picture

Markov chains

α : S −→ DS

where DS is the set of all discrete probability distributions on set S

A Markov chain goes from a state s to a state s ′ with probability p if

α s = µ with µ s ′ = p > 0

Notation
s  µ and s

p s ′
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Bringing probabilities into the picture

Recall
µ : S −→ [0, 1] is a discrete probability distribution

• if the support of µ, i.e. the set {s ∈ S | µ s > 0}, is finite

• and
∑

s∈S µ s = 1

Examples

Dirac distribution µ1s = {s 7→ 1}

Product distribution (µ1 × µ2)〈s, t〉 = (µ1 s) · (µ2 t)
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Bringing probabilities into the picture

Bisimilarity for Markov chains
An equivalence relation R ⊆ S × S is a bisimulation iff for all 〈s, t〉 ∈ R

if s  µ then there is a transition t  µ ′ such thatµ ≡R µ
′

where µ ≡R µ
′ iff µ[C ] = µ ′[C ] for all equivalence class C defined by

relation R.

This means that the probability of getting from s or t to an element of C
is the same

... of course, any two states in a Markov chain are bisimilar! (why?)
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Reactive PTS

α : S −→ (DS + 1)N

• s
a µa if α s a = µa

• s
a[p] s ′ if additionally s ′ in the support of µ and µa s

′ = p

• s 6 if α s a = ∗
• Note the role of 1 (cf ∅ in the non deterministic LTS)

•
a[ 13 ]

��

a[ 23 ]

��

b[1]

��•
b[1]

��

• •
a[1]

��• •
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Reactive PTS

Bisimulation
An equivalence relation R ⊆ S × S is a bisimulation iff for all 〈s, t〉 ∈ R
and all a ∈ N

if s
a µ then there is a distribution µ ′ with t

a µ ′ such thatµ ≡R µ
′
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Generative PTS

α : S −→ DN× S + 1

• s
a µa if α s = µ

• s
a[p] s ′ if additionally 〈a, s ′〉 in the support of µ and µ〈a, s ′〉 = p

• s 6 if α s = ∗

•
a[ 12 ]

��

a[ 1
34 ]

��

b[ 14 ]

��• •
c[1]

��

•
c[1]

��• •
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Generative PTS

Bisimulation
An equivalence relation R ⊆ S × S is a bisimulation iff for all 〈s, t〉 ∈ R

if s  µ then there is a distribution µ ′ with t  µ ′ such thatµ ≡R,A µ
′

Example
R = {〈A,B〉, 〈C , 1〉, 〈C , 2〉, 〈C , 3〉, 〈D, 4〉, 〈D, 5〉, 〈D, 6〉}

A
a[ 12 ]

��

a[ 12 ]

��

B

a[ 16 ]

uu

a[ 16 ]

ww

a[ 16 ]

��

a[ 16 ]

))

a[ 16 ]

''

a[ 16 ]

��
C D 1 2 3 4 5 6
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A taxonomy of probabilistic transition systems

α : S −→ DS simple PTS (Markov chain)

α : S −→ DN× S + 1 generative PTS
α : S −→ (DS + 1)N reactive PTS

α : S −→ DS + (N× S) + 1 stratified PTS

Alternating PTS

•
1
2

��

3
4

��•

a
��

b

��

•
1
2

��

1
2

��• • • •
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Adding non determinism

α : S −→ P(DN× S) strict Segala PTS
α : S −→ P(N×DS) simple Segala PTS
α : S −→ P(DP(N× S)) Pnueli-Zuck PTS

Transitions for simple and strict Segala PTS

•
a

��

•

��

1
2

~~

1
4

��

1
4

  

a[ 14 ]

~~

a[ 12 ]

��

b[ 14 ]

  • • • • • •
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After thoughts

• The taxonomy is driven by the structure on the codomain of
function α

• The definition of bisimulation follows, in every case, the same
intuition

(... we are beginning to think coalgebraically)
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