
Algebraic and Coalgebraic methods in
software development

Manuel A. Martins 1

MAP-i, 2017/18

1
Mathematics Department, Aveiro University, Portugal

M.A.Martins ACM in software Development



Signature morphism

Definition

Let Σ = (S,Ω) and Σ′ = (S ′,Ω′) be signatures. A signature morphism σ : Σ→ Σ′, is a pair
σ = (σsort, σop), where

σsorts : S → S ′

and

σop : Ω→ Ω′ is a family of functions respecting the type of operations symbols in Ω, that
is, σop = (σω,s : Ωω,s → Ω′

σ∗sorts (ω),σsorts (s)
)ω∈S∗,s∈S (where for

ω = s1 . . . sn ∈ S∗, σ∗sorts (ω) = σsorts (s1) . . . σsorts (sn)).

Renaming, Adding, Identifying
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Definition (Reduct Algebra)

Let A′ be a Σ′-algebra, and σ : Σ→ Σ′ be a signature morphism. The σ-reduct of A′ is the
Σ-algebra A′ �σ defined as follows:

for any s ∈ S, (A′ �σ)s = A′
σ(s)

,

and

for all f : s1, . . . , sn → s ∈ Σ,

f A′�σ = σop(f )A′ .

Given a morphism h′ : A′ → B′, the σ-reduct de h′ is h′ �σ : A′ �σ → B′ �σ defined by
(h′ �σ)s = h′

σ(s)
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Satisfaction lemma

Let σ : Σ→ Σ′ be a signature morphism and X a set of variables for Σ.
Take X ′v =

⊎
{Xs : σsorts (s) = v}

Extension to terms

σ̂ : T(Σ,X)→ (T (Σ′,X ′))�σ

(i) If t = x : s, then σ̂(t) = x : σ(s);

(ii) If t = c, then σ̂(t) = σ(c);

(iii) If t = f (t1, . . . , tn), with f : s1, . . . , sn → s ∈ Σ , then
σ̂(t) = σ(f )(σ̂(t0), . . . , σ̂(tn)).

And then, in a natural way, to Flas ...

Satisfaction Lemma
Let Σ, Σ′ be signatures, A′ be a Σ′-algebra and φ be a Σ-equation. Then,

A′ |= σ(φ) iff A′ �σ |= φ.

Corollary

Φ |=Σ t1 ≈ t2 ⇒ σ(Φ) |=Σ′ σ(t1 ≈ t2).

I When the implication “⇐” also holds, the morphism is called conservative.
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Translations

Syntax

Σ T (Σ,X )

σ

��
σ̂

��

Σ′ T (Σ′,X ′)

Semantics

Σ− algebras Σ− homomorphisms

�σ

OO
�σ

OO

Σ′ − algebras Σ′ − homomorphisms
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Structured specifications

We follow Sannella and Tarlecki [ST88], by assuming that the software systems, described by
(algebraic) specifications, are adequately represented as models of an appropriated underlying
logic. Therefore, a specification describes a signature and a class the models over this signature
- the models of the specification.

Definition

A specification SP is a pair 〈Σ,K〉, where Σ is a signature and K is a class of Σ-algebra. We
will represent Σ by Sig(SP) and K by Mod(SP) - the class of models of SP.

Structured Specifications, Why?

When we deal with real complex systems, it is worth to systematize the algebraic programme
development. It is in this way that Structured Specifications appear based in the compositional
principle.

We build more complex specification from simpler ones following the modular development of
programmes.
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Basic operators

1 flat specifications - to define specifications by the class of models of a set of axioms Φ
over a signature Σ;

2 union - to define a specification from the union of two given specifications over a same
signature.

3 translate - to define a specification over a signature Σ′ from a specification over another
specification over a signature Σ using a signature morphism σ : Σ→ Σ′.

4 derive (or Hidding) - to define a specification over a signature Σ from a specification over
another specification over a signature Σ′ using a signature morphism σ : Σ→ Σ′, by
considering the reducts.
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Basic operators

I flat
Syntax:

< ., . >: Sig ,Sentences → Spec

Semantics: Σ a signature and Φ a set of sentences over Σ.

Sig(< Σ,Φ >) = Σ

Mod(< Σ,Φ >) =def {A ∈ Alg(Σ)|A |= Φ}

I union
Let SP1 e SP2 be specifications over a same signature Σ:

Syntax:

< . ∪ . >: Spec, Spec → Spec

Sematics:

Sig(SP1 ∪ SP2) = Sig(SP1) = Sig(SP2)

Mod(SP1 ∪ SP2) =def Mod(SP1) ∩Mod(SP2)
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Basic operators

I translate
Syntax:

translate . by . : Spec,morph→ Spec

Semantics: let σ : Σ→ Σ′ be a signature morphism and SP a specification with
Sig(SP) = Σ.

Sig(translate SP by σ) =def Σ′

Mod(translate SP by σ) =def {A′ ∈ Alg(Σ′)|A′ �σ ∈ Mod(SP)}.

I derive (or Hiding)

Syntax:

derive from . by . : Spec,morph→ Spec

Semantics: Let σ : Σ→ Σ′ be a signature morphism morfismo and SP a specification
with Sig(SP) = Σ′.

Sig(derive from SP by σ) =def Σ

Mod(derive from SP by σ) =def {A′ �σ ∈ Alg(Σ)|A′ ∈ Mod(SP)}.

A structured specification is a specification SP obtained by a finite number of applications o
these 4 operators.
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Equational case

Not all algebraic specification (classe of algebras) can be axiomatized by a set of equations.

So,

Fact
Not all specifications are flat specifications

Birkhoff’s theorem

A specification is flat iff the class of algebras is closed by subalgebras, homomorphic images and
products.

Even with first-order formulas it is impossible!
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More useful operators

I enrich: To add new sorts, new axioms and new operation symbols
Let Σ = (S,Ω), Σ′ = (S ∪ S ′,Ω ∪ Ω′) and ι : Σ ↪→ Σ′ the inclusion morphism.

enrich SP by sorts S ′ opns F ′ axioms Φ′ = (translate SP by ι) ∪ 〈Σ′,Φ′〉

I export: A particular case of derive, the morphism is the inclusion, i.e., let ι : Σ ↪→ Σ′:

export Σ′ from SP = derive from SP by ι.
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Reach operator

I A reachability constraint of Σ is a pair R = 〈SR,FR〉 s.t. FR ⊆ Ω and
SR = {s ∈ S | existe um f ∈ (FR)ws}. I An s ∈ SR is called a constrained sort and a symbol
f ∈ FR a constructor.

I A constructor term is a t ∈ T (Σ′,X ′)s , where Σ′ = 〈S ,FR〉, X ′ = Xs if s ∈ S \ SR, and
X ′s = ∅ if s ∈ SR.

A Σ-algebra A, satisfies a reachability constraint R = 〈SR,FR〉, A |= R, if for all s ∈ S and
every a ∈ As , there exists a constructor term t and an evaluation α : X ′ → A s.t. α(t) = a.

Theorem
Let A be a Σ-algebra and R a reachability constraint over Σ. TFAE

1 A |= R
2 for every s ∈ S, and any a ∈ As there exists a constructor term t of sort S such that

A, α |= ∃Var(t).x = t, where x ∈ Xs , x 6∈ Var(t) and α : X → A an evaluation such that
α(x) = a.

3 For all s ∈ S,
A |= (∀x : s)

∨
t∈(TR)s

∃Var(t) x ≈ t.
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Theorem
Let A be a Σ-algebra and R a reachability constraint over Σ. TFAE

1 A |= R
2 for every s ∈ S, and any a ∈ As there exists a constructor term t of sort S such that

A, α |= ∃Var(t).x = t, where x ∈ Xs , x 6∈ Var(t) and α : X → A an evaluation such that
α(x) = a.

3 For all s ∈ S,
A |= (∀x : s)

∨
t∈(TR)s

∃Var(t) x ≈ t.
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Reach operator

reach

Syntax: reach with . : Spec,Opns → Spec

Semantics:

Let R = 〈SR,FR〉 a reachability constraint over Sig(SP)

Sig(reach SP with FR) = Sig(SP)

Mod( reach SP with FR) = {A ∈ Mod(SP)|A |= R}

Example
INTZERO = reach INT with
FR =
0 :→ int;
s,p: int → int;
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Calculus for Structured specifications
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Completeness

SP |= ϕ iff SP ` ϕ.

“⇐” - if `Σ is sound.

“⇒” - if the underlying logic (institution) has pushouts, amalgamation property and `Σ

é complete for the logic semantics.

A more abstract treatment using institutions.
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Stepwise refinement process

The stepwise refinement process is the systematic process by which, from a specification SP0 we
successively build more restrictive specifications by introducing new requirements:

SP0  SP1  SP2  · · · SPn−1  SPn,

where for all 1 ≤ i ≤ n, SPi−1  SPi is a refinement.
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The software development - the stepwise refinement
methodology

Definition (Refinement)

Let SP and SP′ be specifications. SP′ is a refinement of SP if:

Sig(SP) = Sig(SP′);

Mod(SP′) ⊆ Mod(SP);

We write SP  SP′ when SP′ is a refinement of SP.

Definition (σ-refinement)

Let SP and SP′ be algebraic specifications and σ : Sig(SP)→ Sig(SP′). SP′ is a σ-refinement
of SP, in symbols SP  σ SP′, if:

Mod(SP′) �σ⊆ Mod(SP),

where Mod(SP′) �σ= {A′ �σ |A′ ∈ Mod(SP′)}.
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Compositionality

Vertical composition
SP  σ SP′  φ SP′′

Mod(SP′′) �φ◦σ⊆ Mod(SP′) �σ⊆ Mod(SP)

Stepwise Refinement Process:

SP0  σ0 SP1  σ1 SP2  σ2 ... σn−2 SPn−1  σn−1 SPn.

Horizontal composition

SP1  SP ′1, . . . , SPn  SP ′n
op(SP1, . . . , SPn) op(SP ′1, . . . , SP

′
n)

Horizontal composition - not so easy!
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Horizontal composition

Theorem

Let Σ ⊆ Σ′ and suppose SP0  ι SP′0 and SP1  ι SP′1, and φ : Σ′ → Σ′′ a signature
morphisms. Then

1 SP0 ∪ SP1  ι SP′0 ∪ SP′1;

2 translate SP0 by φ �Σ ι translate SP′0 by φ;
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Limitations of the classical approach

spec SPEC1 =
sorts

s;
ops

f : s → s;
Ax + Ir

t ≈ t;
t ≈ t′

t′ ≈ t
t ≈ t′, t′ ≈ t′′

t ≈ t′′
;

t ≈ t′

f (t) ≈ f (t′)

spec SPEC2 =
sorts

s;
ops

ok :→ s, f : s → s, test : s × s → s;
Ax + Ir

test(t, t) ≈ ok;
test(t, t′) ≈ ok

test(t′, t) ≈ ok
;

test(t, t′) ≈ ok, test(t′, t′′) ≈ ok

test(t, t′′) ≈ ok
;

test(t, t′) ≈ ok

test(f (t), f (t′)) ≈ ok
;

Naturally, SPEC1 |= ϕ ≈ ϕ′ iff SPEC2 |= test(ϕ,ϕ′) ≈ ok

However, ι : Sig(SPEC1)→ Sig(SPEC2) is the unique morphism definable between the
specifications of SPEC1 and SPEC2.
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Motivations

Refinement based on signature morphisms

a formula is mapped into another one;

formula structure is preserved;

Thus, it is difficult to deal with some specification transformations such as data
encapsulation, decomposition of operations in atomic transactions, ... which are
useful in practice.

The strategy

Introduce a formalization of the refinement where the translation of
specifications is witnessed by a suitable kind of multifunctions;

Generalize this approach by allowing translations between specifications
expressed in logics with different dimensions;
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Interpretations within algebraic specification

Refinement by interpretations
A translation τ : Eq(Σ)→ P(Eq(Σ′)) interprets SP if there is a specification SP′ over Σ′ such
that:

for all t ≈ t′ ∈ Eq(Sig(SP)),SP |= t ≈ t′ iff SP′ |= τ(t ≈ t′)

A mathematical example
The self translation τ(t ≈ t′) = {¬¬t ≈ ¬¬t′} interprets the specification BA (boolean
algebras) in the specification HA (Heyting algebras).

Definition

SP′ is a refinement by the interpretation τ of SP if

τ interprets SP and

for all t ≈ t′ ∈ Eq(Sig(SP)),SP |= t ≈ t′ implies SP′ |= τ(t ≈ t′)
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Ex. BAMS: replacing operations by atomic transactions

Σ1 :

sorts
Ac ; Int;

ops
bal : Ac → Int;
cred , deb : Ac × Int → Ac

spec BAMS = enrich EQΣ1

and INT with
axioms

bal(cred(x , n)) ≈ bal(x) + n;
bal(deb(x , n)) ≈ bal(x)+(−n).

Σ2 :

sorts
Ac ; Int;

ops
...
val : Ac → Ac

spec BAMS2 = enrich EQΣ2
and INT

with
axioms

bal(val(cred(x , n)) ≈ bal(x) + n;
bal(val(deb(x , n)) ≈ bal(x) + (−n).

τ : Eq(Σ1)→ P(Eq(Σ2)) = {〈op(x), y〉 → {〈val(op(x)), y〉}|op ∈ {cred , deb}}
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Ex. NatBool: encapsulating sorts

� Spec Nat= enrich EQΣNat
by

ops s : nat → nat;

IR
s(x) ≈ s(y)

x ≈ y

� Spec NatEq= enrich BOOL by
sorts nat;
ops s : nat → nat;eq : nat, nat → bool ;
axioms eq(x , x) ≈ true

IR
eq(x , y) ≈ true

eq(y , x) ≈ true
;

eq(x , y) ≈ true , eq(y , z) ≈ true

eq(x , z) ≈ true
;

eq(x , y) ≈ true

eq(s(x), s(y)) ≈ true
;

eq(s(x), s(y)) ≈ true

eq(x , y) ≈ true
.

Taking τ(x : nat ≈ y : nat) = {eq(x : nat, y : nat) ≈ true}, we have

Nat ⇁τ NatEq

M.A.Martins ACM in software Development



Ex. NatBool: encapsulating sorts

� Spec Nat= enrich EQΣNat
by

ops s : nat → nat;

IR
s(x) ≈ s(y)

x ≈ y

� Spec NatEq= enrich BOOL by
sorts nat;
ops s : nat → nat;eq : nat, nat → bool ;
axioms eq(x , x) ≈ true

IR
eq(x , y) ≈ true

eq(y , x) ≈ true
;

eq(x , y) ≈ true , eq(y , z) ≈ true

eq(x , z) ≈ true
;

eq(x , y) ≈ true

eq(s(x), s(y)) ≈ true
;

eq(s(x), s(y)) ≈ true

eq(x , y) ≈ true
.

Taking τ(x : nat ≈ y : nat) = {eq(x : nat, y : nat) ≈ true}, we have

Nat ⇁τ NatEq

M.A.Martins ACM in software Development



k-logics

Goal
Provide a suitable context to deal simultaneously with different specification logics as,
assertional, equational, modal, ...

I Let Σ be a signature and Va a set of variables for Σ. The set of terms in the variables Va
over Σ is denoted by FmΣ(Va).

Definition

A k-logic is a pair L = 〈Σ,`L〉, where Σ is a signature and
`L⊆ P(Fmk

Σ(Va))×Fmk
Σ(Va) a relation such for all Γ∪∆∪{γ̄, ϕ̄} ⊆ Fmk

Σ(Va):

(i) Γ `L γ̄ for each γ̄ ∈ Γ;

(ii) if Γ `L ϕ̄, and ∆ `L γ̄ for each γ̄ ∈ Γ, then ∆ `L ϕ̄;

(iii) if Γ `L ϕ̄, then σ(Γ) `L σ(ϕ̄) for every substitution σ.
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Semantics

A pair A = 〈A,F 〉 is a k-data structure over Σ if
A is a Σ-algebra over Σ

F is a subset of Ak .

Semantic consequence
Γ |=A ϕ̄ if for any assignment h : Va→ A, h(Γ) ⊆ F implies h(ϕ̄) ∈ F .

Familiar examples
1-data structures: models of CPC, e.g. A = 〈A,F 〉 over a sentential language with A a

Boolean algebra and F = {>};
2-data structures: models of the (free) equational logic over Σ, e.g. A = 〈A,F 〉 over a

multi-sorted signature with F = idA;
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Translating k-logics

Definition ((k ,m)-translation from Σ to Σ′)

τ : Fmk
Σ(Va)→ P(Fmm

Σ′ (Va))

Definition (Interpretation)

τ interprets L if there is a m-logic L′ over Σ′ such that, for any Γ ∪ {ϕ̄} ⊆ Fmk
Σ(Va),

Γ `L ϕ̄ iff τ(Γ) `L′ τ(ϕ̄).
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A paradigmatic example

BA
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τ -model class

Definition (τ -model)

Let τ : Fmk
Σ(Va)→ P(Fmm

Σ′ (Va)) and L over Σ. An l-data structure A is a τ -model of L if for

any Γ ∪ {ϕ̄} ⊆ Fmk
Σ(Va),

Γ `L ϕ̄ implies τ(Γ) |=A τ(ϕ̄).

Modτ (L) denotes the class of all τ -model of L.

Theorem

If τ interprets L then |=Modτ (L) is the largest τ -interpretation of L.

Theorem
Let τ be a translation that commutes with substitutions. Then
if `L is axiomatized by Φ then |=Modτ (L) is axiomatized by τ(Φ).
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(Generalized) refinements by translation

Definition (Refinement via interpretation)

Let τ : Fmk
Σ(Va)→ P(Fmm

Σ′ (Va)) be an interpretation of L. L⇁τ L′, if for any

Γ ∪ {ϕ̄} ⊆ Fmk
Σ(Va),

Γ `L ϕ̄ ⇒ τ(Γ) `L′ τ(ϕ̄).

Example
I -

CPC ⇁id K

since K is obtained from CPC by adding � to the signature, the axiom

� (p → q)→ (� p → � q) and the inference rule
p

� p
,

II-

CPC ⇁τ HA⇁ρ IPC

where τ(p) = {〈¬¬p,>〉} and ρ(〈p, q〉) = {p → q, q → p}.
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Behavioral specification

Principle
The satisfaction of the requirements does not need to be strict, and may be checked up to a
behavioral relation.

Context
In the observational approach/modern algebraic specification of abstract data types are split in
two types of data representation: the representation types for internal data (data hiding) and
the types of representation of the actual data, i.e. the data that we have access direct (visible or
observable data). The types of hidden data representation are used to represent encapsulated
data, which the user has access only via procedures (ie, complex operations) with visible output
and taking such data as input.

I Data encapsulation is very important, for security reasons AND to
allow effective and fast software updates.
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Observational signature

Let Σ = 〈S,Ω〉 and Obs ⊆ S, the observational signature Σ w.r.t Obs is the pair 〈Σ,Obs〉. The
sorts Obs are called observable sorts.

Example
Automata. The input and the output sorts (In and out) are considered the observable sorts and
the state sort Z as hidden.

Example
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Observational equality

Definition (Contexts and Observable Contexts)

Let 〈Σ,Obs〉 be an observational signature, X = (Xs )s∈S a family of infinite countable sets of
variables (pairwise disjoint) and Z = 〈{zs}〉s∈S an S-singular family of sets (pairwise disjoint) of
different variables from the variables in X . pausa An s-context over Σ is a term
c ∈ T (Σ,X ∪ {zs})s′ , for some s′ ∈ S, with at least one occurrence of the variable zs .

If s′ ∈ Obs, c is called an s-observable context.

I Some Variants: Γ-contexts.

Definition (Observational equality)

Let 〈Σ,Obs〉 be an observational signature and A a Σ-algebra. a, a′ ∈ As are observationally
equal w.r.t. Obs, a ≡Obs

A a′, if for any observable s-context c(x1 : s1, . . . , xn : sn, zs ), and every
b1 ∈ AS1

, . . . , bn ∈ ASn ,

cA(b1, . . . , bn, a) = cA(b1, . . . , bn, a
′).

Fact
≡Obs

A is a congruence on A.
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Behavioral satisfaction

Definition

Let 〈Σ,Obs〉be an observational signature, A is a Σ-algebra and t, t′ ∈ T (Σ,X )s . A é is
behavioral model of t ≈ t′, A |=Obs t ≈ t′, if for any observable s-context
c(x1 :s1, . . . , xn :sn, zs ) A |= c[t] ≈ c[t′].

I C |=Obs t ≈ t′ if for any A ∈ C A |=Obs t ≈ t′.

I SP |=Obs t ≈ t′ if Mod(SP) |=Obs t ≈ t′.

I ThObs(C) = {t ≈ t′ ∈ Eq(Σ)|C |=Obs t ≈ t′}.

Theorem

1 A |=Obs t ≈ t′ iff A/ ≡Obs
A |= t ≈ t′;

2 SP |=Obs t ≈ t′ iff SPObs |= t ≈ t′;

3 ThObs(C) = Th(CObs),

where C Obs = {A/ ≡Obs
A |A ∈ C} and SPObs = Mod(SP)Obs.
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behavioral model of t ≈ t′, A |=Obs t ≈ t′, if for any observable s-context
c(x1 :s1, . . . , xn :sn, zs ) A |= c[t] ≈ c[t′].

I C |=Obs t ≈ t′ if for any A ∈ C A |=Obs t ≈ t′.

I SP |=Obs t ≈ t′ if Mod(SP) |=Obs t ≈ t′.

I ThObs(C) = {t ≈ t′ ∈ Eq(Σ)|C |=Obs t ≈ t′}.

Theorem

1 A |=Obs t ≈ t′ iff A/ ≡Obs
A |= t ≈ t′;

2 SP |=Obs t ≈ t′ iff SPObs |= t ≈ t′;

3 ThObs(C) = Th(CObs),

where C Obs = {A/ ≡Obs
A |A ∈ C} and SPObs = Mod(SP)Obs.

M.A.Martins ACM in software Development



Behavioral satisfaction

Definition

Let 〈Σ,Obs〉be an observational signature, A is a Σ-algebra and t, t′ ∈ T (Σ,X )s . A é is
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Coinduction

Theorem

≡Obs
A is the largest congruence on A which is the identity in AObs. I.e., if ≈ is a congruence s.t.

(≈)Obs = ∆AObs
(called hidden congruence), then ≈ ⊆ ≡Obs

A .

Coinduction Method

Let 〈Σ,Obs〉 be an observational signature and A a Σ-algebra. a, a′ ∈ As : To Show that
a ≡Obs

A a′, do

1 Define an appropriated binary relation R on A;

2 Show that R is an hidden congruence;

3 Show that a R a′.

Example

In LFlags we have that revA(revA(a)) ≡A
Obs a. However, rev(rev(x)) ≈ x is not an equational

consequence of the specification LFlags .
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An example

Some equations are consequences of the specification (use CafeOBJ).

E in (S&(S ′US)) ≈ E in S

And some others are not!

(S&(S ′US)) ≈ S

However it is behavioral valid. Use the following relation

S R S iff ∀e e inS iff e in S ′
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Complementary topics

Related issues:

Behavioral refinement

Definability of the observational equality

Semi-automatic provers for behavioral requirements

Calculus for structured behavioral specifications
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