Algebraic and Coalgebraic methods in software development

Manuel A. Martins ${ }^{1}$

MAP-i, 2017/18

[^0]
Signature morphism

Definition

Let $\Sigma=(S, \Omega)$ and $\Sigma^{\prime}=\left(S^{\prime}, \Omega^{\prime}\right)$ be signatures. A signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$, is a pair $\sigma=\left(\sigma_{\text {sort }}, \sigma_{\text {op }}\right)$, where

- $\sigma_{\text {sorts }}: S \rightarrow S^{\prime}$

Signature morphism

Definition

Let $\Sigma=(S, \Omega)$ and $\Sigma^{\prime}=\left(S^{\prime}, \Omega^{\prime}\right)$ be signatures. A signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$, is a pair $\sigma=\left(\sigma_{\text {sort }}, \sigma_{\text {op }}\right)$, where

- $\sigma_{\text {sorts }}: S \rightarrow S^{\prime}$ and
- $\sigma_{\text {op }}: \Omega \rightarrow \Omega^{\prime}$ is a family of functions respecting the type of operations symbols in Ω,

Signature morphism

Definition

Let $\Sigma=(S, \Omega)$ and $\Sigma^{\prime}=\left(S^{\prime}, \Omega^{\prime}\right)$ be signatures. A signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$, is a pair $\sigma=\left(\sigma_{\text {sort }}, \sigma_{\text {op }}\right)$, where

- $\sigma_{\text {sorts }}: S \rightarrow S^{\prime}$ and
- $\sigma_{\text {op }}: \Omega \rightarrow \Omega^{\prime}$ is a family of functions respecting the type of operations symbols in Ω, that is, $\sigma_{\text {op }}=\left(\sigma_{\omega, s}: \Omega_{\omega, s} \rightarrow \Omega_{\sigma_{\text {sorts }}}^{\prime}(\omega), \sigma_{\text {sorts }}(s)\right)_{\omega \in S^{*}, s \in S}$ (where for $\left.\omega=s_{1} \ldots s_{n} \in S^{*}, \sigma_{\text {sorts }}^{*}(\omega)=\sigma_{\text {sorts }}\left(s_{1}\right) \ldots \sigma_{\text {sorts }}\left(s_{n}\right)\right)$.

Signature morphism

Definition

Let $\Sigma=(S, \Omega)$ and $\Sigma^{\prime}=\left(S^{\prime}, \Omega^{\prime}\right)$ be signatures. A signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$, is a pair $\sigma=\left(\sigma_{\text {sort }}, \sigma_{\text {op }}\right)$, where

- $\sigma_{\text {sorts }}: S \rightarrow S^{\prime}$ and
- $\sigma_{\text {op }}: \Omega \rightarrow \Omega^{\prime}$ is a family of functions respecting the type of operations symbols in Ω, that is, $\sigma_{\text {op }}=\left(\sigma_{\omega, s}: \Omega_{\omega, s} \rightarrow \Omega_{\sigma_{\text {sorts }}}^{\prime}(\omega), \sigma_{\text {sorts }}(s)\right)_{\omega \in S^{*}, s \in S}$ (where for $\left.\omega=s_{1} \ldots s_{n} \in S^{*}, \sigma_{\text {sorts }}^{*}(\omega)=\sigma_{\text {sorts }}\left(s_{1}\right) \ldots \sigma_{\text {sorts }}\left(s_{n}\right)\right)$.

Renaming, Adding, Identifying

Definition (Reduct Algebra)

Let \mathbf{A}^{\prime} be a Σ^{\prime}-algebra, and $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ be a signature morphism. The σ-reduct of \mathbf{A}^{\prime} is the Σ-algebra $\mathbf{A}^{\prime} \upharpoonright_{\sigma}$ defined as follows:

- for any $s \in S,\left(A^{\prime} \upharpoonright_{\sigma}\right)_{s}=A_{\sigma(s)}^{\prime}$,

Definition (Reduct Algebra)

Let \mathbf{A}^{\prime} be a Σ^{\prime}-algebra, and $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ be a signature morphism. The σ-reduct of \mathbf{A}^{\prime} is the Σ-algebra $\mathbf{A}^{\prime} \upharpoonright_{\sigma}$ defined as follows:

- for any $s \in S,\left(A^{\prime} \upharpoonright_{\sigma}\right)_{s}=A_{\sigma(s)}^{\prime}$, and
- for all $f: s_{1}, \ldots, s_{n} \rightarrow s \in \Sigma$,

$$
f^{\left.\mathbf{A}^{\prime}\right|_{\sigma}}=\sigma_{O p}(f)^{\mathbf{A}^{\prime}} .
$$

Definition (Reduct Algebra)

Let \mathbf{A}^{\prime} be a Σ^{\prime}-algebra, and $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ be a signature morphism. The σ-reduct of \mathbf{A}^{\prime} is the Σ-algebra $\mathbf{A}^{\prime} \upharpoonright_{\sigma}$ defined as follows:

- for any $s \in S,\left(A^{\prime} \upharpoonright_{\sigma}\right)_{s}=A_{\sigma(s)}^{\prime}$, and
- for all $f: s_{1}, \ldots, s_{n} \rightarrow s \in \Sigma$,

$$
f^{\left.\mathbf{A}^{\prime}\right|_{\sigma}}=\sigma_{O p}(f)^{\mathbf{A}^{\prime}} .
$$

Given a morphism $h^{\prime}: \mathbf{A}^{\prime} \rightarrow \mathbf{B}^{\prime}$, the σ-reduct de h^{\prime} is $h^{\prime} \upharpoonright_{\sigma}: A^{\prime} \upharpoonright_{\sigma} \rightarrow B^{\prime} \upharpoonright_{\sigma}$ defined by $\left(h^{\prime} \upharpoonright_{\sigma}\right)_{s}=h_{\sigma(s)}^{\prime}$

Satisfaction lemma

Let $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ be a signature morphism and X a set of variables for Σ. Take $X_{v}^{\prime}=\biguplus\left\{X_{s}: \sigma_{\text {sorts }}(s)=v\right\}$

Extension to terms

Satisfaction lemma

Let $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ be a signature morphism and X a set of variables for Σ. Take $X_{v}^{\prime}=\biguplus\left\{X_{s}: \sigma_{\text {sorts }}(s)=v\right\}$

Extension to terms

$\widehat{\sigma}: \mathrm{T}(\Sigma, \mathrm{X}) \rightarrow\left(T\left(\Sigma^{\prime}, X^{\prime}\right)\right) \upharpoonright_{\sigma}$
(i) If $t=x: s$, then $\widehat{\sigma}(t)=x: \sigma(s)$;
(ii) If $t=c$, then $\widehat{\sigma}(t)=\sigma(c)$;
(iii) If $t=f\left(t_{1}, \ldots, t_{n}\right)$, with $f: s_{1}, \ldots, s_{n} \rightarrow s \in \Sigma$, then $\widehat{\sigma}(t)=\sigma(f)\left(\widehat{\sigma}\left(t_{0}\right), \ldots, \widehat{\sigma}\left(t_{n}\right)\right)$.

Satisfaction lemma

Let $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ be a signature morphism and X a set of variables for Σ. Take $X_{v}^{\prime}=\biguplus\left\{X_{s}: \sigma_{\text {sorts }}(s)=v\right\}$

Extension to terms

$\widehat{\sigma}: \mathrm{T}(\Sigma, \mathrm{X}) \rightarrow\left(T\left(\Sigma^{\prime}, X^{\prime}\right)\right) \upharpoonright_{\sigma}$
(i) If $t=x: s$, then $\widehat{\sigma}(t)=x: \sigma(s)$;
(ii) If $t=c$, then $\widehat{\sigma}(t)=\sigma(c)$;
(iii) If $t=f\left(t_{1}, \ldots, t_{n}\right)$, with $f: s_{1}, \ldots, s_{n} \rightarrow s \in \Sigma$, then $\widehat{\sigma}(t)=\sigma(f)\left(\widehat{\sigma}\left(t_{0}\right), \ldots, \widehat{\sigma}\left(t_{n}\right)\right)$.

And then, in a natural way, to Flas ...

Satisfaction lemma

Let $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ be a signature morphism and X a set of variables for Σ.
Take $X_{v}^{\prime}=\biguplus\left\{X_{s}: \sigma_{\text {sorts }}(s)=v\right\}$

Extension to terms

$\widehat{\sigma}: \mathrm{T}(\Sigma, \mathrm{X}) \rightarrow\left(T\left(\Sigma^{\prime}, X^{\prime}\right)\right) \upharpoonright_{\sigma}$
(i) If $t=x: s$, then $\widehat{\sigma}(t)=x: \sigma(s)$;
(ii) If $t=c$, then $\widehat{\sigma}(t)=\sigma(c)$;
(iii) If $t=f\left(t_{1}, \ldots, t_{n}\right)$, with $f: s_{1}, \ldots, s_{n} \rightarrow s \in \Sigma$, then $\widehat{\sigma}(t)=\sigma(f)\left(\widehat{\sigma}\left(t_{0}\right), \ldots, \widehat{\sigma}\left(t_{n}\right)\right)$.

And then, in a natural way, to Flas ..

Satisfaction Lemma

Let Σ, Σ^{\prime} be signatures, \mathbf{A}^{\prime} be a Σ^{\prime}-algebra and ϕ be a Σ-equation. Then,

$$
\mathbf{A}^{\prime} \models \sigma(\phi) \text { iff } \mathbf{A}^{\prime} \upharpoonright_{\sigma} \models \phi .
$$

Satisfaction lemma

Let $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ be a signature morphism and X a set of variables for Σ.
Take $X_{v}^{\prime}=\biguplus\left\{X_{s}: \sigma_{\text {sorts }}(s)=v\right\}$

Extension to terms

$\widehat{\sigma}: \mathrm{T}(\Sigma, \mathrm{X}) \rightarrow\left(T\left(\Sigma^{\prime}, X^{\prime}\right)\right) \upharpoonright_{\sigma}$
(i) If $t=x: s$, then $\widehat{\sigma}(t)=x: \sigma(s)$;
(ii) If $t=c$, then $\widehat{\sigma}(t)=\sigma(c)$;
(iii) If $t=f\left(t_{1}, \ldots, t_{n}\right)$, with $f: s_{1}, \ldots, s_{n} \rightarrow s \in \Sigma$, then $\widehat{\sigma}(t)=\sigma(f)\left(\widehat{\sigma}\left(t_{0}\right), \ldots, \widehat{\sigma}\left(t_{n}\right)\right)$.

And then, in a natural way, to Flas ..

Satisfaction Lemma

Let Σ, Σ^{\prime} be signatures, \mathbf{A}^{\prime} be a Σ^{\prime}-algebra and ϕ be a Σ-equation. Then,

$$
\mathbf{A}^{\prime} \models \sigma(\phi) \text { iff } \mathbf{A}^{\prime} \upharpoonright_{\sigma} \models \phi .
$$

Corollary

$$
\Phi \models_{\Sigma} t_{1} \approx t_{2} \quad \Rightarrow \quad \sigma(\Phi) \models_{\Sigma^{\prime}} \sigma\left(t_{1} \approx t_{2}\right) .
$$

Satisfaction lemma

Let $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ be a signature morphism and X a set of variables for Σ.
Take $X_{v}^{\prime}=\biguplus\left\{X_{s}: \sigma_{\text {sorts }}(s)=v\right\}$

Extension to terms

$\widehat{\sigma}: \mathrm{T}(\Sigma, \mathrm{X}) \rightarrow\left(T\left(\Sigma^{\prime}, X^{\prime}\right)\right) \upharpoonright_{\sigma}$
(i) If $t=x: s$, then $\widehat{\sigma}(t)=x: \sigma(s)$;
(ii) If $t=c$, then $\widehat{\sigma}(t)=\sigma(c)$;
(iii) If $t=f\left(t_{1}, \ldots, t_{n}\right)$, with $f: s_{1}, \ldots, s_{n} \rightarrow s \in \Sigma$, then $\widehat{\sigma}(t)=\sigma(f)\left(\widehat{\sigma}\left(t_{0}\right), \ldots, \widehat{\sigma}\left(t_{n}\right)\right)$.

And then, in a natural way, to Flas ..

Satisfaction Lemma

Let Σ, Σ^{\prime} be signatures, \mathbf{A}^{\prime} be a Σ^{\prime}-algebra and ϕ be a Σ-equation. Then,

$$
\mathbf{A}^{\prime} \models \sigma(\phi) \text { iff } \mathbf{A}^{\prime} \upharpoonright_{\sigma} \models \phi .
$$

Corollary

$$
\Phi \models_{\Sigma} t_{1} \approx t_{2} \quad \Rightarrow \quad \sigma(\Phi) \models_{\Sigma^{\prime}} \sigma\left(t_{1} \approx t_{2}\right) .
$$

- When the implication " \Leftarrow " also holds, the morphism is called conservative.

Translations

Translations

Structured specifications

We follow Sannella and Tarlecki [ST88], by assuming that the software systems, described by (algebraic) specifications, are adequately represented as models of an appropriated underlying logic. Therefore, a specification describes a signature and a class the models over this signature - the models of the specification.

Structured specifications

We follow Sannella and Tarlecki [ST88], by assuming that the software systems, described by (algebraic) specifications, are adequately represented as models of an appropriated underlying logic. Therefore, a specification describes a signature and a class the models over this signature - the models of the specification.

Definition

A specification $S P$ is a pair $\langle\Sigma, K\rangle$, where Σ is a signature and K is a class of Σ-algebra. We will represent Σ by Sig(SP) and K by $\operatorname{Mod}(S P)$ - the class of models of SP.

Structured specifications

We follow Sannella and Tarlecki [ST88], by assuming that the software systems, described by (algebraic) specifications, are adequately represented as models of an appropriated underlying logic. Therefore, a specification describes a signature and a class the models over this signature - the models of the specification.

Definition

A specification $S P$ is a pair $\langle\Sigma, K\rangle$, where Σ is a signature and K is a class of Σ-algebra. We will represent Σ by $\operatorname{Sig}(S P)$ and K by $\operatorname{Mod}(S P)$ - the class of models of $S P$.

Structured Specifications, Why?

Structured specifications

We follow Sannella and Tarlecki [ST88], by assuming that the software systems, described by (algebraic) specifications, are adequately represented as models of an appropriated underlying logic. Therefore, a specification describes a signature and a class the models over this signature - the models of the specification.

Definition

A specification $S P$ is a pair $\langle\Sigma, K\rangle$, where Σ is a signature and K is a class of Σ-algebra. We will represent Σ by $\operatorname{Sig}(S P)$ and K by $\operatorname{Mod}(S P)$ - the class of models of SP.

Structured Specifications, Why?
When we deal with real complex systems, it is worth to systematize the algebraic programme development. It is in this way that Structured Specifications appear based in the compositional principle.

Structured specifications

We follow Sannella and Tarlecki [ST88], by assuming that the software systems, described by (algebraic) specifications, are adequately represented as models of an appropriated underlying logic. Therefore, a specification describes a signature and a class the models over this signature - the models of the specification.

Definition

A specification $S P$ is a pair $\langle\Sigma, K\rangle$, where Σ is a signature and K is a class of Σ-algebra. We will represent Σ by $\operatorname{Sig}(S P)$ and K by $\operatorname{Mod}(S P)$ - the class of models of $S P$.

Structured Specifications, Why?
When we deal with real complex systems, it is worth to systematize the algebraic programme development. It is in this way that Structured Specifications appear based in the compositional principle.

We build more complex specification from simpler ones following the modular development of programmes.

Basic operators

(1) flat specifications - to define specifications by the class of models of a set of axioms Φ over a signature Σ;

Basic operators

(1) flat specifications - to define specifications by the class of models of a set of axioms Φ over a signature Σ;
(2) union - to define a specification from the union of two given specifications over a same signature.

Basic operators

(1) flat specifications - to define specifications by the class of models of a set of axioms Φ over a signature Σ;
(2) union - to define a specification from the union of two given specifications over a same signature.
(3) translate - to define a specification over a signature Σ^{\prime} from a specification over another specification over a signature Σ using a signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$.

Basic operators

(1) flat specification - to define specifications by the class of models of a set of axioms Φ over a signature Σ;
(2) union - to define a specification from the union of two given specifications over a same signature.
(3) translate - to define a specification over a signature Σ^{\prime} from a specification over another specification over a signature Σ using a signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$.
(4) derive (or Hidding) - to define a specification over a signature Σ from a specification over another specification over a signature Σ^{\prime} using a signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$, by considering the reducts.

Basic operators

- flat
- Syntax:
$<., .>$: Sig, Sentences \rightarrow Spec
- Semantics: Σ a signature and Φ a set of sentences over Σ. $\operatorname{Sig}(<\Sigma, \Phi>)=\Sigma$ $\operatorname{Mod}(<\Sigma, \Phi>)={ }_{\operatorname{def}}\{\mathbf{A} \in \operatorname{Alg}(\Sigma) \mid \mathbf{A} \models \Phi\}$

Basic operators

- flat
- Syntax:
$<., .>$: Sig, Sentences \rightarrow Spec
- Semantics: Σ a signature and Φ a set of sentences over Σ.
$\operatorname{Sig}(<\Sigma, \Phi>)=\Sigma$
$\operatorname{Mod}(<\Sigma, \Phi>)={ }_{\operatorname{def}}\{\mathbf{A} \in \operatorname{Alg}(\Sigma) \mid \mathbf{A} \models \Phi\}$
- union

Let $S P_{1}$ e $S P_{2}$ be specifications over a same signature Σ :

- Syntax:
$<. \cup .>$: Spec, Spec \rightarrow Spec
- Sematics:
$\operatorname{Sig}(S P 1 \cup S P 2)=\operatorname{Sig}\left(S P_{1}\right)=\operatorname{Sig}\left(S P_{2}\right)$
$\operatorname{Mod}(S P 1 \cup S P 2)={ }_{d e f} \operatorname{Mod}\left(S P_{1}\right) \cap \operatorname{Mod}\left(S P_{2}\right)$

Basic operators

- translate
- Syntax:
translate . by . : Spec, morph \rightarrow Spec
- Semantics: let $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ be a signature morphism and $S P$ a specification with $\operatorname{Sig}(S P)=\Sigma$.
$\operatorname{Sig}($ translate $S P$ by $\sigma)={ }_{d e f} \Sigma^{\prime}$
$\operatorname{Mod}($ translate $S P$ by $\sigma)=\operatorname{def}\left\{\mathbf{A}^{\prime} \in \operatorname{Alg}\left(\Sigma^{\prime}\right) \mid \mathbf{A}^{\prime} \upharpoonright_{\sigma} \in \operatorname{Mod}(S P)\right\}$.

Basic operators

- translate
- Syntax:
translate . by .: Spec, morph \rightarrow Spec
- Semantics: let $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ be a signature morphism and $S P$ a specification with $\operatorname{Sig}(S P)=\Sigma$.
$\operatorname{Sig}($ translate $S P$ by $\sigma)==_{\text {def }} \Sigma^{\prime}$
$\operatorname{Mod}($ translate $S P$ by $\sigma)={ }_{\operatorname{def}}\left\{\mathbf{A}^{\prime} \in \operatorname{Alg}\left(\Sigma^{\prime}\right) \mid \mathbf{A}^{\prime} \upharpoonright_{\sigma} \in \operatorname{Mod}(S P)\right\}$.
- derive (or Hiding)
- Syntax:
derive from . by . : Spec, morph \rightarrow Spec
- Semantics: Let $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ be a signature morphism morfismo and $S P$ a specification with $\operatorname{Sig}(S P)=\Sigma^{\prime}$.
$\operatorname{Sig}($ derive from $S P$ by $\sigma)==_{\text {def }} \Sigma$
$\operatorname{Mod}($ derive from $S P$ by $\sigma)={ }_{\text {def }}\left\{\mathbf{A}^{\prime} \upharpoonright_{\sigma} \in \operatorname{Alg}(\Sigma) \mid \mathbf{A}^{\prime} \in \operatorname{Mod}(S P)\right\}$.

Basic operators

- translate
- Syntax:
translate . by .: Spec, morph \rightarrow Spec
- Semantics: let $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ be a signature morphism and $S P$ a specification with $\operatorname{Sig}(S P)=\Sigma$.
$\operatorname{Sig}($ translate $S P$ by $\sigma)==_{\text {def }} \Sigma^{\prime}$
$\operatorname{Mod}($ translate $S P$ by $\sigma)={ }_{\operatorname{def}}\left\{\mathbf{A}^{\prime} \in \operatorname{Alg}\left(\Sigma^{\prime}\right) \mid \mathbf{A}^{\prime} \upharpoonright_{\sigma} \in \operatorname{Mod}(S P)\right\}$.
- derive (or Hiding)
- Syntax:
derive from . by . : Spec, morph \rightarrow Spec
- Semantics: Let $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ be a signature morphism morfismo and $S P$ a specification with $\operatorname{Sig}(S P)=\Sigma^{\prime}$.
$\operatorname{Sig}($ derive from $S P$ by $\sigma)==_{\text {def }} \Sigma$
$\operatorname{Mod}($ derive from $S P$ by $\sigma)={ }_{\text {def }}\left\{\mathbf{A}^{\prime} \upharpoonright_{\sigma} \in \operatorname{Alg}(\Sigma) \mid \mathbf{A}^{\prime} \in \operatorname{Mod}(S P)\right\}$.
A structured specification is a specification $S P$ obtained by a finite number of applications o these 4 operators.

Equational case

Not all algebraic specification (classe of algebras) can be axiomatized by a set of equations. So,

Fact
Not all specifications are flat specifications

Equational case

Not all algebraic specification (classe of algebras) can be axiomatized by a set of equations.
So,

Fact

Not all specifications are flat specifications

Birkhoff's theorem

A specification is flat iff the class of algebras is closed by subalgebras, homomorphic images and products.

Equational case

Not all algebraic specification (classe of algebras) can be axiomatized by a set of equations.
So,

Fact

Not all specifications are flat specifications

Birkhoff's theorem

A specification is flat iff the class of algebras is closed by subalgebras, homomorphic images and products.

Even with first-order formulas it is impossible!

More useful operators

- enrich: To add new sorts, new axioms and new operation symbols

Let $\Sigma=(S, \Omega), \Sigma^{\prime}=\left(S \cup S^{\prime}, \Omega \cup \Omega^{\prime}\right)$ and $\iota: \Sigma \hookrightarrow \Sigma^{\prime}$ the inclusion morphism.
enrich $S P$ by sorts S^{\prime} opns F^{\prime} axioms $\Phi^{\prime}=($ translate $S P$ by $\iota) \cup\left\langle\Sigma^{\prime}, \Phi^{\prime}\right\rangle$

More useful operators

- enrich: To add new sorts, new axioms and new operation symbols

Let $\Sigma=(S, \Omega), \Sigma^{\prime}=\left(S \cup S^{\prime}, \Omega \cup \Omega^{\prime}\right)$ and $\iota: \Sigma \hookrightarrow \Sigma^{\prime}$ the inclusion morphism.
enrich $S P$ by sorts S^{\prime} opns F^{\prime} axioms $\Phi^{\prime}=($ translate $S P$ by $\iota) \cup\left\langle\Sigma^{\prime}, \Phi^{\prime}\right\rangle$

- export: A particular case of derive, the morphism is the inclusion, i.e., let $\iota: \Sigma \hookrightarrow \Sigma^{\prime}:$
export Σ^{\prime} from $S P=$ derive from $S P$ by ι.

Reach operator

- A reachability constraint of Σ is a pair $\mathcal{R}=\left\langle S_{\mathcal{R}}, F_{\mathcal{R}}\right\rangle$ s.t. $F_{\mathcal{R}} \subseteq \Omega$ and $S_{\mathcal{R}}=\left\{s \in S \mid\right.$ existe um $\left.f \in\left(F_{\mathcal{R}}\right)_{w s}\right\} . \boxtimes$ An $s \in S_{\mathcal{R}}$ is called a constrained sort and a symbol $f \in F_{\mathcal{R}}$ a constructor.

Reach operator

- A reachability constraint of Σ is a pair $\mathcal{R}=\left\langle S_{\mathcal{R}}, F_{\mathcal{R}}\right\rangle$ s.t. $F_{\mathcal{R}} \subseteq \Omega$ and $S_{\mathcal{R}}=\left\{s \in S \mid\right.$ existe um $\left.f \in\left(F_{\mathcal{R}}\right)_{w s}\right\} . \downarrow$ An $s \in S_{\mathcal{R}}$ is called a constrained sort and a symbol $f \in F_{\mathcal{R}}$ a constructor.
- A constructor term is a $t \in T\left(\Sigma^{\prime}, X^{\prime}\right)_{s}$, where $\Sigma^{\prime}=\left\langle S, F_{\mathcal{R}}\right\rangle, X^{\prime}=X_{s}$ if $s \in S \backslash S_{\mathcal{R}}$, and $X_{s}^{\prime}=\emptyset$ if $s \in S_{\mathcal{R}}$.

Reach operator

- A reachability constraint of Σ is a pair $\mathcal{R}=\left\langle S_{\mathcal{R}}, F_{\mathcal{R}}\right\rangle$ s.t. $F_{\mathcal{R}} \subseteq \Omega$ and $S_{\mathcal{R}}=\left\{s \in S \mid\right.$ existe um $\left.f \in\left(F_{\mathcal{R}}\right)_{w s}\right\} . \downarrow$ An $s \in S_{\mathcal{R}}$ is called a constrained sort and a symbol $f \in F_{\mathcal{R}}$ a constructor.
- A constructor term is a $t \in T\left(\Sigma^{\prime}, X^{\prime}\right)_{s}$, where $\Sigma^{\prime}=\left\langle S, F_{\mathcal{R}}\right\rangle, X^{\prime}=X_{s}$ if $s \in S \backslash S_{\mathcal{R}}$, and $X_{s}^{\prime}=\emptyset$ if $s \in S_{\mathcal{R}}$.

A Σ-algebra \mathbf{A}, satisfies a reachability constraint $\mathcal{R}=\left\langle S_{\mathcal{R}}, F_{\mathcal{R}}\right\rangle, \mathbf{A} \models \mathcal{R}$, if for all $s \in S$ and every $a \in A_{s}$, there exists a constructor term t and an evaluation $\alpha: X^{\prime} \rightarrow A$ s.t. $\alpha(t)=a$.

Reach operator

- A reachability constraint of Σ is a pair $\mathcal{R}=\left\langle S_{\mathcal{R}}, F_{\mathcal{R}}\right\rangle$ s.t. $F_{\mathcal{R}} \subseteq \Omega$ and $S_{\mathcal{R}}=\left\{s \in S \mid\right.$ existe um $\left.f \in\left(F_{\mathcal{R}}\right)_{w s}\right\} . \quad$ An $s \in S_{\mathcal{R}}$ is called a constrained sort and a symbol $f \in F_{\mathcal{R}}$ a constructor.
- A constructor term is a $t \in T\left(\Sigma^{\prime}, X^{\prime}\right)_{s}$, where $\Sigma^{\prime}=\left\langle S, F_{\mathcal{R}}\right\rangle, X^{\prime}=X_{s}$ if $s \in S \backslash S_{\mathcal{R}}$, and $X_{s}^{\prime}=\emptyset$ if $s \in S_{\mathcal{R}}$.
A Σ-algebra \mathbf{A}, satisfies a reachability constraint $\mathcal{R}=\left\langle S_{\mathcal{R}}, F_{\mathcal{R}}\right\rangle, \mathbf{A} \models \mathcal{R}$, if for all $s \in S$ and every $a \in A_{s}$, there exists a constructor term t and an evaluation $\alpha: X^{\prime} \rightarrow A$ s.t. $\alpha(t)=a$.

Theorem

Let \mathbf{A} be a Σ-algebra and \mathcal{R} a reachability constraint over Σ. TFAE
(1) $\mathbf{A} \models \mathcal{R}$
(2) for every $s \in S$, and any $a \in A_{s}$ there exists a constructor term t of sort S such that $\mathbf{A}, \alpha \models \exists \operatorname{Var}(t) \cdot x=t$, where $x \in X_{s}, x \notin \operatorname{Var}(t)$ and $\alpha: X \rightarrow A$ an evaluation such that $\alpha(x)=a$.

Reach operator

- A reachability constraint of Σ is a pair $\mathcal{R}=\left\langle S_{\mathcal{R}}, F_{\mathcal{R}}\right\rangle$ s.t. $F_{\mathcal{R}} \subseteq \Omega$ and $S_{\mathcal{R}}=\left\{s \in S \mid\right.$ existe um $\left.f \in\left(F_{\mathcal{R}}\right)_{w s}\right\} . \quad$ An $s \in S_{\mathcal{R}}$ is called a constrained sort and a symbol $f \in F_{\mathcal{R}}$ a constructor.
- A constructor term is a $t \in T\left(\Sigma^{\prime}, X^{\prime}\right)_{s}$, where $\Sigma^{\prime}=\left\langle S, F_{\mathcal{R}}\right\rangle, X^{\prime}=X_{s}$ if $s \in S \backslash S_{\mathcal{R}}$, and $X_{s}^{\prime}=\emptyset$ if $s \in S_{\mathcal{R}}$.

A Σ-algebra \mathbf{A}, satisfies a reachability constraint $\mathcal{R}=\left\langle S_{\mathcal{R}}, F_{\mathcal{R}}\right\rangle, \mathbf{A} \models \mathcal{R}$, if for all $s \in S$ and every $a \in A_{s}$, there exists a constructor term t and an evaluation $\alpha: X^{\prime} \rightarrow A$ s.t. $\alpha(t)=a$.

Theorem

Let \mathbf{A} be a Σ-algebra and \mathcal{R} a reachability constraint over Σ. TFAE
(1) $\mathbf{A} \models \mathcal{R}$
(2) for every $s \in S$, and any $a \in A_{s}$ there exists a constructor term t of sort S such that $\mathrm{A}, \alpha \models \exists \operatorname{Var}(t) \cdot x=t$, where $x \in X_{s}, x \notin \operatorname{Var}(t)$ and $\alpha: X \rightarrow A$ an evaluation such that $\alpha(x)=a$.
(3) For all $s \in S$,

$$
\mathbf{A} \models(\forall x: s) \bigvee_{t \in\left(T_{\mathcal{R}}\right)_{s}} \exists \operatorname{Var}(t) x \approx t
$$

Reach operator

reach

- Syntax: reach with .: Spec, Opns \rightarrow Spec
- Semantics:

Let $\mathcal{R}=\left\langle S_{\mathcal{R}}, F_{\mathcal{R}}\right\rangle$ a reachability constraint over $\operatorname{Sig}(S P)$
$\operatorname{Sig}\left(\right.$ reach $S P$ with $\left.F_{\mathcal{R}}\right)=\operatorname{Sig}(S P)$
$\operatorname{Mod}\left(\right.$ reach $S P$ with $\left.F_{\mathcal{R}}\right)=\{\mathbf{A} \in \operatorname{Mod}(S P) \mid \mathbf{A} \models \mathcal{R}\}$

Reach operator

reach

- Syntax: reach with . : Spec, Opns \rightarrow Spec
- Semantics:

Let $\mathcal{R}=\left\langle S_{\mathcal{R}}, F_{\mathcal{R}}\right\rangle$ a reachability constraint over $\operatorname{Sig}(S P)$
$\operatorname{Sig}\left(\right.$ reach $S P$ with $\left.F_{\mathcal{R}}\right)=\operatorname{Sig}(S P)$
$\operatorname{Mod}\left(\right.$ reach $S P$ with $\left.F_{\mathcal{R}}\right)=\{\mathbf{A} \in \operatorname{Mod}(S P) \mid \mathbf{A} \models \mathcal{R}\}$

```
Example
INTZERO = reach INT with
F
0:-> int;
s,p: int }->\mathrm{ int;
```


Examples [ST88]

```
BOOL = sorts bool
    opns true:bool
            false: bool
        axioms true }\not=\mathrm{ false
            \forallx:bool. }x=\mathrm{ true }\veex=\mathrm{ false
```


Examples [ST88]

```
BOOL = sorts bool
    opns true:bool
            false : bool
    axioms true }\not=\mathrm{ false
            \forallx:bool. }x=\mathrm{ true }\veex=\mathrm{ false
INT = enrich BOOL by
    sorts int
    opns 0: int
        succ: int }->\mathrm{ int
        pred : int }->\mathrm{ int
    axioms ...induction scheme for int ...
        \forallx:int.pred (x) =x^ succ (x) }=
        \forall:int.pred}(\operatorname{succ}(x))=x\wedge\operatorname{succ}(\operatorname{pred}(x))=
```


Examples [ST88]

```
BOOL = sorts bool
    opns true:bool
            false : bool
    axioms true }=\mathrm{ false
            \forallx:bool. }x=\mathrm{ true }\veex=\mathrm{ false
INT = enrich BOOL by
    sorts int
    opns 0: int
        succ: int }->\mathrm{ int
        pred : int }->\mathrm{ int
    axioms ...induction scheme for int ...
            \forallx:int.pred (x) =x^ succ (x) }=
            \forall:int.pred}(\operatorname{succ}(x))=x\wedge\operatorname{succ}(\operatorname{pred}(x))=
INTORD = enrich INT by
            opns po: int }\times\mathrm{ int }->\mathrm{ bool
            axioms }\forallx:int.po(x,x)=tru
            \forallx,y:int.po(x,y)=true }\wedge\mathrm{ po (y,x)=true }\Longrightarrowx=
                        \forallx,y,z:int.po(x,y)=true ^ po(y,z)=true \Longrightarrowpo(x,z)=true
```


EXAMPLE [ST88]

```
INTLIST \(=\) enrich INTORD by
sorts list
opns nil: list
    cons : int \(\times\) list \(\rightarrow\) list
    head : list \(\rightarrow\) int
    tail : list \(\rightarrow\) list
    append : list \(\times\) list \(\rightarrow\) list
    is_in : int \(\times\) list \(\rightarrow\) bool
axioms ....induction scheme for list...
    \(\forall x:\) int. \(\forall l\) :list. \(\operatorname{cons}(x, l) \neq l\)
    \(\forall x:\) int. \(\forall l: l i s t . h e a d(\operatorname{cons}(x, l))=x\)
    \(\forall x: \operatorname{int} . \forall l: l i s t . \operatorname{tail}(\operatorname{cons}(x, l))=l\)
    \(\forall l: l i s t\). append \((\) nil,\(l)=l\)
    \(\forall x\) :int. \(\forall l, l^{\prime}: l i s t\). append \(\left(\operatorname{cons}(x, l), l^{\prime}\right)=\operatorname{cons}\left(x, \operatorname{append}\left(l, l^{\prime}\right)\right)\)
    \(\forall x\) :int. is_in \((x\), nil \()=\) false
    \(\forall x, y\) :int. \(\forall l\) :list.is_in \((x\), cons \((y, l))=\) true \(\Longleftrightarrow\)
                                    \((x=y \vee\) is_in \((x, l)=\) true \()\)
```


Calculus for Structured specifications

Completeness

$S P \vDash \varphi \quad$ iff $\quad S P \vdash \varphi$.

Completeness

$S P \vDash \varphi \quad$ iff $\quad S P \vdash \varphi$.

[^1]
Completeness

$S P \vDash \varphi \quad$ iff $\quad S P \vdash \varphi$.

- if \vdash_{Σ} is sound.

- if the underlying logic (institution) has pushouts, amalgamation property and \vdash_{Σ} é complete for the logic semantics.

Completeness

$S P \vDash \varphi \quad$ iff $\quad S P \vdash \varphi$.

- if \vdash_{Σ} is sound.

- if the underlying logic (institution) has pushouts, amalgamation property and \vdash_{Σ} é complete for the logic semantics.

A more abstract treatment using institutions.

Stepwise refinement process

The stepwise refinement process is the systematic process by which, from a specification $S P_{0}$ we successively build more restrictive specifications by introducing new requirements:

$$
S P_{0} \rightsquigarrow S P_{1} \rightsquigarrow S P_{2} \rightsquigarrow \cdots \rightsquigarrow S P_{n-1} \rightsquigarrow S P_{n},
$$

where for all $1 \leq i \leq n, S P_{i-1} \rightsquigarrow S P_{i}$ is a refinement.

The software development - the stepwise refinement methodology

```
Definition (Refinement)
Let SP and SP' be specifications. }S\mp@subsup{P}{}{\prime}\mathrm{ is a refinement of SP if:
- \(\operatorname{Sig}(S P)=\operatorname{Sig}\left(S P^{\prime}\right)\);
- \(\operatorname{Mod}\left(S P^{\prime}\right) \subseteq \operatorname{Mod}(S P)\);
We write \(S P \rightsquigarrow S P^{\prime}\) when \(S P^{\prime}\) is a refinement of \(S P\).
```


The software development - the stepwise refinement methodology

```
Definition (Refinement)
Let SP and SP' be specifications. }S\mp@subsup{P}{}{\prime}\mathrm{ is a refinement of SP if:
- \(\operatorname{Sig}(S P)=\operatorname{Sig}\left(S P^{\prime}\right)\);
- \(\operatorname{Mod}\left(S P^{\prime}\right) \subseteq \operatorname{Mod}(S P)\);
We write \(S P \rightsquigarrow S P^{\prime}\) when \(S P^{\prime}\) is a refinement of \(S P\).
```


Definition (σ-refinement)

Let $S P$ and $S P^{\prime}$ be algebraic specifications and $\sigma: \operatorname{Sig}(S P) \rightarrow \operatorname{Sig}\left(S P^{\prime}\right) . S P^{\prime}$ is a σ-refinement of $S P$, in symbols $S P \rightsquigarrow{ }_{\sigma} S P^{\prime}$, if:

- $\left.\operatorname{Mod}\left(S P^{\prime}\right)\right|_{\sigma} \subseteq \operatorname{Mod}(S P)$,
where $\operatorname{Mod}\left(S P^{\prime}\right) \upharpoonright_{\sigma}=\left\{\mathbf{A}^{\prime} \upharpoonright_{\sigma} \mid \mathbf{A}^{\prime} \in \operatorname{Mod}\left(S P^{\prime}\right)\right\}$.

Compositionality

```
Vertical composition
SP }\mp@subsup{\rightsquigarrow~\sigma}{~}{SP
Mod(SP'\prime)}\mp@subsup{|}{\phi\circ\sigma}{}\subseteq\operatorname{Mod}(S\mp@subsup{P}{}{\prime})\mp@subsup{|}{\sigma}{}\subseteq\operatorname{Mod}(SP
```


Compositionality

```
Vertical composition
SP }\mp@subsup{\rightsquigarrow~\sigma}{\sigma}{}S\mp@subsup{P}{}{\prime}\mp@subsup{\rightsquigarrow}{\phi}{}S\mp@subsup{P}{}{\prime\prime
Mod(S\mp@subsup{P}{}{\prime\prime})}\mp@subsup{\Gamma}{\phio\sigma\subseteq}{}\subseteq\operatorname{Mod}(S\mp@subsup{P}{}{\prime})\mp@subsup{\Gamma}{\sigma}{}\subseteq\operatorname{Mod}(SP
```

Stepwise Refinement Process:

$$
S P_{0} \rightsquigarrow \sigma_{0} S P_{1} \rightsquigarrow \sigma_{1} S P_{2} \rightsquigarrow \sigma_{2} \ldots \rightsquigarrow \sigma_{n-2} S P_{n-1} \rightsquigarrow \sigma_{n-1} S P_{n} .
$$

Compositionality

```
Vertical composition
SP }\mp@subsup{\rightsquigarrow~\sigma}{~}{SP
Mod(S\mp@subsup{P}{}{\prime\prime})}\mp@subsup{\upharpoonright}{\phi\circ\sigma}{}\subseteq\operatorname{Mod}(S\mp@subsup{P}{}{\prime})\mp@subsup{|}{\sigma}{}\subseteq\operatorname{Mod}(SP
```

Stepwise Refinement Process:

$$
S P_{0} \rightsquigarrow \sigma_{0} S P_{1} \rightsquigarrow \sigma_{1} S P_{2} \rightsquigarrow \sigma_{2} \ldots \rightsquigarrow \sigma_{n-2} S P_{n-1} \rightsquigarrow \sigma_{n-1} S P_{n} .
$$

Horizontal composition

$$
\frac{S P_{1} \rightsquigarrow S P_{1}^{\prime}, \ldots, S P_{n} \rightsquigarrow S P_{n}^{\prime}}{o p\left(S P_{1}, \ldots, S P_{n}\right) \rightsquigarrow \operatorname{op}\left(S P_{1}^{\prime}, \ldots, S P_{n}^{\prime}\right)}
$$

Compositionality

```
Vertical composition
SP }\mp@subsup{~}{\sigma}{}S\mp@subsup{P}{}{\prime}\mp@subsup{\rightsquigarrow~\phi}{\prime}{}S\mp@subsup{P}{}{\prime\prime
Mod(S\mp@subsup{P}{}{\prime\prime})}\mp@subsup{\upharpoonright}{\phi\circ\sigma}{}\subseteq\operatorname{Mod}(S\mp@subsup{P}{}{\prime})\mp@subsup{|}{\sigma}{}\subseteq\operatorname{Mod}(SP
```

Stepwise Refinement Process:

$$
S P_{0} \rightsquigarrow \sigma_{0} S P_{1} \rightsquigarrow \sigma_{1} S P_{2} \rightsquigarrow \sigma_{2} \ldots \rightsquigarrow \sigma_{n-2} S P_{n-1} \rightsquigarrow \sigma_{n-1} S P_{n} .
$$

Horizontal composition

$$
\frac{S P_{1} \rightsquigarrow S P_{1}^{\prime}, \ldots, S P_{n} \rightsquigarrow S P_{n}^{\prime}}{o p\left(S P_{1}, \ldots, S P_{n}\right) \rightsquigarrow \operatorname{op}\left(S P_{1}^{\prime}, \ldots, S P_{n}^{\prime}\right)}
$$

Horizontal composition - not so easy!

Horizontal composition

Theorem

Let $\Sigma \subseteq \Sigma^{\prime}$ and suppose $S P_{0} w_{\iota} S P_{0}^{\prime}$ and $S P_{1} \rightsquigarrow_{\iota} S P_{1}^{\prime}$, and $\phi: \Sigma^{\prime} \rightarrow \Sigma^{\prime \prime}$ a signature morphisms. Then
(1) $S P_{0} \cup S P_{1} \rightsquigarrow_{\iota} S P_{0}^{\prime} \cup S P_{1}^{\prime}$;

Limitations of the classical approach

```
spec SPEC2=
sorts
    s;
ops
    ok:}->s,f:s->s,\mathrm{ test : s }\timess->s
Ax+lr
    test(t,t) \approxok;
    test(t, t') \approxok.
    test(\mp@subsup{t}{}{\prime},t) \approxok
    test(t,\mp@subsup{t}{}{\prime})\approxok,\operatorname{test}(\mp@subsup{t}{}{\prime},\mp@subsup{t}{}{\prime\prime})\approxok
    test(t,\mp@subsup{t}{}{\prime})\approxok
```


Limitations of the classical approach

```
spec SPEC1=
sorts
    s;
ops
    f:s}->s
Ax + Ir
    t\approxt;
    t\approx\mp@subsup{t}{}{\prime}
    \frac{t\approx\mp@subsup{t}{}{\prime},\mp@subsup{t}{}{\prime}\approx\mp@subsup{t}{}{\prime\prime}}{t\approx\mp@subsup{t}{}{\prime\prime}};
spec }\textrm{SPEC2}=, 子\mp@code{sorts 
```

- Naturally, $\operatorname{SPEC} 1 \models \varphi \approx \varphi^{\prime}$ iff $\operatorname{SPEC} 2 \models \operatorname{test}\left(\varphi, \varphi^{\prime}\right) \approx o k$

Limitations of the classical approach

$$
\begin{aligned}
& \text { spec } \mathrm{SPEC} 1= \\
& \text { sorts } \\
& \quad \mathrm{s} ; \\
& \text { ops } \\
& \quad f: s \rightarrow s ; \\
& \mathrm{Ax}+\mathbf{I r} \\
& \quad t \approx t ; \\
& \frac{t \approx t^{\prime}}{t^{\prime} \approx t} \\
& \frac{t \approx t^{\prime}, t^{\prime} \approx t^{\prime \prime}}{t \approx t^{\prime \prime}} \\
& \frac{t \approx t^{\prime}}{f(t) \approx f\left(t^{\prime}\right)}
\end{aligned}
$$

spec $\mathrm{SPEC} 2=$
sorts
$\quad \mathrm{s} ;$
ops
$\quad o k: \rightarrow s, f: s \rightarrow s$, test $: s \times s \rightarrow s ;$
$\mathbf{A x}+\mathbf{I r}$
$\quad \operatorname{test}(t, t) \approx o k ;$
$\frac{\operatorname{test}\left(t, t^{\prime}\right) \approx o k}{\operatorname{test}\left(t^{\prime}, t\right) \approx o k ;}$
$\frac{\operatorname{test}\left(t, t^{\prime}\right) \approx o k, \text { test }\left(t^{\prime}, t^{\prime \prime}\right) \approx o k}{t e s t\left(t, t^{\prime \prime}\right) \approx o k} ;$
$\quad \frac{\operatorname{test}\left(t, t^{\prime}\right) \approx o k}{\operatorname{test}\left(f(t), f\left(t^{\prime}\right)\right) \approx o k} ;$

- Naturally, $\mathrm{SPEC} 1 \models \varphi \approx \varphi^{\prime}$ iff $\operatorname{SPEC} 2 \models \operatorname{test}\left(\varphi, \varphi^{\prime}\right) \approx$ ok
- However, $\iota: \operatorname{Sig}(\mathrm{SPEC} 1) \rightarrow \operatorname{Sig}(\mathrm{SPEC} 2)$ is the unique morphism definable between the specifications of SPEC1 and SPEC2.

Motivations

Refinement based on signature morphisms

- a formula is mapped into another one;
- formula structure is preserved;

Motivations

Refinement based on signature morphisms

- a formula is mapped into another one;
- formula structure is preserved;

Thus, it is difficult to deal with some specification transformations such as data encapsulation, decomposition of operations in atomic transactions, ... which are useful in practice.

Motivations

Refinement based on signature morphisms

- a formula is mapped into another one;
- formula structure is preserved;

Thus, it is difficult to deal with some specification transformations such as data encapsulation, decomposition of operations in atomic transactions, ... which are useful in practice.

The strategy

- Introduce a formalization of the refinement where the translation of specifications is witnessed by a suitable kind of multifunctions;

Motivations

Refinement based on signature morphisms

- a formula is mapped into another one;
- formula structure is preserved;

Thus, it is difficult to deal with some specification transformations such as data encapsulation, decomposition of operations in atomic transactions, ... which are useful in practice.

The strategy

- Introduce a formalization of the refinement where the translation of specifications is witnessed by a suitable kind of multifunctions;
- Generalize this approach by allowing translations between specifications expressed in logics with different dimensions;

Interpretations within algebraic specification

Refinement by interpretations

A translation $\tau: \operatorname{Eq}(\Sigma) \rightarrow \mathcal{P}\left(\operatorname{Eq}\left(\Sigma^{\prime}\right)\right)$ interprets $S P$ if there is a specification $S P^{\prime}$ over Σ^{\prime} such that:

- for all $t \approx t^{\prime} \in \operatorname{Eq}(\operatorname{Sig}(S P)), S P \models t \approx t^{\prime}$ iff $S P^{\prime} \models \tau\left(t \approx t^{\prime}\right)$

Interpretations within algebraic specification

Refinement by interpretations

A translation $\tau: \operatorname{Eq}(\Sigma) \rightarrow \mathcal{P}\left(\operatorname{Eq}\left(\Sigma^{\prime}\right)\right)$ interprets $S P$ if there is a specification $S P^{\prime}$ over Σ^{\prime} such that:

- for all $t \approx t^{\prime} \in \operatorname{Eq}(\operatorname{Sig}(S P)), S P \models t \approx t^{\prime}$ iff $S P^{\prime} \models \tau\left(t \approx t^{\prime}\right)$

A mathematical example

The self translation $\tau\left(t \approx t^{\prime}\right)=\left\{\neg \neg t \approx \neg \neg t^{\prime}\right\}$ interprets the specification $\mathbb{B} \mathbb{A}$ (boolean algebras) in the specification $\mathbb{H} \mathbb{A}$ (Heyting algebras).

Interpretations within algebraic specification

Refinement by interpretations

A translation $\tau: \operatorname{Eq}(\Sigma) \rightarrow \mathcal{P}\left(\operatorname{Eq}\left(\Sigma^{\prime}\right)\right)$ interprets $S P$ if there is a specification $S P^{\prime}$ over Σ^{\prime} such that:

- for all $t \approx t^{\prime} \in \operatorname{Eq}(\operatorname{Sig}(S P)), S P \models t \approx t^{\prime}$ iff $S P^{\prime} \models \tau\left(t \approx t^{\prime}\right)$

A mathematical example

The self translation $\tau\left(t \approx t^{\prime}\right)=\left\{\neg \neg t \approx \neg \neg t^{\prime}\right\}$ interprets the specification $\mathbb{B} \mathbb{A}$ (boolean algebras) in the specification $\mathbb{H} \mathbb{A}$ (Heyting algebras).

Definition

$S P^{\prime}$ is a refinement by the interpretation τ of $S P$ if

- τ interprets SP and
- for all $t \approx t^{\prime} \in \operatorname{Eq}(\operatorname{Sig}(S P)), S P \models t \approx t^{\prime}$ implies $S P^{\prime} \models \tau\left(t \approx t^{\prime}\right)$

Ex. BAMS: replacing operations by atomic transactions

Σ_{1} :
sorts
Ac; Int;
ops

$$
\begin{aligned}
& \text { bal : Ac } \rightarrow \text { Int; } \\
& \text { cred, deb : Ac } \times \operatorname{Int} \rightarrow A c
\end{aligned}
$$

spec $B A M S=$ enrich $E Q_{\Sigma_{1}}$ and INT with
axioms
$\operatorname{bal}(\operatorname{cred}(x, n)) \approx \operatorname{bal}(x)+n$; $\operatorname{bal}(\operatorname{deb}(x, n)) \approx \operatorname{bal}(x)+(-n)$.

Ex. BAMS: replacing operations by atomic transactions

$\Sigma_{1}:$
sorts
Ac; Int;
ops

$$
\begin{aligned}
& \text { bal : Ac } \rightarrow \text { Int; } \\
& \text { cred, } \text { deb }: A c \times \operatorname{Int} \rightarrow A c
\end{aligned}
$$

spec $B A M S=$ enrich $E Q_{\Sigma_{1}}$
and INT with
axioms
$\operatorname{bal}(\operatorname{cred}(x, n)) \approx \operatorname{bal}(x)+n$;
$\operatorname{bal}(\operatorname{deb}(x, n)) \approx b a l(x)+(-n)$.
$\Sigma_{2}:$
sorts

> Ac; Int;
ops

$$
\text { val }: A c \rightarrow A c
$$

spec $B A M S 2=$ enrich $\mathrm{EQ}_{\Sigma_{2}}$ and INT with
axioms
$b a l(\operatorname{val}(\operatorname{cred}(x, n)) \approx b a l(x)+n ;$ $b a l(\operatorname{val}(\operatorname{deb}(x, n)) \approx b a l(x)+(-n)$.

Ex. BAMS: replacing operations by atomic transactions

$\Sigma_{1}:$
sorts
Ac; Int;
ops

$$
\begin{aligned}
& \text { bal : Ac } \rightarrow \text { Int; } \\
& \text { cred, } \text { deb }: A c \times \operatorname{Int} \rightarrow A c
\end{aligned}
$$

spec $B A M S=$ enrich $E Q_{\Sigma_{1}}$
and INT with
axioms
$\operatorname{bal}(\operatorname{cred}(x, n)) \approx b a l(x)+n ;$
$\operatorname{bal}(\operatorname{deb}(x, n)) \approx \operatorname{bal}(x)+(-n)$.
Σ_{2} :
sorts
Ac; Int;
ops

$$
\text { val }: A c \rightarrow A c
$$

spec $B A M S 2=$ enrich $\mathrm{EQ}_{\Sigma_{2}}$ and INT with
axioms
$\operatorname{bal}(\operatorname{val}(\operatorname{cred}(x, n)) \approx b a l(x)+n ;$ $b a l(\operatorname{val}(\operatorname{deb}(x, n)) \approx b a l(x)+(-n)$.
$\tau: \operatorname{Eq}\left(\Sigma_{1}\right) \rightarrow \mathcal{P}\left(\operatorname{Eq}\left(\Sigma_{2}\right)\right)=\{\langle o p(x), y\rangle \rightarrow\{\langle\operatorname{val}(o p(x)), y\rangle\} \mid o p \in\{c r e d$, deb $\}\}$

Ex. NatBool: encapsulating sorts

- Spec Nat= enrich $E Q_{\Sigma_{N a t}}$ by ops $\quad s: n a t \rightarrow$ nat;
IR

$$
\frac{s(x) \approx s(y)}{x \approx y}
$$

- Spec NatEq= enrich BOOL by
sorts
ops axioms

IR nat;
$s: n a t \rightarrow$ nat;eq : nat, nat \rightarrow bool;

$$
e q(x, x) \approx \text { true }
$$

$$
\frac{e q(x, y) \approx t r u e}{e q(y, x)}
$$

$$
\frac{e q(x, y) \approx \text { true }}{e q(s(x), s(y)) \approx \text { true }}
$$

$$
\begin{aligned}
& \frac{e q(x, y) \approx \operatorname{true}, e q(y, z) \approx \operatorname{true}}{e q(x, z) \approx \text { true }} \\
& \frac{e q(s(x), s(y)) \approx \operatorname{true}}{e q(x, y) \approx \text { true }}
\end{aligned}
$$

Ex. NatBool: encapsulating sorts

- Spec Nat= enrich $E Q_{\Sigma_{N a t}}$ by
ops $\quad s: n a t \rightarrow n a t$;
IR

$$
\frac{s(x) \approx s(y)}{x \approx y}
$$

- Spec NatEq= enrich BOOL by
sorts
ops axioms

IR
nat;

$$
s: \text { nat } \rightarrow \text { nat;eq }: \text { nat, nat } \rightarrow \text { bool; }
$$

$$
e q(x, x) \approx \operatorname{true}
$$

$$
\frac{e q(x, y) \approx \text { true }}{e q(y, x) \approx \text { true }}
$$

$$
\frac{e q(x, y) \approx \text { true }}{e q(s(x), s(y)) \approx t r u e}
$$

$$
\begin{aligned}
& \frac{e q(x, y) \approx \operatorname{true}, e q(y, z) \approx \operatorname{true}}{e q(x, z) \approx \text { true }} \\
& \frac{e q(s(x), s(y)) \approx \operatorname{true}}{e q(x, y) \approx \text { true }}
\end{aligned}
$$

Taking $\tau(x: n a t \approx y: n a t)=\{e q(x: n a t, y: n a t) \approx t r u e\}$, we have

$$
\text { Nat } \neg_{\tau} \text { NatEq }
$$

k-logics

Goal

Provide a suitable context to deal simultaneously with different specification logics as, assertional, equational, modal, ...

- Let Σ be a signature and Va a set of variables for Σ. The set of terms in the variables Va over Σ is denoted by $\mathrm{Fm}_{\Sigma}(\mathrm{Va})$.

Definition

A k-logic is a pair $\mathcal{L}=\left\langle\Sigma, \vdash_{\mathcal{L}}\right\rangle$, where Σ is a signature and $\vdash_{\mathcal{L}} \subseteq \mathcal{P}\left(\operatorname{Fm}_{\Sigma}^{k}(\mathrm{Va})\right) \times \operatorname{Fm}_{\Sigma}^{k}(\mathrm{Va})$ a relation such for all $\Gamma \cup \Delta \cup\{\bar{\gamma}, \bar{\varphi}\} \subseteq \operatorname{Fm}_{\Sigma}^{k}(\mathrm{Va})$:
(i) $\Gamma \vdash_{\mathcal{L}} \bar{\gamma}$ for each $\bar{\gamma} \in \Gamma$;
(ii) if $\Gamma \vdash_{\mathcal{L}} \bar{\varphi}$, and $\Delta \vdash_{\mathcal{L}} \bar{\gamma}$ for each $\bar{\gamma} \in \Gamma$, then $\Delta \vdash_{\mathcal{L}} \bar{\varphi}$;
(iii) if $\Gamma \vdash_{\mathcal{L}} \bar{\varphi}$, then $\sigma(\Gamma) \vdash_{\mathcal{L}} \sigma(\bar{\varphi})$ for every substitution σ.

Semantics

A pair $\mathcal{A}=\langle\mathbf{A}, F\rangle$ is a k-data structure over Σ if

- \mathbf{A} is a Σ-algebra over Σ
- F is a subset of A^{k}.

Semantic consequence

$\Gamma \models_{\mathcal{A}} \bar{\varphi}$ if for any assignment $h: \mathrm{Va} \rightarrow A, h(\Gamma) \subseteq F$ implies $h(\bar{\varphi}) \in F$.

Familiar examples

1-data structures: models of CPC, e.g. $\mathcal{A}=\langle\mathbf{A}, F\rangle$ over a sentential language with A a Boolean algebra and $F=\{T\}$;
2-data structures: models of the (free) equational logic over Σ, e.g. $\mathcal{A}=\langle\mathbf{A}, F\rangle$ over a multi-sorted signature with $F=i d_{A}$;

Translating k-logics

Definition $\left((k, m)\right.$-translation from Σ to $\left.\Sigma^{\prime}\right)$

$$
\tau: \operatorname{Fm}_{\Sigma}^{k}(\mathrm{Va}) \rightarrow \mathcal{P}\left(\operatorname{Fm}_{\Sigma^{\prime}}^{m}(\mathrm{Va})\right)
$$

Translating k-logics

Definition $\left((k, m)\right.$-translation from Σ to $\left.\Sigma^{\prime}\right)$

$$
\tau: \operatorname{Fm}_{\Sigma}^{\kappa}(\mathrm{Va}) \rightarrow \mathcal{P}\left(\operatorname{Fm}_{\Sigma^{\prime}}^{m}(\mathrm{Va})\right)
$$

Definition (Interpretation)

τ interprets \mathcal{L} if there is a m-logic \mathcal{L}^{\prime} over Σ^{\prime} such that, for any $\Gamma \cup\{\bar{\varphi}\} \subseteq \operatorname{Fm}_{\Sigma}^{k}(\mathrm{Va})$,

$$
\Gamma \vdash_{\mathcal{L}} \bar{\varphi} \text { iff } \tau(\Gamma) \vdash_{\mathcal{L}^{\prime}} \tau(\bar{\varphi}) .
$$

A paradigmatic example

τ-model class

Definition (τ-model)
Let $\tau: \operatorname{Fm}_{\Sigma}^{k}(\mathrm{Va}) \rightarrow \mathcal{P}\left(\mathrm{Fm}_{\Sigma^{\prime}}^{m}(\mathrm{Va})\right)$ and \mathcal{L} over Σ. An I-data structure \mathcal{A} is a τ-model of \mathcal{L} if for any $\Gamma \cup\{\bar{\varphi}\} \subseteq \operatorname{Fm}_{\Sigma}^{k}(\mathrm{Va})$,

$$
\Gamma \vdash_{\mathcal{L}} \bar{\varphi} \text { implies } \tau(\Gamma) \models_{\mathcal{A}} \tau(\bar{\varphi}) .
$$

$\operatorname{Mod}^{\tau}(\mathcal{L})$ denotes the class of all τ-model of \mathcal{L}.

τ-model class

Definition (τ-model)
Let $\tau: \operatorname{Fm}_{\Sigma}^{k}(\mathrm{Va}) \rightarrow \mathcal{P}\left(\mathrm{Fm}_{\Sigma^{\prime}}^{m}(\mathrm{Va})\right)$ and \mathcal{L} over Σ. An I-data structure \mathcal{A} is a τ-model of \mathcal{L} if for any $\Gamma \cup\{\bar{\varphi}\} \subseteq \operatorname{Fm}_{\Sigma}^{k}(\mathrm{Va})$,

$$
\Gamma \vdash_{\mathcal{L}} \bar{\varphi} \text { implies } \tau(\Gamma) \models_{\mathcal{A}} \tau(\bar{\varphi}) .
$$

$\operatorname{Mod}^{\tau}(\mathcal{L})$ denotes the class of all τ-model of \mathcal{L}.

Theorem

If τ interprets \mathcal{L} then $\models_{\operatorname{Mod}^{\tau}(\mathcal{L})}$ is the largest τ-interpretation of \mathcal{L}.

τ-model class

Definition (τ-model)
Let $\tau: \operatorname{Fm}_{\Sigma}^{k}(\mathrm{Va}) \rightarrow \mathcal{P}\left(\mathrm{Fm}_{\Sigma^{\prime}}^{m}(\mathrm{Va})\right)$ and \mathcal{L} over Σ. An I-data structure \mathcal{A} is a τ-model of \mathcal{L} if for any $\Gamma \cup\{\bar{\varphi}\} \subseteq \operatorname{Fm}_{\Sigma}^{k}(\mathrm{Va})$,

$$
\Gamma \vdash_{\mathcal{L}} \bar{\varphi} \text { implies } \tau(\Gamma) \models_{\mathcal{A}} \tau(\bar{\varphi}) .
$$

$\operatorname{Mod}^{\tau}(\mathcal{L})$ denotes the class of all τ-model of \mathcal{L}.

Theorem

If τ interprets \mathcal{L} then $\models_{\operatorname{Mod}^{\tau}(\mathcal{L})}$ is the largest τ-interpretation of \mathcal{L}.

Theorem

Let τ be a translation that commutes with substitutions. Then if $\vdash_{\mathcal{L}}$ is axiomatized by Φ then $\models_{\operatorname{Mod}^{\tau}(\mathcal{L})}$ is axiomatized by $\tau(\Phi)$.

(Generalized) refinements by translation

Definition (Refinement via interpretation)

Let $\tau: \operatorname{Fm}_{\Sigma}^{k}(\mathrm{Va}) \rightarrow \mathcal{P}\left(\mathrm{Fm}_{\Sigma^{\prime}}^{m}(\mathrm{Va})\right)$ be an interpretation of $\mathcal{L} . \mathcal{L} \rightharpoondown_{\tau} \mathcal{L}^{\prime}$, if for any $\Gamma \cup\{\bar{\varphi}\} \subseteq \operatorname{Fm}_{\Sigma}^{k}(\mathrm{Va})$,

$$
\Gamma \vdash_{\mathcal{L}} \bar{\varphi} \Rightarrow \tau(\Gamma) \vdash_{\mathcal{L}^{\prime}} \tau(\bar{\varphi}) .
$$

(Generalized) refinements by translation

Definition (Refinement via interpretation)

Let $\tau: \mathrm{Fm}_{\Sigma}^{k}(\mathrm{Va}) \rightarrow \mathcal{P}\left(\mathrm{Fm}_{\Sigma^{\prime}}^{m}(\mathrm{Va})\right)$ be an interpretation of $\mathcal{L} . \mathcal{L} \rightharpoondown_{\tau} \mathcal{L}^{\prime}$, if for any $\Gamma \cup\{\bar{\varphi}\} \subseteq \operatorname{Fm}_{\Sigma}^{k}(\mathrm{Va})$,

$$
\Gamma \vdash_{\mathcal{L}} \bar{\varphi} \Rightarrow \tau(\Gamma) \vdash_{\mathcal{L}^{\prime}} \tau(\bar{\varphi}) .
$$

Example
I -

$$
\mathrm{CPC} \neg_{i d} \mathrm{~K}
$$

since K is obtained from CPC by adding \square to the signature, the axiom
$\square(p \rightarrow q) \rightarrow(\square p \rightarrow \square q)$ and the inference rule $\frac{p}{\square p}$,

(Generalized) refinements by translation

Definition (Refinement via interpretation)

Let $\tau: \mathrm{Fm}_{\Sigma}^{k}(\mathrm{Va}) \rightarrow \mathcal{P}\left(\mathrm{Fm}_{\Sigma^{\prime}}^{m}(\mathrm{Va})\right)$ be an interpretation of $\mathcal{L} . \mathcal{L} \rightharpoondown_{\tau} \mathcal{L}^{\prime}$, if for any $\Gamma \cup\{\bar{\varphi}\} \subseteq \operatorname{Fm}_{\Sigma}^{k}(\mathrm{Va})$,

$$
\Gamma \vdash_{\mathcal{L}} \bar{\varphi} \Rightarrow \tau(\Gamma) \vdash_{\mathcal{L}^{\prime}} \tau(\bar{\varphi}) .
$$

Example

 I-$$
\mathrm{CPC} \neg_{i d} \mathrm{~K}
$$

since K is obtained from CPC by adding \square to the signature, the axiom
$\square(p \rightarrow q) \rightarrow(\square p \rightarrow \square q)$ and the inference rule $\frac{p}{\square p}$,
II-

$$
\mathrm{CPC} \rightharpoondown \tau \mathbb{H} \mathbb{A} \rightharpoondown \rho \mathrm{IPC}
$$

where $\tau(p)=\{\langle\neg \neg p, T\rangle\}$ and $\rho(\langle p, q\rangle)=\{p \rightarrow q, q \rightarrow p\}$.

Behavioral specification

Principle

The satisfaction of the requirements does not need to be strict, and may be checked up to a behavioral relation.

Behavioral specification

Principle

The satisfaction of the requirements does not need to be strict, and may be checked up to a behavioral relation.

Context

In the observational approach/modern algebraic specification of abstract data types are split in two types of data representation: the representation types for internal data (data hiding) and the types of representation of the actual data, i.e. the data that we have access direct (visible or observable data).

Behavioral specification

Principle

The satisfaction of the requirements does not need to be strict, and may be checked up to a behavioral relation.

Context

In the observational approach/modern algebraic specification of abstract data types are split in two types of data representation: the representation types for internal data (data hiding) and the types of representation of the actual data, i.e. the data that we have access direct (visible or observable data). The types of hidden data representation are used to represent encapsulated data, which the user has access only via procedures (ie, complex operations) with visible output and taking such data as input.

Behavioral specification

Principle

The satisfaction of the requirements does not need to be strict, and may be checked up to a behavioral relation.

Context

In the observational approach/modern algebraic specification of abstract data types are split in two types of data representation: the representation types for internal data (data hiding) and the types of representation of the actual data, i.e. the data that we have access direct (visible or observable data). The types of hidden data representation are used to represent encapsulated data, which the user has access only via procedures (ie, complex operations) with visible output and taking such data as input.

- Data encapsulation is very important, for security reasons AND to allow effective and fast software updates.

Observational signature

Let $\Sigma=\langle S, \Omega\rangle$ and Obs $\subseteq S$, the observational signature Σ w.r.t Obs is the pair $\langle\Sigma$, Obs \rangle. The sorts Obs are called observable sorts.

Observational signature

Let $\Sigma=\langle S, \Omega\rangle$ and Obs $\subseteq S$, the observational signature Σ w.r.t Obs is the pair $\langle\Sigma$, Obs \rangle. The sorts Obs are called observable sorts.

Example

Automata. The input and the output sorts (In and out) are considered the observable sorts and the state sort Z as hidden.

Observational signature

Let $\Sigma=\langle S, \Omega\rangle$ and Obs $\subseteq S$, the observational signature Σ w.r.t Obs is the pair $\langle\Sigma$, Obs \rangle. The sorts Obs are called observable sorts.

Example

Automata. The input and the output sorts (In and out) are considered the observable sorts and the state sort Z as hidden.

Example

```
Gen
    elt;
    cell;
Obs
    elt;
Op
    put: elt,cell -> cell;
    get:cell -> elt;
Ax
    get(put(e,c))=e;
```


Example

```
Spec FLAGS = enrich BA by
Gen
    flag;
Obs
    bool;
Op
    up: flag -> flag;
    dn: flag -> flag;
    rev: flag -> flag;
    up?: flag -> bool;
```


Ax

$$
\text { up? }(\operatorname{up}(x))=\text { true; }
$$

$$
u p ?(\operatorname{dn}(x))=f a l s e
$$

$$
\operatorname{up} ?(\operatorname{rev}(x))=\neg(\operatorname{up} ?(x))
$$

Example

Spec STACK $==$ enrich Nat by
Gen
stack;
Obs
nat;
Op
push:nat,stack -> stack;
pop:stack -> stack;
top:stack \rightarrow nat;
Ax
$\operatorname{pop}(\operatorname{push}(x, s))=s ;$
top(push (x, s)) $=\mathrm{x}$;

Observational equality

Definition (Contexts and Observable Contexts)

Let $\langle\Sigma$, Obs \rangle be an observational signature, $X=\left(X_{s}\right)_{s \in S}$ a family of infinite countable sets of variables (pairwise disjoint) and $Z=\left\langle\left\{z_{s}\right\}\right\rangle_{s \in S}$ an S-singular family of sets (pairwise disjoint) of different variables from the variables in X. pausa An s-context over Σ is a term $c \in T\left(\Sigma, X \cup\left\{z_{s}\right\}\right)_{s^{\prime}}$, for some $s^{\prime} \in S$, with at least one occurrence of the variable z_{s}.

Observational equality

Definition (Contexts and Observable Contexts)

Let $\langle\Sigma$, Obs \rangle be an observational signature, $X=\left(X_{s}\right)_{s \in S}$ a family of infinite countable sets of variables (pairwise disjoint) and $Z=\left\langle\left\{z_{s}\right\}\right\rangle_{s \in S}$ an S-singular family of sets (pairwise disjoint) of different variables from the variables in X. pausa An s-context over Σ is a term $c \in T\left(\Sigma, X \cup\left\{z_{s}\right\}\right)_{s^{\prime}}$, for some $s^{\prime} \in S$, with at least one occurrence of the variable z_{s}. If $s^{\prime} \in$ Obs, c is called an s-observable context.

Observational equality

Definition (Contexts and Observable Contexts)

Let $\langle\Sigma$, Obs \rangle be an observational signature, $X=\left(X_{s}\right)_{s \in S}$ a family of infinite countable sets of variables (pairwise disjoint) and $Z=\left\langle\left\{z_{s}\right\}\right\rangle_{s \in S}$ an S-singular family of sets (pairwise disjoint) of different variables from the variables in X. pausa An s-context over Σ is a term $c \in T\left(\Sigma, X \cup\left\{z_{s}\right\}\right)_{s^{\prime}}$, for some $s^{\prime} \in S$, with at least one occurrence of the variable z_{s}. If $s^{\prime} \in$ Obs, c is called an s-observable context.

- Some Variants: 「-contexts.

Observational equality

Definition (Contexts and Observable Contexts)

Let $\langle\Sigma$, Obs \rangle be an observational signature, $X=\left(X_{s}\right)_{s \in S}$ a family of infinite countable sets of variables (pairwise disjoint) and $Z=\left\langle\left\{z_{s}\right\}\right\rangle_{s \in S}$ an S-singular family of sets (pairwise disjoint) of different variables from the variables in X. pausa An s-context over Σ is a term $c \in T\left(\Sigma, X \cup\left\{z_{s}\right\}\right)_{s^{\prime}}$, for some $s^{\prime} \in S$, with at least one occurrence of the variable z_{s}. If $s^{\prime} \in$ Obs, c is called an s-observable context.

- Some Variants: 「-contexts.

Definition (Observational equality)

Let $\langle\Sigma$, Obs \rangle be an observational signature and \mathbf{A} a Σ-algebra. a, $a^{\prime} \in A_{s}$ are observationally equal w.r.t. Obs, $a \equiv_{A}^{\text {Obs }} a^{\prime}$, if for any observable s-context $c\left(x_{1}: s_{1}, \ldots, x_{n}: s_{n}, z_{s}\right)$, and every $b_{1} \in A_{S_{1}}, \ldots, b_{n} \in A_{S_{n}}$,

$$
c^{\mathbf{A}}\left(b_{1}, \ldots, b_{n}, a\right)=c^{\mathbf{A}}\left(b_{1}, \ldots, b_{n}, a^{\prime}\right)
$$

Observational equality

Definition (Contexts and Observable Contexts)

Let $\langle\Sigma$, Obs \rangle be an observational signature, $X=\left(X_{s}\right)_{s \in S}$ a family of infinite countable sets of variables (pairwise disjoint) and $Z=\left\langle\left\{z_{s}\right\}\right\rangle_{s \in S}$ an S-singular family of sets (pairwise disjoint) of different variables from the variables in X. pausa An s-context over Σ is a term $c \in T\left(\Sigma, X \cup\left\{z_{s}\right\}\right)_{s^{\prime}}$, for some $s^{\prime} \in S$, with at least one occurrence of the variable z_{s}. If $s^{\prime} \in$ Obs, c is called an s-observable context.

- Some Variants: 「-contexts.

Definition (Observational equality)

Let $\langle\Sigma$, Obs \rangle be an observational signature and \mathbf{A} a Σ-algebra. a, $a^{\prime} \in A_{s}$ are observationally equal w.r.t. Obs, $a \equiv_{A}^{\mathrm{Obs}} a^{\prime}$, if for any observable s-context $c\left(x_{1}: s_{1}, \ldots, x_{n}: s_{n}, z_{s}\right)$, and every $b_{1} \in A_{S_{1}}, \ldots, b_{n} \in A_{S_{n}}$,

$$
c^{\mathbf{A}}\left(b_{1}, \ldots, b_{n}, a\right)=c^{\mathbf{A}}\left(b_{1}, \ldots, b_{n}, a^{\prime}\right)
$$

Fact
 $\equiv_{A}^{\text {Obs }}$ is a congruence on \mathbf{A}.

Behavioral satisfaction

Definition

Let $\langle\Sigma$, Obs \rangle be an observational signature, \mathbf{A} is a Σ-algebra and $t, t^{\prime} \in T(\Sigma, X)_{s}$. \mathbf{A} é is behavioral model of $t \approx t^{\prime}, \mathbf{A} \models^{\text {Obs }} t \approx t^{\prime}$, if for any observable s-context $c\left(x_{1}: s_{1}, \ldots, x_{n}: s_{n}, z_{s}\right) \mathbf{A} \models c[t] \approx c\left[t^{\prime}\right]$.

Behavioral satisfaction

Definition

Let $\langle\Sigma$, Obs \rangle be an observational signature, \mathbf{A} is a Σ-algebra and $t, t^{\prime} \in T(\Sigma, X)_{s}$. \mathbf{A} é is behavioral model of $t \approx t^{\prime}, \mathbf{A} \models^{\text {Obs }} t \approx t^{\prime}$, if for any observable s-context $c\left(x_{1}: s_{1}, \ldots, x_{n}: s_{n}, z_{s}\right) \mathbf{A} \models c[t] \approx c\left[t^{\prime}\right]$.

- $C \models^{\text {Obs }} t \approx t^{\prime}$ if for any $\mathbf{A} \in C \mathbf{A} \models{ }^{\text {Obs }} t \approx t^{\prime}$.

Behavioral satisfaction

Definition

Let $\langle\Sigma$, Obs \rangle be an observational signature, \mathbf{A} is a Σ-algebra and $t, t^{\prime} \in T(\Sigma, X)_{s}$. \mathbf{A} é is behavioral model of $t \approx t^{\prime}, \mathbf{A} \models^{\text {Obs }} t \approx t^{\prime}$, if for any observable s-context $c\left(x_{1}: s_{1}, \ldots, x_{n}: s_{n}, z_{s}\right) \mathbf{A} \models c[t] \approx c\left[t^{\prime}\right]$.

- $C \models^{\text {Obs }} t \approx t^{\prime}$ if for any $\mathbf{A} \in C \mathbf{A} \models^{\text {Obs }} t \approx t^{\prime}$.
- $S P \models^{\text {Obs }} t \approx t^{\prime}$ if $\operatorname{Mod}(S P) \models$ Obs $t \approx t^{\prime}$.

Behavioral satisfaction

Definition

Let $\langle\Sigma$, Obs \rangle be an observational signature, \mathbf{A} is a Σ-algebra and $t, t^{\prime} \in T(\Sigma, X)_{s}$. \mathbf{A} é is behavioral model of $t \approx t^{\prime}, \mathbf{A} \models^{\text {Obs }} t \approx t^{\prime}$, if for any observable s-context $c\left(x_{1}: s_{1}, \ldots, x_{n}: s_{n}, z_{s}\right) \mathbf{A} \models c[t] \approx c\left[t^{\prime}\right]$.

- $C \models^{\text {Obs }} t \approx t^{\prime}$ if for any $\mathbf{A} \in C \mathbf{A} \models{ }^{\text {Obs }} t \approx t^{\prime}$.
- $S P \models^{\text {Obs }} t \approx t^{\prime}$ if $\operatorname{Mod}(S P) \models$ Obs $t \approx t^{\prime}$.
- $T h^{\mathrm{Obs}}(\mathrm{C})=\left\{t \approx t^{\prime} \in \mathrm{Eq}(\Sigma) \mid C \models^{\mathrm{Obs}} t \approx t^{\prime}\right\}$.

Behavioral satisfaction

Definition

Let $\langle\Sigma$, Obs \rangle be an observational signature, \mathbf{A} is a Σ-algebra and $t, t^{\prime} \in T(\Sigma, X)_{s}$. \mathbf{A} é is behavioral model of $t \approx t^{\prime}, \mathbf{A}{ }^{\text {Obs }} t \approx t^{\prime}$, if for any observable s-context $c\left(x_{1}: s_{1}, \ldots, x_{n}: s_{n}, z_{s}\right) \mathbf{A} \models c[t] \approx c\left[t^{\prime}\right]$.

- $C \models^{\text {Obs }} t \approx t^{\prime}$ if for any $\mathbf{A} \in C \mathbf{A} \models{ }^{\text {Obs }} t \approx t^{\prime}$.
- $S P \models$ Obs $t \approx t^{\prime}$ if $\operatorname{Mod}(S P) \models{ }^{\text {Obs }} t \approx t^{\prime}$.
- $T h^{\mathrm{Obs}}(\mathrm{C})=\left\{t \approx t^{\prime} \in \mathrm{Eq}(\Sigma) \mid C \models^{\mathrm{Obs}} t \approx t^{\prime}\right\}$.

Theorem

(1) $\mathbf{A} \models^{\text {Obs }} t \approx t^{\prime}$ iff $\mathbf{A} / \equiv_{\mathbf{A}}^{\mathrm{Obs}} \models t \approx t^{\prime}$;
(2) $S P \models^{\text {Obs }} t \approx t^{\prime}$ iff $S P^{\text {Obs }} \models t \approx t^{\prime}$;
(3) $T h^{\mathrm{Obs}}(C)=T h\left(C^{\mathrm{Obs}}\right)$,
where $C^{\text {Obs }}=\left\{\mathbf{A} / \equiv_{\mathbf{A}}^{\mathrm{Obs}} \mid \mathbf{A} \in C\right\}$ and $S P^{\mathrm{Obs}}=\operatorname{Mod}(S P)^{\mathrm{Obs}}$.

Coinduction

Theorem

$\equiv_{A}^{\text {Obs }}$ is the largest congruence on \mathbf{A} which is the identity in $A_{\text {Obss }}$. I.e., if \approx is a congruence s.t. $(\approx)_{\mathrm{Obs}}=\Delta_{\mathrm{A}_{\mathrm{Obs}}}$ (called hidden congruence), then $\approx \subseteq \equiv_{\mathbf{A}}^{\mathrm{Obs}}$.

Coinduction

Theorem

$\equiv_{A}^{\text {Obs }}$ is the largest congruence on \mathbf{A} which is the identity in $A_{\text {Obss }}$. I.e., if \approx is a congruence s.t. $(\approx)_{\mathrm{Obs}}=\Delta_{\mathrm{A}_{\mathrm{Obs}}}$ (called hidden congruence), then $\approx \subseteq \equiv_{\mathrm{A}}^{\mathrm{Obs}}$.

Coinduction Method

Let $\langle\Sigma$, Obs \rangle be an observational signature and \mathbf{A} a Σ-algebra. a, $a^{\prime} \in A_{s}$: To Show that $a \equiv_{A}^{\text {Obs }} a^{\prime}$,

Coinduction

Theorem

$\equiv_{A}^{\text {Obs }}$ is the largest congruence on \mathbf{A} which is the identity in $A_{\text {Obs }}$. I.e., if \approx is a congruence s.t. $(\approx)_{\mathrm{Obs}}=\Delta_{\mathrm{A}_{\mathrm{Obs}}}$ (called hidden congruence), then $\approx \subseteq \equiv_{\mathbf{A}}^{\mathrm{Obs}}$.

Coinduction Method

Let $\langle\Sigma, \mathrm{Obs}\rangle$ be an observational signature and \mathbf{A} a Σ-algebra. a, $a^{\prime} \in A_{s}$: To Show that $a \equiv_{A}^{\text {Obs }} a^{\prime}$, do
(1) Define an appropriated binary relation R on A;
(2) Show that R is an hidden congruence;
(3) Show that a $R a^{\prime}$.

Example

In $\mathcal{L}_{\text {Flags }}$ we have that $\operatorname{rev}^{\mathbf{A}}\left(\operatorname{rev} \mathbf{A}^{\mathbf{A}}(a)\right) \equiv \equiv_{\mathrm{Obs}}^{\mathbf{A}}$ a. However, $\operatorname{rev}(\operatorname{rev}(x)) \approx x$ is not an equational consequence of the specification $\mathcal{L}_{\text {Flags }}$.

An example

```
bth SET[X :: TRIV] is sort Set .
    op empty : -> Set .
    op _in_ : Elt Set >> Bool.
    op add : Elt Set -> Set .
    ops (_U_) (_&_) : Set Set >> Set .
    vars E E' : Elt . vars S S' : Set .
    eq E in empty = false .
    eq E in add(E', S) = (E == E') or ( }E\mathrm{ in S).
    eq E in S U S' = (E in S) or ( }E\mathrm{ in S').
    eq E in S & S' = (E in S) and ( }E\mathrm{ in S').
end
```


An example

```
bth SET[X :: TRIV] is sort Set .
    op empty : -> Set .
    op _in_ : Elt Set -> Bool .
    op add : Elt Set -> Set .
    ops (_U_) (_&_) : Set Set -> Set .
    vars E E' : Elt . vars S S' : Set .
    eq E in empty = false .
    eq E in add(E', S) = (E == E') or ( }E\mathrm{ in S).
    eq E in S U S' = ( }E\mathrm{ in S) or ( }E\mathrm{ in S').
    eq E in S & S' = (E in S) and ( }E\mathrm{ in S').
end
```

Some equations are consequences of the specification (use CafeOBJ).

$$
E \text { in }\left(S \&\left(S^{\prime} U S\right)\right) \approx E \text { in } S
$$

An example

```
bth SET[X :: TRIV] is sort Set .
    op empty : -> Set .
    op _in_ : Elt Set -> Bool .
    op add : Elt Set >> Set .
    ops (_U_) (_&_) : Set Set -> Set .
    vars E E' : Elt . vars S S' : Set .
    eq E in empty = false .
    eq E in add(E', S) = (E == E') or ( }E\mathrm{ in S).
    eq E in S U S' = ( E in S) or ( }E\mathrm{ in S').
    eq E in S & S' = (E in S) and ( }E\mathrm{ in S').
end
```

Some equations are consequences of the specification (use CafeOBJ).

$$
E \text { in }\left(S \&\left(S^{\prime} U S\right)\right) \approx E \text { in } S
$$

And some others are not!

$$
\left(S \&\left(S^{\prime} U S\right)\right) \approx S
$$

An example

```
bth SET[X :: TRIV] is sort Set .
    op empty : -> Set .
    op _in_ : Elt Set -> Bool .
    op add : Elt Set >> Set .
    ops (_U_) (_&_) : Set Set -> Set .
    vars E E' : Elt . vars S S' : Set .
    eq E in empty = false .
    eq E in add(E', S) = (E == E') or ( }E\mathrm{ in S).
    eq E in S U S' = ( E in S) or ( }E\mathrm{ in S').
    eq E in S & S' = (E in S) and ( }E\mathrm{ in S').
end
```

Some equations are consequences of the specification (use CafeOBJ).

$$
E \text { in }\left(S \&\left(S^{\prime} U S\right)\right) \approx E \text { in } S
$$

And some others are not!

$$
\left(S \&\left(S^{\prime} U S\right)\right) \approx S
$$

However it is behavioral valid. Use the following relation

$$
S R S \text { iff } \forall e \quad e \text { in } S \text { iff } e \text { in } S^{\prime}
$$

Complementary topics

Related issues:

- Behavioral refinement

Complementary topics

Related issues:

- Behavioral refinement
- Definability of the observational equality

Complementary topics

Related issues:

- Behavioral refinement
- Definability of the observational equality
- Semi-automatic provers for behavioral requirements

Complementary topics

Related issues:

- Behavioral refinement
- Definability of the observational equality
- Semi-automatic provers for behavioral requirements
- Calculus for structured behavioral specifications

[^0]: ${ }^{1}$ Mathematics Department, Aveiro University, Portugal

[^1]: $" \Longleftarrow "$

 - if \vdash_{Σ} is sound.

