Algebraic and Coalgebraic methods in software development

Manuel A. Martins ¹

¹Mathematics Department, Aveiro University, Portugal

Manuel A. Martins

ACM in software Development

・ロン ・回 と ・ ヨ と ・ ヨ と

Э

Outline

Equational specification

- Term algebra, free algebra, initial and final objects.
- Equational calculus. Initial models.
- Term rewriting
- Generalizations

・ロト ・回ト ・ヨト ・ヨト

æ

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

Outline

1

- Term algebra, free algebra, initial and final objects.
- Equational calculus. Initial models.
- Term rewriting
- Generalizations

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Э

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

< □ > < @ > < 注 > < 注 > ... 注

Term Algebra

Definition (term)

Let Σ be a signature and $X = \langle X_s \rangle_{s \in S}$ a S-sorted set of variables for Σ . The S-set Σ -terms over X is the smallest S-set $T(\Sigma, X)$ s.t.:

- $X_s \subseteq T(\Sigma, X)_s$;
- $\Omega_{\epsilon,s} \subseteq T(\Sigma, X)_s;$
- For any $f: s_1, \ldots, s_n \to s \in \Sigma$ and $t_1 \in T(\Sigma, X)_{s_1}, \ldots, t_n \in T(\Sigma, X)_{s_n}$, $f(t_1, \ldots, t_n) \in T(\Sigma, X)_s$;

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

Term Algebra

Definition (term)

Let Σ be a signature and $X = \langle X_s \rangle_{s \in S}$ a S-sorted set of variables for Σ . The S-set Σ -terms over X is the smallest S-set $T(\Sigma, X)$ s.t.:

- $X_s \subseteq T(\Sigma, X)_s$;
- $\Omega_{\epsilon,s} \subseteq T(\Sigma, X)_s;$
- For any $f: s_1, \ldots, s_n \to s \in \Sigma$ and $t_1 \in T(\Sigma, X)_{s_1}, \ldots, t_n \in T(\Sigma, X)_{s_n}$, $f(t_1, \ldots, t_n) \in T(\Sigma, X)_s$;

Definition (Term Algebra)

If $T(\Sigma, X)$ is non empty, the term algebra over X is the algebra $\mathcal{T}(\Sigma, X)$ with carrier set $T(\Sigma, X)$, and for any $f : s_1, \ldots, s_n \to s \in \Sigma$ and every $t_1 \in T(\Sigma, X)_{s_1}, \ldots, t_n \in T(\Sigma, X)_{s_n}$,

$$f^{\mathcal{T}(\Sigma,X)}(t_1,\ldots,t_n):=f(t_1,\ldots,t_n)$$

	Term algebra, free algebra, initial and final objects.
Equational specification	Equational calculus. Initial models. Term rewriting Generalizations

Fact

 $\mathcal{T}(\Sigma, X)$ is the Σ -algebra generated by X

<ロ> (四) (四) (三) (三) (三) (三)

	Term algebra, free algebra, initial and final objects.
Equational specification	Equational calculus. Initial models. Term rewriting Generalizations

Fact

 $\mathcal{T}(\Sigma, X)$ is the Σ -algebra generated by X

Definition

 Σ is non empty iff for every $s \in S$ there is a $t \in T(\Sigma, \emptyset)$.

 $T(\Sigma, \emptyset)$ is called ground term algebra.

・ロット (四) (日) (日)

Э

	Term algebra, free algebra, initial and final objects.
Equational specification	Equational calculus. Initial models. Term rewriting Generalizations

Fact

 $\mathcal{T}(\Sigma, X)$ is the Σ -algebra generated by X

Definition

 Σ is non empty iff for every $s \in S$ there is a $t \in T(\Sigma, \emptyset)$.

 $T(\Sigma, \emptyset)$ is called ground term algebra.

Example (naturals revisited)

Since Σ_N is non empty, the term algebra exists. The carrier set is

 $0, s(0), s(s(0)), s(s(s(0))), \ldots$

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

(日) (同) (E) (E) (E)

Example (A simple programming language)

```
Gen

E

bool

P

Op

0, x_1, \dots, x_n : \rightarrow E

s, p : E \rightarrow E

+, -, * : E, E \rightarrow E

- : E, E \rightarrow bool

- : = : E, E \rightarrow P

- : : : P, P \rightarrow P

if _ then _ else - fi : bool, P, P \rightarrow P

repeat _ do _ od : E, P \rightarrow P
```

E correct expressions (for simplicity integers) *bool* for booleans *P* for programmes

Manuel A. Martins ACM in software Development

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

Example (A simple programming language)

```
Gen

E

bool

P

Op

0, x_1, \dots, x_n : \rightarrow E

s, p : E \rightarrow E

+, -, * : E, E \rightarrow E

- : : E, E \rightarrow E

- : : E, E \rightarrow D

: : : P, P \rightarrow P

if _ then _ else - fi : bool, P, P \rightarrow P

repeat _ do _ od : E, P \rightarrow P
```

E correct expressions (for simplicity integers) *bool* for booleans *P* for programmes

What means the following term?

```
\begin{array}{l} y_1:=1; y_2:=1;\\ \texttt{repeat 5 do}\\ y_1:=y_1*y_2;\\ y_2:=y_2+1\\ \texttt{od} \end{array}
```

	Term algebra, free algebra, initial and final objects.
Equational specification	Equational calculus. Initial models. Term rewriting Generalizations

Let K be a class of algebras over Σ . An object $\mathbf{A} \in K$ is called initial in K iff for any $\mathbf{B} \in K$ there exists a unique homomorphism $h : \mathbf{A} \to \mathbf{B}$.

イロン イヨン イヨン イヨン

æ

	Term algebra, free algebra, initial and final objects.
Equational specification	Equational calculus. Initial models. Term rewriting Generalizations

Let K be a class of algebras over Σ . An object $\mathbf{A} \in K$ is called initial in K iff for any $\mathbf{B} \in K$ there exists a unique homomorphism $h : \mathbf{A} \to \mathbf{B}$. An object $\mathbf{A} \in K$ is called final in K iff for any object $\mathbf{B} \in K$ there exists a unique homomorphism $h : \mathbf{B} \to \mathbf{A}$.

イロン イロン イヨン イヨン 三日

	Term algebra, free algebra, initial and final objects.
Equational specification	Equational calculus. Initial models. Term rewriting Generalizations

Let K be a class of algebras over Σ . An object $\mathbf{A} \in K$ is called initial in K iff for any $\mathbf{B} \in K$ there exists a unique homomorphism $h : \mathbf{A} \to \mathbf{B}$. An object $\mathbf{A} \in K$ is called final in K iff for any object $\mathbf{B} \in K$ there exists a unique homomorphism $h : \mathbf{B} \to \mathbf{A}$.

Fact

Initial (final) algebras are unique up to isomorphism.

< □ > < @ > < 注 > < 注 > ... 注

	Term algebra, free algebra, initial and final objects.
Equational specification	Equational calculus. Initial models. Term rewriting Generalizations

Let K be a class of algebras over Σ . An object $\mathbf{A} \in K$ is called initial in K iff for any $\mathbf{B} \in K$ there exists a unique homomorphism $h : \mathbf{A} \to \mathbf{B}$. An object $\mathbf{A} \in K$ is called final in K iff for any object $\mathbf{B} \in K$ there exists a unique homomorphism $h : \mathbf{B} \to \mathbf{A}$.

Fact

Initial (final) algebras are unique up to isomorphism.

Fact

Let Σ a non empty signature. Then $\mathcal{T}(\Sigma)$ is initial in $Alg(\Sigma)$.

	Term algebra, free algebra, initial and final objects.
Equational specification	Equational calculus. Initial models. Term rewriting Generalizations

Let K be a class of algebras over Σ . An object $\mathbf{A} \in K$ is called initial in K iff for any $\mathbf{B} \in K$ there exists a unique homomorphism $h : \mathbf{A} \to \mathbf{B}$. An object $\mathbf{A} \in K$ is called final in K iff for any object $\mathbf{B} \in K$ there exists a unique homomorphism $h : \mathbf{B} \to \mathbf{A}$.

Fact

Initial (final) algebras are unique up to isomorphism.

Fact

Let Σ a non empty signature. Then $\mathcal{T}(\Sigma)$ is initial in $Alg(\Sigma)$.

Fact

For any signature Σ the trivial algebra is final in $Alg(\Sigma)$.

・ロン ・回 とくほど ・ ほとう

	Term algebra, free algebra, initial and final objects.
Equational specification	Equational calculus. Initial models. Term rewriting Generalizations

Example

I- The class of algebras over the signature of natural numbers $\Sigma = \{0, suc, +\}$, with just one sort *nat*, satisfying the axioms suc(0 + n) = n and suc(n) + m = suc(n + m) has both initial and final algebras.

イロン イヨン イヨン イヨン

Э

	Term algebra, free algebra, initial and final objects.
Equational specification	Equational calculus. Initial models.
Equational specification	Term rewriting
	Generalizations

Example

I- The class of algebras over the signature of natural numbers $\Sigma = \{0, suc, +\}$, with just one sort *nat*, satisfying the axioms suc(0 + n) = n and suc(n) + m = suc(n + m) has both initial and final algebras.

II- Moore Automata. Let IN and OUT be fixed. There is final algebra but not initial. Gen

```
in

out

stat

Op

c :\rightarrow inc \in In

k :\rightarrow outk \in Out

next : in, stat \rightarrow stat

print : stat \rightarrow out

Show that there is no initial algebra but there is an interesting final algebra.
```

・ロト ・回ト ・ヨト ・ヨト

3

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

(日) (同) (E) (E) (E)

Algebra livre

Definition

Let K be a class of Σ -algebra. An algebra \mathcal{F} (not necessarily in K) s.t. $X \subseteq F$ is called free for K over X iff for any $\mathcal{A} \in K$ and every $\alpha : X \to A$ there is a unique homomorphism $\alpha^* : \mathcal{F} \to \mathcal{A}$ that extends α , i.e., $\alpha^*(x) = \alpha(x)$ for all $x \in X$.

If $\mathcal{F} \in K$ we say that \mathcal{F} is free in K over X.

(we will just write α instead of α^*)

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

Algebra livre

Definition

Let K be a class of Σ -algebra. An algebra \mathcal{F} (not necessarily in K) s.t. $X \subseteq F$ is called free for K over X iff for any $\mathcal{A} \in K$ and every $\alpha : X \to A$ there is a unique homomorphism $\alpha^* : \mathcal{F} \to \mathcal{A}$ that extends α , i.e., $\alpha^*(x) = \alpha(x)$ for all $x \in X$.

If $\mathcal{F} \in K$ we say that \mathcal{F} is free in K over X.

(we will just write α instead of α^*)

Fact

If $T(\Sigma, X)$ is non empty, $\mathcal{T}(\Sigma, X)$ is free in $Alg(\Sigma)$ over X.

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

(ロ) (四) (E) (E) (E)

Models and equations

• A Σ -equation is a pair $\langle t_1, t_2 \rangle$ with $t_1, t_2 \in T(\Sigma, X)_s$. We will write $t_1 \approx t_2$.

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

<ロ> (四) (四) (三) (三) (三)

Models and equations

- A Σ -equation is a pair $\langle t_1, t_2 \rangle$ with $t_1, t_2 \in T(\Sigma, X)_s$. We will write $t_1 \approx t_2$.
- \models equational satisfaction
- $\mathcal{A} \models t_1 \approx t_2$ if, for every $h: X \to A$ $h^*(t_1) = h^*(t_2)$.

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

<ロ> (四) (四) (三) (三) (三)

Models and equations

• A Σ -equation is a pair $\langle t_1, t_2 \rangle$ with $t_1, t_2 \in T(\Sigma, X)_s$. We will write $t_1 \approx t_2$.

\models - equational satisfaction

- $\mathcal{A} \models t_1 \approx t_2$ if, for every $h: X \to A$ $h^*(t_1) = h^*(t_2)$.
- $\mathcal{A} \models \Phi$ if, for every $t_1 \approx t_2 \in \Phi$ $\mathcal{A} \models t_1 \approx t_2$.

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

イロン イロン イヨン イヨン 三日

Models and equations

• A Σ -equation is a pair $\langle t_1, t_2 \rangle$ with $t_1, t_2 \in T(\Sigma, X)_s$. We will write $t_1 \approx t_2$.

\models - equational satisfaction

- $\mathcal{A} \models t_1 \approx t_2$ if, for every $h: X \to A$ $h^*(t_1) = h^*(t_2)$.
- $\mathcal{A} \models \Phi$ if, for every $t_1 \approx t_2 \in \Phi$ $\mathcal{A} \models t_1 \approx t_2$.
- $K \models t_1 \approx t_2$ if, for every $A \in K \ A \models t_1 \approx t_2$.

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Models and equations

• A Σ -equation is a pair $\langle t_1, t_2 \rangle$ with $t_1, t_2 \in T(\Sigma, X)_s$. We will write $t_1 \approx t_2$.

\models - equational satisfaction

- $\mathcal{A} \models t_1 \approx t_2$ if, for every $h: X \to A$ $h^*(t_1) = h^*(t_2)$.
- $\mathcal{A} \models \Phi$ if, for every $t_1 \approx t_2 \in \Phi$ $\mathcal{A} \models t_1 \approx t_2$.
- $K \models t_1 \approx t_2$ if, for every $A \in K \ A \models t_1 \approx t_2$.
- A pair $\langle \Sigma, \Phi \rangle$ is called a *flat specification*.

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

イロン イロン イヨン イヨン 三日

Galois connection

• A model of a specification flat $\langle \Sigma, \Phi \rangle$ is an Σ -algebra such that $\mathcal{A} \models \Phi$. The class of all models of Φ , $Mod(\Phi)$.

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

イロン イロン イヨン イヨン 三日

Galois connection

• A model of a specification flat $\langle \Sigma, \Phi \rangle$ is an Σ -algebra such that $\mathcal{A} \models \Phi$. The class of all models of Φ , $Mod(\Phi)$.

• [Semantic consequence] $\Phi \models_{\Sigma} t_1 \approx t_2$ iff $Mod[\Phi] \models_{\Sigma} t_1 \approx t_2$.

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

<ロ> (四) (四) (三) (三) (三)

Galois connection

► A model of a specification flat $\langle \Sigma, \Phi \rangle$ is an Σ -algebra such that $\mathcal{A} \models \Phi$. The class of all models of Φ , $Mod(\Phi)$.

- [Semantic consequence] $\Phi \models_{\Sigma} t_1 \approx t_2$ iff $Mod[\Phi] \models_{\Sigma} t_1 \approx t_2$.
- ► The theory of K $\operatorname{Th}_{\Sigma}(K)_s := \{t_1 \approx t_2 \in \operatorname{Eq}(\Sigma, X) : K \models t_1 \approx t_2\}$

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Galois connection

► A model of a specification flat $\langle \Sigma, \Phi \rangle$ is an Σ -algebra such that $\mathcal{A} \models \Phi$. The class of all models of Φ , $Mod(\Phi)$.

- [Semantic consequence] $\Phi \models_{\Sigma} t_1 \approx t_2$ iff $Mod[\Phi] \models_{\Sigma} t_1 \approx t_2$.
- The theory of K $\operatorname{Th}_{\Sigma}(K)_s := \{t_1 \approx t_2 \in \operatorname{Eq}(\Sigma, X) : K \models t_1 \approx t_2\}$

Galois connection.

1
$$\Phi \subseteq \Psi$$
 implies $Mod(\Phi) \supseteq Mod(\Psi)$;

- 2 $K \subseteq K'$ implies $\operatorname{Th}_{\Sigma}(K) \supseteq \operatorname{Th}_{\Sigma}(K')$;
- **3** $\Phi \subseteq \operatorname{Th}_{\Sigma}(\operatorname{Mod}(\Phi))$ and $K \subseteq \operatorname{Mod}(\operatorname{Th}_{\Sigma}(K))$.

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ

Equational calculus

Assume that Σ are non empty.

 $(\mathrm{i}) \ \ \frac{}{ \Phi \vdash_{\Sigma} t_1 \approx t_2 } \ \, \text{for every} \ t_1 \approx t_2 \in \Phi \\$

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

Equational calculus

Assume that Σ are non empty.

(i) $\frac{}{\Phi \vdash_{\Sigma} t_1 \approx t_2}$ for every $t_1 \approx t_2 \in \Phi$ (ii) $\frac{}{\emptyset \vdash_{\Sigma} t \approx t}$

(reflexivity)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

Equational calculus

Assume that Σ are non empty.

(i)
$$\begin{array}{l} \hline \Phi \vdash_{\Sigma} t_1 \approx t_2 \\ \hline \\ (ii) \\ \hline \emptyset \vdash_{\Sigma} t \approx t \\ \hline \\ (iii) \\ \hline \Phi \vdash_{\Sigma} t_2 \approx t_2 \\ \hline \\ \hline \Phi \vdash_{\Sigma} t_2 \approx t_1 \end{array}$$

(reflexivity)

(symmetry)

<ロ> (四) (四) (三) (三) (三) (三)

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

Equational calculus

Assume that Σ are non empty.

$$\begin{array}{ll} (i) & \overline{\varphi \vdash_{\Sigma} t_{1} \approx t_{2}} \mbox{ for every } t_{1} \approx t_{2} \in \Phi \\ (ii) & \overline{\emptyset \vdash_{\Sigma} t \approx t_{2}} & (reflexivity) \\ (iii) & \frac{\varphi \vdash_{\Sigma} t_{1} \approx t_{2}}{\varphi \vdash_{\Sigma} t_{2} \approx t_{1}} & (symmetry) \\ (iv) & \frac{\varphi \vdash_{\Sigma} t_{1} \approx t_{2}; \varphi' \vdash_{\Sigma} t_{2} \approx t_{3}}{\varphi \cup \varphi' \vdash_{\Sigma} t_{1} \approx t_{3}} & (transitivity) \end{array}$$

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

Equational calculus

Assume that $\boldsymbol{\Sigma}$ are non empty.

$$\begin{array}{ll} (\mathrm{i}) & \overline{\Phi \vdash_{\Sigma} t_{1} \approx t_{2}} & \text{for every } t_{1} \approx t_{2} \in \Phi \\ (\mathrm{ii}) & \overline{\emptyset \vdash_{\Sigma} t \approx t_{2}} & (\text{reflexivity}) \\ (\mathrm{iii}) & \frac{\Phi \vdash_{\Sigma} t_{1} \approx t_{2}}{\Phi \vdash_{\Sigma} t_{2} \approx t_{1}} & (\text{symmetry}) \\ (\mathrm{iv}) & \frac{\Phi \vdash_{\Sigma} t_{1} \approx t_{2}; \Phi' \vdash_{\Sigma} t_{2} \approx t_{3}}{\Phi \cup \Phi' \vdash_{\Sigma} t_{1} \approx t_{3}} & (\text{transitivity}) \\ (\mathrm{v}) & \frac{\Phi_{1} \vdash_{\Sigma} t_{1} \approx t_{1}', \dots, \Phi_{n} \vdash_{\Sigma} t_{n} \approx t_{n}'}{\Phi_{1} \cup \dots \cup \Phi_{n} \vdash_{\Sigma} f(t_{1}, \dots t_{n}) \approx f(t_{1}', \dots t_{n}')}, \text{ for any } f \in \Sigma & (\text{congruence}) \end{array}$$

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

Equational calculus

Assume that $\boldsymbol{\Sigma}$ are non empty.

$$\begin{array}{ll} (i) & \overline{\varphi \vdash_{\Sigma} t_{1} \approx t_{2}} \mbox{ for every } t_{1} \approx t_{2} \in \Phi \\ (ii) & \overline{\varphi \vdash_{\Sigma} t_{2} \approx t_{2}} & (reflexivity) \\ (iii) & \overline{\varphi \vdash_{\Sigma} t_{2} \approx t_{2}} & (symmetry) \\ (iv) & \overline{\varphi \vdash_{\Sigma} t_{1} \approx t_{2}; \varphi' \vdash_{\Sigma} t_{2} \approx t_{3}} & (transitivity) \\ (iv) & \overline{\varphi \cup \varphi' \vdash_{\Sigma} t_{1} \approx t_{3}} & (transitivity) \\ (v) & \overline{\varphi_{1} \vdash_{\Sigma} t_{1} \approx t_{1}', \dots, \varphi_{n} \vdash_{\Sigma} t_{n} \approx t_{n}'} & (congruence) \\ (vi) & \overline{\varphi \vdash_{\Sigma} t_{1} \approx t_{2}}, f(t_{1}, \dots, t_{n}) \approx f(t_{1}', \dots, t_{n}')}, \mbox{ for any } f \in \Sigma & (congruence) \\ (vi) & \overline{\varphi \vdash_{\Sigma} t_{1} \approx t_{2}}, \mbox{ for any substitution } \sigma : T(\Sigma, X) \to T(\Sigma, X) & (replacement) \end{array}$$

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

Equational calculus

Assume that $\boldsymbol{\Sigma}$ are non empty.

$$\begin{array}{ll} (i) & \overline{\varphi \vdash_{\Sigma} t_{1} \approx t_{2}} \mbox{ for every } t_{1} \approx t_{2} \in \Phi \\ (ii) & \overline{\varphi \vdash_{\Sigma} t_{2} \approx t_{2}} & (reflexivity) \\ (iii) & \overline{\varphi \vdash_{\Sigma} t_{2} \approx t_{2}} & (symmetry) \\ (iv) & \overline{\varphi \vdash_{\Sigma} t_{1} \approx t_{2}; \varphi' \vdash_{\Sigma} t_{2} \approx t_{3}} & (transitivity) \\ (iv) & \overline{\varphi \cup \varphi' \vdash_{\Sigma} t_{1} \approx t_{3}} & (transitivity) \\ (v) & \overline{\varphi_{1} \vdash_{\Sigma} t_{1} \approx t_{1}', \dots, \varphi_{n} \vdash_{\Sigma} t_{n} \approx t_{n}'} & (congruence) \\ (vi) & \overline{\varphi \vdash_{\Sigma} t_{1} \approx t_{2}}, f(t_{1}, \dots, t_{n}) \approx f(t_{1}', \dots, t_{n}')}, \mbox{ for any } f \in \Sigma & (congruence) \\ (vi) & \overline{\varphi \vdash_{\Sigma} t_{1} \approx t_{2}}, \mbox{ for any substitution } \sigma : T(\Sigma, X) \to T(\Sigma, X) & (replacement) \end{array}$$

Equational specification
Term algebra, free algebra, initial and final objects.
Equational calculus. Initial models.
Term rewriting
Generalizations

Examples

▶ Let $\Sigma = \langle S, \Omega \rangle$ with $S = \{S_0, S_1, S_2\}$, and Ω with $\Omega_{\epsilon, S_1} = \{a, b\}$, $\Omega_{\epsilon, S_2} = \{c, d\}$ and $\Omega_{S_1S_2,S_0} = \{f\}$. Let $\Phi = \{a \approx b, c \approx d\}$. We have

 $\Phi \vdash f(a,c) \approx f(b,d)$

イロト イロト イヨト イヨト 二日
Equational specification Equational specification Equational calculus. Initial models. Term rewriting Generalizations

Examples

► Let $\Sigma = \langle S, \Omega \rangle$ with $S = \{S_0, S_1, S_2\}$, and Ω with $\Omega_{\epsilon, S_1} = \{a, b\}$, $\Omega_{\epsilon, S_2} = \{c, d\}$ and $\Omega_{S_1S_2,S_0} = \{f\}$. Let $\Phi = \{a \approx b, c \approx d\}$. We have

$$\Phi \vdash f(a,c) \approx f(b,d)$$

Flags] Let $\Phi = \text{Axioms of booleans} + \{up?(dn(F)) \approx false, up?(up(F)) \approx true, up?(rev(F)) \approx \neg up?(F)\}.$ $\Phi \vdash rev(rev(F)) \approx F?$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Equational specification Equational specification Equational calculus. Initial models. Term rewriting Generalizations

Examples

▶ Let $\Sigma = \langle S, \Omega \rangle$ with $S = \{S_0, S_1, S_2\}$, and Ω with $\Omega_{\epsilon, S_1} = \{a, b\}$, $\Omega_{\epsilon, S_2} = \{c, d\}$ and $\Omega_{S_1S_2,S_0} = \{f\}$. Let $\Phi = \{a \approx b, c \approx d\}$. We have

$$\Phi \vdash f(a,c) \approx f(b,d)$$

[Flags] Let

 Φ = Axioms of booleans + { $up?(dn(F)) \approx false, up?(up(F)) \approx true, up?(rev(F)) \approx \neg up?(F)$ }. $\Phi \vdash rev(rev(F)) \approx F$?

[Nat]:

 \mathtt{nat}

 $0: \rightarrow \text{nat}$ $s: \text{nat} \rightarrow \text{nat}$ $+: \text{nat}, \text{nat} \rightarrow \text{nat}$ $0+n \approx n$ $s(m)+n \approx s(m+n)$

・ロト ・四ト ・ヨト ・ヨト - ヨ

Equational specification Equational specification Equational calculus. Initial models. Term rewriting Generalizations

Examples

▶ Let $\Sigma = \langle S, \Omega \rangle$ with $S = \{S_0, S_1, S_2\}$, and Ω with $\Omega_{\epsilon, S_1} = \{a, b\}$, $\Omega_{\epsilon, S_2} = \{c, d\}$ and $\Omega_{S_1S_2,S_0} = \{f\}$. Let $\Phi = \{a \approx b, c \approx d\}$. We have

$$\Phi \vdash f(a,c) \approx f(b,d)$$

▶ [Flags] Let

 Φ = Axioms of booleans + { $up?(dn(F)) \approx false, up?(up(F)) \approx true, up?(rev(F)) \approx \neg up?(F)$ }. $\Phi \vdash rev(rev(F)) \approx F$?

[Nat]:

 \mathtt{nat}

 $\begin{array}{l} 0+n\approx n\\ s(m)+n\approx s(m+n) \end{array}$

Show that $\Phi \vdash s(0) + n \approx s(n)$

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

Completeness

 $\blacktriangleright \quad \text{Let we define} \qquad t_1 \equiv_{\Phi} t_2 \text{ iff } \Phi \vdash t_1 \approx t_2.$

Equational specification Equational calculus. Initial models. Term rewriting Generalizations
--

Completeness

• Let we define $t_1 \equiv_{\Phi} t_2$ iff $\Phi \vdash t_1 \approx t_2$.

Fact

 \equiv_{Φ} is a congruence on $\mathcal{T}(\Sigma, X)$.

ヘロン ヘロン ヘビン ヘビン

Э

Completeness

• Let we define $t_1 \equiv_{\Phi} t_2$ iff $\Phi \vdash t_1 \approx t_2$.

Fact

```
\equiv_{\Phi} is a congruence on \mathcal{T}(\Sigma, X).
```

Lemma

 $\Phi \vdash t_1 \approx t_2 \text{ iff } \mathcal{T}(\Sigma, X) / \equiv_{\Phi} \models t_1 \approx t_2$

<ロ> (四) (四) (注) (注) (三)

Completeness

• Let we define $t_1 \equiv_{\Phi} t_2$ iff $\Phi \vdash t_1 \approx t_2$.

Fact

```
\equiv_{\Phi} is a congruence on \mathcal{T}(\Sigma, X).
```

Lemma

$$\Phi \vdash t_1 \approx t_2 \text{ iff } \mathcal{T}(\Sigma, X) / \equiv_{\Phi} \models t_1 \approx t_2$$

Theorem (Soundness and completeness of Birkhoff)

 $\Phi \vdash t_1 \approx t_2 \text{ iff } \Phi \models t_1 \approx t_2$

Equational specification Equational specification Equational specification Equational specification Equational specification Generalizations

Completeness

• Let we define $t_1 \equiv_{\Phi} t_2$ iff $\Phi \vdash t_1 \approx t_2$.

Fact

```
\equiv_{\Phi} is a congruence on \mathcal{T}(\Sigma, X).
```

Lemma

$$\Phi \vdash t_1 \approx t_2 \text{ iff } \mathcal{T}(\Sigma, X) / \equiv_{\Phi} \models t_1 \approx t_2$$

Theorem (Soundness and completeness of Birkhoff)

 $\Phi \vdash t_1 \approx t_2 \text{ iff } \Phi \models t_1 \approx t_2$

Proof.

(⇒) Induction. (⇐) It is enough to show that $\Phi \models t_1 \approx t_2$ implies $\mathcal{T}(\Sigma, X) / \equiv_{\Phi} \models t_1 \approx t_2$.

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Initial models

What should be a "good model" of a specification?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Initial models

What should be a "good model" of a specification?

Recall:

An algebra \mathcal{A} is *reachable* if for each element *a* there is a ground term *t* st $t^{\mathcal{A}} = a$.

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

<ロ> (四) (四) (三) (三) (三)

Initial models

What should be a "good model" of a specification?

Recall:

An algebra A is *reachable* if for each element *a* there is a ground term *t* st $t^A = a$.

► Let $\mathcal{A} \in Mod(\Phi)$. We say that \mathcal{A} contains junk if it is not reachable and we say that \mathcal{A} contains confusion if it satisfies a ground equation $t_1 \approx t_2 \in Eq(\Sigma)$ s.t. $\Phi \not\vdash t_1 \approx t_2$.

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

(ロ) (同) (E) (E) (E)

Initial models

What should be a "good model" of a specification?

Recall:

```
An algebra A is reachable if for each element a there is a ground term t st t^A = a.
```

• Let $\mathcal{A} \in Mod(\Phi)$. We say that \mathcal{A} contains junk if it is not reachable and we say that \mathcal{A} contains confusion if it satisfies a ground equation $t_1 \approx t_2 \in Eq(\Sigma)$ s.t. $\Phi \not\vdash t_1 \approx t_2$.

Theorem

 $\mathcal{T}(\Sigma)/\equiv_{\Phi}$ is a model in $\mathrm{Mod}(\Phi)$ containing no junk and no confusion.

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

Initial models

What should be a "good model" of a specification?

Recall:

An algebra A is *reachable* if for each element *a* there is a ground term *t* st $t^A = a$.

• Let $\mathcal{A} \in Mod(\Phi)$. We say that \mathcal{A} contains junk if it is not reachable and we say that \mathcal{A} contains confusion if it satisfies a ground equation $t_1 \approx t_2 \in Eq(\Sigma)$ s.t. $\Phi \not\vdash t_1 \approx t_2$.

Theorem

 $\mathcal{T}(\Sigma)/\equiv_\Phi$ is a model in $\operatorname{Mod}(\Phi)$ containing no junk and no confusion.

Theorem

 $\mathcal{T}(\Sigma) / \equiv_{\Phi} \text{ is initial in } \mathrm{Mod}(\Phi).$

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

Initial models

What should be a "good model" of a specification?

Recall:

An algebra A is *reachable* if for each element *a* there is a ground term *t* st $t^A = a$.

• Let $\mathcal{A} \in Mod(\Phi)$. We say that \mathcal{A} contains junk if it is not reachable and we say that \mathcal{A} contains confusion if it satisfies a ground equation $t_1 \approx t_2 \in Eq(\Sigma)$ s.t. $\Phi \not\vdash t_1 \approx t_2$.

Theorem

 $\mathcal{T}(\Sigma)/\equiv_\Phi$ is a model in $\operatorname{Mod}(\Phi)$ containing no junk and no confusion.

Theorem

 $\mathcal{T}(\Sigma)/\equiv_{\Phi} \textit{ is initial in } \mathrm{Mod}(\Phi).$

Corollary

Let $t_1\approx t_2\in \operatorname{Eq}(\Sigma),$ i.e. ground equation. Then

 $\mathcal{T}(\Sigma) / \equiv_{\Phi} \models t_1 \approx t_2 \Leftrightarrow \Phi \models t_1 \approx t_2.$

Equational specification	Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations
--------------------------	---

[Bool]:

bool

- $\begin{array}{ll} true: & \rightarrow \texttt{bool} \\ false: & \rightarrow \texttt{bool} \\ \neg:\texttt{bool} \rightarrow \texttt{bool} \\ \land:\texttt{bool},\texttt{bool} \rightarrow \texttt{bool} \\ \Rightarrow:\texttt{bool},\texttt{bool} \rightarrow \texttt{bool} \end{array}$
- $$\begin{split} \neg true &\approx false \\ \neg false &\approx true \\ p \wedge true &\approx p \\ p \wedge false &\approx false \\ p \wedge \neg p &\approx false \\ p \Rightarrow q &\approx \neg (p \wedge \neg q) \end{split}$$
- (i) Present 3 finite models with 1, 2 and 3 elements.
- $(\mathrm{ii})~$ Classify the models with respect to "junk" and "confusion".
- (iii) Build the algebra $\mathcal{T}(\Sigma_{Bool})/\equiv_{\Phi}$, where Φ is the set of equations of the specification.

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

イロン イボン イヨン イヨン 三日

Term rewriting I

► Term rewriting is a technic used in standard mathematics to show that an equation can be shown as consequence of a given set of equations (see for instance Group theory.). It is the support of CafeOBJ!

(ロ) (同) (E) (E) (E)

Term rewriting I

► Term rewriting is a technic used in standard mathematics to show that an equation can be shown as consequence of a given set of equations (see for instance Group theory.). It is the support of CafeOBJ!

Definition (Rewriting)

Let $t_1, t_2 \in T(\Sigma, X)_s$ and $r = u_1 \triangleright u_2$ a rewriting rule over Σ . We say that t_1 directly reduces into t_2 by r, we write $t_1 \triangleright_r t_2$, if there is a substitution $\alpha : X \to T(\Sigma, X)$ s.t.:

- $\alpha(u_1)$ is a subterm of t_1 and
- t_2 can be obtained from t_1 by replacing the subterm $\alpha(u_1)$ by $\alpha(u_2)$.
- \triangleright_r is a binary relation over $T(\Sigma, X)$.

(ロ) (同) (E) (E) (E)

Term rewriting I

► Term rewriting is a technic used in standard mathematics to show that an equation can be shown as consequence of a given set of equations (see for instance Group theory.). It is the support of CafeOBJ!

Definition (Rewriting)

Let $t_1, t_2 \in T(\Sigma, X)_s$ and $r = u_1 \triangleright u_2$ a rewriting rule over Σ . We say that t_1 directly reduces into t_2 by r, we write $t_1 \triangleright_r t_2$, if there is a substitution $\alpha : X \to T(\Sigma, X)$ s.t.:

- $\alpha(u_1)$ is a subterm of t_1 and
- t_2 can be obtained from t_1 by replacing the subterm $\alpha(u_1)$ by $\alpha(u_2)$.
- $\triangleright_r \text{ is a binary relation over } T(\Sigma, X).$

$$\triangleright_R = \bigcup_{r \in R} \rhd_r.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Term rewriting I

► Term rewriting is a technic used in standard mathematics to show that an equation can be shown as consequence of a given set of equations (see for instance Group theory.). It is the support of CafeOBJ!

Definition (Rewriting)

Let $t_1, t_2 \in T(\Sigma, X)_s$ and $r = u_1 \triangleright u_2$ a rewriting rule over Σ . We say that t_1 directly reduces into t_2 by r, we write $t_1 \triangleright_r t_2$, if there is a substitution $\alpha : X \to T(\Sigma, X)$ s.t.:

- α(u₁) is a subterm of t₁ and
- t_2 can be obtained from t_1 by replacing the subterm $\alpha(u_1)$ by $\alpha(u_2)$.
- \triangleright_r is a binary relation over $T(\Sigma, X)$.
- $\triangleright_R = \bigcup_{r \in R} \rhd_r.$

• A computation is a sequence $t_1, \ldots, t_n \in T(\Sigma, X)$ s.t. $t = t_1 \triangleright_R \cdots \triangleright_R t_n = t'$ and we write $t \triangleright_R^* t'$ (it is the transitive closure of \triangleright_R .).

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting

・ロン ・回 と ・ヨン ・ヨン

3

Generalizations

Term rewriting II

Definition (Normal form)

Let $t, t' \in T(\Sigma, X)_s$ and R a rewriting system over Σ . t' is a normal form of t, we write $t \triangleright_R t'$, if there is a terminating computation t_1, \ldots, t_n s.t. $t = t_1$ and $t' = t_n$.

・ロット (四) (日) (日)

3

Term rewriting II

Definition (Normal form)

Let $t, t' \in T(\Sigma, X)_s$ and R a rewriting system over Σ . t' is a normal form of t, we write $t \triangleright_R t'$, if there is a terminating computation t_1, \ldots, t_n s.t. $t = t_1$ and $t' = t_n$.

In such case, we say that $t_1 \approx t_2$ can be deduced by rewriting in R, in symbols $\Vdash_R t_1 \approx t_2$, if there is a term t_3 s.t. $t_1 \triangleright_R t_3$ and $t_2 \triangleright_R t_3$.

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Term rewriting II

Definition (Normal form)

Let $t, t' \in T(\Sigma, X)_s$ and R a rewriting system over Σ . t' is a normal form of t, we write $t \triangleright_R t'$, if there is a terminating computation t_1, \ldots, t_n s.t. $t = t_1$ and $t' = t_n$.

In such case, we say that $t_1 \approx t_2$ can be deduced by rewriting in R, in symbols $\Vdash_R t_1 \approx t_2$, if there is a term t_3 s.t. $t_1 \triangleright_R t_3$ and $t_2 \triangleright_R t_3$.

Theorem

 $\Vdash_R t_1 \approx t_2 \Rightarrow \operatorname{Eq}(R) \vdash t_1 \approx t_2.$

・ロン ・回と ・ヨン・

3

Term rewriting II

Definition (Normal form)

Let $t, t' \in T(\Sigma, X)_s$ and R a rewriting system over Σ . t' is a normal form of t, we write $t \triangleright_R t'$, if there is a terminating computation t_1, \ldots, t_n s.t. $t = t_1$ and $t' = t_n$.

In such case, we say that $t_1 \approx t_2$ can be deduced by rewriting in R, in symbols $\Vdash_R t_1 \approx t_2$, if there is a term t_3 s.t. $t_1 \triangleright_R t_3$ and $t_2 \triangleright_R t_3$.

Theorem

 $\Vdash_R t_1 \approx t_2 \Rightarrow \operatorname{Eq}(R) \vdash t_1 \approx t_2.$

Theorem

If R is terminating and confluent then

$$\operatorname{Eq}(R) \vdash t_1 \approx t_2 \Rightarrow \Vdash_R t_1 \approx t_2.$$

Manuel A. Martins ACM in software Development

Equational specification	Term algebra, free algebra, initial and final objects. Equational calculus. Initial models.
	Term rewriting
	Generalizations

► A class *K* is a *variety* iff it is closed under subalgebras, homomorphic images and direct products.

Equational specification	Term algebra, free algebra, initial and final objects. Equational calculus. Initial models.
	Term rewriting Generalizations

► A class *K* is a *variety* iff it is closed under subalgebras, homomorphic images and direct products.

Theorem (Birkhoff's theorem)

A class K is a variety iff $K = Mod(\Phi)$ for some set of equations Φ .

(ロ) (同) (E) (E) (E)

Equational specification	Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations
--------------------------	---

► A class *K* is a *variety* iff it is closed under subalgebras, homomorphic images and direct products.

Theorem (Birkhoff's theorem)

A class K is a variety iff $K = Mod(\Phi)$ for some set of equations Φ .

Example

Let $\Sigma = \langle \{S\}, \Omega \rangle$ where $\Omega_{\epsilon,S} = \{a, b\}$. Suppose that we would like to specify, using equations, the class of all Σ -algebras with exactly two elements. Birkhoff's theorem states that it can not be done.

・ロン ・回 と ・ ヨ と ・ ヨ と

Equational specification	Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations
--------------------------	---

► A class *K* is a *variety* iff it is closed under subalgebras, homomorphic images and direct products.

Theorem (Birkhoff's theorem)

A class K is a variety iff $K = Mod(\Phi)$ for some set of equations Φ .

Example

Let $\Sigma = \langle \{S\}, \Omega \rangle$ where $\Omega_{\epsilon,S} = \{a, b\}$. Suppose that we would like to specify, using equations, the class of all Σ -algebras with exactly two elements. Birkhoff's theorem states that it can not be done.

Example

Let $\Sigma = \langle \{S\}, \Omega \rangle$ where $\Omega_{\epsilon,S} = \{0\}$ and $\Omega_{5,S} = \{\times\}$. The class K of Σ -algebras satisfying the familiar cancellation law: if $a \neq 0$ and $a \times b = a \times c$ then b = c, is not a variety.

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

<ロ> (四) (四) (三) (三) (三)

Other specification languages

► First order logic (FOL)

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

(ロ) (同) (E) (E) (E)

Other specification languages

First order logic (FOL)

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

(ロ) (同) (E) (E) (E)

Other specification languages

First order logic (FOL)

► Fragments of FOL: Algebraic signatures; Horn logic; conditional equations (This is the language used in cafeOBJ)

Partial Algebra - partial functions

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

(ロ) (同) (E) (E) (E)

Other specification languages

First order logic (FOL)

- Partial Algebra partial functions
- Error Algebras

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

Other specification languages

First order logic (FOL)

- Partial Algebra partial functions
- Error Algebras
- Ordered sorted algebras (order on sorts)

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

・ロット (四) (日) (日)

3

Other specification languages

First order logic (FOL)

- Partial Algebra partial functions
- Error Algebras
- Ordered sorted algebras (order on sorts)
- Multialgebra nondeterministic functions

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

・ロット (四) (日) (日)

3

Other specification languages

First order logic (FOL)

- Partial Algebra partial functions
- Error Algebras
- Ordered sorted algebras (order on sorts)
- Multialgebra nondeterministic functions
- Hidden and Observational logic

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

・ロット (四) (日) (日)

3

Other specification languages

First order logic (FOL)

- Partial Algebra partial functions
- Error Algebras
- Ordered sorted algebras (order on sorts)
- Multialgebra nondeterministic functions
- Hidden and Observational logic
- K-logics

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

・ロト ・回ト ・ヨト ・ヨト

3

Other specification languages

First order logic (FOL)

- Partial Algebra partial functions
- Error Algebras
- Ordered sorted algebras (order on sorts)
- Multialgebra nondeterministic functions
- Hidden and Observational logic
- K-logics
- More abstract INSTITUTIONS.
Equational specification

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

Where is the Category Theory in this Module?

- Classes of algebras with respective morphisms defines a category.
 - Exercise prove the validity of the category axioms
- A category of specifications can be naturally defined.
 - Exercise define a suitable notion of specifications morphism
- The quotient construction is functorial
 - Exercise show it
- ...

Equational specification

Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations

・ロット (日本) (日本) (日本)

Where is the Category Theory in this Module?

Algebra categorically – to be revisited in the next module

- notion of algebra
- derivation of a polinomial functor F_{Σ} from an one-sorted algebraic signature Σ

Equational specification	Term algebra, free algebra, initial and final objects. Equational calculus. Initial models. Term rewriting Generalizations
--------------------------	---

An example

Any model of the signature

Sorts account

Ops new : \rightarrow account

undo : account \rightarrow account deposit : account $\times \mathbb{Z} \rightarrow$ account debit : account $\times \mathbb{Z} \rightarrow$ account

is an algebra

$$1 + X + X \times \mathbb{Z} + X \times \mathbb{Z}$$

$$\downarrow [undo, deposit, debit]$$

$$X$$

ヘロン 人間 とくほ とくほ とう

3

Manuel A. Martins ACM in software Development