
Lecture 1

October 30

Manuel A. Martins

martins@ua.pt

MAP-i

Algebraic and Coalgebraic Methods in

Software Development

General information

3

 Introduction to the algebraic approach to formal specification of

software systems (property – oriented)

Plan

 Grading
• Project (in cafeOBJ https://cafeobj.org/ or other specification

language)

• Presentation of a paper with discussion

https://cafeobj.org/

Main references

4

LINK

http://www.springer.com/us/book/9783642173356

5

Formal Methods, what are?

 Rigorous techniques and tools, mathematically developed, for

specifying and verifying software and hardware systems:

 The techniques are supported by precise mathematical

powerful analysis tools (including reasoning and formal verification)

 Constitute a rigorous and effective mechanism for modeling and

systems analysis

 Help engineers construct trusty systems

 Languages

 Logics

 Models

 Theorem provers

6

Two interesting papers on FM

Edmund M. Clarke, Jeannette M. Wing. Formal Methods: State of the Art and Future

Directions, ACM Computing Surveys, Volume 28 (4), pag. 626-643, 1996

(Cited by 1405).

…

Jonathan Bowen, and Michael G. Hinchey. Ten commandments of formal

methods... ten years later. Computer 39(1): pag. 40-48, 2006.

7

Why?

 Some software systems are critical – in the sense that the failure or

lack of availability has a serious human, environmental or economic

effect.

 Examples:

 – Control systems for complex equipment, such as an aircraft flight control

system

 – Infrastructure systems that manage national infrastructure (power, water,

telecommunications, railways, etc.)

 – Healthcare systems that manage patient information

(Ian Sommerville

http://www.software-engin.com/)

8

http://www.software-engin.com/

Importance

 "A major goal of software engineering is to enable developers to construct

systems that operate reliably despite its complexity. One way of achieving

this goal is by using formal methods. (…) Use of formal methods does not a

priori guarantee correctness. However, they can greatly increase our

understanding of a system by revealing inconsistencies, ambiguities and

incompletenesses that might otherwise go undetected."

(Edmund M. Clarke, Jeannette M. Wing)

9

FM in nowadays

10

Formal Methods Europe -http://www.fmeurope.org

FM2015 - 20th International Symposium on Formal Methods (FM'2015)

http://fm2015.ifi.uio.no

IEEE International Workshop on Formal Methods Integration - IEEE FMi

2015 http://eventegg.com/fmi-2015/

SEFM15- 13th International Conference on Software Engineering and

Formal Methods – September 7-11, 2015, Grenoble, France.

https://www.cs.york.ac.uk/sefm2015/

NFM 2016 - 8th NASA FORMAL METHODS SYMPOSIUM, he Univeristy

of Minnesota, Minneapolis, MN, June 7-9, 2016.

http://shemesh.larc.nasa.gov/NFM/

WADT2014 - 22st International Workshop on Algebraic Development

Techniques, Sinaia, Romania, Sep, 2014

http://fm2015.ifi.uio.no
http://shemesh.larc.nasa.gov/NFM/

FM

11

Past of formal methods

 Heavy and imperfect notation

 Just academic examples

 Deficient tool support

 Hard to use tools

 Few applications (case studies)

Nowadays

 Establish more rigorous notations

 Model checking and theorem proving are present in the development of

hardware in industry

 More industrial case studies have been studied

FM within the development process

12

Specification: description of the system and its properties

Using a language with syntax and a semantics

 Integrate different specification languages to handle different aspects of

a system

 Systems properties

Functional behavior

Timing behavior

 Funcionality

 evolution

Verification: Prove or disprove the correctness of a system with respect

to the formal specification or property.Two well established approaches:

 Model cheking

Built a finite model and perform an exhaustive search

Theorem proving

A formal proof in a logic proof system

13

Two perspectives

 Model-Oriented

Software systems are specified by a model of data/state model built
by mathematical constructors using simpler structures as sets and
strings and operations on the data and states.

 Property-Oriented

Software systems are specified as algebras and the properties of
their algebraic operations are expressed as axioms in an
appropriated logic.

Case studies: Intel
Intel uses formal verification quite extensively

Formal Methods at Intel — An Overview

John Harrison, Intel Corporation, Second NASA Formal Methods Symposium,

NASA HQ, Washington DC, 14th April 2010

http://www.cl.cam.ac.uk/~jrh13/slides/nasa-14apr10/slides.pdf

Roope Kaivola: Intel CoreTM i7 Processor Execution Engine Validation in a

Functional Language Based Formal Framework. PADL 2011: 1

Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Amber Telfer, Jesse

Whittemore, Sudhindra Pandav, Anna Slobodová, Christopher Taylor, Vladimir

Frolov, Erik Reeber, Armaghan Naik: Replacing Testing with Formal

Verification in Intel CoreTM i7 Processor Execution Engine Validation. CAV

2009: 414-429

Roope Kaivola: Formal Verification of Pentium® 4 Components with Symbolic

Simulation and Inductive Invariants. CAV 2005: 170-184

14

http://www.cl.cam.ac.uk/~jrh13/slides/nasa-14apr10/slides.pdf

Case studies: Intel

Verification of Intel Pentium 4 floating-point unit with a mixture of STE and

theorem proving

Verification of bus protocols using pure temporal logic model checking

Verification of microcode and software for many Intel Itanium floating-point

operations, using pure theorem proving

Formal Verification found many high-quality bugs in P4 and verified “20%” of

design

Formal Verification is now standard practice in the floating-point domain

15

Case studies: NASA SATS
Small Aircraft Transportation System (SATS)

Goal: Develop a software system that will sequence aircraft into the SATS

airspace.

These software systems are critical and so it is mandatory strong guarantees of

the safety be developed for them.

NASA Langley researchers (http://shemesh.larc.nasa.gov/fm/index.html) are

currently investigating rigorous verification of these software system using

formal methods :
 Modeling and Verification of Air Traffic

 …Conflict Detection and Alerting …

César Muñoz, Víctor Carreño, and Gilles Dowek, Formal Analysis of the

Operational Concept for the Small Aircraft Transportation System. M. Butler et

al. (Eds.): REFT 2005, LNCS 4157, pp. 306–325, 2006.

16

Demands for a software system

 Efficient

 Robust

 Secure

 User-friendly

 Well documented

…

 CORRECT

The major goal of software engineers is to develop reliable

(trusty) systems

17

Software systems as algebras

 Emphasis on

input/output behaviour

 “Do not care” about the

concrete details of code and algorithms

 Model software systems using mathematical structures:

ALGEBRAS

to model the relationship between inputs and outputs.

18

19

Donald Sannella, Andrzej Tarlecki, Foundations of

Algebraic Specification and Formal Software

Development . Springer, to appear-

 In all these examples we have the definition of the Fibonacci function.

 They differ only by the language and / or algorithm used.

 f1, f2 and f3 are in Standard ML while f4 is in Java.

 Moreover,

In f1 and f2 is used recursion and purely functional while f3 and f4 are iterative and

use "Assignment".

Exercise: Check the differences in the algorithm used.

However, the most important common feature is that all of them encode the

Fibonacci function

fib: Nat → Nat defined by:

fib (0) = 1

fib (1) = 1

fib (n + 2) = fib (n + 1) + fib (n)

20

21

Formal methods

Formal methods can be applied at various
stages through the program development process

…Specification
…Verification

„ Specification: Give a description of the „system to be developed,
and its properties

 Verification: Prove or disprove the correctness of a system with
respect to the formal specification or property

Property Oriented

22

The abstract data types or object classes are specified by setting properties of

the behavior of the associated operations.

We use methods and arguments of mathematical logic to model, analyze,

design, build and improve existing software, i.e. formal methods. They are used

to ensure correcting the current solution, and constitute an area on the border

between mathematics and Software Engineering.

Algebraic specification is a branch of Formal Methods, constituting a solid

foundational basis for the systematic development of programs, checking its

accuracy with compliance requirements and allowing a building step by step,

based on correct refinement procedures.

Example of a specification in Cafeobj

23

Spec: Stack;

Extend Nat by

Sorts: Stack;

Operations:

newstack:  Stack

push: Nat  Stack  Stack

pop: Stack  Stack

top: Stack  Nat

Variables:

s: Stack; n: Nat

Axioms:

pop(newstack) = newstack;

top(newstack) = zero;

pop(push(n, s)) = s;

top(push(n, s)) = n;

Cafeobj Home page: https://cafeobj.org/

The Maude system:
http://maude.cs.illinois.edu/w/index.php?title=The_Maude_System

References for today

24

Mathematical background

25

Relations:

• n-ary relation on A

• Binary relation if n=2

• Inverse of a binary relation

(a R-1 b iff b R a)

• Relational product RoS

(a RoS b iff there is c st a R c and c S b)

Mathematical background

 Functions

Mathematical background

27

Partially ordered set --- poset

EXAMPLES

Mathematical background

28

Hasse diagrams

Some more notions:

Upper bound and supremum

lower bound and infimum

Cover relation

Interval

Mathematical background

29

EXAMPLES

Mathematical background

30

????

Mathematical background

31

Isomorphism ???

Moreover, by defining

we have a isomorphism between the corresponding posets

Fact

Mathematical background

32

Closure operator

EXAMPLES

FACT.

Every complete poset is isomorphic to the poset of closed subsets of

some A

Introduction

33

The term specification is used for the process of writing representations from entity

that defines the class of algebras, i.e., the description of the class of admissible

software systems.

Thus, a specification must define a signature and a class of algebras on that

signature.

Typically, but not always, a class of algebras is defined by the properties that its

members meet.

These properties are expressed by formulas (called axioms) in

some logical system, for example: equational logic, modal logic or first order logic.

Informally:

interface module ----------- signature

module ---------------------- algebra

module specification --- class of algebras

Heterogeneous data

34

We use algebra to model programs which

manipulates several sorts of data.

So, the underlying set of values in the algebra should

be partitioned so that there is one set of values for

each sort of data.

It is worth to manipulate such a family of sets as a

unit, in such a way that operations on this unit respect

the “typing” of data values.

Many-sorted sets

35

also denoted by

36

The usual set theoretical notions extend to many sorted in a

natural way, for example:

Analogously, we define

S-sorted binary relation

S-sorted kernel

S-sorted equivalence

…

Properties of functions, like injectivity, surjective, etc …

are defined componentwisely

Example

37

Donald Sannella, Andrzej Tarlecki, Foundations of

Algebraic Specification and Formal Software

Development . Springer, to appear-

Universal Algebra, what is?

38

In computer science, universal algebra is

considered to be a general theory which is

directly applicable to many problems that may

be modelled by sets and functions, i.e., an

ALGEBRA

In mathematics, universal algebra is the theory

that unifies the treatment of several classes of

algebraic structures like boolean algebras,

groups, rings, etc…

Signature

39

Subsignature as expected !

Example: Vector space

40

Example: cell of memory

41

Example: automata

42

Automata with

output

Example: Mem. with identifiers

43

Example: Stacks

44

Example: Flags

45

Algebras and subalgebras

46

Examples in Mathematics

47

Example

48

Algebra of

natural

numbers

Exercise

49

Find examples of algebras for the

previous signatures

Generated algebra

50

We define

Thus

Congruences I

51

Congruences II

52

f:s x s’ -> s’’

Congruences in Groups

53

There is a similar phenomenon in

rings with ideals.

Homomorphisms

54

Epimorphisms, monomorphisms and isomorphisms are

defined as usual

Homomorphism theorem

55

Homomorphisms theorem

56

Corollary

57

The external problem of finding all

homomorphic images of A reduces to the

internal problem of finding all congruences

on A.

