
Verification Graphs for Programs with Contracts

Daniela da Cruz, Pedro Rangel Henriques, and Jorge Sousa Pinto

Techn. Report TR-HASLab:01:2012

February 2012

HASLab - High-Assurance Software Laboratory
Universidade do Minho

Campus de Gualtar – Braga – Portugal
http://haslab.di.uminho.pt

TR-HASLab:01:2012
Verification Graphs for Programs with Contracts
by Daniela da Cruz, Pedro Rangel Henriques, and Jorge Sousa Pinto

Abstract

The Design by Contract (DbC) approach to software development enables the formal verification of pro-
grams, or program components, as well as their safe reuse. Specification languages for common program-
ming languages, namely the Java Modeling Language (JML) for Java, and Spec# for C#, have in this context
become very popular.

This paper establishes a basis for the generation of verification conditions combining forward and back-
ward reasoning, for programs consisting of mutually-recursive procedures annotated with contracts and
loop invariants. There exist in general many different sets of verification conditions that can be obtained in
this way, and we give a characterization of these sets based on edge labelings of the control flow graphs of
the procedures.

We also show how our approach can cope with the efficient techniques for generating verification condi-
tions that have been proposed for passive programs. Finally, the paper discusses applications of the approach,
including error path discovery and interactive verification.

1 Introduction
A central issue in program verification is the generation of verification conditions (VCs): proof obligations
which, if successfully discharged, guarantee the correctness of a program vis-à-vis a given specification.
While the basic theory of program verification has been around since the 1960s, the late 1990s saw the
advent of practical tools for the verification of realistic programs, and research in this area has been very
active since then. Automated theorem provers have contributed decisively to these developments.

There are two well-established methods for producing sets of verification conditions, based respectively
on backward propagation and forward propagation of assertions. Verifying the behavior of programs is of course
in general an undecidable problem, and as such automation is necessarily limited. Typical tools require the
user to provide additional information, in particular loop invariants, and one could be tempted to think that
the only interesting problem of program verification is automating the generation of invariants: if appro-
priate annotations are provided, then generating and proving verification conditions should be straightfor-
ward. It would however be wrong to think that the method used for generating verification conditions is
not important. It can be important for the following reasons:

• The choice of employing backward propagation or forward propagation of assertions (which as we
shall see are close to weakest precondition and strongest postcondition calculations respectively) is
not indifferent. Program verification tools typically resort to the former, since the latter requires the
introduction of existential quantifiers in the generated VCs. The use of strongest postcondition calcu-
lations has however been gaining momentum in a series of recent papers (see below).

• It has been shown that there are serious efficiency issues involved: a naive algorithm can produce ver-
ification conditions of exponential size on the length of the program, thus compromising any hope of
automating the verification process [12]. Fortunately, it is now well understood how to prevent this
exponential explosion (see Section 5). It has also been understood that splitting VCs into smaller for-
mulas may help the performance of theorem provers (see Section 6). Automatic invariant generation
techniques [6, 7] also tend to produce very large invariants, which is an additional factor affecting
efficiency.

• The above two issues have to do with the “quality” of the sets of VCs generated, with impact on
the feasibility of the automated proofs. Other aspects have to do with the interpretation of invalid
verification conditions: it is important to be able to identify the particular execution paths that cause
them. A method for producing VCs that facilitates this is advisable for debugging applications.

• Finally, let us recall that a failed verification may be due not only to an incorrect program, but also
possibly to annotations that are not compatible with the program. If the ‘invariant’ annotation pro-
vided by the user for a given loop is not in fact an invariant, then the program cannot be proved
correct. An interactive approach to VC generation can help the users find the appropriate annotations
for their programs.

The Case for Forward Propagation
The forward propagation of assertions was a key part of Floyd’s inductive assertion method for reasoning
about programs [13]. Strongest postcondition calculations also propagate assertions forward, and have been
repeatedly advocated as a tool to assist in different software engineering tasks [27, 15]. Mike Gordon [17]
has more recently argued for the advantages of forward reasoning, pointing out the similarities between
strongest postcondition calculations and symbolic execution, a method for analyzing and checking properties
of programs based on simulating their execution with symbolic input values [28]. An account of verification
conditions based on forward propagation provides an interesting link with techniques based on symbolic
execution.

A more recent work [22] presents another argument for the use of forward propagation: in some sit-
uations it allows for the verification conditions to be simplified while they are computed, using standard
optimizations like constant propagation and even dead code elimination. Consider for instance the pro-
gram x := 10; y := 5 ∗ x. Its VCs can be calculated using instead the program x := 10 ; y := 50. And
for the program x := 10 ; y := 5 ∗ x ; if y > 0 then S1 else S2, they can be calculated instead from
x := 10 ; y := 50 ; S1. The resulting VCs are significantly simpler.

The resurgent use of strongest postconditions in a number of recent papers is also due to the fact that it
is now known how to compute them in a way that is uncluttered by existential quantifiers, and moreover
produces VCs that are at least as small as those generated for the same program using backward propagation
(and arguably smaller, if simplifications such as mentioned above are carried out). We will elaborate on this
in Section 5.

0

This Paper
The main goal of the present paper is to investigate how forward propagation and backward propagation
methods can be combined to generate verification conditions, and how this can be put to use in a number
of ways, in particular for splitting VCs and identifying error paths.

1. We show how every subblock of a given program can be analyzed by propagating an assertion for-
ward through a prefix of the subblock, and propagating another assertion backward through the
complementary suffix. It is straightforward to generate a set of VCs for a block if we stipulate that
all subblocks before (resp. after) a given statement are analyzed using forward (resp. backward)
propagation. Loops complicate this simple setting in a way that will be explained in detail.

2. Fixing the location of the border statement between the prefix and the suffix does not result in a
unique set of VCs, since each subblock of S (located either before or after that statement) can in turn
be analyzed using both forms of propagation. We introduce a precise characterization of all the sets of
verification conditions for a program block, based on labelings of the control flow graph of the block.

3. We show that the above results are compatible with the recently proposed efficient methods for com-
puting VCs of passive programs. In fact for this class of programs it becomes clear that the different
sets of verification conditions contain formulas that are syntactically very close, and for this reason
the choice of strategy for generating VCs becomes less important.

4. The previous point seems to imply that being able to combine backward and forward propagation is
not so useful for improving the automated verification of passive programs. However, we show that
our approach has other applications, including the user-guided generation of verification conditions
and the definition of alternative verification strategies, for instance for the identification of error paths
or for VC splitting. We briefly describe a prototype tool that implements a visual interactive VC
generator based on the above principles.

Context: the GamaAnimator Project
The general framework to which we adhere in this paper is the verification of programs based on their
contracts. The Design by Contract (DbC) approach to software development [26] facilitates modular verifica-
tion and certified code reuse. The contract of a component (or procedure, or method) can be regarded as a
form of enriched software documentation that specifies the behaviour of that component. The development
and broad adoption of annotation languages for the most popular programming languages reinforces the
importance of using DbC principles in the development of programs. These include for instance the Java
Modeling Language (JML) [9]; Spec# [4], a formal language for C# contracts; and the SPARK [1] subset of
Ada.

Annotating programs to formalize contracts is not a trivial task for most software engineers, who are
used to coding their algorithms in traditional programming languages. Creating tools that provide a clear
view of how annotations such as preconditions, postconditions, and invariants are propagated through the
code is an aim that we pursue in the GamaSlicer project, which is the context for the work described here.
In particular this work has stemmed from our research on slicing programs based on specifications [5].

Organization of the Paper Section 2 introduces our setting for the verification of contract-annotated
programs (sets of mutually recursive procedures), and shows how forward propagation and backward
propagation can be simultaneously used to produce sets of verification conditions. Section 3 introduces
two labelings of the control flow graph of a procedure, implementing backward and forward propagation
of assertions through the graph, and Section 4 investigates the sets of edge conditions obtained from these
labelings by constructing implicative formulas. It is shown how (minimal) sets of verification conditions can
be identified, corresponding to arbitrary combinations of forward and backward propagation of assertions.
Section 5 shows how verification conditions can be greatly optimized if programs are first converted into a
so-called passive form, and shows how our approach copes with these optimizations. Section 6 discusses
applications of our approach, and Section 7 concludes the paper. A contains proofs, and B briefly describes
our GamaAnimator prototype tool.

2 Background: Verification Conditions and Contracts
To illustrate our ideas we use a simple programming language. Its syntax is defined in Figure 1, in two levels
(x and p range over sets of variables and procedure names respectively). First we form blocks (or sequences)

1

Exp[int] 3 e ::= . . . | −1 | 0 | 1 | . . . | x | −e | e + e | e− e | e ∗ e | e div e | emod e

Exp[bool] 3 b ::= true | false | e = e | e < e | e ≤ e | e > e | e ≥ e | e 6= e |
b ∧ b | b ∨ b | ¬ b

Assert 3 A ::= true | false | e = e | e < e | e ≤ e | e > e | e ≥ e | e 6= e |
A ∧A | A ∨A | ¬A | A→ A | ∀x.A | ∃x.A

Comm 3 C ::= skip | x := e | if b then S else S | while b do {A}S | call p

Block 3 S ::= C | C ; S

Proc 3 Φ ::= pre A post A proc p = S

Prog 3 Π ::= Φ | Π Φ

Figure 1: Programming language syntax

of commands, which correspond to programs of a standard While programming language. These include a
procedure call command, in addition to skip, assignment, conditionals, and loops. Each loop is additionally
annotated with an assertion, interpreted as a loop invariant. The language of assertions extends boolean
expressions with implication and first-order quantification. Procedures can then be defined, consisting of a
block of code annotated with two assertions that form the procedure’s specification, or contract.

A program is a non-empty sequence of (mutually recursive) procedure definitions (operationally, an
entry point would have to be defined for each program, but that is not important for our current purpose).
For the sake of simplicity we consider only parameterless procedures that share a set of global variables, but
the ideas presented here can be adapted to cope with parameters (passed by value or by reference), as well
as return values. Note that a program defined in this way is close to the notion of class in object-oriented
programming, with procedures and global variables playing the role of methods and attributes. Other
notions like the creation of class instances or inheritance are absent from this analogy.

A program is well-formed if the name of every procedure defined in it is unique and the program
is closed with respect to procedure invocation. We will write P(Π) for the set of names of procedures
defined in the program Π. The operators pre, post, and body will be used to refer to the two assertions
that form the procedure’s contract and body command respectively, i.e. given the procedure definition
pre P post Q proc p = S with p ∈ P(Π), one has preΠ(p) = P , postΠ(p) = Q, and bodyΠ(p) = S. The
program name will be omitted when clear from context.

2.1 Intraprocedural Verification Based on Backward Propagation
Our language differs from the standard While language with parameterless procedures in that programs
contain loop invariants as annotations. Given an (annotated) block S, let S be the While program that
results from erasing the annotations. In what follows we will use this notation in order to formalize a
relation between the set of verification conditions of an annotated block S and the partial correctness of S
with respect to a specification.

Consider for now command blocks not containing procedure calls. There are two standard frameworks
for studying the correctness of such a While program with respect to a specification. The first is the axiomatic
approach, based on the use of a program logic such as Hoare logic [20]; the second approach is based on
Dijkstra’s predicate transformers, which requires the translation of programs into a guarded commands
language [10]. In this paper we adhere to the first framework (this is not however a very important choice
– our ideas could also be developed using predicate transformers).

The Hoare triple {P}S {Q} denotes the partial correctness of S with respect to the precondition P and
the postcondition Q. The triple is valid when Q holds after execution of S terminates (if it does terminate),
starting from an initial state that satisfies P . Let (S, s) ⇓ s′ denote the fact that when executed in the initial
state s, S stops in the final state s′ (⇓ is the evaluation relation of a standard operational semantics for While
programs). Then the validity of a triple is established formally by the following interpretation:

[[{P}S {Q}]] = for all states s, s′, [[P]](s) ∧ (S, s) ⇓ s′ ⇒ [[Q]](s′)

We remark that throughout the paper we will use the word specification to refer to a pair of assertions
(P,Q); we will sometimes abuse language and use the words precondition and postcondition to refer to the

2

wprec(skip, Q) = Q

wprec(x := e,Q) = Q[e/x]

wprec(if b then St else Sf , Q) = (b→ wprec(St, Q)) ∧ (¬ b→ wprec(Sf , Q))

wprec(while b do {I}S,Q) = I

wprec(call p, Q) = ∀xf . (∀ yf .pre(p)[yf/y]→ post(p)[yf/y, xf/x])→ Q[xf/x]

wprec(C;S,Q) = wprec(C,wprec(S,Q))

wvc(skip, Q) = ∅
wvc(x := e,Q) = ∅

wvc(if b then St else Sf , Q) = wvc(St, Q) ∪ wvc(Sf , Q)

wvc(while b do {I}S,Q) = {I ∧ b→ wprec(S, I), I ∧ ¬b→ Q} ∪ wvc(S, I)

wvc(C;S,Q) = wvc(C,wprec(S,Q)) ∪ wvc(S,Q)

spost(skip, P) = P

spost(x := e, P) = ∃ v. P [v/x] ∧ x = e[v/x]

spost(if b then St else Sf , P) = spost(St, P ∧ b) ∨ spost(Sf , P ∧ ¬ b)
spost(while b do {I}S, P) = I ∧ ¬ b

spost(call p, P) = ∃xf . P [xf/x] ∧ (∀ yf .pre(p)[yf/y, xf/x]→ post(p)[yf/y])

spost(C;S, P) = spost(S, spost(C,P))

svc(skip, P) = ∅
svc(x := e, P) = ∅

svc(if b then St else Sf , P) = svc(St, P ∧ b) ∪ svc(Sf , P ∧ ¬ b)
svc(while b do {I}S, P) = {P → I, spost(S, I ∧ b)→ I} ∪ svc(S, I ∧ b)

svc(call p, P) = ∅
svc(C;S, P) = svc(C,P) ∪ svc(S, spost(C,P))

where y is a sequence of the auxiliary variables of p
x is a sequence of the program variables occurring in body(p)
xf and yf are sequences of fresh variables
The expression t[e/x], with x = x1, . . . , xn and e = e1, . . . , en,

denotes the parallel substitution t[e1/x1, . . . , en/xn]

Figure 2: Verification conditions for blocks of commands with procedure calls

first and second components of the specification, even when the triple {P}S {Q} is not valid.
The well-known inference system of Hoare logic is sound with respect to the standard operational seman-

tics of While programs in the sense that if the triple {P}S {Q} is derivable, then S is correct with respect to
P and Q. Let ` denote derivability using the axioms and rules of Hoare logic; then

` {P}S {Q} implies [[{P}S {Q}]] = true

In order to prove correctness axiomatically, one must use some strategy for constructing derivations in
a backward manner (derivations are not unique for a given triple). Recall the While and Consequence rules of
Hoare logic:

{I ∧ b}S {I}

{I}while b do S {I ∧ ¬ b}

{P ′}S {Q′}
if |= P → P ′ and |= Q′ → Q

{P}S {Q}

To derive {P}while b do S {Q} one has first to be able to find an appropriate invariant I of the loop in
order to apply the While rule, and the first-order side conditions P → I and I ∧ ¬ b → Q then have to be
checked.

In practice, working program verification systems require users to provide the invariants as annotations
in the code, and then employ a backward propagation strategy to construct derivations. In fact, these deriva-
tions do not even need to be explicitly constructed: an algorithm can be used that takes as input a piece of

3

annotated code together with a specification, and produces a set of first-order proof obligations ensuring
that a derivation exists. Such an algorithm is usually known as a verification conditions generator (VCGen). A
set of verification conditions for the annotated programs of Figure 1 is given as follows, where the functions
wprec and wvc are defined in Figure 2:

VCG(P, S, Q) = {P → wprec(S,Q)} ∪ wvc(S,Q)

In brief, the function wprec calculates the weakest precondition of a block, except in the case of loops. In
this case, the function simply returns the annotated invariant (hopefully an approximation of the weakest
precondition), and the function wvc collects, for every loop contained in the block, additional conditions
required to establish that the annotation is indeed an invariant, and that it is sufficiently strong for the loop
to attain the desired postcondition.

We make the following more detailed remarks:

• All the conditions in the set VCG(P, S, Q) should be proved valid to ensure the correctness of the
program, see Proposition 1 below.

• This set is constructed following a strategy that propagates the postcondition Q backwards; the func-
tion wvc collects the side conditions of an implicit Hoare logic tree, in which rightmost branches are
constructed before leftmost branches, without using the precondition P .

• When considering a block of the form C ; S, the corresponding Hoare logic rule dictates that two
derivations should be recursively considered for C and S. The backwards strategy first considers the
block S with the given postconditionQ, and then the commandC with the postcondition wprec(S,Q).
Thus the function wprec guides the strategy by selecting an intermediate assertion propagated back-
wards from Q.

• The definition of wprec shares much with Dijkstra’s weakest liberal precondition predicate transformer;
the difference is that whereas a true weakest precondition is given as a least-fixpoint solution to a
recursive equation, wprec simply makes use of the annotated loop invariant. Note that it may well be
the case that this annotation is not in fact an invariant; even if it is an invariant, it is possible that it
is not sufficiently strong to allow Q as a postcondition of the loop; on the other hand, the annotation
does not need to be the weakest of all sufficiently strong invariants, and often is not.

• An additional verification condition is added to the set collected by wvc, stating that the precondition
P must be stronger than the assertion propagated backward from Q through the block S.

This VCGen is sound: it can be proved that a Hoare logic tree with conclusion {P}S {Q} can be con-
structed that has exactly the assertions in the set VCG(P, S, Q) as side conditions; if these conditions are all
valid then the tree is indeed a proof tree, and the triple is derivable in Hoare logic. Let |= A, with A a set of
first-order formulas, denote the fact that |= Ai for every Ai ∈ A (in this context set union will be denoted
by commas).

Proposition 1 (Soundness of VCGen). Let P , Q be assertions and S a command block. If |= VCG(P, S, Q) then
` {P}S {Q}.

Observe that the reverse implication does not hold in general: it may well be the case that a triple is
derivable in Hoare logic, but the invariants that have been annotated result in a set of verification condi-
tions that are not all valid (see previous remark on annotated invariants). This closely corresponds to what
happens in practice when using a verification system: failure of the process may be caused by either errors
in the initial code, or errors in the user-provided annotations. The reverse result does hold for programs
that are correctly annotated in the following sense:

Definition 1. A command block S is said to be correctly annotated with respect to a specification (P,Q) if whenever
` {P}S {Q}, there exists a derivation of this triple that uses, in each application of the While rule, exactly the
invariant that is annotated in the corresponding loop in S.

Proposition 2 (Adequacy of VCGen). Let S be a correctly annotated command block with respect to (P,Q). If
` {P}S {Q} then |= VCG(P, S, Q).

For more details on the generation of verification conditions for annotated programs and on how prop-
erties of the VCGens can be mechanically verified, see [16, 21]. A survey of related work can be found
in [14].

4

2.2 Combining Forward and Backward Propagation
The set of VCs given above is not unique: there are equivalent sets of assertions that can be generated
from the program and its intended specification. An alternative method is based on propagating the given
precondition forward, using a strategy that constructs leftmost branches of the implicit proof trees before
proceeding to the rightmost branches. The function that guides such a strategy is reminiscent of the strongest
postcondition predicate transformer, instead of the previous weakest liberal precondition.

Rather than looking in detail at this alternative strategy, we will now consider a more general method,
which allows the correctness of a given block of code to be verified by combining forward propagation of the
precondition and backward propagation of the postcondition. Although there is nothing very sophisticated
about this method, it has not as far as we know been spelled out before. Let S = C1 ; . . . ; Cn. We introduce
the following notation, for k ∈ {0, . . . , n} (the functions spost and svc are defined in Figure 2):

wpreck(S,Q) = wprec(Ck ; . . . ; Cn, Q) wvck(S,Q) = wvc(Ck ; . . . ; Cn, Q)

wprecn+1(S,Q) = Q wvcn+1(S,Q) = ∅

spost0(S, P) = P svc0(S, P) = ∅

spostk(S, P) = spost(C1 ; . . . ; Ck, P) svck(S, P) = svc(C1 ; . . . ; Ck, P)

Then we define:

Definition 2 (Forward-backward Verification Conditions).

VCGk(P, S, Q) = svck(S, P) ∪ {spostk(S, P)→ wpreck+1(S,Q)} ∪ wvck+1(S,Q)

Forward-backward VCs are obtained by forward propagation up to the kth command and by backward
propagation for subsequent commands, and this applies also to subblocks of these commands: forward
propagation is used for subblocks of commands located before k, and backward propagation for those after
k. The exclusively backward propagation VCGen is a special case: VCG(P, S, Q) = VCG0(P, S, Q). We will
also use the notation VCG(P, S, Q) = VCGn(P, S, Q), with n the length of S, for the forward propagation
VCGen. The following lemma states some basic properties of VCs generated by forward, backward, and
forward-backward propagation.

Lemma 1.

1. If S is if b then St else Sf , then
VCG(P, S, Q) = VCG(P ∧ b, St, Q) ∪ VCG(P ∧ ¬ b, Sf , Q) and
VCG(P, S, Q) = VCG(P ∧ b, St, Q) ∪ VCG(P ∧ ¬ b, Sf , Q)

2. If S is while b do {I}Sw, then
VCG(P, S, Q) = {P → I, I ∧ ¬ b→ Q} ∪ VCG(I ∧ b, Sw, I) and
VCG(P, S, Q) = {P → I, I ∧ ¬ b→ Q} ∪ VCG(I ∧ b, Sw, I)

3. If S is C1 ; . . . ; Cn with n > 1, then for k ∈ {0, . . . , n},
VCGk(P, S, Q) = VCG(P, C1 ; . . . ; Ck, wprec

k+1(S,Q))
∪ VCG(spostk(S, P), Ck+1 ; . . . ; Cn, Q)

4. If S consists of a single command C, then
|= VCG(P, S, Q) iff |= VCG(P, S, Q)

Proof. All results follow directly from the definitions, with the exception of (4) which is proved by structural
induction, using (1) and (2) for the inductive cases. For the base cases we make use of the first-order logical
equivalences ∀x. φ → ψ ≡ φ → ∀x. ψ (if x does not occur free in φ) and ∀x. φ → ψ ≡ (∃x. φ) → ψ (if x
does not occur free in ψ).

As expected, one can equivalently use any value of k to generate verification conditions.

Proposition 3. Let P , Q be assertions, S = C1 ; . . . ; Cn a block of commands, and k ∈ {0, . . . , n}. Then
|= VCG(P, S, Q) iff |= VCGk(P, S, Q).

5

pre true
post x ≥ 0
proc abs =

if x < 0 then x := −x else skip ;
if c > 0 then c := c− 1 else skip

Figure 3: Example procedure: abs

Proof. Using the definitions one has

VCGk(P, S, Q) = svck(S, P) ∪ {spostk(S, P)→ wpreck+1(S,Q)} ∪ wvck+1(S,Q)

= svck(S, P) ∪ VCG(spostk(S, P), Ck+1, wprec
k+2(S,Q)) ∪ wvck+2(S,Q)

VCGk+1(P, S, Q) = svck+1(S, P) ∪ {spostk+1(S, P)→ wpreck+2(S,Q)} ∪ wvck+2(S,Q)

= svck(S, P) ∪ VCG(spostk(S, P), Ck+1, wprec
k+2(S,Q)) ∪ wvck+2(S,Q)

And thus |= VCGk(P, S, Q) iff |= VCGk+1(P, S, Q) by Lemma 1(4). It now suffices to iterate this step
starting with k = 0.

Definition 2 does not specify all the possible sets of verification conditions of S with respect to (P,Q).
In the rest of the paper we will investigate the problem of defining sets of VCs that combine forward and
backward propagation in non-standard ways, using different combinations for different subblocks – for
instance a command C in S that is being processed by forward propagation may contain subblocks that
may be processed by backward (or a combination of forward and backward) propagation.

2.3 Example
Consider the very simple procedure defined in Figure 3 (taken from [12]). It calculates the absolute value
of a number and decreases the value of a counter, as long as this value was initially positive (note that the
contract does not describe this second part of the functionality). The code is a sequence of two conditional
commands, and it contains no loops, thus wvc and svc return empty sets. We have three different sets of
verification conditions (each consisting of a single condition), as follows:

VCG0(pre(abs), body(abs), post(abs))

= {true→ (x < 0→ (c > 0→ −x ≥ 0) ∧ (¬ c > 0→ −x ≥ 0) ∧
(¬x < 0→ (c > 0→ x ≥ 0) ∧ (¬ c > 0→ x ≥ 0)))}

VCG1(pre(abs), body(abs), post(abs))

= {(∃ v. v < 0 ∧ x = −v) ∨ (¬x < 0)→ (c > 0→ x ≥ 0) ∧ (¬ c > 0→ x ≥ 0)}

VCG2(pre(abs), body(abs), post(abs))

= {(∃w. ((∃ v. v < 0 ∧ x = −v) ∨ (¬x < 0)) ∧ w > 0 ∧ c = w − 1) ∨
(((∃ v. v < 0 ∧ x = −v) ∨ (¬x < 0)) ∧ ¬ c > 0)→ x ≥ 0}

2.4 Procedure Calls and Adaptation
Occurrences of variables in the assertions pre(p) and post(p) refer to their values in the pre-state and post-
state of execution of the procedure p respectively; the use of auxiliary variables that occur in contracts (and
possibly also in annotations, but not in the code) is essential, since they allow specifying how the output of
a procedure is related to its input. For instance if pre(p) is x = x0 ∧ y = y0 and post(p) is x = y0 ∧ y = x0,
this contract specifies that p swaps the values of the variables x and y.

The clauses in the definition of the functions wprec and spost for the case of the procedure call command
(Figure 2) deserve the following two remarks:

• Similarly to the case of loops, they do not calculate the weakest precondition / strongest postcondi-
tion, since it may be the case that the code body(p) is not correct with respect to its contract, or that
pre(p) is not the weakest precondition to ensure the postcondition post(p).

6

• The definition takes into account a phenomenon known as adaptation, which occurs in the presence of
auxiliary variables. Although it is out of the scope of this paper to explain this in detail, it is easy to
understand why the naive definition wprec(call p, Q) = pre(p) would not work: it suffices to think
of the above example where pre(p) is x = x0 ∧ y = y0. It would not make any sense to require the
calling procedure to enforce x = x0 when x0 is an auxiliary variable, not even known in its scope.
The reader is referred to [23] for details on adaptation.

2.5 Interprocedural Verification
A program Π is correct when the triple {pre(p)} call p {post(p)} is valid for every p ∈ P(Π). Our setting
for the verification of programs consisting of several procedures builds on the principles prescribed by the
software development methodology known as design by contract [26]. The idea is that each individual pro-
cedure can be verified by assuming that every procedure it invokes is correct with respect to its announced
contract. If this is successfully done for every procedure in the program, then the program is correct. A set
of verification conditions for Π is given as follows:

Verif(Π) =
⋃

p∈P(Π)

VCG(pre(p), body(p), post(p))

A set of VCs is generated for each procedure, assuming the correctness of all the procedures in the program,
including itself. If all verification conditions are valid, correctness is established simultaneously for the entire
set of procedures in the program, with all correctness assumptions dropped. Note that this only makes sense
in the partial correctness setting in which we are working; the framework does not provide a mechanism for
ensuring that the mutually recursive procedures in the set P(Π) terminate.

This simple framework formalizes the basis of many modern program verification tools [11, 2], which
are mostly based on design by contract.

3 Labeled Control Flow Graphs
In this section we formalize a notion of control flow graph of a command block, and define two labelings of
its edges, corresponding respectively to forward propagation and backward propagation of an assertion.

Definition 3 (Control Flow Graph). Given a block S = C1 ; . . . ; Cn of commands, we define simultaneously the
control flow graph CFG(S) of S (which is a directed acyclic graph), and the functions IN (·) and OUT (·) that
associate to each command Ci with i ∈ {1, . . . , n}, respectively its input node and its ouput node in CFG(S), as
follows:

1. The set of nodes of CFG(S) contains two nodes with labels START and END , and for each command Ci in
S:

– A single node with label Ci, if Ci is skip or an assignment command or a procedure call command. We
set both IN (Ci) and OUT (Ci) to be this node.

– Two nodes with labels if(b) / fi (resp. do(b){I} / od{I}), if Ci is if b then St else Sf (resp.
while b do {I}S). We set IN (Ci) and OUT (Ci) to be the former and the latter node respectively.

2. The set of edges of CFG(S) contains an edge (OUT (Ci), IN (Ci+1)) for i ∈ {1, . . . , n−1}, and two additional
edges (START , IN (C1)) and (OUT (Cn),END).

3. Additionally for each command Ci in S that contains subblocks, we construct the corresponding CFG and graft
it into CFG(S) as follows:

– If Ci = if b then St else Sf , we recursively construct CFG(St) and CFG(Sf), then remove their
START nodes and set the source of the dangling edges to be in both cases the node IN (Ci), and similarly
remove their END nodes and set the destination of the dangling edges to be the node OUT (Ci).

– If Ci = while b do {I}S, we recursively construct CFG(S), then remove its START node and set
the source of the dangling edge to be the node IN (Ci), and similarly remove its END node and set the
destination of the dangling edge to be the node OUT (Ci).

Clearly, to every subblock Ŝ of S corresponds a subgraph of CFG(S) delimited by a pair of nodes with labels
START / END , or if(b) / fi, or do(b){I} / od{I}. An execution path of CFG(S) is any path beginning in
the node START and ending in the node END . Each concrete execution of a program corresponds to one
particular execution path in its CFG.

7

Definition 4 (Backward and forward propagation labelings). Given a block of commands S and an assertion Q,
the functions wplbQ(·) and splbQ(·) assign a label to each edge of the graph CFG(S).

wplbQ(·) is the backward propagation labeling. The label of the incoming edge e into the node END is wplbQ(e) =
Q, and for every node N in CFG(S):

– If N has an atomic command label C, with incoming edge i, and outgoing edge o, then we set wplbQ(i) to be
wprec(C,wplbQ(o)).

– If the label of N is fi, let it, if be the two incoming edges into N and o be the outgoing edge from N ; then we
set both wplbQ(it) and wplbQ(if) to be wplbQ(o).

– If the label of N is if(b), let i be the incoming edge into N and ot, of be the two outgoing edges from N ; then
we set wplbQ(i) to be
(b→ wplbQ(ot)) ∧ (¬ b→ wplbQ(of)).

– If the label of N is od{I} and i is its incoming edge, then we set wplbQ(i) to be I .
– If the label of N is do(b){I}, let i be the incoming edge into N ; then we set wplbQ(i) to be I .

As for the forward propagation labeling splbQ(·), the label of the outgoing edge e from the node START is splbP (e) =
P , and for every node N in CFG(S):

– If N has an atomic command label C, with incoming edge i, and outgoing edge o, then we set splbP (o) to be
spost(C, splbP (i)).

– If the label of N is if(b), let i be the incoming edge into N and ot, of be the two outgoing edges from N ; then
we set splbP (ot) to be splbP (i) ∧ b, and splbP (of) to be splbP (i) ∧ ¬ b.

– If the label of N is fi, let it, if be the two incoming edges into N and o be the outgoing edge from N ; then we
set splbP (o) to be splbP (it) ∨ splbP (if).

– If the label of N is do(b){I}, let o be the outgoing edge from N ; then we set splbP (o) to be I ∧ b.
– If the label of N is od{I} and o its outgoing edge, then we set splbP (o) to be I ∧ ¬ b.

The following lemma states that these labelings do in fact propagate assertions as prescribed by wprec
and spost.

Lemma 2. Let S = C1 ; . . . ; Cn be a block of commands and (P,Q) a specification. Then for every k ∈ {1, . . . , n},
1. wplbQ(i) = wprec(Ck,wplb

Q(o)) and splbP (o) = spost(Ck, splb
P (i));

2. wplbQ(i) = wpreck(S,Q) and splbP (o) = spostk(S, P);

where i, o, are respectively the edges of the graph CFG(S) incoming into the node IN (Ck) and outgoing from the
node OUT (Ck).

Proof. (1) and (2) are proved by mutual induction. The proofs are symmetric for both labelings, we focus on
the statements involving splb(·).

(1) is established by structural induction on Ck using 2. and Definition 4.
(2) is proved by induction on k. For k = 1, splbP (START , IN (C1)) = P by definition, and application

of (1) yields splbP (OUT (C1), IN (C2)) = spost(C1, P); the inductive case also follows from (1).

4 Verification Graphs
Let us now see how sets of verification conditions can be generated from the above labelings.

Definition 5. Let S be a program block, E the set of edges of the graph CFG(S), and (P,Q) a specification; we
define the edge condition of the edge e ∈ E with respect to (P,Q) as ecP,Q (e) = splbP (e) → wplbQ(e), and the
set EC (P, S,Q) of edge conditions of S as

EC (P, S,Q) =
⋃
e∈E

ecP,Q (e)

Let also Ev ⊆ E and EC (Ev) be the corresponding set of conditions. We say that Ev is adequate for verification
whenever |= EC (Ev) iff |= EC (P, S,Q).

The interest of the labeled graphs resides in the close relationship between edge conditions and verifi-
cation conditions. The set of edge conditions contains all the equivalent sets of VCs of Definition 2, but also
non-standard verification conditions, following our remark at the end of Section 2.2.

8

Proposition 4. Let P , Q be assertions, S = C1 ; . . . ; Cn a block of commands, and k ∈ {0, . . . , n}; then

|= VCGk(P, S, Q) iff |= EC (P, S,Q)

(See A for the proof of this proposition.)
If any standard set of VCs (as given by the definition) is valid, then so are all the edge conditions. It is less

clear how to identify smaller, ideally minimal, sets of edge conditions that are adequate for verification, i.e.
whose validity implies the validity of all other edge conditions, and thus of a standard set of VCs. Each such
subset of EC (P, S,Q) corresponds to one particular verification strategy, combining forward and backward
propagation. Our goal will now be to identify in precise terms these minimal sets of edge conditions that
are adequate for verification. We do this by studying how the conditions of adjacent edges are related.

Lemma 3. In the conditions of Lemma 2, with i the incoming edge into the node with label IN (Ck), and o the
outgoing edge from the node OUT (Ck):

1. If Ck is not a loop command and does not contain loops as subcommands, then |= ecP,Q (i) iff |= ecP,Q (o)

2. If Ck is if b then St else Sf , let ot, of be the outgoing edges from IN (Ck) and it, if the incoming edges
into OUT (Ck), corresponding to the then and else branch respectively. Then
|= ecP,Q (i) iff |= ecP,Q (ot) and |= ecP,Q (of) and
|= ecP,Q (o) iff |= ecP,Q (it) and |= ecP,Q (if)

Proof. Applying Definition 4 and Lemma 2:

1. We need to prove the equivalence splbP (i)→ wprec(Ck,wplb
Q(o)) ≡ spost(Ck, splb

P (i))→ wplbQ(o).
Notice that since Ck does not contain loops,
VCG(splbP (i), Ck, wplb

Q(o)) = {splbP (i)→ wprec(Ck,wplb
Q(o))} and VCG(splbP (i), Ck, wplb

Q(o)) =
{spost(Ck, splbP (i))→ wplbQ(o)}, and the equivalence follows from Lemma 1(4).

2. This case amounts to proving the following propositional equivalence:
splbP (i)→ ((b→ wplbQ(ot)) ∧ (¬ b→ wplbQ(of))) ≡
(splbP (i) ∧ b→ wplbQ(ot)) ∧ (splbP (i) ∧ ¬ b→ wplbQ(of)), and
(splbP (it) ∨ splbP (if))→ wplbQ(o) ≡
(splbP (it)→ wplbQ(o)) ∧ (splbP (if)→ wplbQ(o))

Blocks without Loops Note that in the first point above, i and o are adjacent when Ck is skip, x := e,
or call q. Thus in the case of atomic commands adjacent edges have equivalent conditions. For conditional
commands not containing loops the (non-adjacent) incoming and outgoing edges of the subgraph have
equivalent conditions, and moreover the conjunction of the conditions of the branching edges is equivalent
to the adjacent edge’s condition.

Proposition 5. Let S be a block not containing loops and Ev a subset of edges of CFG(S). Then Ev is adequate for
verification iff for every execution path φ of CFG(S), Ev contains an edge of φ.

Proof. Since S contains no loops we have that VCG(P, S, Q) = {P → wprec(S,Q)}. Following Proposi-
tion 4, Ev is adequate for verification whenever |= EC (Ev) iff |= P → wprec(S,Q). Now note that the
latter assertion is the condition of the edge with origin in the node START . But Lemma 3 implies that if
S does not contain loops and conditionals (there is a single path) all edge conditions are equivalent, and if
it does contain conditionals, the edge condition in the path before the conditional is equivalent to the con-
dition in the path after the conditional, and to the conjunction of two edge conditions, one for each branch
path. Thus whatever the branching structure of S may be, the conjunction of the conditions in the set Ev is
equivalent to P → wprec(S,Q) iff Ev contains, for every execution path of the graph, at least one edge that
is part of that path.

The minimal sets of edges that are adequate for verification contain exactly one edge of every execution
path.

9

Blocks with Loops Recall that each loop is represented by a pair of nodes labeled do(b){I}, od{I}, and
a set of paths from the former to the latter, corresponding to the loop’s body. Consider the subgraph

A →
φ1· · ·→ do(b){I} →

φ2· · ·→ od{I} →
φ3· · ·→ B

Then the edge condition of φ1 ensures loop initialization, φ2 ensures invariant preservation, and φ3 ensures
that the postcondition is granted by the invariant upon termination. Unlike the case of atomic or branching
nodes, in the presence of do(b){I}, od{I} nodes it is necessary to establish independently the validity of
these edge conditions, since a result similar to Lemma 3 does not hold. Thus in general a set of edges Ev is
adequate for verification iff for every execution path φ of CFG(S),

– if φ does not traverse a loop command, Ev contains an edge of φ;
– for every pair of nodes labeled do(b){I} / od{I} crossed by φ, Ev contains three edges of φ, one

before the first node, a second edge between both nodes, and a third after the second node.

Procedures and Programs The above discussion can be carried over to the scope of procedures and
programs as follows.

Definition 6 (Verification Graph). Let p ∈ P(Π) with Π a program. Its verification graph is the graph
CFG(body(p)), equipped with the labeling that assigns to each edge e the condition ecpre(p),post(p) (e). We will
denote by EC (p) the set of edge conditions EC (pre(p),body(p),post(p)).

Naturally, we may also speak of the set of edge conditions of a program Π, defined as EC (Π) =⋃
p∈P(Π) EC (p). It is a straightforward consequence of Proposition 4 that |= Verif(Π) iff |= EC (Π).

Example Consider again the procedure of Figure 3. Its CFG is shown in Figure 4 (left), and the set of edge
conditions EC(abs) consists of the following, where we have applied the simplifications true ∧ P ≡ P and
true→ Q ≡ Q:

ec
true,x≥0

(e1) = (x < 0→ (c > 0→ −x ≥ 0) ∧ (¬ c > 0→ −x ≥ 0)) ∧
(¬ x < 0→ (c > 0→ x ≥ 0) ∧ (¬ c > 0→ x ≥ 0))

ec
true,x≥0

(e2) = x < 0→ (c > 0→ −x ≥ 0) ∧ (¬ c > 0→ −x ≥ 0)

ec
true,x≥0

(e3) = (∃ v. v < 0 ∧ x = −v)→ (c > 0→ x ≥ 0) ∧ (¬ c > 0→ x ≥ 0)

ec
true,x≥0

(e4) = ¬ x < 0→ (c > 0→ x ≥ 0) ∧ (¬ c > 0→ x ≥ 0)

ec
true,x≥0

(e5) = (∃ v. v < 0 ∧ x = −v) ∨ (¬ x < 0)→ (c > 0→ x ≥ 0) ∧ (¬ c > 0→ x ≥ 0)

ec
true,x≥0

(e6) = ((∃ v. v < 0 ∧ x = −v) ∨ (¬ x < 0)) ∧ c > 0→ x ≥ 0

ec
true,x≥0

(e7) = ∃w. ((∃ v. v < 0 ∧ x = −v) ∨ (¬ x < 0)) ∧ w > 0 ∧ c = w − 1→ x ≥ 0

ec
true,x≥0

(e8) = ((∃ v. v < 0 ∧ x = −v) ∨ (¬ x < 0)) ∧ ¬ c > 0→ x ≥ 0

ec
true,x≥0

(e9) = (∃w. ((∃ v. v < 0 ∧ x = −v) ∨ (¬ x < 0)) ∧ w > 0 ∧ c = w − 1) ∨
(((∃ v. v < 0 ∧ x = −v) ∨ (¬ x < 0)) ∧ ¬ c > 0)→ x ≥ 0

Following Proposition 5, to verify the correctness of the procedure it suffices to check the validity of the
edge conditions of one of the following:

– e1, or
– e2 or e3, and e4, or
– e5, or
– e6 or e7, and e8, or
– e9

While extremely simple, this example illustrates an efficiency problem of verification conditions gener-
ated using the forward and backward propagation functions wprec and spost of Figure 2. The problem, first
identified by Flanagan and Saxe [12] in the use of the weakest liberal precondition predicate transformer for
the guarded commands language, has to do with branching and the fact that the postcondition is duplicated
in

wprec(if b then St else Sf , Q) = (b→ wprec(St, Q)) ∧ (¬ b→ wprec(Sf , Q))

In ectrue,x≥0 (e1) the postcondition x ≥ 0 has been duplicated twice, and each copy occurs in a conjunct
of the formula, which means that the theorem prover would in practice have to prove 4 conditions. In
general, in a block S consisting of a sequence of n conditional commands, there would occur 2n copies of

10

Figure 4: Control flow graphs of procedure abs

11

the postconditionQ in the assertion wprec(S,Q), an exponential number of conditions to be checked (on the
length of the program).

The problem also occurs with forward propagation with spost – in our example the propagated precon-
dition true does not occur 4 times in ectrue,x≥0 (e9) because we have simplified true∧P to P , but observe that
the condition x < 0 of the first conditional, which is introduced in the assertion being propagated forward,
already appears 4 times (although half of these disguised as v), and would in general appear an exponential
number of times.

To sum up, forward propagation may create an exponential number of copies of the precondition, and
backward propagation an exponential number of copies of the postcondition (and in both cases, also an
exponential number of copies of the boolean conditions of the block). Although this problem cannot in
general be solved by combining the use of wprec and spost, the example shows that different strategies may
lead to very different verification conditions, from the point of view of the duplication of assertions.

Related Work In the context of the verification of reactive systems, Manna and colleagues have proposed
the notion of temporal verification diagram [8] to represent a proof that a system enjoys a given property,
expressed as a temporal logic formula. The idea is that such a diagram, whose edges are labelled by sets
of transitions, corresponds to an approximation of the computations of a transition system. A set of (first
order) verification conditions is produced from the diagram such that, if all VCs are valid, the system is
guaranteed to satisfy the property under consideration.

5 Efficient Verification Conditions
The efficiency problem identified in the previous example has been addressed, and it is now well-known
how the exponential growth of VCs can be eliminated. For backward propagation this was first studied
in [12], and then simplified in [24]. More recently [18] it was shown that as a side effect, the solution allows
for strongest postconditions to be computed dispensing with the introduction of existential quantifiers, and
reveals a strong symmetry between forward and backward propagation calculations. In this section we
show how assertions can be propagated forward and backward efficiently, by adapting to our language the
solution proposed in the previous papers (originally developed in a guarded commands setting). We then
go on to show how our results of the previous sections remain valid and useful in the new setting – all that
it takes is a redefinition of the wplb and splb labelings.

Propagating assertions efficiently requires first converting the code to a so-called passive form, which
involves creating multiple (indexed) versions of each variable.

Definition 7 (Passive Procedure). A procedure p is said to be passive if
– variables are assigned at most once in every execution path of body(p);
– the variables occurring in pre(p) are not assigned at all.

Note that whenever spost(x := e, P) is calculated for generating the verification conditions of a passive
form procedure, x will not occur in P . We will additionally assume that x does not occur in e in any
instruction of the form x := e. Even though the above notion allows for this (as long as x has not been
assigned before and does not occur in pre(p)), such occurrences can easily be eliminated. Thus we have
that

spost(x := e, P) ≡ P ∧ x = e

wprec(x := e,Q) ≡ x = e→ Q

Note that the basic equivalence spost(C,P) → Q ≡ P → wprec(C,Q), which was essential for proving
Lemma 1, Proposition 3, and Lemma 3, becomes very obvious for passive assignments.

Example Let us return to our running example procedure abs. A passive form of the procedure is shown
in Figure 5; its CFG is depicted in Figure 4 (right), and a selection of edge conditions is given in Figure 6
(top).

Observe that the effect of calculating VCs without the burden of existential quantifiers is quite dramatic
and allows for a clearer appreciation of the differences between conditions obtained at different points of
the CFG. But the efficiency problem has still not been attacked (in the example, there are still four copies of
x2 ≥ 0 in the edge condition of e1). The crucial observation is that whereas for general blocks of commands
assertions must be propagated through the structure of the commands, for a passive block S it suffices to combine
them with a formula that depends only on S.

12

pre true
post x2 ≥ 0
proc abs =

if x0 < 0 then x1 := −x0 ; x2 := x1

else x2 := x0 ;
if c0 > 0 then c1 := c0 − 1 ; c2 := c1

else c2 := c0

Figure 5: Example passive procedure: abs

ec
true,x2≥0

(e1) = (x0 < 0→ x1 = −x0 → x2 = x1 →
(c0 > 0→ c1 = c0 − 1→ c2 = c1 → x2 ≥ 0) ∧ (¬ c0 > 0→ c2 = c0 → x2 ≥ 0)) ∧
(¬ x0 < 0→ x2 = x0 →
(c0 > 0→ c1 = c0 − 1→ c2 = c1 → x2 ≥ 0) ∧ (¬ c0 > 0→ c2 = c0 → x2 ≥ 0))

ec
true,x2≥0

(e4) = x0 < 0 ∧ x1 = −x0 ∧ x2 = x1 →
(c0 > 0→ c1 = c0 − 1→ c2 = c1 → x2 ≥ 0) ∧ (¬ c0 > 0→ c2 = c0 → x2 ≥ 0)

ec
true,x2≥0

(e6) = ¬ x0 < 0 ∧ x2 = x0 →
(c0 > 0→ c1 = c0 − 1→ c2 = c1 → x2 ≥ 0) ∧ (¬ c0 > 0→ c2 = c0 → x2 ≥ 0)

ec
true,x2≥0

(e7) = (x0 < 0 ∧ x1 = −x0 ∧ x2 = x1) ∨ (¬ x0 < 0 ∧ x2 = x0)→
(c0 > 0→ c1 = c0 − 1→ c2 = c1 → x2 ≥ 0) ∧ (¬ c0 > 0→ c2 = c0 → x2 ≥ 0)

ec
true,x2≥0

(e13) = (((x0 < 0 ∧ x1 = −x0 ∧ x2 = x1) ∨ (¬ x0 < 0 ∧ x2 = x0)) ∧ c0 > 0 ∧ c1 = c0 − 1 ∧ c2 = c1) ∨
(((x0 < 0 ∧ x1 = −x0 ∧ x2 = x1) ∨ (¬ x0 < 0 ∧ x2 = x0)) ∧ ¬ c0 > 0 ∧ c2 = c0)→
x2 ≥ 0

ec
true,x2≥0

(e1) = (x0 < 0 ∧ x1 = −x0 ∧ x2 = x1) ∨ (¬ x0 < 0 ∧ x2 = x0)→
(c0 > 0 ∧ c1 = c0 − 1 ∧ c2 = c1) ∨ (¬ c0 > 0 ∧ c2 = c0)→ x2 ≥ 0

ec
true,x2≥0

(e4) = x0 < 0 ∧ x1 = −x0 ∧ x2 = x1 →
(c0 > 0 ∧ c1 = c0 − 1 ∧ c2 = c1) ∨ (¬ c0 > 0 ∧ c2 = c0)→ x2 ≥ 0

ec
true,x2≥0

(e6) = ¬ x0 < 0 ∧ x2 = x0 →
(c0 > 0 ∧ c1 = c0 − 1 ∧ c2 = c1) ∨ (¬ c0 > 0 ∧ c2 = c0)→ x2 ≥ 0

ec
true,x2≥0

(e7) = (x0 < 0 ∧ x1 = −x0 ∧ x2 = x1) ∨ (¬ x0 < 0 ∧ x2 = x0)→
(c0 > 0 ∧ c1 = c0 − 1 ∧ c2 = c1) ∨ (¬ c0 > 0 ∧ c2 = c0)→ x2 ≥ 0

ec
true,x2≥0

(e13) = ((x0 < 0 ∧ x1 = −x0 ∧ x2 = x1) ∨ (¬ x0 < 0 ∧ x2 = x0)) ∧
((c0 > 0 ∧ c1 = c0 − 1 ∧ c2 = c1) ∨ (¬ c0 > 0 ∧ c2 = c0)) → x2 ≥ 0

Figure 6: Edge conditions for passive version of procedure abs (top), and the same conditions
calculated efficiently using Lemma 4 (bottom).

13

spost(skip, P) = P

spost(x := e, P) = P ∧ x = e

spost(if b then St else Sf , P) = let P ∧ b ∧ Pt ≡ spost(St, P ∧ b)

P ∧ ¬ b ∧ Pf ≡ spost(Sf , P ∧ ¬ b)
in P ∧ ((b ∧ Pt) ∨ (¬ b ∧ Pf))

spost(C ; S, P) = spost(S, spost(C,P))

wprec(skip, Q) = Q

wprec(x := e,Q) = x = e→ Q

wprec(if b then St else Sf , Q) = letQt → Q ≡ wprec(St, Q)

Qf → Q ≡ wprec(Sf , Q)

in (b ∧Qt) ∨ (¬ b ∧Qf)→ Q

wprec(C ; S,Q) = wprec(C,wprec(S,Q))

Figure 7: Forward and backward propagation of assertions for passive programs

Definition 8. We define the formula F(S) of a command block S as follows:

F(skip) = true

F(x := e) = x = e

F(if b then St else Sf) = (b ∧ F(St)) ∨ (¬ b ∧ F(Sf))

F(C ; S) = F(C) ∧ F(S)

The formula F(S) is a logical characterization of the block S, of linear size on the size of S. The following
lemma states that assertions can be propagated in either direction through a passive block without further
traversals of the code, which means that the conditions spost(S, P) and wprec(S,Q) are also of linear size,
containing a single copy of P or Q.

Lemma 4. In the context of a passive procedure without iteration or procedure calls, forward and backward propaga-
tion can be calculated as follows:

spost(S, P) ≡ P ∧ F(S)

wprec(S,Q) ≡ F(S)→ Q

Proof. By induction on the structure of S (taking into account the above discussion for the base case x :=
e).

Since Proposition 3 still holds, forward-backward VCs (following Definition 2) can be computed ef-
ficiently for passive programs. Observe however that it does not seem to be possible to calculate efficient
VCs from verification graphs. Recall that for a conditional command, the graph should enjoy the fundamen-
tal property that the edge condition of the incoming edge is equivalent to the conjunction of the conditions
of the two branches. Now, the efficient VCs are computed without propagating the assertion P inside the
conditional command’s subgraph, which clearly contradicts the former requirement since P would not be
part of the branch edges’ conditions.

But the problem has a solution: in fact it is harmless to duplicate assertions as long as the duplicated
copies are reduced to a single copy once they have been propagated through both branches of the condi-
tional. The alternative definitions of spost and wprec in Figure 7 incorporate this idea; using Lemma 4 it is
straightforward to prove that for passive programs they are equivalent to the original definitions. It is now
possible to modify our CFG labeling functions wplb and splb for these definitions, in a way that preserves
the validity of Lemma 3 and Proposition 5.

Definition 9 (Efficient backward and forward propagation labelings). Given a block S and an assertion Q, the
functions wplbQe (·) and splbQe (·) assign a label to each edge of the graph CFG(S) as follows.

The backward propagation label of the incoming edge e into the node END is wplbQe (e) = Q, and for every node
N in CFG(S):

– If N is skip, with i (o) its incoming (outgoing) edge, we set wplbQe (i) to be wplbQe (o).

14

– If N has label x := e, with incoming edge i, and outgoing edge o, then we set wplbQe (i) to be x = e →
wplbQe (o).

– If the label of N is fi, let it, if be the two incoming edges into N and o be the outgoing edge from N ; then we
set both wplbQe (it) and wplbQe (if) to be wplbQe (o).

– If the label ofN is if(b), let i be the incoming edge and ot, of the two outgoing edges fromN , with wplbQe (ot) ≡
Qt → Q and wplbQe (of) ≡ Qf → Q; then we set wplbQe (i) to be (b ∧Qt) ∨ (¬ b ∧Qf)→ Q.

Concerning forward propagation, the label of the outgoing edge e from the node START is splbPe (e) = P , and
for every node N in CFG(S):

– If N is skip, with i (o) its incoming (outgoing) edge, we set splbPe (o) to be splbPe (i).
– If N has label x := e, with incoming edge i, and outgoing edge o, then we set splbPe (o) to be splbPe (i)∧x = e.
– If the label of N is if(b), let i be the incoming edge into N and ot, of be the two outgoing edges from N ; then

we set splbPe (ot) to be splbPe (i) ∧ b, and splbPe (of) to be splbPe (i) ∧ ¬ b.
– If the label ofN is fi, let it, if be the two incoming edges intoN , with splbPe (it) ≡ P ∧b∧Pt and splbPe (if) ≡
P ∧ ¬ b ∧ Pf , and o be the outgoing edge from N . Then we set splbPe (o) to be P ∧ ((b ∧ Pt) ∨ (¬ b ∧ Pf)).

Turning back to our example, a selection of edge conditions calculated with the efficient propagation
labelings is also shown in Figure 6 (bottom). It is immediate to see that the different sets of verification
conditions obtained become very similar for passive programs: comparing the conditions of e1, e7, and
e13 in the example clearly shows this. Also, e4 and e6 together are equivalent to the previous assertions,
confirming that the graph can still be used to split conditions (see below).

We end the section with a note on the conversion of programs to passive form. This conversion naturally
generates a great number of different variables. In [12], the authors state that the conversion increases code
size by 30%, but the benefits in terms of the size of VCs and proof time can be enormous for “complex”
code (VC size 0.1–10% of original, proof time 2–50% of the original). A more recent paper [18] proposes
an improved conversion algorithm, and shows that “version-optimal” passive forms (that use the minimal
possible number of variables) can be computed in linear time; the authors also consider other notions of
optimality as well as algorithms for obtaining passive forms.

The conversion of procedure calls and loops to passive form (and VC generation for them) is not so
well documented in the literature but is used in practice for instance in the Boogie tool [2]. In passive
form the treatment of procedure calls becomes in fact easier since the use of auxiliary variables seems to
be unnecessary. In the guarded commands setting, programs containing loops with invariants are typically
converted to loopless programs that, while not equivalent to the original, are such that their correctness
implies the correctness of the original, see for instance [3].

6 Applications of Verification Graphs
Propagating assertions along the graph is not computationally costly compared with the cost of automatic
proof, and although verification graphs contain redundancy (since many equivalent edge conditions may
be present), this is not reflected in the proof process itself, since a precise criterion can be used to select sets
of conditions not containing redundancy.

Even so, it is possible to optimize the construction of verification graphs to reduce redundancy: for a
given verification strategy based on graphs, assertions can be propagated lazily. For instance, with a forward
propagation strategy, the splb labeling needs not be propagated at all since only the first edge condition in
each path is required. With a user-directed strategy, in which the user manually selects the edges in the
graph whose conditions will be checked (for instance with the help of a visual front-end), the propagation
can be directed by the user’s selection on demand. The result is that only one of the labelings is calculated
for each edge, with the exception of edges whose conditions will be checked.

In this section we consider some applications of verification graphs. The first application is a strategy
that does introduce redundancy in the proof process, with the goal of identifying error traces when the
program is not correct. Other applications considered include VC splitting (to improve automatic proofs)
and interactive verification.

6.1 Automatic Error Path Discovery
An alternative approach to generating verification conditions is based on symbolic execution [28]. For passive
programs symbolic execution is very closely related to strongest postcondition calculations. But a defining
characteristic of symbolic execution is that it generates one formula for each execution path of the program.

15

Symbolic execution VCs with respect to a specification (P,Q) can be generated in a straightforward
manner. For passive programs without loops it suffices to traverse the CFG from START to END , con-
structing a conjunctive formula as follows: let P initially be the given precondition. For each node with
label x := e crossed, let P become P ∧ x = e; for each node with label if(b) crossed towards the then (resp.
else) branch, let P become P ∧ b (resp. P ∧ ¬ b). When END is reached, generate the verification condition
P → Q. Repeat until all paths have been traversed (using a depth-first strategy).

For the example of Figure 4 (right), this would result in the following set:

Path 1: x0 < 0 ∧ x1 = −x0 ∧ x2 = x1 ∧ c0 > 0 ∧ c1 = c0 − 1 ∧ c2 = c1 → x2 ≥ 0

Path 2: x0 < 0 ∧ x1 = −x0 ∧ x2 = x1 ∧ ¬ c0 > 0 ∧ c2 = c0 → x2 ≥ 0

Path 3: ¬x0 < 0 ∧ x2 = x0 ∧ c0 > 0 ∧ c1 = c0 − 1 ∧ c2 = c1 → x2 ≥ 0

Path 4: ¬x0 < 0 ∧ x2 = x0 ∧ ¬ c0 > 0 ∧ c2 = c0 → x2 ≥ 0

Of course, this method may generate an exponential number of VCs (and copies of the postcondition Q) on
the length of the block. But it does have one significant positive aspect, which is the fact that there is a direct
association between VCs and error traces: if one of the above conditions were shown to be invalid, it would
immediately be known which execution path of the program produced an error; moreover, the number of
erroneous paths would also be known. This is not so in our present framework of standard verification
condition generators: in the example, the formulas ectrue,x2≥0 (e1), ectrue,x2≥0 (e7) or ectrue,x2≥0 (e13), while
much more efficient to check than the above set, are not associated with one concrete execution path.

State of the art VCGens solve this problem by instrumenting the VCs with additional labels and reading
back the counter-examples generated by the automatic provers, which can then be mapped to execution
traces. Verification graphs offer an alternative solution to this problem, which can be used with any prover,
even when counter-examples are not available. Recall that the validity of the condition of an edge e implies
that there is no error in any of the execution paths containing e; if the condition is invalid this means that at
least one of the execution paths containing e is erroneous. Thus it is straightforward to conceive an algorithm
for identifying error traces.

The algorithm identifies error paths by performing a depth-first traversal of the verification graph and
invoking an external proof tool. Whenever a branching node with label if(b) is met, the algorithm first
follows the then branch, and will later follow the else branch. For each branch explored, the condition of
the first edge is checked. If it is valid, the traversal backtracks, since no execution path containing the edge
produces errors. If not, the traversal is continued in order to identify the error paths containing the present
edge. An error path is found when END is reached (or when no more if nodes can be met from the current
node to END).

In our example, if the edge condition of edge 1 (the most efficient that can be generated) is valid, then
we are done. Supposing it were not valid, we would try to find the error path(s) by checking the condition
of edge 2. If this were valid, both paths corresponding to x0 < 0 (paths 1 and 2 above) would be error-free,
and e5 would certainly not be valid since the error would have to be in one of the paths corresponding to
x0 ≥ 0. Checking the condition of e8 would then identify path 3 or 4 (or both) as violating the postcondition.

Note that even though the number of execution paths is exponential, this technique is feasible if the
number of error paths is small, since each condition checked as valid will reduce by half the number of
paths left to explore. In particular, if a single error path exists, finding it requires checking a linear number
of conditions on the length of the block. Naturally, the program should first be transformed into passive
form, so that the technique can be used with the optimized edge conditions of Section 5.

6.2 Verification Condition Splitting
For the case of verification conditions based on weakest preconditions, it has been shown [25] that splitting
VCs (i.e. having a bigger number of smaller conditions) can in certain circumstances lead to substantial
improvements with respect to the performance of an SMT solver, and also with respect to the quality of the
error messages produced when verification fails. The authors reach the conclusion that some splitting may
dramatically improve the running time of the prover (bringing it to reasonable values when it was initially
unfeasible), but too much splitting may have a negative effect.

While we have not evaluated experimentally the advantages and adequate degrees of splitting, verifi-
cation graphs and Proposition 5 offer a method for identifying split versions of a procedure’s VCs, when
forward propagation and backward propagation are combined. The method is of course compatible with
the optimizations allowed by passive programs.

In particular the dynamic splitting strategy suggested in [25] prescribes that one should first try to prove
a single VC for the entire block. The prover is given a time-out limit, after which the VC should be split

16

and the two resulting VCs sent to the prover (again with a time-out limit), and so on. This can be readily
formulated as a forward or a backward splitting strategy on the verification graph: one starts with the edge
condition of the edge with origin START , or of the edge with destination END , and follows the branching
structure of the CFG in the forward or backward direction.

But the graph would also allow one to identify the points of the program where the level of splitting is
maximal. In the example of Figure 4, it is indifferent to split the VCs in the first or in the second conditional,
but if one of the conditionals contained additional branching, it should take priority for maximal splitting,
and this could be identified by a simple graph algorithm.

6.3 Interactive Verification
The labeled CFG may be used as the basis for a visual interactive verification tool that displays the graph
and assists the user in different tasks:

User-guided Verification Condition Generation The user may be given the possibility to select edge
conditions to be sent to the prover, and the tool can help keep track of valid and invalid conditions. Human
understanding allows for an easier identification of error paths, and we speculate that VC splitting, with
the goal of improving the performance of the prover, may also profit from human intervention.

We have developed a prototype tool thats supports visualization, interactive selection of edge condi-
tions, and coloring of edges to allow for the identification of error paths. The tool is described in B.

Online Annotation Editing It makes sense for an interactive tool to allow annotations to be modified
online. But since in our framework contracts and loop invariants are part of the programs, modifying
annotations corresponds in fact to changing the program under consideration. Observe however that only
the labelings change as a consequence of this, not the CFGs. The following lemma is immediate:

Lemma 5. Let p, q be two procedures such that body(p) and body(q) differ only in the annotated loop invariants.
Then CFG(p) = CFG(q).

An interactive loop can work as follows: suppose some (automated or user-guided) strategy is used on the
initial program to export a set of edge conditions to the prover, and some of these are disproved. The user
can then edit some of the annotations (formally modifying the program), which will cause the affected edge
conditions to be recalculated according to definitions 4 and 9. At this point VCs can again be selected based
on some strategy.

One of the most difficult tasks of program verification is identifying the appropriate invariant for each
loop. Invariants may benefit from interactive editing, since forward propagation (used before the loop) and
backward propagation (used after the loop) may help in identifying the invariant. Note that if an invariant
is edited, this requires recalculating both labelings. But in any case, the program does not have to be parsed
and the CFG reconstructed; only the modified annotation is parsed and the labelings partially recomputed
by local propagation along the graph.

Consider for instance a procedure p such that body(p) is the block S1 ; while b do {I}Sw ; S2. The user
could choose to propagate the conditions pre(p) forward through S1 and post(p) backward through S2,
and then examine the conditions of the edges adjacent to the loop’s subgraph, spost(S1,pre(p)) → I and
I ∧ ¬ b→ wprec(S2,post(p)), which must be both valid in addition to the invariant preservation condition.
The invariant I could then be edited, and the validity of the three updated conditions checked interactively
until an appropriate invariant was found.

Intermediate Conditions A feature that can increase even more the advantages of interactivity is the
possibility to check conditions inserted at arbitrary points of the verification graph. An intermediate asser-
tion must hold at the point where it is inserted, and provides information that can be used subsequently.
Introducing assertions in a verification graph can be a great help when automation fails; they act as lemmas
that are easy to prove but may then allow for more difficult VCs to be discharged automatically.

Suppose e is an edge with origin N and destination M in a verification graph with edge condition
P → Q. An intermediate assertion A can be created by removing e and inserting a new assert node O
and two edges e1 : N → O with edge condition P → A, and e2 : O → M with edge condition A → Q.
Such nodes are not covered by Lemma 3, thus Proposition 5 would now state that for every execution path
φ crossing an assert node an adequate set of edges should contain two edges of φ, one before the node and
another after the node.

17

7 Conclusions
We have studied the generation of verification conditions combining forward and backward propagation
of assertions. For this we have introduced verification graphs and studied their properties. We have shown
that our approach provides a general setting for error path discovery, VC splitting, and interactive verifica-
tion, and it can be used to generate efficient VCs for passive programs.

One main challenge would be to produce a robust tool for intermediate code of a major verification
platform, such as Why [11] or Boogie [2]. This would allow us to test the ideas with realistic code, since
several verification tools for languages like C, Java, or Spec# are based on these platforms.

References
[1] John Barnes. High Integrity Software: The SPARK Approach to Safety and Security. Addison Wesley, first

edition, March 2003.

[2] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino. Boogie: A
modular reusable verifier for object-oriented programs. In Frank S. de Boer, Marcello M. Bonsangue,
Susanne Graf, and Willem P. de Roever, editors, FMCO, volume 4111 of Lecture Notes in Computer
Science, pages 364–387. Springer, 2005.

[3] Michael Barnett and K. Rustan M. Leino. Weakest-precondition of unstructured programs. SIGSOFT
Softw. Eng. Notes, 31(1):82–87, 2006.

[4] Mike Barnett, K. Rustan, M. Leino, and Wolfram Schulte. The Spec# programming system: An
overview. In CASSIS : construction and analysis of safe, secure, and interoperable smart devices, volume
3362, pages 49–69. Springer, Berlin, ALLEMAGNE, March 2004.

[5] José Barros, Daniela da Cruz, Pedro Rangel Henriques, and Jorge Sousa Pinto. Assertion-based Slic-
ing and Slice Graphs. In José Luis Fiadeiro and Stefania Gnesi, editors, Proceedings of the eighth IEEE
International Conference on Software Engineering and Formal Methods (SEFM’10), pages 93–102, 2010.

[6] Saddek Bensalem, Yassine Lakhnech, and Hassen Saı̈di. Powerful techniques for the automatic gener-
ation of invariants. In Proceedings of the 8th International Conference on Computer Aided Verification, CAV
’96, pages 323–335, London, UK, 1996. Springer-Verlag.

[7] Nikolaj Bjørner, Anca Browne, and Zohar Manna. Automatic generation of invariants and intermediate
assertions. Theor. Comput. Sci., 173:49–87, February 1997.

[8] I. A. Browne, Zohar Manna, and Henny Sipma. Generalized temporal verification diagrams. In Proceed-
ings of the 15th Conference on Foundations of Software Technology and Theoretical Computer Science, pages
484–498, London, UK, 1995. Springer-Verlag.

[9] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R. Kiniry, Gary T. Leavens,
K. Rustan M. Leino, and Erik Poll. An overview of JML tools and applications. Int. J. Softw. Tools
Technol. Transf., 7(3):212–232, 2005.

[10] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, New Jersey, 1976.

[11] Jean-Christophe Filliâtre and Claude Marché. The Why/Krakatoa/Caduceus platform for deductive
program verification. In Werner Damm and Holger Hermanns, editors, CAV, volume 4590 of Lecture
Notes in Computer Science, pages 173–177. Springer, 2007.

[12] Cormac Flanagan and James B. Saxe. Avoiding exponential explosion: generating compact verification
conditions. In POPL ’01: Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 193–205, New York, NY, USA, 2001. ACM.

[13] Robert Floyd. Assigning meaning to programs. In J. T. Schwartz, editor, Mathematical Aspects of Com-
puter Science, number 19 in Proceedings of Symposia in Applied Mathematics, pages 19–32. American
Mathematical Society, 1967.

[14] Maria João Frade and Jorge Sousa Pinto. Verification Conditions for Source-level Imperative Programs.
Computer Science Review, 2011. DOI: 10.1016/j.cosrev.2011.02.002.

[15] G. C. Gannod and B. H. C. Cheng. Strongest postcondition semantics as the formal basis for reverse
engineering. In Proceedings of the Second Working Conference on Reverse Engineering, WCRE ’95, pages
166–, Washington, DC, USA, 1995. IEEE Computer Society.

18

[16] Michael J. C. Gordon. Mechanizing programming logics in higher order logic. In G. Birtwistle and
P.A. Subrahmanyam, editors, Current trends in hardware verification and automated theorem proving, pages
387–439. Springer-Verlag New York, Inc., 1989.

[17] Mike Gordon and Hélène Collavizza. Forward with Hoare. Draft dated July 12, 2010, 2010.

[18] Radu Grigore, Julien Charles, Fintan Fairmichael, and Joseph Kiniry. Strongest postcondition of un-
structured programs. In Proceedings of the 11th International Workshop on Formal Techniques for Java-like
Programs, FTfJP ’09, pages 6:1–6:7, New York, NY, USA, 2009. ACM.

[19] Robert M. Hierons, Mark Harman, Chris Fox, Lahcen Ouarbya, and Mohammed Daoudi. Conditioned
slicing supports partition testing. Softw. Test., Verif. Reliab., pages 23–28, 2002.

[20] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM, 12:576–
580, 1969.

[21] Peter V. Homeier and David F. Martin. A mechanically verified verification condition generator. Com-
put. J., 38(2):131–141, 1995.

[22] Ivan Jager and David Brumley. Efficient directionless weakest preconditions. Technical Report CMU-
CyLab-10-002, Carnegie Mellon University, 2010.

[23] Thomas Kleymann. Hoare logic and auxiliary variables. Formal Aspects of Computing, 11(5):541–566,
1999.

[24] K. Rustan M. Leino. Efficient weakest preconditions. Inf. Process. Lett., 93(6):281–288, 2005.

[25] K. Rustan M. Leino, Michal Moskal, and Wolfram Schulte. Verification condition splitting. Microsfot
Research, 2008.

[26] Bertrand Meyer. Applying “design by contract”. Computer, 25(10):40–51, 1992.

[27] Si Pan and R. Geoff Dromey. Using strongest postconditions to improve software quality. In Software
Quality and Productivity: Theory, practice and training, pages 235–240, London, UK, UK, 1995. Chapman
& Hall, Ltd.

[28] Corina S. Pasareanu and Willem Visser. A survey of new trends in symbolic execution for software
testing and analysis. Int. J. Softw. Tools Technol. Transf., 11:339–353, October 2009.

19

A Proofs
This section is dedicated to the proof of Proposition 4. The proposition follows from Lemmas 7 and 8
below, as well as Proposition 3. We first prove an auxiliary result. The following lemma establishes a
correspondence between the set of edge conditions, which are propagated locally through the graph, and
the recursive structure of the underlying program.

Lemma 6. Let S = C1, . . . , Cn. Then

EC (P, S,Q) =
⋃

k∈{0...n}

{spostk(S, P)→ wpreck+1(S,Q)} ∪ ECk

where

ECk = ∅, if k = 0 or Ck is a skip, assignment, or procedure call command
ECk = EC

(
spostk−1(S, P) ∧ b, St,wpreck+1(S,Q)

)
∪

EC
(
spostk−1(S, P) ∧ ¬ b, Sf ,wpreck+1(S,Q)

)
, if Ck is if b then St else Sf

ECk = EC (I ∧ b, S, I) , if Ck is while b do {I}S

Proof. By induction on the length n of S. If n = 1 then S is a command C. The set of edges of the graph
CFG(S) consists of two edges, eSTART departing from START with wplbQ(eSTART) = wprec(C,Q) and
splbP (eSTART) = P , and eEND leading to END with wplbQ(eEND) = Q and splbP (eEND) = spost(C,P),
together with the edges of the CFGs of the subblocks of C. If C is one of skip, assignment, or procedure
call, then there are no such subblocks and the lemma holds trivially.

If C is a conditional if b then St else Sf then CFG(S) contains also the edges of CFG(St) and
CFG(Sf); let etSTART / etEND and efSTART / efEND be the edges of each of these subgraphs connected
respectively to IN (C) / OUT (C). Definition 4 prescribes that splbP (etSTART) = P ∧ b, wplbQ(etEND) = Q,
splbP (efSTART) = P ∧ ¬ b, and wplbQ(efEND) = Q. Thus the labeling of CFG(St) and CFG(Sf) by the pre-
vious definitions will produce exactly the sets of edge conditions EC (P ∧ b, St, Q) and EC (P ∧ ¬ b, Sf , Q).
A similar reasoning applies when C is while b do {I}Sw.

When S is the block C1 ; . . . ; Cn with n > 1, the result follows from a careful consideration of the edge
conditions of subblocks of Cn, the induction hypothesis
EC (P,C1 ; . . . ; Cn−1,wprec(Cn, Q)) =

⋃
k∈{0...n−1}{spost

k(S, P) → wpreck+1(S,wprec(Cn, Q))} ∪ ECk,
and the labels of the edge leading to END , with condition spost(S, P)→ Q.

The next lemma states that the verification graph contains all the equivalent sets of verification condi-
tions mentioned in Proposition 3.

Lemma 7. Let P , Q be assertions, S = C1 ; . . . ; Cn a block of commands, and k ∈ {0, . . . , n}. Then

VCGk(P, S, Q) ⊆ EC (P, S,Q)

Proof. By induction on the structure of S. If S is a single command, then n = 1 and k can only be 0 or 1; we
just have to prove VCG(P, S, Q) ⊆ EC (P, S,Q) and VCG(P, S, Q) ⊆ EC (P, S,Q).

For the base cases of skip, assignment, and procedure call, we have VCG(P, S, Q) = {P → wprec(C,Q)}
and VCG(P, S, Q) = {spost(C,P)→ Q}, both subsets of EC (P, S,Q) following Lemma 6.

If S is if b then St else Sf , by Lemma 1 (1), VCG(P, S, Q) = VCG(P ∧b, St, Q)∪VCG(P ∧ ¬ b, Sf , Q).
We have by induction hypotheses VCG(P ∧ b, St, Q) ⊆ EC (P ∧ b, St, Q) and VCG(P ∧ ¬ b, Sf , Q) ⊆
EC (P ∧ ¬ b, Sf , Q), and by Lemma 6, with n = 1, EC (P ∧ b, St, Q) ⊆ EC (P, S,Q) and also
EC (P ∧ ¬ b, Sf , Q) ⊆ EC (P, S,Q). This is proved similarly for VCG(P, S, Q).

If S is while b do {I}Sw, by Lemma 1 (2) VCG(P, S, Q) = {P → wprec(S,Q), spost(S, P) → Q} ∪
VCG(I ∧ b, Sw, I). By induction hypothesis and Lemma 6 (again with n = 1), VCG(I ∧ b, Sw, I) ⊆
EC (I ∧ b, Sw, I) ⊆ EC (P, S,Q); the latter lemma also implies {P → wprec(S,Q), spost(S, P) → Q} ⊆
EC (P, S,Q). Again VCG(P, S, Q) ⊆ EC (P, S,Q) is proved similarly.

Finally, if S is a block with n > 1, we first note that by Lemma 1 (3)

VCGk(P, S, Q) = VCG(P, C1 ; . . . ; Ck, wprec
k+1(S,Q))

∪ VCG(spostk(S, P), Ck+1 ; . . . ; Cn, Q)

20

And we have the following induction hypotheses:

VCG(P, C1 ; . . . ; Ck, wprec
k+1(S,Q)) ⊆ EC

(
P,C1 ; . . . ; Ck,wprec

k+1(S,Q)
)

VCG(spostk(S, P), Ck+1 ; . . . ; Cn, Q) ⊆ EC
(
spostk(S, P), Ck+1 ; . . . ; Cn, Q

)
Now it suffices to note that by definition of CFG(S) and Lemma 6, one has

EC (P, S,Q) = EC
(
P,C1 ; . . . ; Ck,wprec

k+1(S,Q)
)

∪ EC
(
spostk(S, P), Ck+1 ; . . . ; Cn, Q

)

We remark that the reverse of the previous lemma does not hold: the edge conditions of the labeled CFG
may well contain more assertions than any VCGk(P, S, Q). Instead we prove the following:

Lemma 8. Let P , Q be assertions, S = C1 ; . . . ; Cn a block of commands such that |= VCG(P, S, Q); then
|= EC (P, S,Q).

Proof. First note that by Proposition 3 we have that |= VCGk(P, S, Q) for all k ∈ {0, . . . , n}. The proof
proceeds by induction on the structure of S. If S is a single command C, then n = 1 and k can only be 0
or 1; if C is atomic we note that by Lemma 6 EC (P, S,Q) = {spost0(S, P) → wprec1(S,Q), spost1(S, P) →
wprec2(S,Q)}, and according to Definition 2, we have VCG0(P, S, Q) 3 {spost0(S, P)→ wprec1(S,Q)} and
VCG1(P, S, Q) 3 {spost1(S, P)→ wprec2(S,Q)}.

Otherwise, if C is if b then St else Sf , the set of edge conditions EC (P, S,Q) contains also EC1 =
EC
(
spost0(S, P) ∧ b, St,wprec2(S,Q)

)
∪ EC

(
spost0(S, P) ∧ ¬ b, Sf ,wprec2(S,Q)

)
. It then suffices to apply

Lemma 1 (1) and induction hypotheses: |= VCG(P ∧ b, St, Q) implies |= EC (P ∧ b, St, Q) and |= VCG(P ∧
¬ b, Sf , Q) implies |= EC (P ∧ ¬ b, Sf , Q).

If S is while b do {I}Sw, then the set of edge conditions EC (P, S,Q) contains EC1 = EC (I ∧ b, Sw, I),
and by induction hypothesis |= VCG(I ∧ b, Sw, I) implies |= EC (I ∧ b, Sw, I). Lemma 1 (2) concludes the
proof.

If S is a block with n > 1, recall from the proof of the Lemma 7 that

EC (P, S,Q) = EC
(
P,C1 ; . . . ; Ck,wprec

k+1(S,Q)
)

∪ EC
(
spostk(S, P), Ck+1 ; . . . ; Cn, Q

)
The ind. hypotheses |= VCG(P, C1 ; . . . ; Ck, wprec

k+1(S,Q)) implies |= EC
(
P,C1 ; . . . ; Ck,wprec

k+1(S,Q)
)

and |= VCG(spostk(S, P), Ck+1 ; . . . ; Cn, Q) implies |= EC
(
spostk(S, P), Ck+1 ; . . . ; Cn, Q

)
and Proposi-

tion 3 mean that it suffices to establish the validity of VCG(P, C1 ; . . . ; Ck, wprec
k+1(S,Q)) and of

VCG(spostk(S, P), Ck+1 ; . . . ; Cn, Q), which follows from Lemma 1 (3).

21

�
1 public c l a s s UKTaxesCalculation
2 {
3 public i n t age , income ;
4 public i n t personal , t ;
5
6 /∗@ r e q u i r e s (age >= 6 5) ;
7 e n s u r e s (p e r s o n a l > 5 7 5 0) ;
8 @∗/
9 public void TaxesCalcula t ion ()

10 {
11 i f (age >= 75) { personal = 5980 ; }
12 e lse i f (age >= 65) { personal = 5720 ; }
13 e lse { personal = 4335 ; }
14
15 i f ((age >= 65) && (income > 1 6 8 0 0))
16 {
17 t = personal − ((income−16800)/2);
18 i f (t > 4335) { personal = t + 2000 ; }
19 e lse { personal = 4335 ; }
20 }
21 }
22 }� �

Listing 1: Class TaxesCalculation

B Interactive Verification with GamaAnimator
In this Appendix we briefly show how our prototype tool GamaAnimator can be used as an interactive
VCGen (for a subset of a popular object-oriented language). The tool is part of the GamaSlicer suite, and
has the following functionality:

• Visualization of verification graphs and user-guided generation of verification conditions by interact-
ing with the graphs;

• Propagation of the valid and invalid status of edge conditions, through the use of a color code, allow-
ing to identify error paths.

Color is used in the following way: edges with invalid conditions are shown in red; edges with valid
conditions are shown in green; other edges are shown in black. Colors are propagated along the graph
following Lemma 3, the idea being that paths from START to END consisting only of edges displayed in
red are error paths, that violate the postcondition.

• The green color propagates freely through atomic command nodes in either direction. In branching
nodes, it propagates from outside the conditional command into both branches; but it only propagates
outwards, in both directions, when both branch edges are green.

• The red color also propagates freely across atomic command nodes. In branching nodes, it does not
propagate from outside the conditional command into the branches (since it cannot be guessed which
branch – or branches – have an invalid VC), but it does propagate over the entire conditional subgraph
(if the edge leading to an if(b) node is red, then so is the edge with origin in the corresponding fi node,
and vice-versa); it propagates outwards from any branch (without requiring the other branch to also
be red) in both directions.

• Every do(b){I} and od{I} node blocks the propagation of both the red and green colors, since no
equivalence exists between the edge conditions generated from a loop.

Nodes in the graph will also be displayed in color, as follows: a node is shown in green if all its incoming
and outgoing edges are green; it is shown in red if at least one of its incoming and outgoing edges is red; it is
shown in black otherwise (i.e. no red edges and at least one black edge).

Note that the verification is finished when the edge with origin in START or the edge with destination
END are green or red, signaling a correct or incorrect program. This does not imply that every edge in the
graph is either green or red, which may require more work in order to identify specific error paths.

To illustrate the use of the tool, consider the method TaxesCalculation in Listing 1, a fragment of a
program used to calculate income taxes in the United Kingdom,1 with contract (age ≥ 65, personal > 5750).
The (invalid) verification condition generated by backward propagation is shown in Figure 8 (bottom). It is
not straightforward from the observation of this VC to understand which statements lead to the violation
of the contract.

The verification graph of the method is visualized by GamaAnimator as shown in Figure 8. Each edge is
labeled with assertions propagated forward and backward. To avoid big labels in the graph, we simplify the

1The complete source code of this program can be found in [19], where it is used as a benchmark for slicing algorithms
based on assertions.

22

Figure 8: Verification graph of the TaxesCalculation Method and condition of the edge with
origin in the START node

23

Figure 9: Verification of edge conditions of TaxesCalculation (1)

labels of each edge whenever possible. For this simplification, we take advantage of an internal simplifier
of the Z3 solver. If the simplified expression is still big enough to unbalance the layout of the graph, then a
part of the edge is replaced by dots (. . .) and a tooltip is displayed when the mouse is placed over the edge,
as shown in the figure. The user can now select edge conditions to be checked. When an edge is clicked on,
the corresponding edge condition is sent to the prover. The tool keeps track of the current list of conditions
being checked, and a history of conditions previously considered.

Let us zoom in on the subgraph corresponding to the second conditional in the method, and select the
last edge inside the then branch. The following edge condition is sent to the prover and identified as valid:2

∃ v0. age ≥ 65 ∧ income > 16800 ∧ t > 4335 ∧ personal = t+ 2000→ personal > 5750

Thus, the edges inside the branch and the assignment instruction are shown in green. This means that the
statements inside the then branch are not the cause of the problem. If we now pick the last edge inside the
else branch, the following condition is sent to the prover and identified as not valid:

∃ v0. age ≥ 65 ∧ income > 16800 ∧ t > 4335 ∧ personal 6= t+ 2000→ personal > 5750

At this point, we know that this branch is part of an error path. The edges inside the branch, the assignment
node, and the if(t > 4335) and fi nodes all become red (Figure 9).

2In fact it is the negation of this formula that is sent to an SMT solver, which returns unsat, meaning that the original
formula is valid.

24

