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Alexandre Madeira, José M. Faria, Manuel A. Martins, Luis S. Barbosa

madeira@ua.pt, jmfaria@criticalsoftware.com, martins@ua.pt, lsb@di.uminho.pt

Techn. Report HASLab:2:2011

2011, November

HASLab - High-Assurance Software Laboratory
Universidade do Minho

Campus de Gualtar – Braga – Portugal
http://haslab.di.uminho.pt/



HASLab:2:2011
Hybrid specification of reactive systems:
An institutional approach
(extended version)
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Abstract

This paper introduces a rigorous methodology for requirements specification of systems that re-

act to external stimulus by evolving through di↵erent operational modes. In each mode di↵erent

functionalities are provided. Starting from a classical state-machine specification, the envisaged

methodology interprets each state as a di↵erent mode of operation endowed with an algebraic

specification of the corresponding functionality. Specifications are given in an expressive variant of

hybrid logic which is, at a later stage, translated into first-order logic to bring into scene suitable

tool support. The papers main contribution is to provide rigorous foundations for the method,

framing specification logics as institutions and the translation process as a comorphism between

them.
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Abstract. This paper introduces a rigorous methodology for require-
ments specification of systems that react to external stimulus by evolving
through di�erent operational modes. In each mode di�erent function-
alities are provided. Starting from a classical state-machine specification,
the envisaged methodology interprets each state as a di�erent mode of
operation endowed with an algebraic specification of the corresponding
functionality. Specifications are given in an expressive variant of hybrid
logic which is, at a later stage, translated into first-order logic to bring
into scene suitable tool support. The paper’s main contribution is to pro-
vide rigorous foundations for the method, framing specification logics as
institutions and the translation process as a comorphism between them.

1 Introduction

Motivation. The successful development and deployment of safety-critical, re-

active systems, from the early concept and system definition phases, down to

implementation and validation, poses a number of challenges that engineers must

overcome. From the outset, there are two basic approaches to formally capture

requirements for this sort of software: one emphasizes behaviour and its evolu-

tion; the other focus on data and their transformations.

Within the first paradigm, reactive systems are typically specified through

(some variant of) state-machines. Such models capture system’s evolution in

terms of event occurrence and its impact in the system internal state configu-

ration. Automata theory, and its more recent, abstract rendering in coalgebraic

terms, provide a suitable formalism for both specification and analysis. Crucial

notions of bisimulation, minimization and invariant, among others, play a fun-

damental, long established role in this framework. In the dual, data-oriented

approach the system’s functionality is given in terms of input-output relations

modeling operations on data. A specification is a theory in a suitable logic, ex-

pressed over a signature, which captures its syntactic interface. Its semantics is

a class of concrete algebras acting as models for the specified theory [5, 17].

In practice, however, both approaches are interconnected: the functionality

o�ered by the system, at each moment, may depend on the stage of its evolution.

Such is typically the case of complex, reactive, reconfigurable software.



This paper explores such a interconnection. Starting from a classical state-

machine specification, the methodology illustrated in the sequel goes a step fur-

ther: di�erent states are interpreted as di�erent modes of operation and each

of them is equipped with an algebraic specification (over the system’s interface)

of the corresponding functionality. Technically, specifications become structured
state-machines, states denoting algebras, rather than sets.

The following paragraph sums up the envisaged approach. It should be re-

marked this has been developed in a concrete, industrial context — that of a

leading, portuguese IT company, whose mission includes the production of for-

mally certified software for critical systems. Such a context makes e�ective, but

sound tool support a must. As discussed in the sequel, rigorous foundations also

(may) lead to fulfill this objective.

Approach and paper outline. The approach proposed in the paper is sketched

in Figure 1. The upper plane sums up the envisaged methodology. The block

on the left hand side represents the specification framework, structured in two

stages, as explained below. The annotation on top — Hybrid logic — states the

underlying logic. The block on the right concerns verification and analysis of hy-

brid specifications suitably translated to first order logic (FOL). The translation

itself is depicted as a comorphism between the two logic systems in presence:

hybrid logic, chosen for its expressive power, first order, to benefit from exis-

tent verification support. Hybrid logic [2] plays a fundamental role here given

its ability to make explicit references, through special symbols called nominals,
to specific states within a model.

The lower plane of Figure 1 refers to the methodology foundations. Actually,

a basic property to require from a specification formalism is its ability to be

framed as an institution [7, 4]. This is not a formal idiossyncracy: institutions, as

abstract, general representations of logical systems, provide modular structuring

and parameterization mechanisms which are defined ‘once and for all’ abstracting

from the concrete particularities of the each specification logic [23]. Moreover,

several current specification formalisms, notably, CafeOBJ [5], Casl [17] and

Hets [19] were designed to take advantage of such a general framework.

Moreover institutions provide a systematic way to relate logics and transport

results from one to another [16], which means that a theorem prover for the latter

can be used to reason about specifications written in the former. This is achieved

through a special class of maps between institutions, referred to as comorphisms,
as depicted in Figure 1.

The rest of the paper is organized around two main sections: one on the

methodology (sections 2) and another on foundations (section 3). Section 4 dis-

cusses current work on suitable tool support based on Hets [19]. Section 5

concludes and provides a few pointers for future work. Detailed proofs of all

formal claims in the paper are collected In a clearly marked appendix.
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Fig. 1. The approach.

2 A specification methodology

As stated above, the paper proposes a methodology to the specification and anal-

ysis of reactive systems which is intended to be e�ectively used in an industrial

context. The methodology has the following stages, which will be detailed later

in the paper:

I (I.1) Express the requirements in hybrid propositinal logic (HPL), identifying states
and transitions to build a first state-machine; (I.2) Specify local properties as
propositions; At this stage, traditional technics of state machine analysis/refine-
ment may be applied, and available reasoning tools for HPL used (see Section
2.1).

II (II.1)Define the actual system’s interface through the set of (external) services of-
fered. Technically, this is supported by the definition of a (multi-sorted) first-order
signature. (II.2) Express, whenever possible, the attributes of the first machine as
functional properties over this signature.

III Translate both specifications into FOL, providing a common ground for testing
and verification.

In the sequel the methodology is illustrated in a number of specification
fragments of an automatic cruise control (ACC) system. The example, small but
self-contained, is taken from [9], where the overall requirements are summarized
as follows:

“The mode class CruiseControl contains four modes, O�, Inactive, Cruise, and
Override. At any given time, the system must be in one of these modes. Turning the



ignition on causes the system to leave O� mode and enter Inactive mode, while turning
the cruise control level to const when the brake is o� and the engine running causes
the system to enter Cruise mode. (...) Once cruise control has been invoked, the system
uses the automobile’s actual speed to determine whether to set the throttle to accelerate
or decelerate the automobile, or to maintain the current speed (...)To override cruise
control (i.e., enter Override), the driver turns the lever to o� or applies the brake”.

2.1 Hybrid specifications (Stage I)

The requirements for the cruise control system example can be captured by

the state machine depicted in Figure 2. This section introduces its specification

in propositional hybrid logic (HPL). Such a presentation has the advantage of

being compact, unambiguous and closer to the input format of typical verification

engines.

off

inactive

cruise

overrride

IgnOn

LeverCons �
EnRunning �

¬Brake

Brake

¬EngRunning

�LeverOff

¬IgnOn

¬IgnOn

¬IgnOn

¬IgnOn

LeverCons �
EnRunning �

¬Brake

LeverOff

Fig. 2. State-machine of the system

The set of HPL formulas is defined by the following grammar:

⌦, ::= p | i | ¬⌦|[⌃]⌦ |@i⌦ |⌦ ↵  |⌦ �  |⌦⌃  (1)

where ⌥ ranges over a set ⇥ of modal operators. Models of this logic are state-

machines with an additional function state : Nom ⌥ S which assigns to each

nominal a state. This allows explicit reference to particular states in a specifi-

cation. Thus, models are tuples P = ◆S, state, (R⇧)⇧⌦⇥, (Ps)s⌦S where S is a

set of states, R⇧ ⇥ S � S is the accessibility relation associated to the modality

⌥ and Ps : Prop ⌥ {✏,⇣} is the function that assigns the propositions on the

state s ↵ S. The satisfaction relation is defined as in standard modal logic (e.g.

P |=s p i� Ps(p) = ✏; P |=s [⌥]� i� P |=s⇤
� for any s such that (s, s ) ↵ R⇧)

adding the following cases related to nominals:
– P |=s @i⌦ i� P |=state(i) ⌦;
– P |=s i i� state(i) = s.

Moreover, we abbreviate formulas ¬[⌥]¬� and ◆⌥�⌘ [⌥]� to ◆⌥ and ◆⌥⇤�,

respectively.

For the running example, a modality {next} is introduced to denote the state-

machine accessibility relation. Nominals in {off, inactive, override, cruise} cor-

respond to the operation modes mentioned in the requirements. Finally, a set of

propositions is considered — one for each label in Figure 2. With such signature,

transitions are specified as follows:



• (T
1

)@off ( IgnOn ⌥ ⇣next⌘⇥inactive )
• (T

2

)¬ IgnOn ⌥ ⇣next⌘⇥o�
• (T

3

)@inactive(LeverCons � IgnOn � ¬ Brake ⌥ ⇣next⌘⇥cruise)
• (T

4

)@cruise(¬ EngRunning ✏LeverO� ⌥ ⇣next⌘⇥inactive)
• (T

5

)@cruise( Brake ⌥ ⇣next⌘⇥override)
• (T

6

)@override(LeverCons � IgnOn) � EngRunning � ¬ Brake ⌥ ⇣next⌘⇥cruise)

Local properties can also be expressed resorting to the satisfaction operator

@i, for each nominal i, to reference the corresponding state. For instance, the

requirement that the engine controls speed decelerating the car if the speed is
high and maintaining it when it is considered adequate is modelled by
• (L1

cruise)@cruise( IgnOn � EngRunning � HighSpeed ⌥ decel)
• (L2

cruise)@cruise(IgnOn � EngRunning � AdmissibleSpeed⌥ mantain)

Finally, admissibility properties, concerning propositions, are also captured. For

instance, the fact that the lever cannot be switched in more than one position at
each time, and similarly for the acceleration and speed modes, is expressed as
• (A

1

)LeverO� � ¬ LeverCons
• . . .
• (A

4

)HighSpeed ⌥ ¬ CruiseSpeed � ¬ LowSpeed

2.2 States-as-algebras models (Stage II)

The logic. The second stage in the methodology equips each state of the un-

derlying state-machine with an algebra, more precisely a first-order structure,

to model its local functionality. Therefore, hybrid structures are enriched with

a family of first-order structures indexed by the set of states, i.e., they become

structures

M = ◆S, state, (R⇧)⇧⌦⇥, (Ps)s⌦S , (As)s⌦S

where first-order structures in the family (As)s⌦S are defined over the same

signature and universe, say A. Each As models the system’s behaviour at state

s ↵ S.

Definition 1. Let ⇤ a first-order signature and X a set of variables for it,
Nom, Prop and ⇥ three disjoint sets of nominals, propositions and modalities
respectively. The set of hybrid equational formulas is defined by the following
grammar:

�, ↵ ::= p | i| t ⌃ t |P (t̄) | ¬�|� � ↵| [⌥]� |@i� | �x� (2)

where � ↵ {✓,⌘, }, p is a proposition, i is a nominal, t ⌃ t is a ⇤-equation
over X, x ↵ X, P is a ⇤-predicate of type s1, . . . , sn where t̄ := t1, . . . , tn and
ti ↵ (T⇤(X))si .

An assignment for M = ◆S, state, (R⇧)⇧⌦⇥, (Ps)s⌦S , (As)s⌦S consists of a

(sorted-set) function g : X ⌥ A, where A is the carrier set of the first-order

structures of M and X is a set of variables. We write g ⇧x g if for any variable

y �= x, g(y) = g (y). Note that the assignment g : X ⌥ A induces an S-family

of assignments gs : T⇤(X) ⌥ A defined, for any x ↵ X, by gs(x) = g(x) and,

for each term f(t1, . . . , tn), by gs(f(t1, . . . , tn)) = fAs(gs(t1), . . . , gs(tn)).

Definition 2. Let M = ◆S, state, (R⇧)⇧⌦⇥, (Ps)s⌦S , (As)s⌦S be an hybrid struc-
ture. For any assignment g : X ⌥ A, the satisfaction relation is recursively
defined as follows:



– M, g |=s i if state(i) = s;
– M, g |=s p if Ps(p) = ⌦;
– M, g |=s t ⌅ t� if As |= t ⌅ t�[g] i.e., if gs(t) = gs(t�);
– M, g |=s Q(t

1

, . . . , tn) if As |= Q(t
1

, . . . , tn)[g], i.e., if
QAs(gs(t

1

), . . . , gs(tn));
– M, g |=s � � �� if M |=s � or M |=s ��; and similarly for the remaining boolean

connectives;
– M, g |=s  x� if, for any assignment g� : X ⇧ A, if g ⇤x g�, one has M, g� |=s �;

– M, g |=s [⌃]� if, for any s� ⌥ S such that (s, s�) ⌥ R⇧, one has M |=s⇤
�.

We write M |=s  when for any assignment g : X ⌥ A, M, g |=s  and
M, g |=  when for any s ↵ S, M, g |=s  .

In order to model the system’s functionality, as provided by the car arti-

fact, we resort to a classical algebraic specification. This entails the need for

introducing data types able to support the envisaged notions of time, speed and

acceleration. In the running example integer numbers, with the usual operations

and predicates {+,⇤,⌅, <,>}, can do the job.

spec TimeSort =Int with sort Int ↵⌃ time, ops 0 ↵⌃ init, suc ↵⌃ after end

spec SpeedSort =Int with sort Int ↵⌃ speed end

spec AcellSort =Int with sort Int ↵⌃ accel end

Thus, the operation Pedal models the accelerations applied by the driver at

each moment. On the other hand, Automatic captures accelerations applied on

the engine by the ACC, and CurrentSpeed records the current speed. Finally,

constant MaxCruiseSpeed represents the maximum speed allowed on the ACC

mode:

spec ACCSign =
TimeSort and SpeedSort and AcellSort

then ops Pedal : time ⌃ accel;
Automatic : time ⌃ accel;
Speed : speed � accel ⌃ speed;
CurrentSpeed : time ⌃ speed;
MaxCruiseSpeed : speed

There are properties that globally hold, in all the configurations of the system.

For instance,

� s : speed; a : accel; t : time
• (G

1

)Speed(s, a) ⇧ 0
• (G

2

)CurrentSpeed(t) = 0 � Pedal(t) ⇧ 0 ⌥ CurrentSpeed(after(t)) ⇧ 0
• (G

3

)Pedal(t) ⇧ 0 � CurrentSpeed(t) <CurrentSpeed(after(t))
• (G

4

)Speed(s, a) = s � a = 0
• (G

5

)CurrentSpeed(after(t)) =Speed(CurrentSpeed(t),Pedal(t))

Local properties. Di�erently from the properties above, local requirements

hold only at particular configurations. Let us explore some of them. First, in state

off , it is required that speed and acceleration are null and no other operations

in the interface react:

� t : time; s : speed; a : accel
• (L1

off ) @offCurrentSpeed(t) = 0
• (L2

off ) @offSpeed(s, a) = 0



In state inactive, the speed and acceleration depend on the accelerations auto-

matically introduced in the system, i.e,
� s : speed; a : accel
• (L1

inactive) @inactiveSpeed(s, a) = s + a

� t: time; s : speed; a : accel

• (L1

⇤
cruise) @cruise[CurrentSpeed(t) > MaxCruiseSpeed ⌥Automatic(after(t)) < 0]

• (L2

⇤
cruise) @cruise[CurrentSpeed(t) ⌅ MaxCruiseSpeed � Automatic(after(t)) = 0]

• (L3

cruise)@cruiseSpeed(s, a) = s + a
• (L4

cruise)@cruisePedal(t) ⇧ 0⌥ Pedal(t) = Automatic(t)

An interesting feature in this example is that properties local to states

override and off do coincide. The system’s behaviour on both states only di�ers

in what concerns the definition of the allowed transitions. The latter are dealt

as follows.

Transitions specification. To specify state transitions we simply resort to

the state-machine built in Stage I, through axioms (T1), . . . , (Tn) from Section

2.1. However, some propositions may now be expressed by means of algebraic

properties of local states. For instance, we may replace (T4) by
� t: time;
• (T

4

⇤ )@cruise[CurrentSpeed(t) = 0⌥ ⇣next⌘⇥(inactive � CurrentSpeed(after(t)) = 0)]
• (T

4

⇤⇤ )@cruise[LeverOff⌥ ⇣next⌘⇥inactive].

Furthermore, the fact that when ACC is activated by transition T6, the speed

should to be maintained, is captured by
� t: time; � s: speed
• (T

6

⇤ )@override[(LeverCons� CurrentSpeed(t) = s � s ⇧ 0) ⌥
⇣next⌘⇥(cruise�CurrentSpeed(after(t)) = s)].

3 Foundations

3.1 Going “institutional”

Dealing with the sort of specifications produced in Stages I and II above, en-

tails the need for a uniform specification framework in which both equational

properties of data types, modal properties of transitions and local properties

of states can be expressed and verified. The canonical way to do it is through

the notion of an institution [7, 4], as an abstract representation of a logical sys-

tem, encompassing syntax, semantics and satisfaction. Let us recall the formal

definition:

Definition 3 (Institution). An institution
�
SignI ,SenI ,Mod

I , (|=I
⇤)⇤⌦|SignI |

�

consists of

– a category SignI whose objects are called signatures.
– a functor SenI : SignI ⌥ Set giving for each signature a set whose elements

are called sentences over that signature.
– a functor Mod

I
: (SignI)op ⌥ CAT, giving for each signature ⇤ a cate-

gory whose objects are ⇤-models, and whose arrows the corresponding ⇤-

morphisms, and
– a satisfaction relation |=I

⇤⇥ |Mod
I
(⇤)|� SenI(⇤) for each ⇤ ↵ |SignI |.



such that for each morphism � : ⇤ ⌥ ⇤ ↵ SignI , the satisfaction condition

M  |=I⇤⇤ SenI(�)( ) iff Mod
I
(�)(M  ) |=I⇤  . (3)

A well known example of institution is the institution of first order logic, de-

noted in the sequel by FOL (see [4] for a detailed account). Institutions provide

a suitable setting to do abstract specification theory [23], structuring any kind

of specifications through combinators which are institution-independent, i.e. not

tied to a specific logic system. In Casl [17], for example, such combinators al-

low the construction of basic specifications, by defining a signature and a set

of sentences, the union of specifications, and the derivation and translation of

specifications along signature morphisms. The use of this set of (abstract) com-

binators, makes possible to approach, in a uniform way and trough the same

theory, systems expressed in completely di�erent logics.

Therefore, our first aim concerning foundations is to prove that the proposed

specification formalism may be framed on this big picture of institution theory.

Let start by collecting the necessary ingredients to define a suitable institution

H.

Category SIGNH Signatures are tuples ◆(⇤,X),Nom,Prop,⇥ where ⇤ is a first-order logic

signature, X is a set of first-order variables and Nom, Prop and ⇥ are (dis-

joint) sets of symbols of nominals, propositions and modalities. Signature

morphisms

◆(⇤,X),Nom,Prop,⇥ ⌃
// ◆(⇤ , X  ),Nom ,Prop ,⇥ 

are tuples � = (�Sig,�Nom,�Prop,�MS) where �Nom : Nom ⌥ Nom , �Prop :

Prop ⌥ Prop and �MS : ⇥⌥ ⇥ are functions and �Sig : (⇤,X) ⌥ (⇤ , X  )

is a morphism in FOL, i.e., a tuple �Sig = (�sort
Sig ,�op

Sig,�
pred
Sig ,�var

Sig )

• for any operation f ↵ ⇤s
1

...sn,s, �
op
Sig(f) ↵ ⇤ 

⌃sort
Sig

(s
1

)...⌃sort
Sig

(sn),⌃sort
Sig

(s);

• for any predicate Q ↵ ⇤s
1

...sn , �pred
Sig (Q) ↵ ⇤ 

⌃sort
Sig

(s
1

)...⌃sort
Sig

(sn);

• for any variable x ↵ Xs, �var
Sig (x) ↵ X  

⌃sort
Sig

(s).

Functor SENH This functor maps a signature � = ◆(⇤,X),Nom,Prop,⇥ into the set of hy-

brid sentences, i.e., on the subset of bonded-variables formulas of Definition

1, and a morphism

◆(⇤,X),Nom,Prop,⇥ ⌃
// ◆(⇤ , X  ),Nom ,Prop ,⇥ 

into the sentence translation

SenH(◆(⇤,X),Nom,Prop,⇥)
SenH(⌃)

// SenH(◆(⇤ , X  ),Nom ,Prop ,⇥ )

recursively defined as follows

• SenH(⌦)(�) = SenFOL(⌦
Sig

)(�) for any � ⌥ SenFOL(⇥);
• SenH(⌦)(i) = ⌦

Nom

(i), i ⌥ Nom;
• SenH(⌦)(p) = ⌦

Prop

(p), p ⌥ Prop;



• SenH(⌦)(t ⌅ t�) = ⌦term(t) ⌅ ⌦term(t), where ⌦term : T⇤(X) ⇧ T⇤⇤(X �) is a
function recursively defined as follows

∗ ⌦term(x) = ⌦var
Sig

(x) for x ⌥ X;
∗ ⌦term(f(t

1

, . . . , tn)) = ⌦op
Sig

(f)(⌦term(t
1

), . . . , ⌦term(tn)), for any f ⌥ ⇥s
1

...sn,s,
ti ⌥ (T⇤(X))si .

• SenH(⌦)(Q(t
1

, . . . , tn)) = ⌦pred
Sig

(Q)(⌦term(t
1

), . . . , ⌦term(tn));

• SenH(⌦)(¬�) = ¬SenH(⌦)(�);
• SenH(⌦)(� ⇥ ��) = SenH(⌦)(�)⇥ SenH(⌦)(��), ⇥ ⌥ {�,↵,⇧};
• SenH(⌦)(@i�) = @⌃

Nom

(i)SenH(⌦)(�);
• SenH(⌦)([⌃]�) = [⌦

MS

(⌃)]SenH(⌦)(�);
• SenH(⌦)( x�) =  ⌦var

Sig

(x)SenH(⌦)(�).

Functor Mod
H

This functor maps each signature ◆(⇤,X),Nom,Prop,⇥ to a category whose

models are the hybrid structures M = ◆S, state, (R⇧)⇧⌦⇥, (Ps)s⌦S , (As)s⌦S
defined above. Morphisms between models ◆S, state, (R⇧)⇧⌦⇥, (Ps)s⌦S , (As)s⌦S
and ◆S , state , (R 

⇧)⇧⌦⇥, (P  
s)s⌦S⇤ , (A 

s)s⌦S⇤ consists of pairs (hst, hmod) such

that

• hmod is an S-family
`
hmods : As ⇧ A�

hst(s)

´
s⇥S

of first-order structures mor-
phisms;

• Ps(p) = P �
hst(s)

(⌦
Prop

(p));
• hst : S ⇧ S� is a function such that

∗ (s, s�) ⌥ R⇧ implies that (hst(s), hst(s
�)) ⌥ R�

⇧,
∗ state�(n) = hst(state(n)),

Functor Mod
H

maps each morphism

◆(⇤,X),Nom,Prop,⇥ ⌃
// ◆(⇤ , X  ),Nom ,Prop ,⇥ 

into the reduct functor

Mod
H

(◆(⇤,X),Nom,Prop,⇥) Mod
H

(◆(⇤ , X  ),Nom ,Prop ,⇥ )
ModH(⌃)
oo

that maps each ◆(⇤ , X  ),Nom ,Prop ,⇥ -model

◆S , state , (R 
⇧)⇧⌦⇥⇤ , (P  

s)s⌦S⇤ , (A 
s)s⌦S⇤ into the ◆⇤,Nom,Prop,⇥-model

◆S, state, (R⇧)⇧⌦⇥, (Ps)s⌦S , (As)s⌦S such that

• S = S�;
• state(n) = state�(⌦

Nom

(n)) for any n ⌥ Nom;
• R⇧ = R�

⌃
MS

(⇧)

for any ⌃ ⌥ �;

• As = ModFOL(⌦
Sig

)(A�
s) for any s ⌥ S, where ModFOL(⌦

Sig

), the reduct
notion on the institution of first-order logic, consists of the classical reduct
notion on first-order structures;

• Ps(p) = P �
s(⌦Prop

(p)) for any p ⌥ Prop

Satisfaction |=H Satisfaction is the restriction of Definition 2 to sentences.

Theorem 1. Let � = ((⇤, X),Nom,Prop,⇥) and � two H-signatures and
� : �⌥ � a morphism of signatures. For any  ↵ SenH(�),
M = ◆S , state , R⇥⇤ , (P  

s)s⌦S⇤ , (A 
s)s⌦S⇤ ↵ |Mod

H
(� )|, and s ↵ S,

Mod
H

(�)(M ), g |=s  i� M , g |=s SenH(�)( ).



where, for any x ↵ X, g(x) = g (�var
Sig (x)).

The satisfaction condition for H follows from a well known fact, which states

that satisfaction of a formula only depends on assignment of free variables.

Actually,

Corollary 1 (Satisfaction condition). Let � = ((⇤,X),Nom,Prop,⇥)

and � be two H-signatures and � : �⌥ � a morphism of signatures. For
any  ↵ SenH(�), M = ◆S , state , R⇥⇤ , (P  

s)s⌦S⇤ , (A 
s)s⌦S⇤ ↵ |Mod

H
(� )|,

Mod
H

(�)(M ) |=  i� M |= SenH(�)( ).

Therefore,

Corollary 2. (SignH,SenH,Mod
H, |=H) is an institution.

Finally, observe that models, language and satisfaction presented on Sec-

tion 2.1 also constitute an institution. This institution is similarly defined, by

forgetting the first-order signature from hybrid signatures, the state-family of

first-order structures from models and the equations and quantifications from

sentences. By obvious reasons, we call this the institution of propositional hybrid
logic and write HPL.

3.2 Translating to FOL (Stage III)

Stage III in the envisaged methodology was not discussed in section 2. Actually,

from a methodological point of view it is rather straightforward: a translation

of specifications to a well-known first order setting. Technically, however, this

can be stated in a very precise way as a comorphism. Comorphims play, at the

institutional level, the role of logical translations, lifting specifications expressed

within di�erent institutions to a common level [16]. Therefore, any tools, namely

proof assistants, available at the target institution, can be borrowed by the source

one. Formaly,

Definition 4 (Comorphism). Given institutions I = (Sign,Sen,Mod, |=) and
I  = (Sign ,Sen ,Mod

 , |= ) a comorphism (⌅,⇧,⌃) : I ⌥ I  consists of

1. a functor ⌅ : Sign⌥ Sign ,
2. a natural transformation ⇧ : Sen ⌅; Sen , and
3. a natural transformation ⌃ : ⌅op; Mod

  Mod

such that the following satisfaction condition holds

M  |= 
⌅(⇤) ⇧⇤( ) i� ⌃⇤(M  ) |=⇤  

for each signature ⇤ ↵ |Sign|, ⌅(⇤)-model M  , and ⇤-sentence  .



In this sub-section, we establish a comorphism from H into FOL. The trans-

lation procedure is based on the addition of a special sort to represent states.

Hence, in order to ‘collapse’ every local state algebra in a unique structure, the

signature of all operations and predicates is enriched with an argument of this

sort. Moreover, nominals are regarded as constants over ST, modalities as usual

first-order relations and propositions as unary predicates over ST. For that we

have a functor

⇤ : SignH �⇧ SignFOL

�(⇥, X), Nom, Prop, �� ��⇧
`
�S⇤ + {ST}, F ⇤ + Nom, P ⇤ + Prop + ��, X̄

´
,

where ⇤ = (S⇤ , F⇤ , P⇤) and

– F⇤ =

(
(F⇤)STw⌃s = (F⇤)w⌃s, for any s ↵ S⇤ , w ↵ S⇥⇤
�, for the other cases

;

– P⇤ =

(
(P⇤)STw = (P⇤)w, for any w ↵ S⇥⇤ ;

�, for the other cases

– Nom = {ci : ⌥ ST | i ↵ Nom};
– Prop = {p̄ : ST | p ↵ Prop};
– ⇥ = {⌥ : STn | ⌥ ↵ ⇥n}.

– X =

(
Xsort = Xsort, for any sort ↵ S⇤ ;

XST = {w, v}

Natural transformation ⌃ : ⌅op; Mod
FOL  Mod

H
maps each first-order struc-

ture (M ;MF̄ +MNom;MP̄ +MProp +M⇥̄) ↵ Mod(◆S⇤ + {ST}, F⇤ +Nom, P⇤ +

Prop + ⇥) into

�S, state, R⇥, (Ps)s⇥S , (As)s⇥S� �M ; M
¯F + M

Nom

; M
¯P + M

Prop

+ M
¯⇥��⌅⌅F,Nom,Prop,�⇧

oo ,

where for any i ↵ Nom, state(i) = cM
i , for any ⌥ ↵ ⇥, R⇧ = RM

⇧ . Moreover,

As, s ↵ S is a first-order structure whose carrier set is AS⇥ ; functions f ↵
F⇤

s
1

...sn,s and predicates Q ↵ P⇤
s
1

,...,sn
are defined for each ui ↵ U , i ⇤ n, by

fAs(u1, . . . , un) = f̄M (s, u1, . . . , un) and QAs(u1, . . . , un) = P̄M (s, u1, . . . , un)

respectively. The family (Ps)s⌦S , is defined, for each s as Ps(p) = ✏ i� p̄M (s).
Natural transformation ⇧ : SenH  ⌅; SenFOL is defined for each (F,Nom,⇥)-

sentence by ⇧( ) = (�w)⇧w( ), where w is a variable of ST and ⇧w is recursively

defined as follows:

⌅w(t ⌅ t�) = Tw(t) ⌅ Tw(t�) t, t� ⌥ (T⇤(x))s, s ⌥ S⇤

⌅w(Q(t
1

, . . . , tn)) = Q̄(w, Tw(t
1

), . . . , Tw(tn)) Q ⌥ P ⇤
s
1

,...,sn , ti ⌥ (T⇤(X))si

⌅w(i) = ci ⌅ w, i ⌥ Nom
⌅w(p) = p̄(w), p ⌥ Prop

⌅w(@i�) = ⌅ci(�),
⌅w([⌃]�) = ( v)[(w, v) ⌥ R⇧ ⇧ ⌅v(�)], ⌃ ⌥ �
⌅w(¬�) = ¬⌅w(�)

⌅w(� ⇥ ��) = ⌅w(�)⇥ ⌅w(��), ⇥ ⌥ {�,↵,⇧}
⌅w( x�) =  x ⌅w(�) x ⌥ X



where Tw : T⇤(X) ⌥ T⇤̄(X), for ⇤ = (S⇤ , F⇤ , P⇤), defined for each variable

x ↵ X, Tw(x) = x and for each f(t1, . . . , tn) ↵ T⇤(X) by Tw(f(t1, . . . , tn)) =

f̄(w, Tw(t1), . . . , Tw(tn)).

Theorem 2. Let � ↵ |SIGNH|,  ↵ SENH and M  ↵ Mod
FOL

(⌅(�)). Then,
for ⇧ and ⌃ defined as above, for any s ↵ S and any assignment g : X̄ ⌥ A such
that whenever g(w) = s, we have that

⌃�(M  ), g�X |=s
H  i� M  , g |=FOL⌅(�) ⇧w( ). (4)

As direct consequence we have the general satisfaction condition for comor-

phisms:

Corollary 3 (Comorphism satisfaction condition). Let � ↵ |SIGNH|,  ↵
SENH and M  ↵ Mod

FOL
(⌅(�)). Then, for ⇧ and ⌃ defined as above we have

that,
⌃�(M  ) |=H�  iff M  |=FOL⌅(�) ⇧�( ). (5)

It is straitforward to see that, we may define a comorphism from HPL into FOL
from the presented one. This is achieved by forgetting the first-order components

of the signatures and models and by restricting ⇧ to the hybrid propositional

formulas.

Recalling our running example, we end up with the signature
ops

Speed� : st� � speed � accel ⌃ speed; Pedal� : st� � time ⌃ accel;. . .
pred

next : st� � st�; IgnOn� : st�; . . .

Note that, now, global properties are universally quantified, and local proper-

ties take as state argument the respective nominal. For instance, global properties

(G1) and (G2) are translated into
� s : speed; w : st�; a : accel;t : time
• (G

1

� ) ⇧�(w ,Speed* (w, s, a), 0�(w))
• (G

2

� ) CurrentSpeed�(w,t) = 0�(w) � ⇧�(w, Pedal* (w,t), 0�(w)).

and local properties (L1
off ) and (L4

cruise), into

� t : time

• (L1

�
off )CurrentSpeed* (off ,t) = 0�(off)

• (L4

�
cruise) ⇧�(cruise,Pedal* (cruise,t),0�(cruise))⌥Pedal(cruise,t) = Automatic* (cruise,t).

For instance, transition (T1) is expressed by
•(T

1�) IgnOn(off)⌥
[(�w : st�) (off, w) ⌦ next ⌥ inactive = w � (�w⇤ : st�) (off, w⇤) ⌦ next ⌥ inactive = w⇤],

i.e.,
•IgnOn(off)⌥(off, inactive) ⌦ next.

4 Tool support

A central ingredient for the successful integration of a formal method in the

industrial practice is the existence of e�ective tool support.

Certainly hybrid specifications produces in Stage I of our methodology can be

anchored on recent implementations of logical calculus for HPL (see e.g. HTab



[11], HyLoTab [24] and Spartacus [8]). Moreover, model checking for HPL

models is also an active research issue (e.g. [12, 10]).

Our focus is, however, a di�erent, somehow more standard, one: hybrid spec-

ifications are translated to FOL through a suitable comorphism. This solution

provides a uniform first order logical framework for analysis and verification sup-

porting the whole methodology. Moreover, to the best of our knowledge, richer

versions of hybrid logic, as required at Stage II, lack e�ective tool support, which

makes our approach by translation the only option available. Beyond the concep-

tual support of institutions theory and the structured specification methodology

o�ered by CASL, we have e�ective computational tools, to support our sort of

specification. On this perspective HETS-heterogeneous tools set [19] deserves a

special attention.

Using a metaphor of [18], HETS may be seen as a “motherboard” where

di�erent “expansion cards” can be plugged. These pieces are individual logics

(with their particular analyzers and proof tools) as well as logic translations.

To make them compatible, logics have to be formalized as institutions and, the

corresponding translations, as comorphisms. Therefore, the integration of the

hybrid specifications on the HETS framework is legitimate, since all formal re-

quirements (e.g., that institutions exist, that a comorphism can be defined, etc.)

are provided in the present work. HETS already integrates parsers, static ana-

lyzers and provers for a wide set of individual logics, and manages heterogeneous

proofs resorting to the so-called graphs of logics, i.e., graphs whose nodes are

logics and, whose edges, are comorphisms between them.

Furthermore, and directly relevant to our methodology, HETS provides a

rich support for FOL, and consequently, for H and HPL. For instance, provers

SoftFOL, Spass, MathServe Broker, among others, are already “pluged”

into HETS [18], and therefore, all of them provide e�ective to our specification

methodology (see Figure 3). Moreover, we are also able to take advantage of

a number of “borrowed” provers from other institutions through comorphisms

with source in FOL.

An open issue at this level concerns verification. So far model checking of hy-

brid structures is restricted to propositional hybrid logic [6, 12]. The combination

of traditional algebraic specification tools, like first-order provers and rewriting

engines (e.g. CafeObj [5]), together with provers and model checkers for hybrid

logics (e.g. [1, 6]) may broaden the scope of application.

5 Conclusions

The paper introduced a rigorous methodology for requirements specification of

reactive systems, flexible enough to capture the existence of di�erent opera-

tional modes at each stage of evolution. Variants of hybrid logic provided the

right conceptual framework to develop such specifications. At a later stage, such

specifications are translated into first-order logic to bring into scene suitable tool

support. The paper’s main contribution was to provide rigorous foundations for



Fig. 3. HETS session

the method, framing specification logics as institutions and the translation pro-

cess as a comorphism between them.

A lot of work remains to be done. From an experimental point of view,

we are conducting case studies with di�erent size and complexity to assess the

methodology.

Another line of research is concerned with establishing a precise comparison

with approaches to specification with a similar purpose. For instance, many (vari-

ations) of state machines may be represented as hybrid models. Moreover, some

structured state-machines, such as ASM (Abstract State Machines) [3] can also

be represented as our states-as-algebras models. An interesting aspect to explore,

is whether the institutions constructed here may provide an uniform platform

to reason, in a property-oriented perspective, about these model-oriented spec-

ifications. Moreover, recent theoretical developments from the authors justifies

to look to the presented methodology in a more broad sense: it proofs in [15]

that the hybridization idea presented above can be extended to arbitrary institu-

tions. Trough this result it would be worth to consider, on place of the first-order

structures, other kind of semantical models such algebras, temporal frames or

even Haskel modules, since all of these structures are objects of some particular

institution.

Last but not least, refinement. At stage III FOL is used as a common language

to support reasoning and verification on models built on stages I and II. It is,

therefore, expectable to find a way to use this common platform to formally



relate these models. In particular, it would be important to formally assure that

requirements specified on the first stage are not violated on the second one. This

entails the need for a rigorous formalization of the intuitive arrow “?” of figure

1. A natural candidate to do this job, is the classical concept of refinement from

algebraic specifications (e.g. [22]). Throughout this notion, a specification SP
refines a specification SP0 over the same signature, if all the properties satisfied

by SP0 are also satisfied by SP . More generally, when specification signatures

are related by a morphism, a translation of properties is in order wrt to the

signature morphism.

In general, however, this refinement relation is not adequate. For instance, as

suggested on stage II, it is expectable to map a proposition of the state-machine

into an equation on the respective states-as-algebras model. These formulas are

represented in FOL by a predicate and an equation, respectively, which cannot

be related through signature morphisms (which only relate predicates with pred-

icates and equations with equations). Less conventional approaches to refinement

may help to overcome this sort of situations. A possibility we are currently inves-

tigating is to resort to logical interpretations, instead of signature morphisms,

to direct refinement as studied by the authors in [14, 13, 21]. Interpretations are

multi-functions between the specifications formulas which preserve and reflect

logical consequence.

There are others specification frameworks also based on modal versions of

first-order logic. For instance, in [20] it is defined a logic (for hybrid systems)

based on a dynamical version of first-order logic (over R) with nominals. It is

important to note that the semantical paradigm of those approaches is quite

di�erent for the proposed here; namely, as usual, they deal with states as values

of system variables on of given moment of execution, evaluated in an unique

first-order structure. In our work, it corresponds not to a set of values, but to

state-families of first-order structures, modeling the behaviour of all the system

functionalities.
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Appendix – Proofs

We start by fixing some notation: we use � to denote the hybrid signature

((⇤,X),Nom,Prop,⇥) and � to denote ((⇤ , X  ),Nom ,Prop ,⇥ ). Following

the same pattern, M denotes the hybrid model ◆S, state, R⇥, (Ps)s⌦S , (As)s⌦S
and M the ◆S , state , (R 

⇧)⇧⌦⇥, (P  
s)s⌦S⇤ , (A 

s)s⌦S⇤. Moreover, M is used to

denote the hybrid model Mod
H

(�)(M ).

Proofs for the institution definition

Lemma 1. Let �
⌃

// � be an hybrid signatures morphisms and M a � -
model. Let g and g be two assignments for M and Mod

H
(�)(M ) respectively,

such that g(x) = g (�var
Sig (x)), for any x ↵ X. Then,

gs(t) = g s(�term(t)), t ↵ T⇤(X). (6)

Proof. The proof is done by induction on the structures of terms. If t is a variable

x ↵ X, we have that gs(x) = g(x) = g (�var
Sig (x)) = g s(�var

Sig (x) = g s(�term(x)).

If t is of form f(t1, . . . , tn), we have

gs(f(t1, . . . , tn))

⌦ { definition of gs}

fAs(gs(t1), . . . , g
s(tn)))

⌦ { reduct definition & H.I.}

�op
Sig(f)A⇤

s(g s(�term(t1)), . . . , g
 s(�term(tn))))

⌦ { definition of g�}

g (�op
Sig(f)(�term(t1), . . . ,�

term(tn))))

⌦ { definition of ⌦term}

g (�term(f(t1, . . . , tn)))

Theorem 1. Let � = ((⇤,X),Nom,Prop,⇥) and � = ((⇤ , X),Nom ,Prop ,⇥ )
be two H-signatures and � : � ⌥ � a morphism of signatures. For any

 ↵ SenH(�), M = ◆S , state , R⇥⇤ , (P  
s)s⌦S⇤ , (A 

s)s⌦S⇤ ↵ |Mod
H

(� )|, and

s ↵ S,

Mod
H

(�)(M ), g |=s  i� M , g |=s SenH(�)( ).

where, for any x ↵ X, g(x) = g (�var
Sig (x)).

Proof. The proof is done by induction on the structures of sentences. Atomic
formulas:



If  = i for some i ↵ Nom:

Mod
H

(�)(M ), g |=s i

⌦ { since X does not occur in i}

Mod
H

(�)(M ) |=s i

⌦ { definition of |=HI}

state(i) = s

⌦ { by definition of reduct state�(⌦
Nom

(i)) = state(i)}

M |=s �Nom(i)

⌦ { by definition of SenH(⌦)}

M |=s SenH(�)(i)

⌦ { since X̄ does not occur in SenH(⌦)(i)}

M , g |=s SenH(�)(i)

If  = p for some p ↵ Prop:

Mod
H

(�)(M ) |=s p

⌦ { definition of |=HI}

Ps(p) = ✏
⌦ { by definition of reduct P �

s(⌦Prop

(p)) = Ps(p)}

M |=s �Prop(p)

⌦ { by definition of SenH(⌦)}

M |=s SenH(�)(p)



If  = t ⌃ t :

Mod
H

(�)(M ), g |=s t ⌃ t 

⌦ { definition of |=H}

As |= t ⌃ t [g]

⌦ { definition of |=}

gs(t) = gs(t )

⌦ { Lemma 1}

g s(�term(t)) = g s(�term(t ))

⌦ { definition of |=}

A 
s |= �term(t) ⌃ �term(t )[g ]

⌦ { definition of |=H & definition of SenH}

M , g |=s SenH(�)(t ⌃ t )

If  = Q(t1, . . . , tn):

Mod
H

(�)(M ), g |=s Q(t1, . . . , tn)

⌦ { definition of |=H}

As |= Q(t1, . . . , tn)[g]

⌦ { definition of |=}

QAs(gs(t1), . . . , g
s(tn))

⌦ { Lemma 1}

QAs(g s(�term(t1)), . . . , g
 s(�term(tn)))

⌦ { definition of reduct}

�pred
Sig (Q)A⇤

s(g s(�term(t1)), . . . , g
 s(�term(tn)))

⌦ { definition of |=}

A 
s |= �pred

Sig (Q)(�term(t1), . . . ,�
term(tn))[g ]

⌦ { definition of |=H & definition of SenH}

M , g |=s SenH(�)(Q(t1, . . . , tn))

Composed formulas:



If  is of form � ✓ � for some �, � ↵ SenH(�):

Mod
H

(�)(M ), g |=s � ✓ � 

⌦ { definition of |=HEQ}

Mod
H

(�)(M ), g |=s � or Mod
H

(�)(M ), g |=s � 

⌦ { I.H}

M , g |=s SenH(�)(�) or M , g |=s SenH(�)(� )

⌦ { by definition of |=HEQ}

M , g |=s SenH(�)(� ✓ � )

The proofs for connectives {⌘,⌥,¬} are analogous.

If  is of form [⌥] :

Mod
H

(�)(M ), g |=s [⌥] 

⌦ { definition of |=H}

for any (s, s ) ↵ R⇧,Mod
H

(�)(M ), g |=s⇤
 

⌦ { I.H. and reduct definition entail R⇧ = R�
⌃

MS

(⇧)

}

M , g |=s⇤
SenH(�)( ) for any (s, s ) ↵ R 

⌃
MS

(⇧)

⌦ { definition of |=H }

M , g |=s [�MS(⌥)]SenH(�) 

⌦ { definition of |=H}

M , g |=s SenH(�)([⌥] )



If  is of form @i� for some � ↵ SenH(�), i ↵ Nom:

Mod
H

(�)(M ), g |=s @i�

⌦ { definition of |=HI}

Mod
H

(�)(M ), g |=state(i) �

⌦ { I.H.}

M , g |=state(i) SenH(�)(�)

⌦ { since by reduct definition, state(i) = state�(⌦
Nom

(i)) }

M , g |=state⇤(⌃
Nom

(i)) SenH(�)(�)

⌦ { definition of satisfaction for @}

M , g |=s @⌃
Nom

(i)SenH(�)(�)

⌦ { SenH(⌦) definition}

M , g |=s SenH(�)(@i�)

If  is of form �x  :

M , g |=s SenH(�)(�x  )

⌦ { definition of SenH }

M , g |=s ��var
Sig (x) SenH(�)( )

⌦ { definition of |=}

for all m : X  ⌥ A, such that m ⇧⌃var
Sig

(x) g ,M , m |=s SenH(�)( )

⌦ { I.H. }

for all m : X  ⌥ A, such that m ⇧⌃var
Sig

(x) g ,Mod
H

(�)(M), m |=s  

Therefore, we have to proof that this is equivalent to be

for all h : X ⌥ A, such that h ⇧x g, Mod
H

(�)(M ), h |=s  

⌦ { definition of |=}

Mod
H

(�)(M ), g |=s �x  



Then, for implication  , let suppose h : X ⌥ A such that h ⇧x g. Let

consider h : X  ⌥ A such that h (�var
Sig (y)) = h(x) for any y ↵ X.

 { hypothesis & reduct definition}

for any y �= x, h (�(y)) = h(y) = g(y) = g (�var
Sig (y))

⌦ { ⇤ definition}

h ⇧⌃var
Sig

(x) g 

 { hypothesis}

Mod
H

(�)(M ), h |=s  

The proof for the converse implication is analogous.

Proofs for the comorphism definition

Lemma 2. For any g : X ⌥ A, such g(w) = s, t ↵ T⇤(X), (g �X)s(t) =

g(Tw(t)).

Proof. The proof is done by induction on the structures of terms. If t is a variable

x ↵ X, then (g�X)s(x) = g�X (x) = g(x) = g(Tw(x)). If t is of form f(t1, . . . , tn),

we have,

(g�X)s(f(t1, . . . , tn))

⌦ { definition of (g�X)s}

fAs((g�X)s(t1), . . . , (g�X)s(tn))

⌦ { definition of ⇧�(M �)}

f̄M ⇤
(s, (g�X)s(t1), . . . , (g�X)s(tn))

⌦ { I.H & definition of g}

f̄M ⇤
(g(w), g(Tw(t1)), . . . , g(Tw(tn)))

⌦ { definition of g}

g(f̄(w, Tw(t1), . . . , Tw(tn))

⌦ { definition of Tw}

g(Tw(f(t1, . . . , tn))

Theorem 2 Let � ↵ |SIGNH|,  ↵ SENH and M  ↵ Mod
FOL

(⌅(�)). Then,

for ⇧ and ⌃ defined as above, for any s ↵ S and for any assignment g : X̄ ⌥ A
such that where g(w) = s, we have that

⌃�(M  ), g�X |=s
H  i� M  , g |=FOL⌅(�) ⇧w( ). (7)



Proof. The proof is done by induction on the structures of sentences. Let suppose

⌃�(M  ) = ◆S, state : Nom ⌥ S, (R⇧)⇧⌦⇥, (Ps)s⌦S , (As)s⌦S.

sentences of form i, i ↵ Nom:

⌃�(M  ), g�X |=s i

⌦ { definition of |=H}

state(i) = s

⌦ { since g(w) = s and cM⇤
i = s}

g(w) = cM ⇤

i

⌦ { definition of |=FOL}

M  , g |= ci ⌃ w

⌦ { definition of ⌅w}

M  , g |= ⇧w(i)

sentences of form p, p ↵ Prop:

⌃�(M  ), g�X |=s p

⌦ { definition of |=H}

Ps(p) = ✏
⌦ { hypothesis & definition of ⇧�(M �)}

g(w) = s and p̄(s)M ⇤

⌦ { definition of |=FOL}

M  , g |= p̄(w)

⌦ { definition of ⌅w}

M  , g |= ⇧w(p)

sentences of form t ⌃ t :



⌃�(M  ), g�X |=s t ⌃ t 

⌦ { definition of |=H}

As |= t ⌃ t [g�X ]

⌦ { definition of |=H}

(g�X)s(t) = (g�X)s(t )

⌦ { Lemma 2}

g(Tw(t)) = g(Tw(t ))

⌦ { definition of |=FOL}

M  , g |= Tw(t) ⌃ Tw(t )

⌦ { definition of ⌅w}

M  , g |= ⇧w(t ⌃ t )

sentences of form Q(tq, . . . , qn):

⌃�(M  ), g�X |=s Q(t1, . . . , tn)

⌦ { definition of |=H}

As |= Q(t1, . . . , tn)[g�X ]

⌦ { definition of |=H}

QAs((g�X)s(t1), . . . , (g�X)s(tn))

⌦ { Lemma 2}

QAs(g (Tw(t1)), . . . , g
 (Tw(tn))

⌦ { definition of Q̄ & since g(w) = s}

Q̄M ⇤
(g (w), (g (Tw(t1)), . . . , (g

 (Tw(tn)))

⌦ { definition of |=FOL}

M  , g |=FOL Q̄(w, Tw(t1), . . . , Tw(tn))

⌦ { definition of ⌅w}

M  , g |= ⇧w(Q(t1, . . . , tn))

sentences of form �x⌦:



M  , g |=FOL ⇧w(�x ⌦)

⌦ { definition of |=H}

M  , g |=FOL �x ⇧w(⌦)

⌦ { definition of |=H}

for any m ⇧x g, M  , m |=FOL ⇧w(⌦)

⌦ { H.I.}

for any m ⇧x g, ⌃�(M  ), m�X |=s
H ⌦

Let consider h : X ⌥ A. Let define ḡ : X ⌥ A such that ḡ �X= h and

ḡ(w) = g(w).

 { since ḡ ⇤x g and ḡ�X= h}

⌃�(M  ), h |=s
H ⌦

 { arbitrarily of h & definition of |=H}

⌃�(M  ) |=s
H �x ⌦

The proof for the converse implication is analogous.

sentences of form [⌥] :

⌃�(M  ), g�X |=s
H [⌥] 

⌦ { definition of |=H}

for any s , (s, s ) ↵ R⇧ implies ⌃�(M  ), g�X |=s⇤

H  (�)

Hence, we have to poof that this is equivalent to be that

for any h ⇧v g, (h(w), h(v)) ↵ R⇧ implies M  , h |=FOL ⇧v( )

⌦ { definition of |=FOL}

for any h ⇧v g, M  , h |=FOL (w, v) ↵ R⇧ ⌥ ⇧v( )

⌦ { definition of |=FOL}

M  , g |=FOL �v [(w, v) ↵ R⇧ ⌥ ⇧v( )]

⌦ { definition of ⌅w}

M  , g |=FOL ⇧w([⌥] )



For the implication ’ ’, let suppose

(h(w), h(v)) ↵ R⇧

⌦ { since, h ⇤v g, h(w) = g(w) = s & (↵)}

M  , g�X |=h(v)  

⌦ { h�X= g�X}

M  , h�X |=h(v)  

⌦ { H.I.}

M  , h |=FOL ⇧v( )

For the implication ’�’, let consider a s such (s, s ) ↵ R⇧. Consider also a

h : X̄ ⌥ A such that h ⇧v g and such that h(v) = s . Then

M  , h |=FOL ⇧v( )

⌦ { I. H.}

⌃�(M  ), h�X |=FOL ⇧v( )

⌦ { since h ⇤v g, we have h�X= g�X}

⌃�(M  ), g�X |=FOL ⇧v( )

sentences of form @i :

⌃�(M  ), g�X |=s
H @i 

⌦ { definition of |=H}

⌃�(M  ), g�X |=state(i)
H  

Let h : X̄ ⌥ A such that g(x) = h(x) for any x �= w and h(w) = state(i).
Then, since g�X= h�X , we have

⌃�(M  ), h�X |=state(i)
H  

⌦ { I.H.}

M  , h |=FOL ⇧w( )

⌦ { since h(w) = state(i) & cM⇤
i = state(i)}

M  , h |=FOL ⇧ci( )

⌦ { since w does not occur free in ⌅ci(�)}

M  , g |=FOL ⇧ci( )

⌦ { definition of ⌅}

M  , g |=FOL ⇧w(@i )



sentences of form  ⌘   :

⌃�(M  ), g�X |=s
H  ⌘   

⌦ { definition of |=H}

⌃�(M  ), g�X |=s
H  and ⌃�(M  ), g�X |=s

H   

⌦ { I.H.}

M  , g |=FOL ⇧w( ) and M  , g |=FOL ⇧w(  )

⌦ { definition |=FOL}

M  , g |=FOL ⇧w( ) ⌘ ⇧w(  )

⌦ { definition ⌅w}

M  , g |=FOL ⇧w( ⌘   )

The proofs for connectives {⌘,⌥,¬} are analogous.



standard
states-

machine
M1

M2
states-as-
algebras
machine

Translation

Hibrid Logics First-order
Logic

refinement/minimization
using

automata 
theory

aplication of 
provers and 

model cheking 
for HPL

interface definition

specific
ation of lo

cal/ g
lobal 

propertie
s fo

r th
e modes

aplication of
 FOL 

provers

algebraic 
specification 

techiques

??

HPL

H

� FOLComorphism

Methodology

Foundations

Fig. 1. The approach.

2 A specification methodology

As stated above, the paper proposes a methodology to the specification and anal-

ysis of reactive systems which is intended to be e�ectively used in an industrial

context. The methodology has the following stages, which will be detailed later

in the paper:

I (I.1) Express the requirements in hybrid propositinal logic (HPL), identifying states
and transitions to build a first state-machine; (I.2) Specify local properties as
propositions; At this stage, traditional technics of state machine analysis/refine-
ment may be applied, and available reasoning tools for HPL used (see Section
2.1).

II (II.1)Define the actual system’s interface through the set of (external) services of-
fered. Technically, this is supported by the definition of a (multi-sorted) first-order
signature. (II.2) Express, whenever possible, the attributes of the first machine as
functional properties over this signature.

III Translate both specifications into FOL, providing a common ground for testing
and verification.

In the sequel the methodology is illustrated in a number of specification
fragments of an automatic cruise control (ACC) system. The example, small but
self-contained, is taken from [9], where the overall requirements are summarized
as follows:

“The mode class CruiseControl contains four modes, O�, Inactive, Cruise, and
Override. At any given time, the system must be in one of these modes. Turning the



ignition on causes the system to leave O� mode and enter Inactive mode, while turning
the cruise control level to const when the brake is o� and the engine running causes
the system to enter Cruise mode. (...) Once cruise control has been invoked, the system
uses the automobile’s actual speed to determine whether to set the throttle to accelerate
or decelerate the automobile, or to maintain the current speed (...)To override cruise
control (i.e., enter Override), the driver turns the lever to o� or applies the brake”.

2.1 Hybrid specifications (Stage I)

The requirements for the cruise control system example can be captured by

the state machine depicted in Figure 2. This section introduces its specification

in propositional hybrid logic (HPL). Such a presentation has the advantage of

being compact, unambiguous and closer to the input format of typical verification

engines.

off

inactive

cruise

overrride

IgnOn

LeverCons �
EnRunning �

¬Brake

Brake

¬EngRunning

�LeverOff

¬IgnOn

¬IgnOn

¬IgnOn

¬IgnOn

LeverCons �
EnRunning �

¬Brake

LeverOff

Fig. 2. State-machine of the system

The set of HPL formulas is defined by the following grammar:

⌦, ::= p | i | ¬⌦|[⌃]⌦ |@i⌦ |⌦ ↵  |⌦ �  |⌦⌃  (1)

where ⌥ ranges over a set ⇥ of modal operators. Models of this logic are state-

machines with an additional function state : Nom ⌥ S which assigns to each

nominal a state. This allows explicit reference to particular states in a specifi-

cation. Thus, models are tuples P = ◆S, state, (R⇧)⇧⌦⇥, (Ps)s⌦S where S is a

set of states, R⇧ ⇥ S � S is the accessibility relation associated to the modality

⌥ and Ps : Prop ⌥ {✏,⇣} is the function that assigns the propositions on the

state s ↵ S. The satisfaction relation is defined as in standard modal logic (e.g.

P |=s p i� Ps(p) = ✏; P |=s [⌥]� i� P |=s⇤ � for any s such that (s, s ) ↵ R⇧)

adding the following cases related to nominals:
– P |=s @i⌦ i� P |=state(i) ⌦;
– P |=s i i� state(i) = s.

Moreover, we abbreviate formulas ¬[⌥]¬� and ◆⌥�⌘ [⌥]� to ◆⌥ and ◆⌥⇤�,

respectively.

For the running example, a modality {next} is introduced to denote the state-

machine accessibility relation. Nominals in {off, inactive, override, cruise} cor-

respond to the operation modes mentioned in the requirements. Finally, a set of

propositions is considered — one for each label in Figure 2. With such signature,

transitions are specified as follows:



• (T
1

)@off ( IgnOn ⌥ ⇣next⌘⇥inactive )
• (T

2

)¬ IgnOn ⌥ ⇣next⌘⇥o�
• (T

3

)@inactive(LeverCons � IgnOn � ¬ Brake ⌥ ⇣next⌘⇥cruise)
• (T

4

)@cruise(¬ EngRunning ✏LeverO� ⌥ ⇣next⌘⇥inactive)
• (T

5

)@cruise( Brake ⌥ ⇣next⌘⇥override)
• (T

6

)@override(LeverCons � IgnOn) � EngRunning � ¬ Brake ⌥ ⇣next⌘⇥cruise)

Local properties can also be expressed resorting to the satisfaction operator

@i, for each nominal i, to reference the corresponding state. For instance, the

requirement that the engine controls speed decelerating the car if the speed is
high and maintaining it when it is considered adequate is modelled by
• (L1

cruise)@cruise( IgnOn � EngRunning � HighSpeed ⌥ decel)
• (L2

cruise)@cruise(IgnOn � EngRunning � AdmissibleSpeed⌥ mantain)

Finally, admissibility properties, concerning propositions, are also captured. For

instance, the fact that the lever cannot be switched in more than one position at
each time, and similarly for the acceleration and speed modes, is expressed as
• (A

1

)LeverO� � ¬ LeverCons
• . . .
• (A

4

)HighSpeed ⌥ ¬ CruiseSpeed � ¬ LowSpeed

2.2 States-as-algebras models (Stage II)

The logic. The second stage in the methodology equips each state of the un-

derlying state-machine with an algebra, more precisely a first-order structure,

to model its local functionality. Therefore, hybrid structures are enriched with

a family of first-order structures indexed by the set of states, i.e., they become

structures

M = ◆S, state, (R⇧)⇧⌦⇥, (Ps)s⌦S , (As)s⌦S

where first-order structures in the family (As)s⌦S are defined over the same

signature and universe, say A. Each As models the system’s behaviour at state

s ↵ S.

Definition 1. Let ⇤ a first-order signature and X a set of variables for it,
Nom, Prop and ⇥ three disjoint sets of nominals, propositions and modalities
respectively. The set of hybrid equational formulas is defined by the following
grammar:

�,↵ ::= p | i| t ⌃ t |P (t̄) | ¬�|� � ↵| [⌥]� |@i� | �x� (2)

where � ↵ {✓,⌘, }, p is a proposition, i is a nominal, t ⌃ t is a ⇤-equation
over X, x ↵ X, P is a ⇤-predicate of type s1, . . . , sn where t̄ := t1, . . . , tn and
ti ↵ (T⇤(X))si .

An assignment for M = ◆S, state, (R⇧)⇧⌦⇥, (Ps)s⌦S , (As)s⌦S consists of a

(sorted-set) function g : X ⌥ A, where A is the carrier set of the first-order

structures of M and X is a set of variables. We write g ⇧x g if for any variable

y �= x, g(y) = g (y). Note that the assignment g : X ⌥ A induces an S-family

of assignments gs : T⇤(X) ⌥ A defined, for any x ↵ X, by gs(x) = g(x) and,

for each term f(t1, . . . , tn), by gs(f(t1, . . . , tn)) = fAs(gs(t1), . . . , gs(tn)).

Definition 2. Let M = ◆S, state, (R⇧)⇧⌦⇥, (Ps)s⌦S , (As)s⌦S be an hybrid struc-
ture. For any assignment g : X ⌥ A, the satisfaction relation is recursively
defined as follows:



– M, g |=s i if state(i) = s;
– M, g |=s p if Ps(p) = ⌦;
– M, g |=s t ⌅ t� if As |= t ⌅ t�[g] i.e., if gs(t) = gs(t�);
– M, g |=s Q(t

1

, . . . , tn) if As |= Q(t
1

, . . . , tn)[g], i.e., if
QAs(gs(t

1

), . . . , gs(tn));
– M, g |=s � � �� if M |=s � or M |=s ��; and similarly for the remaining boolean

connectives;
– M, g |=s  x� if, for any assignment g� : X ⇧ A, if g ⇤x g�, one has M, g� |=s �;

– M, g |=s [⌃]� if, for any s� ⌥ S such that (s, s�) ⌥ R⇧, one has M |=s⇤ �.

We write M |=s  when for any assignment g : X ⌥ A, M, g |=s  and
M, g |=  when for any s ↵ S, M, g |=s  .

In order to model the system’s functionality, as provided by the car arti-

fact, we resort to a classical algebraic specification. This entails the need for

introducing data types able to support the envisaged notions of time, speed and

acceleration. In the running example integer numbers, with the usual operations

and predicates {+,⇤,⌅, <,>}, can do the job.

spec TimeSort =Int with sort Int ↵⌃ time, ops 0 ↵⌃ init, suc ↵⌃ after end

spec SpeedSort =Int with sort Int ↵⌃ speed end

spec AcellSort =Int with sort Int ↵⌃ accel end

Thus, the operation Pedal models the accelerations applied by the driver at

each moment. On the other hand, Automatic captures accelerations applied on

the engine by the ACC, and CurrentSpeed records the current speed. Finally,

constant MaxCruiseSpeed represents the maximum speed allowed on the ACC

mode:

spec ACCSign =
TimeSort and SpeedSort and AcellSort

then ops Pedal : time ⌃ accel;
Automatic : time ⌃ accel;
Speed : speed � accel ⌃ speed;
CurrentSpeed : time ⌃ speed;
MaxCruiseSpeed : speed

There are properties that globally hold, in all the configurations of the system.

For instance,

� s : speed; a : accel; t : time
• (G

1

)Speed(s, a) ⇧ 0
• (G

2

)CurrentSpeed(t) = 0 � Pedal(t) ⇧ 0 ⌥ CurrentSpeed(after(t)) ⇧ 0
• (G

3

)Pedal(t) ⇧ 0 � CurrentSpeed(t) <CurrentSpeed(after(t))
• (G

4

)Speed(s, a) = s � a = 0
• (G

5

)CurrentSpeed(after(t)) =Speed(CurrentSpeed(t),Pedal(t))

Local properties. Di�erently from the properties above, local requirements

hold only at particular configurations. Let us explore some of them. First, in state

off , it is required that speed and acceleration are null and no other operations

in the interface react:

� t : time; s : speed; a : accel
• (L1

off ) @offCurrentSpeed(t) = 0
• (L2

off ) @offSpeed(s, a) = 0



In state inactive, the speed and acceleration depend on the accelerations auto-

matically introduced in the system, i.e,
� s : speed; a : accel
• (L1

inactive) @inactiveSpeed(s, a) = s + a

� t: time; s : speed; a : accel

• (L1

⇤
cruise) @cruise[CurrentSpeed(t) > MaxCruiseSpeed ⌥Automatic(after(t)) < 0]

• (L2

⇤
cruise) @cruise[CurrentSpeed(t) ⌅ MaxCruiseSpeed � Automatic(after(t)) = 0]

• (L3

cruise)@cruiseSpeed(s, a) = s + a
• (L4

cruise)@cruisePedal(t) ⇧ 0⌥ Pedal(t) = Automatic(t)

An interesting feature in this example is that properties local to states

override and off do coincide. The system’s behaviour on both states only di�ers

in what concerns the definition of the allowed transitions. The latter are dealt

as follows.

Transitions specification. To specify state transitions we simply resort to

the state-machine built in Stage I, through axioms (T1), . . . , (Tn) from Section

2.1. However, some propositions may now be expressed by means of algebraic

properties of local states. For instance, we may replace (T4) by
� t: time;
• (T

4

⇤ )@cruise[CurrentSpeed(t) = 0⌥ ⇣next⌘⇥(inactive � CurrentSpeed(after(t)) = 0)]
• (T

4

⇤⇤ )@cruise[LeverOff⌥ ⇣next⌘⇥inactive].

Furthermore, the fact that when ACC is activated by transition T6, the speed

should to be maintained, is captured by
� t: time; � s: speed
• (T

6

⇤ )@override[(LeverCons� CurrentSpeed(t) = s � s ⇧ 0) ⌥
⇣next⌘⇥(cruise�CurrentSpeed(after(t)) = s)].

3 Foundations

3.1 Going “institutional”

Dealing with the sort of specifications produced in Stages I and II above, en-

tails the need for a uniform specification framework in which both equational

properties of data types, modal properties of transitions and local properties

of states can be expressed and verified. The canonical way to do it is through

the notion of an institution [7, 4], as an abstract representation of a logical sys-

tem, encompassing syntax, semantics and satisfaction. Let us recall the formal

definition:

Definition 3 (Institution). An institution
�
SignI ,SenI ,Mod

I , (|=I
⇤)⇤⌦|SignI |

�

consists of

– a category SignI whose objects are called signatures.
– a functor SenI : SignI ⌥ Set giving for each signature a set whose elements

are called sentences over that signature.
– a functor Mod

I
: (SignI)op ⌥ CAT, giving for each signature ⇤ a cate-

gory whose objects are ⇤-models, and whose arrows the corresponding ⇤-

morphisms, and
– a satisfaction relation |=I

⇤⇥ |Mod
I
(⇤)|� SenI(⇤) for each ⇤ ↵ |SignI |.



such that for each morphism � : ⇤ ⌥ ⇤ ↵ SignI , the satisfaction condition

M  |=I
⇤⇤ SenI(�)( ) iff Mod

I
(�)(M  ) |=I

⇤  . (3)

A well known example of institution is the institution of first order logic, de-

noted in the sequel by FOL (see [4] for a detailed account). Institutions provide

a suitable setting to do abstract specification theory [23], structuring any kind

of specifications through combinators which are institution-independent, i.e. not

tied to a specific logic system. In Casl [17], for example, such combinators al-

low the construction of basic specifications, by defining a signature and a set

of sentences, the union of specifications, and the derivation and translation of

specifications along signature morphisms. The use of this set of (abstract) com-

binators, makes possible to approach, in a uniform way and trough the same

theory, systems expressed in completely di�erent logics.

Therefore, our first aim concerning foundations is to prove that the proposed

specification formalism may be framed on this big picture of institution theory.

Let start by collecting the necessary ingredients to define a suitable institution

H.

Category SIGNH Signatures are tuples ◆(⇤,X),Nom,Prop,⇥ where ⇤ is a first-order logic

signature, X is a set of first-order variables and Nom, Prop and ⇥ are (dis-

joint) sets of symbols of nominals, propositions and modalities. Signature

morphisms

◆(⇤,X),Nom,Prop,⇥ ⌃
// ◆(⇤ , X  ),Nom ,Prop ,⇥ 

are tuples � = (�Sig,�Nom,�Prop,�MS) where �Nom : Nom⌥ Nom , �Prop :

Prop⌥ Prop and �MS : ⇥⌥ ⇥ are functions and �Sig : (⇤,X)⌥ (⇤ , X  )

is a morphism in FOL, i.e., a tuple �Sig = (�sort
Sig ,�op

Sig,�
pred
Sig ,�var

Sig )

• for any operation f ↵ ⇤s
1

...sn,s, �
op
Sig(f) ↵ ⇤ 

⌃sort
Sig

(s
1

)...⌃sort
Sig

(sn),⌃sort
Sig

(s);

• for any predicate Q ↵ ⇤s
1

...sn , �pred
Sig (Q) ↵ ⇤ 

⌃sort
Sig

(s
1

)...⌃sort
Sig

(sn);

• for any variable x ↵ Xs, �var
Sig (x) ↵ X  

⌃sort
Sig

(s).

Functor SENH This functor maps a signature � = ◆(⇤,X),Nom,Prop,⇥ into the set of hy-

brid sentences, i.e., on the subset of bonded-variables formulas of Definition

1, and a morphism

◆(⇤,X),Nom,Prop,⇥ ⌃
// ◆(⇤ , X  ),Nom ,Prop ,⇥ 

into the sentence translation

SenH(◆(⇤,X),Nom,Prop,⇥)
SenH(⌃)

// SenH(◆(⇤ , X  ),Nom ,Prop ,⇥ )

recursively defined as follows

• SenH(⌦)(�) = SenFOL(⌦
Sig

)(�) for any � ⌥ SenFOL(⇥);
• SenH(⌦)(i) = ⌦

Nom

(i), i ⌥ Nom;
• SenH(⌦)(p) = ⌦

Prop

(p), p ⌥ Prop;



• SenH(⌦)(t ⌅ t�) = ⌦term(t) ⌅ ⌦term(t), where ⌦term : T⇤(X) ⇧ T⇤⇤(X �) is a
function recursively defined as follows

∗ ⌦term(x) = ⌦var
Sig

(x) for x ⌥ X;
∗ ⌦term(f(t

1

, . . . , tn)) = ⌦op
Sig

(f)(⌦term(t
1

), . . . ,⌦term(tn)), for any f ⌥ ⇥s
1

...sn,s,
ti ⌥ (T⇤(X))si .

• SenH(⌦)(Q(t
1

, . . . , tn)) = ⌦pred
Sig

(Q)(⌦term(t
1

), . . . ,⌦term(tn));

• SenH(⌦)(¬�) = ¬SenH(⌦)(�);
• SenH(⌦)(�⇥ ��) = SenH(⌦)(�)⇥ SenH(⌦)(��), ⇥ ⌥ {�,↵,⇧};
• SenH(⌦)(@i�) = @⌃

Nom

(i)SenH(⌦)(�);
• SenH(⌦)([⌃]�) = [⌦

MS

(⌃)]SenH(⌦)(�);
• SenH(⌦)( x�) =  ⌦var

Sig

(x)SenH(⌦)(�).

Functor Mod
H

This functor maps each signature ◆(⇤,X),Nom,Prop,⇥ to a category whose

models are the hybrid structures M = ◆S, state, (R⇧)⇧⌦⇥, (Ps)s⌦S , (As)s⌦S
defined above. Morphisms between models ◆S, state, (R⇧)⇧⌦⇥, (Ps)s⌦S , (As)s⌦S
and ◆S , state , (R 

⇧)⇧⌦⇥, (P  
s)s⌦S⇤ , (A 

s)s⌦S⇤ consists of pairs (hst, hmod) such

that

• hmod is an S-family
`
hmods : As ⇧ A�

hst(s)

´
s⇥S

of first-order structures mor-
phisms;

• Ps(p) = P �
hst(s)

(⌦
Prop

(p));
• hst : S ⇧ S� is a function such that

∗ (s, s�) ⌥ R⇧ implies that (hst(s), hst(s
�)) ⌥ R�

⇧,
∗ state�(n) = hst(state(n)),

Functor Mod
H

maps each morphism

◆(⇤,X),Nom,Prop,⇥ ⌃
// ◆(⇤ , X  ),Nom ,Prop ,⇥ 

into the reduct functor

Mod
H

(◆(⇤,X),Nom,Prop,⇥) Mod
H

(◆(⇤ , X  ),Nom ,Prop ,⇥ )
ModH(⌃)
oo

that maps each ◆(⇤ , X  ),Nom ,Prop ,⇥ -model

◆S , state , (R 
⇧)⇧⌦⇥⇤ , (P  

s)s⌦S⇤ , (A 
s)s⌦S⇤ into the ◆⇤,Nom,Prop,⇥-model

◆S, state, (R⇧)⇧⌦⇥, (Ps)s⌦S , (As)s⌦S such that

• S = S�;
• state(n) = state�(⌦

Nom

(n)) for any n ⌥ Nom;
• R⇧ = R�

⌃
MS

(⇧)

for any ⌃ ⌥ �;

• As = ModFOL(⌦
Sig

)(A�
s) for any s ⌥ S, where ModFOL(⌦

Sig

), the reduct
notion on the institution of first-order logic, consists of the classical reduct
notion on first-order structures;

• Ps(p) = P �
s(⌦Prop

(p)) for any p ⌥ Prop

Satisfaction |=H Satisfaction is the restriction of Definition 2 to sentences.

Theorem 1. Let � = ((⇤, X),Nom,Prop,⇥) and � two H-signatures and
� : �⌥ � a morphism of signatures. For any  ↵ SenH(�),
M = ◆S , state , R⇥⇤ , (P  

s)s⌦S⇤ , (A 
s)s⌦S⇤ ↵ |Mod

H
(� )|, and s ↵ S,

Mod
H

(�)(M ), g |=s  i� M , g |=s SenH(�)( ).



where, for any x ↵ X, g(x) = g (�var
Sig (x)).

The satisfaction condition for H follows from a well known fact, which states

that satisfaction of a formula only depends on assignment of free variables.

Actually,

Corollary 1 (Satisfaction condition). Let � = ((⇤,X),Nom,Prop,⇥)

and � be two H-signatures and � : �⌥ � a morphism of signatures. For
any  ↵ SenH(�), M = ◆S , state , R⇥⇤ , (P  

s)s⌦S⇤ , (A 
s)s⌦S⇤ ↵ |Mod

H
(� )|,

Mod
H

(�)(M ) |=  i� M |= SenH(�)( ).

Therefore,

Corollary 2. (SignH,SenH,Mod
H, |=H) is an institution.

Finally, observe that models, language and satisfaction presented on Sec-

tion 2.1 also constitute an institution. This institution is similarly defined, by

forgetting the first-order signature from hybrid signatures, the state-family of

first-order structures from models and the equations and quantifications from

sentences. By obvious reasons, we call this the institution of propositional hybrid
logic and write HPL.

3.2 Translating to FOL (Stage III)

Stage III in the envisaged methodology was not discussed in section 2. Actually,

from a methodological point of view it is rather straightforward: a translation

of specifications to a well-known first order setting. Technically, however, this

can be stated in a very precise way as a comorphism. Comorphims play, at the

institutional level, the role of logical translations, lifting specifications expressed

within di�erent institutions to a common level [16]. Therefore, any tools, namely

proof assistants, available at the target institution, can be borrowed by the source

one. Formaly,

Definition 4 (Comorphism). Given institutions I = (Sign,Sen,Mod, |=) and
I  = (Sign ,Sen ,Mod

 , |= ) a comorphism (⌅,⇧,⌃) : I ⌥ I  consists of

1. a functor ⌅ : Sign⌥ Sign ,
2. a natural transformation ⇧ : Sen ⌅; Sen , and
3. a natural transformation ⌃ : ⌅op; Mod

  Mod

such that the following satisfaction condition holds

M  |= 
⌅(⇤) ⇧⇤( ) i� ⌃⇤(M  ) |=⇤  

for each signature ⇤ ↵ |Sign|, ⌅(⇤)-model M  , and ⇤-sentence  .



In this sub-section, we establish a comorphism from H into FOL. The trans-

lation procedure is based on the addition of a special sort to represent states.

Hence, in order to ‘collapse’ every local state algebra in a unique structure, the

signature of all operations and predicates is enriched with an argument of this

sort. Moreover, nominals are regarded as constants over ST, modalities as usual

first-order relations and propositions as unary predicates over ST. For that we

have a functor

⇤ : SignH �⇧ SignFOL

�(⇥, X), Nom, Prop,�� ��⇧
`
�S⇤ + {ST}, F ⇤ + Nom, P ⇤ + Prop + ��, X̄

´
,

where ⇤ = (S⇤ , F⇤ , P⇤) and

– F⇤ =

(
(F⇤)STw⌃s = (F⇤)w⌃s, for any s ↵ S⇤ , w ↵ S⇥

⇤

�, for the other cases
;

– P⇤ =

(
(P⇤)STw = (P⇤)w, for any w ↵ S⇥

⇤ ;

�, for the other cases

– Nom = {ci : ⌥ ST | i ↵ Nom};
– Prop = {p̄ : ST | p ↵ Prop};
– ⇥ = {⌥ : STn | ⌥ ↵ ⇥n}.

– X =

(
Xsort = Xsort, for any sort ↵ S⇤ ;

XST = {w, v}

Natural transformation ⌃ : ⌅op; Mod
FOL  Mod

H
maps each first-order struc-

ture (M ;MF̄ +MNom;MP̄ +MProp +M⇥̄) ↵ Mod(◆S⇤ + {ST}, F⇤ +Nom, P⇤ +

Prop + ⇥) into

�S, state, R⇥, (Ps)s⇥S , (As)s⇥S� �M ; M
¯F + M

Nom

; M
¯P + M

Prop

+ M
¯⇥��⌅⌅F,Nom,Prop,�⇧

oo ,

where for any i ↵ Nom, state(i) = cM
i , for any ⌥ ↵ ⇥, R⇧ = RM

⇧ . Moreover,

As, s ↵ S is a first-order structure whose carrier set is AS⇥ ; functions f ↵
F⇤

s
1

...sn,s and predicates Q ↵ P⇤
s
1

,...,sn
are defined for each ui ↵ U , i ⇤ n, by

fAs(u1, . . . , un) = f̄M (s, u1, . . . , un) and QAs(u1, . . . , un) = P̄M (s, u1, . . . , un)

respectively. The family (Ps)s⌦S , is defined, for each s as Ps(p) = ✏ i� p̄M (s).
Natural transformation ⇧ : SenH  ⌅; SenFOL is defined for each (F,Nom,⇥)-

sentence by ⇧( ) = (�w)⇧w( ), where w is a variable of ST and ⇧w is recursively

defined as follows:

⌅w(t ⌅ t�) = Tw(t) ⌅ Tw(t�) t, t� ⌥ (T⇤(x))s, s ⌥ S⇤

⌅w(Q(t
1

, . . . , tn)) = Q̄(w, Tw(t
1

), . . . , Tw(tn)) Q ⌥ P ⇤
s
1

,...,sn , ti ⌥ (T⇤(X))si

⌅w(i) = ci ⌅ w, i ⌥ Nom
⌅w(p) = p̄(w), p ⌥ Prop

⌅w(@i�) = ⌅ci(�),
⌅w([⌃]�) = ( v)[(w, v) ⌥ R⇧ ⇧ ⌅v(�)], ⌃ ⌥ �
⌅w(¬�) = ¬⌅w(�)

⌅w(�⇥ ��) = ⌅w(�)⇥ ⌅w(��), ⇥ ⌥ {�,↵,⇧}
⌅w( x�) =  x ⌅w(�) x ⌥ X



where Tw : T⇤(X) ⌥ T⇤̄(X), for ⇤ = (S⇤ , F⇤ , P⇤), defined for each variable

x ↵ X, Tw(x) = x and for each f(t1, . . . , tn) ↵ T⇤(X) by Tw(f(t1, . . . , tn)) =

f̄(w, Tw(t1), . . . , Tw(tn)).

Theorem 2. Let � ↵ |SIGNH|,  ↵ SENH and M  ↵ Mod
FOL

(⌅(�)). Then,
for ⇧ and ⌃ defined as above, for any s ↵ S and any assignment g : X̄ ⌥ A such
that whenever g(w) = s, we have that

⌃�(M  ), g�X |=s
H  i� M  , g |=FOL

⌅(�) ⇧w( ). (4)

As direct consequence we have the general satisfaction condition for comor-

phisms:

Corollary 3 (Comorphism satisfaction condition). Let � ↵ |SIGNH|,  ↵
SENH and M  ↵ Mod

FOL
(⌅(�)). Then, for ⇧ and ⌃ defined as above we have

that,
⌃�(M  ) |=H

�  iff M  |=FOL
⌅(�) ⇧�( ). (5)

It is straitforward to see that, we may define a comorphism from HPL into FOL
from the presented one. This is achieved by forgetting the first-order components

of the signatures and models and by restricting ⇧ to the hybrid propositional

formulas.

Recalling our running example, we end up with the signature
ops

Speed� : st� � speed � accel ⌃ speed; Pedal� : st� � time ⌃ accel;. . .
pred

next : st� � st�; IgnOn� : st�; . . .

Note that, now, global properties are universally quantified, and local proper-

ties take as state argument the respective nominal. For instance, global properties

(G1) and (G2) are translated into
� s : speed; w : st�; a : accel;t : time
• (G

1

� ) ⇧�(w ,Speed* (w, s, a), 0�(w))
• (G

2

� ) CurrentSpeed�(w,t) = 0�(w) � ⇧�(w, Pedal* (w,t), 0�(w)).

and local properties (L1
off ) and (L4

cruise), into

� t : time

• (L1

�
off )CurrentSpeed* (off ,t) = 0�(off)

• (L4

�
cruise) ⇧�(cruise,Pedal* (cruise,t),0�(cruise))⌥Pedal(cruise,t) = Automatic* (cruise,t).

For instance, transition (T1) is expressed by
•(T

1�) IgnOn(off)⌥
[(�w : st�) (off, w) ⌦ next ⌥ inactive = w � (�w⇤ : st�) (off, w⇤) ⌦ next ⌥ inactive = w⇤],

i.e.,
•IgnOn(off)⌥(off, inactive) ⌦ next.

4 Tool support

A central ingredient for the successful integration of a formal method in the

industrial practice is the existence of e�ective tool support.

Certainly hybrid specifications produces in Stage I of our methodology can be

anchored on recent implementations of logical calculus for HPL (see e.g. HTab



[11], HyLoTab [24] and Spartacus [8]). Moreover, model checking for HPL

models is also an active research issue (e.g. [12, 10]).

Our focus is, however, a di�erent, somehow more standard, one: hybrid spec-

ifications are translated to FOL through a suitable comorphism. This solution

provides a uniform first order logical framework for analysis and verification sup-

porting the whole methodology. Moreover, to the best of our knowledge, richer

versions of hybrid logic, as required at Stage II, lack e�ective tool support, which

makes our approach by translation the only option available. Beyond the concep-

tual support of institutions theory and the structured specification methodology

o�ered by CASL, we have e�ective computational tools, to support our sort of

specification. On this perspective HETS-heterogeneous tools set [19] deserves a

special attention.

Using a metaphor of [18], HETS may be seen as a “motherboard” where

di�erent “expansion cards” can be plugged. These pieces are individual logics

(with their particular analyzers and proof tools) as well as logic translations.

To make them compatible, logics have to be formalized as institutions and, the

corresponding translations, as comorphisms. Therefore, the integration of the

hybrid specifications on the HETS framework is legitimate, since all formal re-

quirements (e.g., that institutions exist, that a comorphism can be defined, etc.)

are provided in the present work. HETS already integrates parsers, static ana-

lyzers and provers for a wide set of individual logics, and manages heterogeneous

proofs resorting to the so-called graphs of logics, i.e., graphs whose nodes are

logics and, whose edges, are comorphisms between them.

Furthermore, and directly relevant to our methodology, HETS provides a

rich support for FOL, and consequently, for H and HPL. For instance, provers

SoftFOL, Spass, MathServe Broker, among others, are already “pluged”

into HETS [18], and therefore, all of them provide e�ective to our specification

methodology (see Figure 3). Moreover, we are also able to take advantage of

a number of “borrowed” provers from other institutions through comorphisms

with source in FOL.

An open issue at this level concerns verification. So far model checking of hy-

brid structures is restricted to propositional hybrid logic [6, 12]. The combination

of traditional algebraic specification tools, like first-order provers and rewriting

engines (e.g. CafeObj [5]), together with provers and model checkers for hybrid

logics (e.g. [1, 6]) may broaden the scope of application.

5 Conclusions

The paper introduced a rigorous methodology for requirements specification of

reactive systems, flexible enough to capture the existence of di�erent opera-

tional modes at each stage of evolution. Variants of hybrid logic provided the

right conceptual framework to develop such specifications. At a later stage, such

specifications are translated into first-order logic to bring into scene suitable tool

support. The paper’s main contribution was to provide rigorous foundations for



Fig. 3. HETS session

the method, framing specification logics as institutions and the translation pro-

cess as a comorphism between them.

A lot of work remains to be done. From an experimental point of view,

we are conducting case studies with di�erent size and complexity to assess the

methodology.

Another line of research is concerned with establishing a precise comparison

with approaches to specification with a similar purpose. For instance, many (vari-

ations) of state machines may be represented as hybrid models. Moreover, some

structured state-machines, such as ASM (Abstract State Machines) [3] can also

be represented as our states-as-algebras models. An interesting aspect to explore,

is whether the institutions constructed here may provide an uniform platform

to reason, in a property-oriented perspective, about these model-oriented spec-

ifications. Moreover, recent theoretical developments from the authors justifies

to look to the presented methodology in a more broad sense: it proofs in [15]

that the hybridization idea presented above can be extended to arbitrary institu-

tions. Trough this result it would be worth to consider, on place of the first-order

structures, other kind of semantical models such algebras, temporal frames or

even Haskel modules, since all of these structures are objects of some particular

institution.

Last but not least, refinement. At stage III FOL is used as a common language

to support reasoning and verification on models built on stages I and II. It is,

therefore, expectable to find a way to use this common platform to formally



relate these models. In particular, it would be important to formally assure that

requirements specified on the first stage are not violated on the second one. This

entails the need for a rigorous formalization of the intuitive arrow “?” of figure

1. A natural candidate to do this job, is the classical concept of refinement from

algebraic specifications (e.g. [22]). Throughout this notion, a specification SP
refines a specification SP0 over the same signature, if all the properties satisfied

by SP0 are also satisfied by SP . More generally, when specification signatures

are related by a morphism, a translation of properties is in order wrt to the

signature morphism.

In general, however, this refinement relation is not adequate. For instance, as

suggested on stage II, it is expectable to map a proposition of the state-machine

into an equation on the respective states-as-algebras model. These formulas are

represented in FOL by a predicate and an equation, respectively, which cannot

be related through signature morphisms (which only relate predicates with pred-

icates and equations with equations). Less conventional approaches to refinement

may help to overcome this sort of situations. A possibility we are currently inves-

tigating is to resort to logical interpretations, instead of signature morphisms,

to direct refinement as studied by the authors in [14, 13, 21]. Interpretations are

multi-functions between the specifications formulas which preserve and reflect

logical consequence.

There are others specification frameworks also based on modal versions of

first-order logic. For instance, in [20] it is defined a logic (for hybrid systems)

based on a dynamical version of first-order logic (over R) with nominals. It is

important to note that the semantical paradigm of those approaches is quite

di�erent for the proposed here; namely, as usual, they deal with states as values

of system variables on of given moment of execution, evaluated in an unique

first-order structure. In our work, it corresponds not to a set of values, but to

state-families of first-order structures, modeling the behaviour of all the system

functionalities.
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Appendix – Proofs

We start by fixing some notation: we use � to denote the hybrid signature

((⇤,X),Nom,Prop,⇥) and � to denote ((⇤ , X  ),Nom ,Prop ,⇥ ). Following

the same pattern, M denotes the hybrid model ◆S, state, R⇥, (Ps)s⌦S , (As)s⌦S
and M the ◆S , state , (R 

⇧)⇧⌦⇥, (P  
s)s⌦S⇤ , (A 

s)s⌦S⇤. Moreover, M is used to

denote the hybrid model Mod
H

(�)(M ).

Proofs for the institution definition

Lemma 1. Let �
⌃

// � be an hybrid signatures morphisms and M a � -
model. Let g and g be two assignments for M and Mod

H
(�)(M ) respectively,

such that g(x) = g (�var
Sig (x)), for any x ↵ X. Then,

gs(t) = g s(�term(t)), t ↵ T⇤(X). (6)

Proof. The proof is done by induction on the structures of terms. If t is a variable

x ↵ X, we have that gs(x) = g(x) = g (�var
Sig (x)) = g s(�var

Sig (x) = g s(�term(x)).

If t is of form f(t1, . . . , tn), we have

gs(f(t1, . . . , tn))

⌦ { definition of gs}

fAs(gs(t1), . . . , g
s(tn)))

⌦ { reduct definition & H.I.}

�op
Sig(f)A⇤

s(g s(�term(t1)), . . . , g
 s(�term(tn))))

⌦ { definition of g�}

g (�op
Sig(f)(�term(t1), . . . ,�

term(tn))))

⌦ { definition of ⌦term}

g (�term(f(t1, . . . , tn)))

Theorem 1. Let � = ((⇤,X),Nom,Prop,⇥) and � = ((⇤ , X),Nom ,Prop ,⇥ )
be two H-signatures and � : � ⌥ � a morphism of signatures. For any

 ↵ SenH(�), M = ◆S , state , R⇥⇤ , (P  
s)s⌦S⇤ , (A 

s)s⌦S⇤ ↵ |Mod
H

(� )|, and

s ↵ S,

Mod
H

(�)(M ), g |=s  i� M , g |=s SenH(�)( ).

where, for any x ↵ X, g(x) = g (�var
Sig (x)).

Proof. The proof is done by induction on the structures of sentences. Atomic
formulas:



If  = i for some i ↵ Nom:

Mod
H

(�)(M ), g |=s i

⌦ { since X does not occur in i}

Mod
H

(�)(M ) |=s i

⌦ { definition of |=HI}

state(i) = s

⌦ { by definition of reduct state�(⌦
Nom

(i)) = state(i)}

M |=s �Nom(i)

⌦ { by definition of SenH(⌦)}

M |=s SenH(�)(i)

⌦ { since X̄ does not occur in SenH(⌦)(i)}

M , g |=s SenH(�)(i)

If  = p for some p ↵ Prop:

Mod
H

(�)(M ) |=s p

⌦ { definition of |=HI}

Ps(p) = ✏
⌦ { by definition of reduct P �

s(⌦Prop

(p)) = Ps(p)}

M |=s �Prop(p)

⌦ { by definition of SenH(⌦)}

M |=s SenH(�)(p)



If  = t ⌃ t :

Mod
H

(�)(M ), g |=s t ⌃ t 

⌦ { definition of |=H}

As |= t ⌃ t [g]

⌦ { definition of |=}

gs(t) = gs(t )

⌦ { Lemma 1}

g s(�term(t)) = g s(�term(t ))

⌦ { definition of |=}

A 
s |= �term(t) ⌃ �term(t )[g ]

⌦ { definition of |=H & definition of SenH}

M , g |=s SenH(�)(t ⌃ t )

If  = Q(t1, . . . , tn):

Mod
H

(�)(M ), g |=s Q(t1, . . . , tn)

⌦ { definition of |=H}

As |= Q(t1, . . . , tn)[g]

⌦ { definition of |=}

QAs(gs(t1), . . . , g
s(tn))

⌦ { Lemma 1}

QAs(g s(�term(t1)), . . . , g
 s(�term(tn)))

⌦ { definition of reduct}

�pred
Sig (Q)A⇤

s(g s(�term(t1)), . . . , g
 s(�term(tn)))

⌦ { definition of |=}

A 
s |= �pred

Sig (Q)(�term(t1), . . . ,�
term(tn))[g ]

⌦ { definition of |=H & definition of SenH}

M , g |=s SenH(�)(Q(t1, . . . , tn))

Composed formulas:



If  is of form � ✓ � for some �, � ↵ SenH(�):

Mod
H

(�)(M ), g |=s � ✓ � 

⌦ { definition of |=HEQ}

Mod
H

(�)(M ), g |=s � or Mod
H

(�)(M ), g |=s � 

⌦ { I.H}

M , g |=s SenH(�)(�) or M , g |=s SenH(�)(� )

⌦ { by definition of |=HEQ}

M , g |=s SenH(�)(� ✓ � )

The proofs for connectives {⌘,⌥,¬} are analogous.

If  is of form [⌥] :

Mod
H

(�)(M ), g |=s [⌥] 

⌦ { definition of |=H}

for any (s, s ) ↵ R⇧,Mod
H

(�)(M ), g |=s⇤  

⌦ { I.H. and reduct definition entail R⇧ = R�
⌃

MS

(⇧)

}

M , g |=s⇤ SenH(�)( ) for any (s, s ) ↵ R 
⌃

MS

(⇧)

⌦ { definition of |=H }

M , g |=s [�MS(⌥)]SenH(�) 

⌦ { definition of |=H}

M , g |=s SenH(�)([⌥] )



If  is of form @i� for some � ↵ SenH(�), i ↵ Nom:

Mod
H

(�)(M ), g |=s @i�

⌦ { definition of |=HI}

Mod
H

(�)(M ), g |=state(i) �

⌦ { I.H.}

M , g |=state(i) SenH(�)(�)

⌦ { since by reduct definition, state(i) = state�(⌦
Nom

(i)) }

M , g |=state⇤(⌃
Nom

(i)) SenH(�)(�)

⌦ { definition of satisfaction for @}

M , g |=s @⌃
Nom

(i)SenH(�)(�)

⌦ { SenH(⌦) definition}

M , g |=s SenH(�)(@i�)

If  is of form �x  :

M , g |=s SenH(�)(�x  )

⌦ { definition of SenH }

M , g |=s ��var
Sig (x) SenH(�)( )

⌦ { definition of |=}

for all m : X  ⌥ A, such that m ⇧⌃var
Sig

(x) g ,M , m |=s SenH(�)( )

⌦ { I.H. }

for all m : X  ⌥ A, such that m ⇧⌃var
Sig

(x) g ,Mod
H

(�)(M), m |=s  

Therefore, we have to proof that this is equivalent to be

for all h : X ⌥ A, such that h ⇧x g, Mod
H

(�)(M ), h |=s  

⌦ { definition of |=}

Mod
H

(�)(M ), g |=s �x  



Then, for implication  , let suppose h : X ⌥ A such that h ⇧x g. Let

consider h : X  ⌥ A such that h (�var
Sig (y)) = h(x) for any y ↵ X.

 { hypothesis & reduct definition}

for any y �= x, h (�(y)) = h(y) = g(y) = g (�var
Sig (y))

⌦ { ⇤ definition}

h ⇧⌃var
Sig

(x) g 

 { hypothesis}

Mod
H

(�)(M ), h |=s  

The proof for the converse implication is analogous.

Proofs for the comorphism definition

Lemma 2. For any g : X ⌥ A, such g(w) = s, t ↵ T⇤(X), (g �X)s(t) =

g(Tw(t)).

Proof. The proof is done by induction on the structures of terms. If t is a variable

x ↵ X, then (g�X)s(x) = g�X (x) = g(x) = g(Tw(x)). If t is of form f(t1, . . . , tn),

we have,

(g�X)s(f(t1, . . . , tn))

⌦ { definition of (g�X)s}

fAs((g�X)s(t1), . . . , (g�X)s(tn))

⌦ { definition of ⇧�(M �)}

f̄M ⇤
(s, (g�X)s(t1), . . . , (g�X)s(tn))

⌦ { I.H & definition of g}

f̄M ⇤
(g(w), g(Tw(t1)), . . . , g(Tw(tn)))

⌦ { definition of g}

g(f̄(w, Tw(t1), . . . , Tw(tn))

⌦ { definition of Tw}

g(Tw(f(t1, . . . , tn))

Theorem 2 Let � ↵ |SIGNH|,  ↵ SENH and M  ↵ Mod
FOL

(⌅(�)). Then,

for ⇧ and ⌃ defined as above, for any s ↵ S and for any assignment g : X̄ ⌥ A
such that where g(w) = s, we have that

⌃�(M  ), g�X |=s
H  i� M  , g |=FOL

⌅(�) ⇧w( ). (7)



Proof. The proof is done by induction on the structures of sentences. Let suppose

⌃�(M  ) = ◆S, state : Nom⌥ S, (R⇧)⇧⌦⇥, (Ps)s⌦S , (As)s⌦S.

sentences of form i, i ↵ Nom:

⌃�(M  ), g�X |=s i

⌦ { definition of |=H}

state(i) = s

⌦ { since g(w) = s and cM⇤
i = s}

g(w) = cM ⇤

i

⌦ { definition of |=FOL}

M  , g |= ci ⌃ w

⌦ { definition of ⌅w}

M  , g |= ⇧w(i)

sentences of form p, p ↵ Prop:

⌃�(M  ), g�X |=s p

⌦ { definition of |=H}

Ps(p) = ✏
⌦ { hypothesis & definition of ⇧�(M �)}

g(w) = s and p̄(s)M ⇤

⌦ { definition of |=FOL}

M  , g |= p̄(w)

⌦ { definition of ⌅w}

M  , g |= ⇧w(p)

sentences of form t ⌃ t :



⌃�(M  ), g�X |=s t ⌃ t 

⌦ { definition of |=H}

As |= t ⌃ t [g�X ]

⌦ { definition of |=H}

(g�X)s(t) = (g�X)s(t )

⌦ { Lemma 2}

g(Tw(t)) = g(Tw(t ))

⌦ { definition of |=FOL}

M  , g |= Tw(t) ⌃ Tw(t )

⌦ { definition of ⌅w}

M  , g |= ⇧w(t ⌃ t )

sentences of form Q(tq, . . . , qn):

⌃�(M  ), g�X |=s Q(t1, . . . , tn)

⌦ { definition of |=H}

As |= Q(t1, . . . , tn)[g�X ]

⌦ { definition of |=H}

QAs((g�X)s(t1), . . . , (g�X)s(tn))

⌦ { Lemma 2}

QAs(g (Tw(t1)), . . . , g
 (Tw(tn))

⌦ { definition of Q̄ & since g(w) = s}

Q̄M ⇤
(g (w), (g (Tw(t1)), . . . , (g

 (Tw(tn)))

⌦ { definition of |=FOL}

M  , g |=FOL Q̄(w, Tw(t1), . . . , Tw(tn))

⌦ { definition of ⌅w}

M  , g |= ⇧w(Q(t1, . . . , tn))

sentences of form �x⌦:



M  , g |=FOL ⇧w(�x ⌦)

⌦ { definition of |=H}

M  , g |=FOL �x ⇧w(⌦)

⌦ { definition of |=H}

for any m ⇧x g, M  , m |=FOL ⇧w(⌦)

⌦ { H.I.}

for any m ⇧x g, ⌃�(M  ), m�X |=s
H ⌦

Let consider h : X ⌥ A. Let define ḡ : X ⌥ A such that ḡ �X= h and

ḡ(w) = g(w).

 { since ḡ ⇤x g and ḡ�X= h}

⌃�(M  ), h |=s
H ⌦

 { arbitrarily of h & definition of |=H}

⌃�(M  ) |=s
H �x ⌦

The proof for the converse implication is analogous.

sentences of form [⌥] :

⌃�(M  ), g�X |=s
H [⌥] 

⌦ { definition of |=H}

for any s , (s, s ) ↵ R⇧ implies ⌃�(M  ), g�X |=s⇤

H  (�)

Hence, we have to poof that this is equivalent to be that

for any h ⇧v g, (h(w), h(v)) ↵ R⇧ implies M  , h |=FOL ⇧v( )

⌦ { definition of |=FOL}

for any h ⇧v g, M  , h |=FOL (w, v) ↵ R⇧ ⌥ ⇧v( )

⌦ { definition of |=FOL}

M  , g |=FOL �v [(w, v) ↵ R⇧ ⌥ ⇧v( )]

⌦ { definition of ⌅w}

M  , g |=FOL ⇧w([⌥] )



For the implication ’ ’, let suppose

(h(w), h(v)) ↵ R⇧

⌦ { since, h ⇤v g, h(w) = g(w) = s & (↵)}

M  , g�X |=h(v)  

⌦ { h�X= g�X}

M  , h�X |=h(v)  

⌦ { H.I.}

M  , h |=FOL ⇧v( )

For the implication ’�’, let consider a s such (s, s ) ↵ R⇧. Consider also a

h : X̄ ⌥ A such that h ⇧v g and such that h(v) = s . Then

M  , h |=FOL ⇧v( )

⌦ { I. H.}

⌃�(M  ), h�X |=FOL ⇧v( )

⌦ { since h ⇤v g, we have h�X= g�X}

⌃�(M  ), g�X |=FOL ⇧v( )

sentences of form @i :

⌃�(M  ), g�X |=s
H @i 

⌦ { definition of |=H}

⌃�(M  ), g�X |=state(i)
H  

Let h : X̄ ⌥ A such that g(x) = h(x) for any x �= w and h(w) = state(i).
Then, since g�X= h�X , we have

⌃�(M  ), h�X |=state(i)
H  

⌦ { I.H.}

M  , h |=FOL ⇧w( )

⌦ { since h(w) = state(i) & cM⇤
i = state(i)}

M  , h |=FOL ⇧ci( )

⌦ { since w does not occur free in ⌅ci(�)}

M  , g |=FOL ⇧ci( )

⌦ { definition of ⌅}

M  , g |=FOL ⇧w(@i )



sentences of form  ⌘   :

⌃�(M  ), g�X |=s
H  ⌘   

⌦ { definition of |=H}

⌃�(M  ), g�X |=s
H  and ⌃�(M  ), g�X |=s

H   

⌦ { I.H.}

M  , g |=FOL ⇧w( ) and M  , g |=FOL ⇧w(  )

⌦ { definition |=FOL}

M  , g |=FOL ⇧w( ) ⌘ ⇧w(  )

⌦ { definition ⌅w}

M  , g |=FOL ⇧w( ⌘   )

The proofs for connectives {⌘,⌥,¬} are analogous.


