
OpenCert 2011

Pre-Proceedings of the
Fifth International Workshop on
Foundations and Techniques for

Open Source Software Certification

Montevideo, Uruguay, 15th November, 2011

Satellite Event of the 9th IEEE International Conference on
Software Engineering and Formal Methods (SEFM 2011)

Luı́s Soares Barbosa, Dimitrios Settas (editors)

High-Assurance Software Laboratory - HASLab
Universidade do Minho

HASLab:1:2011
November 2011

Preface

Over the past decade, the Free/Libre/Open Source Software (FLOSS) phenomenon has had a
global impact on the way software systems and software-based services are developed, dis-
tributed and deployed. Widely acknowledged benefits of FLOSS include reliability, low de-
velopment and maintenance costs, as well as rapid code turnover. Linux distributions, Apache
and MySQL server, among many other examples, as a testimony to its success and resilience.

Such a success has brought with it an increasing interest to use FLOSS for complex and
industrial-strength applications. However, state-of-the-art OSS, by the very nature of its open,
unconventional, distributed development model, make software quality assessment, let alone full
certification, particularly hard to achieve and raises important challenges both from the techni-
cal/methodological and the managerial points of view.

In such a context, the aim of the OpenCert series of workshops is to bring together researchers
from the academia and the industry interested in the quality assessment of FLOSS and ultimately
provide a platform for the establishment of a coherent certification process for FLOSS.

The 1st International Workshop on Foundations and Techniques for Open Source Software
Certification (OpenCert 2007) was held on 31 March 2007 in Braga, Portugal, as a satellite
event of ETAPS 2007. From then on OpenCert run regularly every year. In 2008, jointly with
the International Workshop on Foundations and Techniques bringing together Free/Libre Open
Source Software and Formal Methods (FLOSS-FM 2008), was held as a satellite event of OSS
2008, in Mlian, Italy. In 2009 it was organised again as a satellite event of ETAPS, in York,
United Kingdom. Finally, in 2010, the 4th OpenCert workshop took place in Pisa, Italy, as a
satellite event of SEFM. The post-proceedings were published in volume 33 of the Electronic
Communications of the EASST. A special issue collecting the most significative papers of pre-
vious workshops is currently under preparation to appear in Science of Computer Programming.

This report contains the pre-proceedings of the 5th International Workshop on Foundations
and Techniques for Open Source Software Certification (OpenCert 2011) held on 15 November
2011, in Montevideo, Uruguay, as a satellite event of SEFM’2011, the 9th International Con-
ference on Software Engineering and Formal Methods. The report is edited by HASLab, the
High-Assurance Software Laboratory a research centre of Universidade do Minho and INESC
TEC. A post-proceedings volume, with revised versions of the accepted papers, will appear later
in the Electronic Communications of the EASST.

This report includes a total of four full papers and two short contributions, which were selected
among ten submissions, each of them reviewed by at least two Program Committee members.
It also features the abstracts of two invited talks, one by Antonio Cerone, from UNU-IIST, and
another by Ezequiel Bazan Eixarch and Carlos Luna, from Universidad Nacional de Rosario,
Argentina, and Universidad de la República, Uruguay, respectively.

The organisers would like to express their gratitude to all members of the Program Committee

i / vi

OpenCert 2011

for their hard work and support. The result in your hand would not have been possible without
their effort and commitment.

The organisers would also like to thank members of the SEFM’2011 Organising Committee,
in particular to Alberto Pardo, SEFM Conference Chair, who was most helpful in all occasions,
and the staff at the Universidad de la República, Montevideo, for their logistical, administrative
and technical support.

Luı́s Soares Barbosa & Dimitrios Settas
November, 2011

Proc. OpenCert 2011 ii / vi

Steering Committee

Bernhard Aichernig, Technical University of Graz, Austria
Antonio Cerone, UNU-IIST, United Nations University, Macau SAR China
Martin Michlmayr, University of Cambridge, UK
David von Oheimb, Siemens Corporate Technology, Germany
José Nuno Oliveira, HASLab / INESC TEC and Universidade do Minho, Portugal

Program Chairs

Luı́s Dimitrios Settas, UNU-IIST, United Nations University, Macau SAR China

Organization Chairs

Antonio Cerone, UNU-IIST, United Nations University, Macau SAR China
Siraj Shaikh, Coventry University, UK

Program Committee

Luı́s Barbosa, HASLab / INESC TEC and Universidade do Minho, Portugal
Andrea Capiluppi, University of East London, UK
Francisco Carvalho-Junior, Univ. Federal do Ceará, Brazil
Antonio Cerone, UNU-IIST, United Nations University, Macau SAR China
Ernesto Damiani, Università di Milano, Italy
Roberto Di Cosmo, Université Paris Diderot / INRIA, France
Rafael Dueire Lins, Univ. Federal de Pernambuco, Brazil
George Eleftherakis, CS Department, City College, Thessaloniki, Greece
Elsa Estevez, UNU-IIST, United Nations University, Macau SAR China
Fabrizio Fabbrini, ISTI-CNR, Italy
Andrei Formiga, Univ. Federal da Paraiba, Brazil
Dan Ghica, University of Birmingham, UK
Rene Rydhof Hansen, Aalborg University, Denmark
Mauro Jaskelioff, Universidad Nacional de Rosario, Argentina
Panagiotis Katsaros, Dept. of Informatics, Aristotle Univ. of Thessaloniki, Greece
Tim Kelly, York University, UK
Paddy Krishnan, Bond University, Australia
Paolo Milazzo, Dipartimento di Informatica, Universiti. Pisa, Italy
Jose Miranda, MULTICERT, Portugal
John Noll, LERO, Ireland
Alexander K. Petrenko, ISP, Russian Academy of Science, Russian Federation
Alejandro Sanchez, Univ. Nacional de San Luis, Argentina
Dimitrios Settas, UNU-IIST, United Nations University, Macau SAR China
Sulayman K. Sowe, UNU-IAS, Japan

iii / vi

OpenCert 2011

Ioannis Stamelos, Dept. of Informatics, Aristotle Univ. of Thessaloniki, Greece
Ralf Treinen, PPS, Université Paris Diderot, France
Joost Visser, Software Improvement Group, The Netherlands
Tanja Vos, Universidad Politécnica de Valencia, Spain
Anthony Wasserman, Carnegie Mellon Silicon Valley, US

Proc. OpenCert 2011 iv / vi

OpenCert 201 Programme

November, 15

09.15 Openning Session
09.30 Invited Talk - Learning and activity patterns in OSS communities

and their Impact on Software Quality (by Antonio Cerone)
10.30 Coffee-break
11.00 Session 1 (chair: Antonio Cerone)
11.00 Process scenarios in Open Source Software certification

by Fabrizio Fabbrini, Mario Fusani and Eda Marchetti
11.30 The role of best practices in assessing software quality

by Miguel Regedor, Daniela da Cruz and Pedro Henriques
12.15 Lunch
14.00 Session 2 (chair: Luı́s Barbosa)
14.00 Quality, success, communication and contribution in Open Source Software

by Sara Fernandes
14.30 Analysis of collaboration effectiveness and individuals’ contribution

in FLOSS communities
by Antonio Cerone, Simon Fong and Siraj A. Shaikh

15.15 Coffee-break
15.30 Invited Talk - A formal specification of the DNSSEC model

(by Ezequiel Bazan Eixarch and Carlos Luna)
16.30 Session 3 (chair: Siraj Shaikh)
16.30 Formal verification of a theory of packages

by Jaap Boender
17.00 Using antipatterns to improve the quality of Free/Libre/Open Source

Software development
by Dimitrios Settas and Antonio Cerone

20:00 SEFM Welcome Reception

v / vi

OpenCert 2011

Proc. OpenCert 2011 vi / vi

Learning and activity patterns in OSS communities and their
impact on software quality

(Invited Talk)

Antonio Cerone1

1 antonio@iist.unu.edu,
United Nations University, International Institute for Software Technology

Macau SAR, China

Abstract: OSS projects can be considered as learning and development environ-
ments in which heterogeneous communities get together to exchange knowledge
through discussion and put it into practice through actual contributions to software
development, revision and testing. OSS communities are open participatory ecosys-
tems in which actors create not only source code but a large variety of resources
that include the implicit and explicit definitions of learning processes and the es-
tablishment and maintenance of communication and support systems. Productivity,
in terms of software development and release, is thus the final act of a very long
and complex evolution and growth in the individual and collective knowledge and
practise.

Individuals’ participation in the OSS community evolves through time. It starts from
an initial but often significantly long learning process in which communication is
heavily used to capture, describe and understand contents, while no production ac-
tivity is performed. At a later stage the role of communication gradually moves to
the proposal of new contents, the defense of the proposed contents and the criticism
to existing contents or contents proposed by others. At the same time, during this
stage, production activity starts as a trial and error process with a consequent low
quality in the resultant product and little or no immediately visible impact on the
project productivity. Only during a mature stage the quality and level of code devel-
oped, reports and commits become important and communication is mainly used to
support own productive contributions and contrast them to others’ contributions.

This talk presents a framework to analyse learning and activity patterns that char-
acterise participation of individuals in OSS communities. Then it defines notions
of OSS quality and relate them to individual and community learning and activity
patterns. Finally two new proposals to improve the OSS development process and
to realise the OSS learning process in an educational context are presented and then
related to OSS quality.

Keywords: Open Source Software, activity patterns, learning patterns, software
quality.

1 / 2

mailto:antonio@iist.unu.edu

OSS learning and activity patterns and their impact on software quality

Proc. OpenCert 2011 2 / 2

Process scenarios in Open Source Software certification
Fabrizio Fabbrini1, Mario Fusani1 and Eda Marchetti 2

1 (fabrizio.fabbrini, mario.fusani)@isti.cnr.it,
Systems and Software Evaluation Centre, ISTI - CNR Pisa Italy

2 eda.marchetti@isti.cnr.it, Software Engineering Laboratory, ISTI - CNR Pisa Italy

Abstract: Certification of Open Source Software (OSS) presents inherent trade-offs
due to the necessity of precisely identifying both a product and an independent certi-
fication agent, and on the other of maintain the peculiar, valuable OSS characteristic
of being available to an unlimited multiplicity of actors for trial, use and change.
This is an intriguing challenge, usually solved by removing from the picture the
certifying agent and providing an intrinsic certification by means of rigorous, re-
applicable property demonstrations, adopting Formal Methods (FM) in expressing
and verifying the code. As such approach, yet quite valuable and good-promising,
has some restrictions (such as the limited set of provable product qualities), we pro-
pose to tackle the problem by analysing the various processes executed by different
OSS stakeholders, including the process of an independent Certification Body. In
the paper some kinds of representative scenarios in which such processes interleave
are presented and discussed. The aim is to introduce a process-centered perspective
for OSS that can stimulate research to further understand and mitigate the mentioned
trade-offs.

Keywords: Open Source Software, Certification, Software Process

1 Introduction

Traditionally, software certification has been mainly associated with proprietary software or
Closed Source Software (CSS) with the aim of increasing the confidence that a software-related
product or service actually possesses its declared behavioral and/or structural attributes. Re-
cently, the increasing adoption of Open Source Software (OSS) in new environments, such as
public administrations, makes it even more urgent to evaluate the correctness and other software
quality attributes, such as reliability and usability, of the software used. Indeed, intrinsic product
variability, context criticality, compliance to standards and typical constraints of specific domains
evidence that certification is still a key factor in adopting OSS software.

Commonly available solutions to this problem try to remove the activity of an independent
certifying agent and provide intrinsic certification by means of rigorous demonstrations of soft-
ware properties by adopting Formal Methods (FM) in expressing such properties and verifying
the code against them. However as pointed out by [Wal04], one task is to certify properties of a
software item with respect to defined specifications, and another task is to certify related proper-
ties of a system (hardware and software) of which the software item is a continuously evolving
component. Sometimes the whole system is not available, and also when it is, it is not always
easy just to express the ”global” properties of a software component (typically detectable as their
impact into external system qualities), let alone to verify them.

3 / 18

mailto:eda.marchetti@isti.cnr.it

Process scenarios in Open Source Software certification

Out of the FM, Model Checking techniques are typically adopted to demonstrate the character-
istic of correctness (with sub-characteristics expressed in the form of provable/non-disprovable
properties such as liveness and safety). Then Model Checking, now rather feasible and inten-
sively automated, can be used for certification [Wal04] (an overview of some proposals is in
Section 2). However these approaches, rigorous and good-promising (thanks to availability of
many tools)as they may be, cannot be extensively adopted because the set of provable product
qualities is still limited and depends on the available specifications. Moreover a recent survey
[HSI10] on ongoing OSS projects shows that testing is still almost the only way adopted to check
product properties, even if these properties are validated only for the test conditions.

From this considerations our proposal wants to tackle the problem by analyzing the various
processes executed by different OSS stakeholders, including an independent Certification Body.

Starting from the assumption that OSS products have interesting, although unconventional,
common process features that can be taken into account for certification, we introduce in this
paper an approach to a sort of formalized view of the OSS certification activities. Motivated by
recent trends in the Italian reality of the Public Administration, that fosters the use of OSS in
automation of public offices, we want to investigate different related scenarios, evidencing the
roles of the playing actors to find possibly standardizable yet feasible conditions that make an
OSS eligible for certification.

We want to focus the reader’s attention on the processes performed during the OSS life-cycle
to stimulate research towards further understanding and mitigation of the trade-offs between
the typical discipline requested by certification and the unconstrained nature of OSS that makes
it so appealing and objectively valuable. In this process-centered perspective, we show how
the long-dated certification concept, gained with conventional products, can be re-defined and
applied to the more complex and varying OSS scenarios. We therefore highlight some of the
OSS development process evidences that can be used in a certification process and show that,
even inside different scenarios, these processes do have interesting, although unconventional,
common features that can be taken into account for product certification.

The paper is organized as follows: In Section 2, a sample of related literature is commented
in the light of our objectives and the typical characteristics of the OSS are summarised. In
Section 3, the concept of certification is re-visited and new evidences are proposed. In Section
4, significant OSS certification scenarios are presented and commented to point out the role of
the main actors, their expected actions and mutual relationships. In Section 5 an analysis of the
proposed scenario is provided while Conclusions are drawn in Section 6.

2 Related work

From the vast literature of OSS and certification, we selected some works describing the current
trends. As noticed, OSS certification is often related to the use of FM [KM08] in transforming
requirements into code and code into requirements, as it is the case of safety and security related
properties [CS08, SC09]. Model Checking is a further proposed solution, sometimes considered
as the most effective technique for OSS analysis [CGR09]). Alternative proposals are those
focused on agile methodologies for keeping consistency between a product and the evidences of
the product(for instance [CGR09, MTT09]).

Proc. OpenCert 2011 4 / 18

Even though effective, the so far mentioned solutions are limited to specific properties of the
OSS software and can be dependent on the specifications.

The advantages of independent certification management is introduced in [PB08], which sug-
gests also mechanisms for doing it (granting/revoking certificates and performing continuous
certification in a vulnerable environment) and enforced in [KKS10], where an independent body
(in the case, an association of developers and/or users) is expected to provide on-line services
to OSS component integrators for which a set of tools, also including reverse engineering tools,
search engines and analysers, are being produced.

However, so far the proposals for independent certification have been rather vague and cer-
tification against specific standard is reported as a drawback. In our view, certification can ad-
vantageously be performed at various levels and an independent entity, the Certification Body,
can play different roles in its peculiar task of confidence and transfer it among stakeholders. The
scenarios we propose try to figure out the various aspects and roles involved in a certification
process and address issues for further research.

3 Peculiarities of the certification of OSS

The literature analysis and the experience in product (CSS) evaluation and process (SPICE)
assessment of our Centre [ISO08b] help us to highlight some peculiarities of the OSS that should
be taken into consideration for an OSS certification process, typically: availability of usually
free or not expensive source; possibility of downloading the OSS from a public website; use of a
development environment managed by a community of developers/testers/users, that eases rapid
code change and re-use; possibility of measuring product characteristics such as correctness,
reliability and maintainability.

From this picture, the main factors influencing a OSS certification process can be summarized
as:

• Stakeholders: users and developers happen to work closely together and the boundaries
among the roles become much more indistinct.

• Requirements specifications: In OSS, specifications are not any more controlled by a
single organisation and continuously evolve according to the needs of individuals or com-
panies. Often they can be collected from various sources such as developers forums or test
cases.

• Verification and testing: OSS properties mostly get verified by testing in operational
environment, both in case of software component selection, and during actual service.
Testing before delivery is then only a fraction of the testing process. Regarding static
verification, we noticed in Section 1, about FM techniques, the phenomenon of many
proposals in literature and scarcely adopted in practice. Moreover, verification of process
documents, which in CSS is one of the best sources of information for a Certification
Body, is only marginal in OSS.

• Independent development: OSS can be totally or partially cloned by various developers,
also concurrently. This may rise new configuration management problems.

5 / 18

Process scenarios in Open Source Software certification

• Traceability of products: OSS are characterized by high variability and evolution (ver-
sioning) of the same product, evidencing some difficulties in identifying the product from
its releases.

• Configuration management: configuration management life-cycle processes are still
there ([OMK08] and [HSI10]), and their actors are generally geographically distributed.

• Process-related work products: these are documents such as FAQs, annotations, lessons
learnt, bug logs, and so on, which evidence the importance and the interest for OSS inside
the community and the development effort behind the completion of the OSS itself. A
Certification Body should learn to deal with these work products instead of the traditional
CSS documentation.

From the above characteristics it becomes clear that the certification process is expected to
continuously track evolving OSS requirements specifications and take evidences from the oper-
ational environment. Operational testing [L+96], that in CSS is extremely difficult to manage
for cost and time constraints, becomes common practice ([MTT09], [HSI10]) and a precious
contribution for improving the overall confidence in the OSS product.

Thus one of the most important role in the assessment part of certification is played by the
process-related work products such as blogs, FAQs, annotations, bug logs and so on. That source
of information can allow monitoring of product maturity, testing activity and properties imple-
mentations and is an essential element of the certification process. In particular, such information
aimed to improve or decrease confidence about the product properties can be discovered by ver-
ification techniques such as dynamic testing, static analysis and Model Checking. To perform
this process-related assessment, traditional document analysis cannot be used and new tech-
niques must be devised, not excluding mining and natural language processing of raw text, as,
for example, an evolution of the research proposed in [YSJS07].

Certification process could also be influenced by independent development: versioning of the
same OSS and the different abilities of different developers are factors that can affect the final
decision of a Certification Body.

These evidences, as well as any other pieces of information derivable by the current available
OSI certification [OSI08] have to be monitored in a certification process. In particular, due to the
dynamic nature of OSS products, the natural consequence is that certificates are associated to a
certain evolution of the OSS, thus related to a specific time and version.

To collect the certified versions of the same OSS products, while the certification is valid,
and to reduce the complexity of the communications among the stakeholders, the concept of a
virtual repository can be introduced. Interactions with a virtual repository can happen only on a
voluntary basis for example to get a (possibly dynamic) certificate. This way, registering an OSS
project to a virtual certification repository would be appealing and would ease the adoption of
the software itself.

The analysis of the influencing factors evidences that independent certification need new stan-
dards that do not disrupt the characteristic of free development while allowing an OSS to be
eligible for certification. These new standards should recognize collaborative working environ-
ments and propose rules to properly collect process evidence and certified products.

Proc. OpenCert 2011 6 / 18

In Table Table 1 some differences and similarities between CSS and OSS certification pro-
cesses are shown. In this partial list, the only significant similarity seems to be CB accreditation.

4 The scenarios context

Lifecycle aspects for OSS certification have been extensively described in literature [Tay09].
In this section we provide an attempt at schematizing two different certification scenarios

considering, as mentioned in the Introduction, the context of the Italian Public Administration
(PA) environment. As we cannot validate yet our proposal, representing and analyzing possible
certification scenarios seems useful to see how the consequences of the factors mentioned in
Section 3 can work together. Thus even if specific, we think that these domestic situations, once
analyzed, can have many points in common with other international environments and can be
easily generalized or adapted to any other context.

In Italy, as in other countries, there is an increasing interest by the central Government in
adopting OSS systems for the development of public projects, in particular in the Public Ad-
ministration context, so to keep costs reasonable and accelerate the completion of administrative
system projects. However, due to some criticalities of the context and the many standards and
constraints specific to the public environment, only certified products are eligible to be integrated
or used in the existing systems. Thus certification is still recognized as a key factor to persuade
the various PA offices to adopt OSS solutions. This opens up two possible scenarios:

In the first one the PA itself, to assure that OSS is compliant with the standards and the required
level of quality, commissions the certification to an external Certification Body (CB)).

In the second one, it is thinkable that developers can make available ready-to-use, certified
OSS to the PA, under the payment of a (perhaps only symbolic) certification fee. In this case
even if the developers have to face certification expenses from the CB, they can have incomes
from the widespread use of the certified product, as well as from installation and maintenance
activity.

We schematize the first scenario in section 4.1 where we consider the PA as Customer/User
stakeholder and the certification ordered to an external Certification Body,

The second scenario is presented in section 4.2 where OSS Developer(s) would like to take the
advantage pushing in the adoption of the OSS from the PA, by proposing OSS certified products
on the market.

4.1 Certification scenario: PA triggering the certification process

In this section we provide details about a possible scenario in which the PA promotes the certifi-
cation of an OSS product that needs to be integrated in its administrative systems. In particular
in Figure 1 we schematize the main stakeholders of the scenario to outline their mutual relation-
ships.

We suppose the PA uses a public OSS repository where developers provide OSS (OSS source
artefacts in the figure) implementing different functionalities. The Certification Body (CB) has
the role to certify, according to PA requests, conformity to applicable standards and quality con-
straints involved with the selected OSS and to maintain a common certified OSS repository. With

7 / 18

Process scenarios in Open Source Software certification

Figure 1: Simplified stakeholders scenario with PA

no expectations to be exhaustive, a possible interaction between the above mentioned stakehold-
ers during the certification process can be schematized as in Figure 2.

Developers and PA, from different points of view, contribute to the requirement elicitation ac-
tivity, which basically produces a list of constraints that can vary from operational systems spec-
ification to development environment constrains, performance and quality attributes and other
more specific requests about the functionalities to be implemented. Following the OSS philoso-
phy we consider not restrictive to represent the requirements elicitation as a free, open and not
ruled activity, where exigencies coming from different actors and environments join together in
common, publicly available (possibly textual) documents.

The various requirements can then be implemented in parallel into OSS product(s) or updated
and refined by the PAs. As a common practice, the OSS repository will contain for each OSS
product the source code and possibly the OSS storyboard, i.e. all the available source of in-
formation concerning the released OSS (logs, comments, description of functionalities and so
on). PA can therefore select from the OSS repository the OSS product considered eligible for
certification and commission to CB the analyses and the management necessary for the certifi-
cation itself. CB, following the standard procedure, will perform requirement analysis, possibly
recovering data defined during the requirements elicitation, and collect all the available OSS in-
formation (as described in section 3). Then the CB can continue the certification activities that,
as said in Section3, may require further interaction with the Developers and with independent
verification laboratories. The process, whose requirements are listed in Section 5, can produce
three principal possible results:

1. CB declares the OSS product not eligible for certification;

2. the certification is successfully concluded, with the certified OSS transferred into the
COSS repository and the storyboard opportunely updated;

3. CB identifies required modifications or bugs fixing needs and communicates this to PA

Proc. OpenCert 2011 8 / 18

Figure 2: Simplified interaction scenario with PA

that has commissioned the certification. This in turn can update the OSS storyboard and
possibly the bug log of the OSS repository so that developers can release an improved
version of the required system and let the certification restart for a new iteration

Of course there are variants, still in the perspective of continuous certification ([PB08], [CGR09]):
for example, in case of successfully concluded certification, Developers may go on independently
updating the software, whose evolved version could draw the interest of the same PA or another
public / private institution, which would trigger again the certification process.

From this simple scenario the following considerations can be drawn:

• The stakeholders act rather independently (see Section 3), even if they must synchronize
on various occasions. The repository itself, a passive entity, acts as a common channel.

• CB, differently from all the other stakeholders, is bound to behavioral rules. As we already
pointed out, it could (and should) be compliant to severe, even conventional standards, but
this does not make its presence in an OSS scenario disturbing.

This scenario is a rather high-level one, and its representation hides many intermediate steps
that would make the complete description quite a job (Requirements elicitation, Requirements
analysis, Certification activity and so on) that can be omitted here.

4.2 Certification scenario: Developer triggering the certification process

In this section we provide details about a scenario in which the promoter for the certification of
an OSS product is the Developer. Here the main role of PA is to express the user needs and inter-

9 / 18

Process scenarios in Open Source Software certification

est in terms of requirements, while the role of Developers is to implement certifiable products.
Certification of OSS against the many standards and constraints specific to the public environ-
ment is considered a key factor to convince the various PA offices to adopt already developed
OSS. As a side effect, the ability to provide accredited products for the PA could be a means for
the developers to increase the number of clients and to make profits (for instance from software
installation, maintenance or other related activities).

The stakeholders in this scenario are the same as in the previous one (Figure 1). Thus, again
PA uses the public OSS repository for requirements elicitation and Developers are in charge of
the OSS implementation (OSS source artefacts in the figure).

On behalf of the Developer, and not of PA as in the previous scenario, CB certifies the OSS
according to PA standards and quality constraints, and maintains a common certified OSS repos-
itory. It is then possible to suppose that PA can download the certified OSS software from the
certified repository upon payment of a special symbolic fee.

We schematize the interactions between Developers, PA and CB during the certification pro-
cess as shown in Figure 3.

As in the previous scenario, PA contributes to the requirement elicitation activity, which
mainly consists of a list of constraints, quality attributes and/or other more specific requests
about the functionalities to be implemented. Then the various requirements can be implemented
in parallel into OSS products for which the source code and possibly the OSS storyboard, sim-
ilarly to the previous scenario, are made publicly available. At this step in the process only
the developers who want to certify a version of OSS developed product order the certification
analysis to the Certification Body.

Note that in this case, CB can use possible information about the development process pro-
vided by the Developer itself. Thus, factors that are hardly exploitable in OSS certification, such
as, for instance, reference standards, life-cycle traditional standards, architectural requirements,
or internal quality characteristics can now be used by CB for certification. As a consequence, the
CB activity could be closer to that of a traditional CSS certification process.

Thus, CB, following the standard procedure, will perform a requirement analysis, integrating
data about requirements elicitation (if any), available OSS information and additional informa-
tion provided by Developer. Then CB can continue the certification process, as described in the
previous scenario, directly interacting with Developer and possibly with independent verification
laboratories.

Just as before, CB activity can produce three principal possible results: 1) CB declares the
OSS product not eligible for certification; 2) the certification is successfully concluded, with the
certified OSS transferred into the COSS repository and the storyboard opportunely updated; 3)
CB identifies required modifications or bugs fixing and communicates this to the developer that
has commissioned the certification. Only when the improved version of the required system is
developed the certification process will restart for a new iteration.

Once committed in the certified OSS repository, the certified version can be used by Developer
for its own marketing.

The stakeholders of this scenario act more independently than in the previous one, so minimiz-
ing the points of synchronization and better reflecting the typical features of OSS development.
The OSS repository is still independently updated upon request of any developers who ask for
certification. For exploitation purposes and also for covering the certification expenses, it is

Proc. OpenCert 2011 10 / 18

Figure 3: Simplified interaction scenario with Developer

plausible that developers ask each user of the Certified repository a symbolic fee.
The scenarios have been presented to a rather high abstraction level, purposely avoiding inter-

mediate steps that would disturb viewing of the overall picture of the proposal.

5 Comparison and discussion

By describing in this paper only two typical OSS certification scenarios we intended to pro-
vide a first tentative to formalize the necessary steps of a the certification process, considering
respectively two different triggering situations: one from the PA side and the other from the De-
veloper’s. Even if, in the considered scenarios, the overall process shows no development but
service only, even a slightly deeper inspection can reveal that process can be composed of vari-
ous, typically interacting, processes, whose characteristics can be inspired to a process reference
model such as in [ISO08a]. In particular: the CB process structure includes lifecycle processes
such as management (common to all stakeholders), requirements analysis, verification and test-
ing; Developer process include a more complete set of lifecycle processes, among which coding;
PA process may include requirements elicitation (present also in the other stakeholders), prod-

11 / 18

Process scenarios in Open Source Software certification

uct acquisition and supplier monitoring. All these processes synchronize with each other, also
through the OSS repository, a passive entity that must have its access rules. It is a very high level
synchronization with rather weak coupling features, even less compelling in the second scenario,
so no deadlock conditions may occur. So, the overall certification process can be expected to be
feasible and repeatable, provided it can rely on consolidate best practices. Moreover, it has to
be tailorable and able to be monitored even in dynamically evolving situations. Indeed, due to
the intrinsic characteristics of OSS development, certification has to face the typical cactus-like
versioning of the same product. As a a consequence, an important requirement emerging from
both scenarios is that the certification policy should clearly establish the properties to be certified
and the validity limits of the certificate itself.

From both scenarios, the need for of an independent Certification Body, able to assess the
quality level and the standard compliance of the source code and possibly of other work products
with respect to the PA constraints, emerged clearly. As already noticed, the CB is the only stake-
holder that has to comply to strict behavioral rules, such as requirements expressed in [ISO04].
The main difference in the situations considered, is represented by the information that CB can
use for its activities: In the first scenario (Section 4.1) available data are minimal and mainly rep-
resented by the process-related work products; In the second one (Section 4.2) CB could exploit
also evidences about the development process provided by the developer itself.

Summarizing, CB should be responsible for the following technical activities, that it might
also directly/indirectly perform.

• Assessment and verification of properties declared in a certification scope. Specifically
for the scenario presented in Section 4.1, when little or no reference-model exists, such as
quality / performance / functional requirements or expected attributes, the role of CB is
more exploration than verification: in this case no certificate may be issued, as is not in
case the verifications fail (see Figures 2).

• Witnessed or monitored testing. In particular for the first scenario testing is executed by
actors different from CB, such as Developers or Users. If testing procedures and reports
are standardized and automated, then the monitoring part takes less effort by the CB.
This could be true also for the second scenario (Section 4.2), but the strict collaboration
from CB and developer could assure more suitable testing info and make the certification
process easier.

• Independent testing (e.g., executed by an accredited Independent Laboratory, possibly con-
formant to ISO/IEC 17025. This is possible in both the scenarios considered.

• Code analysis and inspection (possibly executed by reviewers independent of Developers)

• Model Checking (based on formal models as a source) and Software Model Checking
(based on code as a source).

Regarding testing, we already observed that in OSS most of this activity is focused on opera-
tional testing (Section 3), that typically can be considered as software validation.

Finally the two scenarios are different also for the purposes of the certification process. In the
first scenario (Secton 4.1) certification is a guarantee for the PA that the standards and constraints

Proc. OpenCert 2011 12 / 18

specific to the public environment are not compromised or invalidated by the adoption of a OSS
software. In the second scenario developers can exploit their certified ability in implementing
accredited products for the PA for several beneficial side effects:

• Developers could increase the possible clients because their certified products can be
adopted as a ready-to-use and cheap solution in the numerous PA(s) having the same ne-
cessities and constraints.

• The certified skill of the developers could be a precious advertisment within the PA com-
munities, and in general for any other OSS community, to increase possible orders for
different product development.

• Developers could ask for a symbolic fee for each download from the OSS repository of
the Certified OSS. This could refund the developer of the expenses sustained for the certi-
fication.

• From the adoption of the OSS certified product, developers could exploit the possibility
of opening a new business market due to product diffusion, installation and maintenance
activities.

6 Conclusions

In this paper we examined the frequently discussed issue of Open Source Software (OSS) certi-
fication. As our Centre has been active in software product verification and process independent
assessment since mid 1980’s (both as an applied research activity and a service provided to Pub-
lic Administration and privates), but never in OSS environment, we believe that this perspective
could extend the Centre’s scope of activity towards a promising business environment.

From the experience gained so far with the Centre, we think we know something about the
basic nature of certification for traditional Closed Source (CSS) software, and we expect that the
certification concept should be, in some parts, revised to adapt it to the nature of OSS.

In this paper we wanted to observe the process aspects of OSS certification, because of our
experience in process engineering and because the process concept includes more knowledge
and practice besides the set of techniques adopted.

Generally speaking, a process uses its resources, including technology in the aspects of: ap-
propriateness for the purpose, ability of modeling real situations, ability of providing methods
of operation, partial/full automation of such methods by means of appropriated tools (to be in-
tegrated into the process), related human factors (role specialization, knowledge, training, skill,
motivation, again to be integrated into the same process) and ability of successfully deploying
the technology in real projects. Out of these aspects, we addressed here some issues regarding
key-roles behavior.

We first re-discussed some aspects of the certification in the light of OSS in terms of reference,
standards, techniques, practices, role of stakeholders, examining what factors can positively or
negatively impact on the main certification goals (Section 3), then projected the overall certifi-
cation process into the single processes executed by some significant stakeholders (Developer,
Certification Body and Customer in the particular case of Public Administration) (Section 4).

13 / 18

Process scenarios in Open Source Software certification

Table 1: Comparison of CSS and OSS certification process

Certification process prop-
erties, practices and tech-
niques

CSS certification process OSS certification process

Certification process com-
pliant to standards (like
ISO/IEC 17000)

Achieved through formal CB
accreditation

Achieved through formal CB
accreditation

Analysis and verification
of life-cycle process doc-
uments, different from
source code, such as: Re-
quirements, architecture,
verification, testing, design
reviews,

Quite feasible and opportune
for certification

Usually not available

Analysis and verification of
life-cycle process documents
different from source code
such as: field information,
forums, blogs,

Usually not provided and if
so, unimportant with respect
to traditional lifecycle work
products

Mostly available and useful.
Needs of some general rules
and standards to

Analysis and verification of
source code

Typically indirect: an assess-
ment of developers’ code
verification work

Direct code verification us-
ing inspection tools and re-
verse engineering

Close relationship with de-
velopers

Feasible and useful Quite loose relationships
available, if any: virtual
repository can be an indirect
relationship

Continuous certification
(multiple versions)

Difficult and expensive Often necessary

Use of virtual public reposi-
tory

Often impossible Quite opportune

Proc. OpenCert 2011 14 / 18

We made these processes, together with a passive process ”OSS repository”, interact in a
couple of possible significant scenarios, representing them as activity diagrams, and analyzed
some pros and cons of the scenarios, trying to summarize a set of requirements for the ”OSS
certification process”.

We also pointed out how the process executed by an independent Certification Body, bound by
accreditation duty to follow some rigorous standards, can help to mitigate the trade-off between
the intrinsic properties of the OSS and the strict rules imposed by certification.

We think this can be another, perhaps untried-before way to have a higher-level view of the
possible activities playing around OSS certification, that might be useful for search for more
OSS process certification features.

We do not claim to be exhaustive in this formulation, nor particularly innovative. The aim
of this paper is to introduce a process-centered perspective for OSS that can help to understand
possible different scenarios and to stimulate related research issues.

15 / 18

Process scenarios in Open Source Software certification

Bibliography

[BCF+10] I. Biscoglio, A. Coco, M. Fusani, S. Gnesi, G. Trentanni. An Approach to Ambi-
guity Analysis in Safety-related Standards. In Proc. of QUATIC 2010 (7th Interna-
tional Conference on the Quality of Information and Communications Technology).
September 2010.

[Bou10] A. Boulanger. Open-source versus proprietary software: Is one more reliable and
secure than the other? IBM Systems Journal 44(2):239–248, 2010.

[CGR09] C. Comar, F. Gasperoni, J. Ruiz. OPEN-DO: AN OPEN-SOURCE INITIATIVE
FOR THE DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE. 2009.

[CS08] A. Cerone, S. A. Shaikh. Incorporating Formal Methods in the Open Source Software
Development Process. In Proc. of the Third International Workshop on Foundations
and Techniques for Open Source Software Certification. September 2008.

[FFL06] F. Fabbrini, M. Fusani, G. Lami. Basic Concepts of Software Certification. In Proc.
of 1st International Workshop on Software Certification (CERTSOFT’06). Pp. 4–16.
McMaster University, 2006.

[Fus09] M. Fusani. Examining Software Engineering Requirements in Safety-Related Stan-
dards. In Proc. of DeSSerT (Dependable Systems, Services and Technologies). April,
2009.

[HSI10] Z. Hashmi, S. Shaikh, N. Ikram. Methodologies and Tools for OSS: Current State
of the Practice. In Proc. of the Third International Workshop on Foundations and
Techniques for Open Source Software Certification. September 2010.

[ISO96] ISO/IEC. ISO/IEC Guide 2:1996, Standardization and related activities General vo-
cabulary. ISO/IEC, 1996.

[ISO04] ISO/IEC. ISO/IEC 17000: 2004, ISO/IEC 17000:2004, Conformity assessment -
Vocabulary and general principles. ISO/IEC, 2004.

[ISO08a] ISO/IEC. ISO/IEC 12207 - Information Technology: Software life cycle processes.
ISO/IEC, 2008.

[ISO08b] ISO/IEC. ISO/IEC 15504-5:2006 – Information technology – Process Assessment –
Part 5: An exemplar Process Assessment Model. ISO/IEC, 2008.

[ISO08c] ISO/IEC. ISO/IEC TR 15504-6:2008 Information technology – Process assessment
– Part 6: An exemplar system life cycle process assessment model. ISO/IEC, 2008.

Proc. OpenCert 2011 16 / 18

[KKS10] G. G. Kakarontzas, P. Katsaros, I. Stamelos. Component Certification as a Pre-
requisite forWidespread OSS Reuse. In Proc. of the Third International Workshop
on Foundations and Techniques for Open Source Software Certification. September
2010.

[KM08] A. Khoroshilov, V. Mutilin. Formal Methods for Open Source Components Certifi-
cation. In Proc. of the Third International Workshop on Foundations and Techniques
for Open Source Software Certification. September 2008.

[L+96] M. R. Lyu et al. Handbook of software reliability engineering. McGraw-Hill New
York et al., 1996.

[MTT09] S. Morasca, D. Taibi, D. Tosi. Towards certifying the testing process of Open-Source
Software: New challenges or old methodologies?. In Proc. of the 2009 ICSE Work-
shop on Emerging Trends in Free/Libre/Open Source Software Research and Devel-
opment. Pp. 25–30. IEEE Computer Society, 2009.

[OM09a] A. Ocampo, J. Muench. Rationale modeling for software process evolution. Software
Process. Improvement and Practice 14(2):85–105, 2009.

[OM09b] A. Ocampo, J. Muench. Rationale modeling for software process evolution. Vol-
ume 14(2). 2009.

[OMK08] T. Otte, R. Moreton, H. D. Knoell. Applied Quality Assurance Methods under
the Open Source Development Model. In Proc. of the 32nd Annual IEEE Interna-
tional Computer Software and Applications Conference. Pp. 1247–1252. COMP-
SAC, 2008.

[OSI08] OSI. OSI Certified Open Source Software. OpenSource.org, 2008.

[PB08] S. Pickin, P. T. Breuer. Open Source Certification. In Proc. of the Third International
Workshop on Foundations and Techniques for Open Source Software Certification.
September 2008.

[SC09] S. A. Shaikh, A. Cerone. Towards a metric for Open Source Software Quality. In
Proc. of the Third International Workshop on Foundations and Techniques for Open
Source Software Certification. September 2009.

[Tay09] R. Taylor. Understanding how OSS Development Models can influence assessment
methods. In Proc. of the Third International Workshop on Foundations and Tech-
niques for Open Source Software Certification. March 2009.

[Tri02] L. Tripp. Software Certification Debate: Benefits of Certification. IEEE Computer,
pp. 31–33, June 2002.

[Uni] Unified Modeling Language. http://www.uml.org/.

[Voa00] J. Voas. Developing a Usage-Based Software Certification Process. IEEE Computer
33:32–37, 2000.

17 / 18

http://www.uml.org/

Process scenarios in Open Source Software certification

[Wal03] K. C. Wallnau. Volume III: A Technology for Predictable Assembly from Certifiable
Components. Technical report, SEI - CMU, April 2003.

[Wal04] K. C. Wallnau. Software Component Certification: 10 Useful Distinctions. Technical
report, SEI - CMU, September 2004.

[YSJS07] K. Youngjoong, P. Sooyong, S. Jungyun, C. Soonhwang. Using classification tech-
niques for informal requirements in the requirements analysis-supporting system. Inf.
Softw. Technol. 49:1128–1140, November 2007.

Proc. OpenCert 2011 18 / 18

The role of best practices in assessing software quality

Miguel Regedor1, Daniela da Cruz2 and Pedro Henriques3

1 miguelregedor@gmail.com
2 danieladacruz@di.uminho.pt

3 prh@di.uminho.pt
Dep. de Informática / CCTC

Universidade do Minho
Braga, Portugal

Abstract: Thousands of open source software (OOS) projects are available for
collaboration in platforms like Github or Sourceforge. However, like traditional
software, OOS projects have different quality levels. The developer, or the end-
user, need to know the quality of a given project before starting the collaboration
or its usage—they might of course to trust in the package before taking a decision.
In the context of OSS, trustability is a much more sensible concern; mainly end-
users usually prefer to pay for proprietary software, to feel more confident in the
package quality. OSS projects can be assessed like traditional software packages
using the well known software metrics. In this paper we want to go further and
propose a finer grain process to do such quality analysis, precisely tuned for this
unique development environment. As it is known, along the last years, open source
communities have created their own standards and best practices. Nevertheless, the
classic software metrics do not take into account the best practices established by
the community. We feel that it could be worthwhile to consider this peculiarity as
a complementary source of assessment data. Taking Ruby OSS community and
projects as framework, this paper discusses the role of best practices in measuring
software quality.

Keywords: software metrics, static code analysis, open-source, program compre-
hension

1 Introduction

Nowadays, Open Source Software (OSS) is well disseminated. Thousands of OSS packages
can be found online, and free to download, in Open Source Project Hosting Websites (OSPHW)
like SourceForge1, Google Code2, or GitHub 3. Those websites, usually in conjunction with a
Version Control System (VCS), make it easy for developers, all around the globe, to collaborate
in Open Source Software Projects (OSSP), and also act as a way to make software available to
users.

1 http://sourceforge.net/.
2 http://code.google.com/.
3 https://github.com/.

19 / 32

mailto:miguelregedor@gmail.com
mailto:danieladacruz@di.uminho.pt
mailto:prh@di.uminho.pt
http://sourceforge.net/
http://code.google.com/
https://github.com/

The role of best practices in assessing software quality

According to NetCraft4, the market share for top servers across the million busiest sites was
66.82% for the open source web server, Apache, much higher than the 16.87% for Microsoft
web servers in May 2010. Even governments started noticing open source, during the last few
years, and in some case adopted it[Hah02]. The broad acceptance of OSS means that now OSS
is not only used by computer specialists.

John Powell5 has declared that measuring the savings that people are making in license fees,
the open-source industry is worth 60 billion dollars. Matt Asay6 shares the view that from the
customers perspective open source can be now considered the largest software industry in the
world. The full review can be found at CNET News7.

Usually large industries have a strict organization model, that is not the way open source
communities operates. Open Source communities work in a kind of bazaar style. [RE00]
compares the traditional software development process to built cathedrals, few specialized in-
dividuals working in isolation. While open source development seemed to resemble a great
babbling bazaar. But OSS is not developed, all the time, in bazaar style and each community
can have particular habits. Currently, big open source projects can have companies supporting
them. However, most projects are not that big and sometimes it is hard to distinguish the project
developers from the project customers/users, because of that bug reports and wanted features
can get indistinguishable too. The specification of an open source software project evolves in an
organic way [CM07].

Can software that is developed in such chaotic way be trusted as a high quality product? The
shock is that in fact the bazaar style seemed to work [HS02]. Some big projects, for instance
Linux distributions such as Ubuntu8, are the proof of it. However, how can the quality of this
software be measured?

The most basic meaning of software quality is commonly recognized as lack of ”bugs”, and
the meeting of the functional requirements. But quality is not simply based on that [GKS+07].
The quality of a software system depends, among other things, on update frequency, quantity
of documentation, test coverage, number and type of its dependencies and good programming
practices. By analysing those parameters a user can make a better choice when picking software
for a specific task [MA07].

When a user/developer finds a new OSSP, for example in GitHub, the things that will most
influence the time needed to have a better understanding of the project, to use, or collaborate in
it, are the quality of the documentation and the source code readability. Although the OSPHWs
provide plenty of useful information about the hosted projects, currently, they do not give a quick
answer to the following questions: Does this project have good documentation? Does the code
follow standards? How similar is it to other projects?

An OSSP is built up from hundreds, sometimes thousands, of files. It can be coded in many
different computer languages. To analyze manually a software project is a very hard and time
consuming task, and not all users have the ability to answer the previous questions by looking at
the source code [CAH03].

4 http://news.netcraft.com/archives/2010/05/14/may 2010 web server survey.html/, accessed on 2010/12/21.
5 John Powell is CEO, President, and Co-founder, Alfresco Software Inc.
6 Matt Asay is chief operating officer at Canonical, the company behind the Ubuntu Linux operating system.
7 http://news.cnet.com/8301-13505 3-9944923-16.html/ accessed on 2010/12/21.
8 http://www.ubuntu.com. Ubuntu is a free & open source operating system.

Proc. OpenCert 2011 20 / 32

http://news.netcraft.com/archives/2010/05/14/may_2010_web_server_survey.html/
http://news.cnet.com/8301-13505_3-9944923-16.html/
http://www.ubuntu.com

However, open source communities are constantly creating and improving their working method-
ologies. And even without noticing, communities create rules and best practices. By following
those best practices, software projects increase their maintainability level.

With that in mind, a system capable of analyzing and measuring a given OSSP, producing
detailed quantitative and qualitative reports about it, would enable users to make better choices
and, of course, developers to further improve the package.

This paper discusses the concept of Quality when addressing an OSSP, and how to measure it
(Section 2) using classic approaches. After that, the notion of best practices is introduced and
the impact of taking their use into account when assessing an OSSPs is explored. To make this
proposal clearer and stronger, Ruby9 community is taken as a starting target (Section 3). At last
but not least, to support our proposal a case-study is shown, in Section 4: seven Ruby OSSP are
measured and compared.

2 Assessing Open Source Software

The simplest operation in science and the lowest level of measurement is classification [Kan02].
By assessing OSS we mean to sort OSS projects into an ordinal scale10 This can be achieved by

defining a ranking system11 and by placing OSS projects into quality categories with respect to
certain quality attributes. First we need to find a way of quantifying those OSS quality attributes.

In software, quality is an abstract concept. It is commonly recognized as lack of ”bugs”, and
the meeting of the functional requirements. However, quality can be perceived and interpreted
differently based on the actual context, objectives and interests of each project. Many software
development companies do monitor costumer satisfaction as a quality index, for instance, IBM
ranks their software products in levels of CUPRIMDSO [Kan02]:

• Capability/Functionality (refers to the software meeting its functional requirements)

• Usability (refers to the required effort to learn, and operate the software)

• Performance/Efficiency (refers to the software performance and resource consumption)

• Reliability (refers to software fault tolerance and recoverability)

• Instalability/Portability (refers to the required effort to install or transfer the software to
another environment)

• Maintainability (refers to the required effort to modify the software)

• Documentation/Information (refers to the coverage and accessibility of the software doc-
umentation)

• Service (refers to the company monitoring and service)
9 Ruby is an open source programming language. Ruby community is relatively young but still very focused on
following best practices.
10 Ordinal scale refers to the measurement operations through which the subjects can be compared in order.
11 Raking system example: to classify a quality attribute, for instance the project documentation, according to its
quality with five, four, three, two or one star.

21 / 32

The role of best practices in assessing software quality

• Overall (refers to an overall classification based on the other attributes)

Almost every big software company have similar quality attributes. ISO/IEC 9126 provides a
framework for the evaluation of software quality (The goal is to achieve quality in use, in other
words, quality from the user perspective) [Bev99] IISO/IEC 912 defines six software quality
attributes:

• Functionality (refers to the software meeting of the functional requirements)

• Reliability (refers to software fault tolerance and recoverability)

• Usability (refers to the required effort to learn, and operate the software)

• Efficiency (refers to the software performance and resource consumption)

• Maintainability (refers to the required effort to modify the software)

• Portability (refers to the required effort to transfer the software to another environment)

Quality attributes have interrelationships. They can be conflictive12 or support13 one another. For
example, the higher the functional complexity of the software, the harder it becomes to achieve
maintainability [Kan02].

Because of the OSP bazaar style and continuous development process, it is intuitive that the
maintainability and documentation attributes have a big influence on the overall quality and
continuous progress of an OSP (maintainability and documentation have support relationships
with usability, reliability and availability attributes, but might be conflictive with functionality
and performance attributes).

Failure to meet functionality often leads to late changes and increased costs in the develop-
ment process. The software industry and researchers have been mostly interested on testing
methodologies that focus on functional requirements and pay little attention to non-functional
requirements [CP09].

There are several challenges and difficulties, in assessing non-functional quality attributes
for software projects. For example, security is a non-functional requirement that needs to be
addressed in every software project. Therefore a badly-written software may be functional, but
subject to buffer overflow attacks. Another example is the amount of codebase comments, if the
code does not have any comments it will not affect the functional requirements, but it is obvious
that it will decrease readability and maintainability [GKS+07].

2.1 Classic Software Metrics

To classify OSS with regards to a certain quality attribute, we need to find which factors influence
it. Then we need a way to measure that attribute. If we need to measure we need metrics.

Fortunately, there are around two thousand documented software metrics, but there is few
information on how those metrics relate to each other. Most of them simply have different
names but give similar information [FN99]. The major challenge is to discover how important
12 Conflictive, negative influence, if one attribute is high it makes the other one low.
13 Support, positive influence, if one attribute is high it makes the other one high too.

Proc. OpenCert 2011 22 / 32

the information given by those metrics is, if the calculation effort pays off, how to interpret their
values and find correlations14 to assess the quality attributes of an OSP.

2.1.1 Lines of Code

A line of code is any line of program text that is not a comment or blank line, regardless of
the number of statements or fragments of statements in the line. This specifically includes
all lines containing program headers, declarations, and executable and non-executable state-
ments [CDS86].

2.1.2 Cyclomatic Complexity

The measurement of cyclomatic complexity [McC76] was designed to indicate a program’s testa-
bility and maintainability. It is the classical graph theory cyclomatic number, indicating the
number of regions in a graph. As applied to software, it directly measures the number of linearly
independent paths through a program source code.

2.1.3 Fan-In and Fan-Out

Fan-in and fan-out are perhaps the most common design structure metrics, which are based on
the ideas of coupling [YC79]:

• Fan-in is a count of the modules that call a given module

• Fan-out is a count of modules that are called by a given module

In general, modules with a large fan-in are relatively small and simple, and are usually located
at the lower layers of the design structure. In contrast, modules that are large and complex
are likely to have a small fan-in. There is also the theory that high fan-outs represent a high
number of method calls and thus are undesirable, while high fan-ins represent a high level of
reuse [WLCR07].

2.1.4 Object-Oriented Metrics

Classes and methods are the basic constructs of OO technology. The amount of function provided
by an OO software can be estimated based on the number of identified classes and methods or
their variants. Therefore, it is natural that the basic OO metrics are related to classes, methods
and their size.

The pertinent question therefore is what should the optimum value be for OO metrics. There
may not be one correct answer, but based on his experience in OO software development, Lorenz
proposed eleven metrics as OO design metrics called rules of thumb [LK94].

• Average Method Size (LOC): Should be less than 8 LOC for Smalltalk and 24 LOC for
C++

14 Correlation is probably the most widely used statistical method to assess relationships among observational
data [Kan02].

23 / 32

The role of best practices in assessing software quality

• Average Number of Methods per Class: Should be less than 20. Bigger averages indicate
too much responsibility in too few classes.

• Average Number of Instance Variables per Class: Should be less than 6. More instance
variables indicate that one class is doing more than it should.

• Class Hierarchy Nesting Level (Depth of Inheritance Tree, DIT): Should be less than 6,
starting from the framework classes or the root class.

• Number of Class/Class Relationships in Each Subsystem: Should be relatively high. This
item relates to high cohesion of classes in the same subsystem. If one or more classes in
a subsystem don’t interact with many of the other classes, they might be better placed in
another subsystem.

• Average Number of Comment Lines (per Method): Should be greater than 1.

3 Best Practices in OSSP development

Open source communities have a tendency to create coding standards. It is a natural and evolutive
process. Standards are not rules but instead best practices that are spread through the community
and everybody does it that way. Furthermore, best practices discourage:

• Poor performance (due to bad patterns)

• Poor error checking (defensive programming)

• Inconsistent exception handling / Maintainability (long-term quality)

When a developer follows the standards and best practices, the project maintainability is in-
creased. Consequently, project new comers will find it easier to understand the project code-
base [Dro02].

However, there is little work done concerned with measuring coding standards by automatic
analyzing source code. A plausible explanation for that is the fact that best practices are not a set
of immutable rules, they are a continuous evolution and improvement of development method-
ologies. Communities are constantly creating rules and best practices, even without noticing it.
It is not possible to write down a list of best practices without some ambiguities. Nevertheless,
it is still possible, to use metrics on the source code and, by analyzing their values, to find hints
to help answering weather some methodological approaches were taken into account during the
project development process.

At first glance, best practices metrics are for classic metrics as natural as medicine is for sci-
ence. But, it is not the case. In fact, classic metrics, on their own, do not give much information
about a project. In many cases, best practices can be the key to understand what should be the
optimum value for a classic metric, for instance, how many lines of code should a ruby method
have?

Of course, those questions are subjective. However by analyzing renowned projects, develop-
ers opinions and so on, it is possible to find the best practice and that gives a plausible answer to
the optimum value.

Proc. OpenCert 2011 24 / 32

We believe that, actually, best practices can give a meaning to metrics.

3.1 Best Practices in RoR Projects

Ruby is a dynamic, object oriented, open source programming language created by Yukihiro
Matsumoto and public released in 1995. It has an elegant syntax that is natural to read and easy
to write. Ruby has drawn devoted coders worldwide. In 2006, Ruby achieved mass acceptance.
Moreover, the web framework Ruby on Rails is considered the biggest responsible for Ruby
popularity (tens of thousands of Rails applications are online).

Ruby and Ruby on Rails community members are, in general, addicted to best practices.
However, in reality, many of those best practices are studied development methodologies. For
instance, the majority of Ruby on Rails book authors speak about automated tests, written using
specific DSLs, like Cucumber or Rspec. It is also common to associate Ruby on Rails with
Behaviour Driven Development (BDD) and Agile methodologies.

Because of all this, the ruby community has great potential to be a starting point to understand
the role of best practices, its benefits and how to measure it. In fact, there is already some work
done.

The web site Rails Best Practices15, works in similar way to a web forum and its objective is
to engage developers to discuss which practices should be considered best practices to follow,
when building a RoR web application. The community involved with this web site is committed
to build a gem16 that produces a report about a given project.

3.2 Ruby Best Practices Examples

But what is is a best practice after all? Best practices can be related to code formatting:

• Use two spaces to indent code and no tabs, it is a matter of taste but every worthy ruby
developer do it that way.

• Remove trailing whitespace, trailing whitespace makes noises in version control systems.

Can be related to syntax:

• Avoid return where not required.

• Suppress superfluous parentheses, when calling methods, but keep them when calling
f̈unctions(̈when you use the return value in the same line).

Can be related to naming:

• Use snake case for methods.

15 http://www.rails-bestpractices.com/ is a web site created by Richard Huang, it was inspired by Wen-Tien Chang
talk given at Kungfu RailsConf 2009 in Shanghai. Slides can be found here http://www.slideshare.net/ihower/
rails-best-practices.
16 Ruby Libraries are called gems. Ruby gems can be easily managed using rubygems (rubygems is for Ruby as
aptitude is for Debian or cpan for perl).

25 / 32

http://www.rails-bestpractices.com/
http://www.slideshare.net/ihower/rails-best-practices
http://www.slideshare.net/ihower/rails-best-practices

The role of best practices in assessing software quality

• Other method naming conventions: Use map over collect, find over detect, find all over
select, size over length.

And can also be specific to a framework, rails best practices:

• Law of Demeter, A model should only talk to its immediate association.

• Move code into controller, according to MVC architecture, there should not be logic codes
in view.

• Isolate seed data, do not insert seed data during migrations, a rake task17 can be used
instead.

• Do not use default route, When using a RESTful design. The default RoR routes can cause
a security problems.

• Replace Complex Creation with Factory Method, Sometimes you will build a complex
model with params, current user and other logics in controller, but it makes your controller
too big, you should move them into model with a factory method.

4 Assessing Ruby on Rails Projects

After deciding that some procedure is a best practice, it would be handy to find a way to au-
tomatically verify whether that practice is being followed by the developers of a given project.
With that in mind, an open source ruby gem was created (by the authors of Rails best practices
web site) with the objective of automatically producing a report that shows where, in the source
code, a project is failing to obey to consensual practices. At the moment of writing, this gem can
check for 28 kinds of best practices (from the 70 described in that web site).

However, one of the first things that we have noticed when we have applied this gem to OSS
projects, is that the biggest and most renown projects have much more errors than the smaller and
unknown projects. This nonsense has a simple interpretation. Small projects (like the majority
of RoR projects found in github) are simple software packages, often developed by a single user.
These applications are so simple that many times the code is almost entirely created by RoR code
generators. Usually, when code is not written by humans, it has few mistakes concerning those
recommendations.

4.1 First Study

Having taken the above into account, we decided to run the rails best practices gem on similar
RoR (Ruby on Rails) projects. Seven time tracking or project management open source systems
were chosen. After running the gem and counting not best practices (NBPs)18 occurrences, the
following results were obtained:
17 Rakefiles work in similar way to Makefiles but are written in ruby. It is a simple way to write code to automate
repetitive tasks.
18 In fact, Rails best practices gem does not find best practices in the source code. It does the opposite, it discovers
when the code is not written according to a best practice, in other words, it identifies bad practices (similar to the
detection of code smells). We decided to name those occurrences NBP.

Proc. OpenCert 2011 26 / 32

Rails Best Practices Results
Best Practice A B C D F G H
aAdd model virtual attribute - 2 7 - - 5 4
Always add db index - - - 43 - - 51
Isolate seed data - - - - - 79 17
Law of demeter 20 38 45 6 30 164 85
Move code into controller - - - - 2 - 4
Move code into model - 26 - 7 1 3 19
Move model logic into model - - 76 11 11 98 100
Move finder to named scope - 4 9 2 4 25 -
Needless deep nesting - - - 1 - - -
Not use default root - 1 1 - 1 1 1
Notes use query attribute - 2 - - - - -
Overuse route customizations - - 2 4 - 2 2
Remove trailing whitespace 68 57 126 110 330 316 100
Use factory method - 15 9 5 1 8 19
Replace instance var with local var 13 - 70 239 142 31 100
Use before filter - 7 9 8 8 19 23
Wrong email content type - 3 - - - - -
Use query attribute - - 11 5 8 29 6
Use say with time in migrations - - 24 - 10 23 56
Use scopes access - - - - - - 04
User model association - - 12 9 - 1 21
Keep finders on their own model 8 4 1 - 11 - -
Total 109 156 402 450 559 834 864

A: Rubytime , B: Notes , C: Tracks , D: Handy Ant , F: Retrospectiva , G: Redmine , H:
Clockingit
Figures shown represent the number of times a project do not follow a best practice; is
expected that smaller the number, better the project.

Table 1: Results obtained by running the best practices analyzer gem on the 7 Open Source
Projects chosen (data produced on April, 2011).

Rubytime seems to have the best results and Clockingit the worst. The fact is that very good
user reviews can be found about Rubytime. However, Tracks obtained an unexpected high score,
since it has been very sparsely maintained (old code has higher probability of not following the
current best practices). As explained before, those values are not really measuring if a project
follows best practices but instead measuring when it fails. This should also be taken into consid-
eration.

The most evident problem here is that best practices are not being weighted and neither the
size of the project considered. For instance, if the developers have the habit of leaving trailing
white spaces, the occurrences of this will obviously be related to the size of the project. On the
other hand, it is a best practice to remove the default route generated by rails, independently of
the project size this is true or false, there is no way to leave the route two times. So, if developers
do not take into account those two best practices, when the project grows, the number of trailing
spaces will increase and the results will show more NBPs, but the other one will always be only
one NBP. Because of that we can get twisted results.

To avoid this, the projects were sized. The size attribute is based on the quantity of models and
controllers in the project. After that, we divided the values previously obtained by the project
size. By doing that, a new set of results emerge.

27 / 32

The role of best practices in assessing software quality

Rails Best Practices Results
Best Practice A B C D F G H
Total 109 156 402 450 559 834 864
Total Without Trailing Whitespace 41 99 276 340 229 518 764
Project Size 12 11 11 29 26 58 31
Total / Project Size 9 14 37 16 23 15 28
Total Without Trailing Whitespace / Project Size 3 9 25 12 9 9 25

A: Rubytime. , B: Notes , C: Tracks , D: Handy Ant , F: Retrospectiva , G: Redmine , H: Clockingit

Table 2: Results obtained by running the best practices analyzer gem on the 7 Open Source
Projects chosen, after normalization (data produced on April, 2011).

Those results are much more likely to be helpful in terms of understanding if a project is or
is not following best practices. The numbers reflect both the community reviews and our own
estimates much more.

4.2 Second Study

After the first study reported above, we felt that it was time to make a bigger one; we should
repeat the experiment over a larger sample. In addition, there was the need to define an objective
quality metric to compare the metrics results with. As a second target for this new phase, it was
decide to find an objective quality rate (a reputation ranking) for each project in the sample, to
be possible to compare with the results computed for the best practices metrics.

For the second study, we selected 40 Ruby on Rails projects hosted in github and decided
to consider the number of followers19 and forks20, that each project has on github, as a project
reputation metric.

The objective was to prove that a negative correlation exists, between the NBPs of a project
and its followers and forks.

The previous study has shown us the need to apply different weights to each NBP. By diving
the NBPs by the project size, in the first study, seemed like we got better results. However, not
all NBPs depend on the project size. Therefore, we altered the rails best practices gem to make
it possible to know how much project files were analyzed by each rails best practice checker.

Basically, after collecting the GitHub URLs for each project, we followed the next steps:

• Retrieve GitHub information, in this step we get the followers and forks(and more info
that might be used in further analyses).

• Download the project repository.

• Run rails best practices gems, at this point, we get the non weighted NBPs and files given
by each one of the 29 checkers.

• Calculate the Weighted Global NBPs, the evaluation algorithm consists in dividing the
value returned by each NBP checker by the number of files checked and, then sum it.

19 Number of users that want to receive notifications about the project.
20 Number of people that forked the project. This means that either they want to contribute to the project or create a
derived project

Proc. OpenCert 2011 28 / 32

Next, an excerpt of the obtained table is shown:

Rails Best Practices Results
Projects Forks Watchers C1 C1 F. W. C1 C2 C2 F. W. C1 ... T. NBPs W. T. NBPs
Rails Admin 30 2478 0 141 0 0 37 0 ... 50 739
Rubytime 12 82 24 161 149 0 134 0 ... 146 1334
Redmine 30 1781 49 996 49 1 362 2 ... 884 1402
BrowserCMS 30 784 11 234 47 0 216 0 ... 268 1510
Tracks 17 87 46 842 54 15 271 55 ... 569 2810
...

C(x): The rails best practices gem has 29 checkers(when this study was carried), each one tries to find occurrences of a
different nbp in the project.
C(x) Files: The number of files in the project, where it tried to find nbps (for instance, some checkers may only be concerned
with html files, some other checker nbps my only occur in model files, etc)
W. C(x): Weighted C(x) = C(X) / C(x)Files * 1000 (A really small number is added to each variable to avoid divisions by
zero).

Table 3: Results obtained by running the best practices analyzer gem on the 40 Open Source
Projects chosen, from GitHub (data produced on April, 2011). The full table can be found at
www.bestpracticesstudy.gorgeouscode.com

4.3 Results

After building a table containing the results for the 40 projects, we easily found correlations be-
tween columns. We discovered that the average correlation index, for the weighted C(x) columns,
is -0.2. Only three of the weighted C(x) columns do not have negative correlation. This is quite
good, considering the fact that there is an explanation for it. Those three checkers (without nega-
tive correlation) aimed at finding NBPs that almost non of the projects were committing, so there
is no correlation.

The most important results are in the next table:

Correlations
Total NBPs Total Weighted NBPs

Forks 0.14 -0.53
Watchers 0.07 -0.40

Table 4: The full table can be found at www.bestpracticesstudy.gorgeouscode.com

These correlation indexes show that if we just count the nbps there is no relation between them
and the number of forks and watchers. Nevertheless, the Weighted NBPs have a quite perceptible
negative correlation both with watchers and forks.

Observing that Table, it is possible to notice that the forks correlation is bigger. We believe
that if it happens, it is because forking a project shows intensions of digging into the code and,
of course, it easier to understand others code when it follows good practices.

As future work, we are considering more correlations with other variables that are already
available, but we haven’t used yet. The most relevant ones: the number of commiters, starting
date of the project, last commit data, and total number of commits. We believe that those vari-

29 / 32

The role of best practices in assessing software quality

ables can strongly be related with the forks, watchers and of course, in the end, the quality of the
project.

5 Conclusion

Nowadays, thousands of open-source software packages can be found and freely downloaded
online. github is a web-based hosting service for projects that use the Git revision control system.
It hosts more than 1 million open-source projects.

There is little work done concerning the measurement of coding standards by automatic an-
alyzing source code. We strongly believe that some research and development should be done
in this direction. Along the paper we gave arguments in order to make evident that it is worth-
while to detect on the source code that the author follows the best practices recommended by the
respective community.

In this particular context, Ruby Community, there is already some work done. The reports
generated by the existent source code analyzers, can spot the occurrences of bad smells but this
is not enough. There is the need to interpret those results to end up with a high level quality
statement. By comparing some projects, it was possible to start understanding how to interpret
those values. For instance, the size of the project should be taken into consideration (it is intuitive
that a project with 10 lines of code and 10 errors is worse than a project with 1000 and 20 errors).
From the study we carried out and, described in the paper, we also have learned that each best
practice has a different importance level — 1 error that affects security or performance is, for
sure, worse than 10 errors related to indentation; or 10 errors related to naming conventions are
worse than the indentation mistakes).

We do believe that by analyzing a massive amount of open source projects, it is possible to
create a new set of metrics capable of quantify the standards followed by a given project, judge
the impact of the metrics evaluated and consequently assess its level of maintainability.

The future work is to develop a system capable of automatically produce quality reports about
a given OSSP combining traditional SW metrics with best practices analysis.

This system will enable users to make better choices about what software to use and help
developers to improve their software.

Proc. OpenCert 2011 30 / 32

Bibliography

[Bev99] N. Bevan. Quality in use: meeting user needs for quality. Journal of Systems and
Software 49(1):89–96, 1999.

[CAH03] Defining open source software project success. 2003.

[CDS86] S. Conte, H. Dunsmore, Y. Shen. Software engineering metrics and models. 1986.

[CM07] A. Capiluppi, M. Michlmayr. From the Cathedral to the Bazaar: An Empirical Study
of the Lifecycle of Volunteer Community Projects. INTERNATIONAL FEDERA-
TION FOR INFORMATION PROCESSING -PUBLICATIONS- IFIP 234/2007:31–
44, 2007.

[CP09] L. Chung, J. do Prado Leite. On non-functional requirements in software engineer-
ing. Conceptual Modeling: Foundations and Applications, pp. 363–379, 2009.

[Dro02] R. Dromey. A model for software product quality. Software Engineering, IEEE
Transactions on 21(2):146–162, 2002.

[FN99] N. Fenton, M. Neil. Software metrics: successes, failures and new directions. Jour-
nal of Systems and Software 47(2-3):149–157, 1999.

[GKS+07] Software quality assessment of open source software. Athens University of Eco-
nomics and Business, Patission 76, Athens, Greece, 2007.

[Hah02] R. Hahn. Government policy toward open source software. Brookings Institution
Press, Washington, DC, USA, 2002.

[HS02] High quality and open source software practices. 2002.

[Kan02] S. Kan. Metrics and models in software quality engineering. Addison-Wesley Long-
man Publishing Co., Inc. Boston, MA, USA, 2002.

[LK94] M. Lorenz, J. Kidd. Object-oriented software metrics: a practical guide. 1994.

[MA07] A. Marchenko, P. Abrahamsson. Predicting software defect density: a case study
on automated static code analysis. Agile Processes in Software Engineering and
Extreme Programming 4536/2007:137–140, 2007.

[McC76] T. McCabe. A complexity measure. IEEE Transactions on software Engineering,
pp. 308–320, 1976.

[RE00] E. Raymond, T. Enterprises. The Cathedral and the Bazaar. KNOWLEDGE, TECH-
NOLOGY AND POLICY 12:1–35, 2000.

31 / 32

The role of best practices in assessing software quality

[WLCR07] Y. Wang, Q. Li, P. Chen, C. Ren. Dynamic fan-in and fan-out metrics for program
comprehension. Journal of Shanghai University (English Edition) 11(5):474–479,
2007.

[YC79] E. Yourdon, L. Constantine. Structured design. Fundamentals of a discipline of com-
puter program and systems design. 1979.

Proc. OpenCert 2011 32 / 32

Quality, success, communication and contribution in Open Source
Software

Sara Fernandes0

1sarasantos.fernandes@gmail.com
HASLab / INESC TEC , University of Minho

Abstract: Free and open source software projects are often perceived to be of high
quality. To a great extent the success of open source software seems to be due
to an implicit but effective connection between communication and contribution in
its development process. In this paper, we present a snapshot of the state the art
on quality and success of Open Source Software (OSS) based on a review of the
literature. For each of these concepts, we describe various measures considered in
the literature and a number of methods by which they are obtained. Contributions to
an Open Source Software (OSS) project are made through communication among
developers and users. We elaborate on the concrete notions of communication and
contribution in Open Source Software (OSS) and their links.

Keywords: Open Source Software, Quality, Success, Communication, Contribution

1 Introduction

To study the properties of Open Source Software (OSS), we need to consider this phenomenon
as a process, both technical and social, not just its end product. The development of open source
software is inseparable from the communities that engage in its development. This suggests that
a suitable model to study the properties of OSS may be based on the models for Information
Systems (IS). Silver et al. defined IS as follows: “Information systems are implemented within
an organization for the purpose of improving the effectiveness and efficiency of that organization.
Capabilities of the information system and characteristics of the organization, its work systems,
its people, and its development and implementation methodologies together determine the extent
to which that purpose is achieved”.

Open source software is very often developed in a public, collaborative manner. The qualifier
“collaborative” designates a style of software development whose focus is on public availability
and communication, mainly via the internet. The collaborative aspect of OSS development is
similar to the one used on an IS.

An IS is any combination of information technology and people’s activities using that technol-
ogy to support operations, management, and decision making. This combination is collaborative
and somehow close to the one used on OSS development.

Regarding OSS development as an IS allows us to apply the existing models of information
systems success (DeLone and McLean Model) to predict potential success measures for OSS
projects. However, OSS projects and IS also differ in significant ways. This makes a number
of the predictive measures for the success of IS unsuitable for OSS, while others are difficult to
apply in OSS environments.

33 / 42

mailto:sarasantos.fernandes@gmail.com

Quality, success, communication and contribution in Open Source Software

Many of the predictive measures for the success of IS are based on a vision of system devel-
opment in an organization that is at the core of an IS. This however does not take into account
the unique characteristics of the OSS development environment, embodied in OSS communities.
Free open source projects are carried out by volunteers that are members of a OSS community.
Due to the free commitment to contribute to the development of any OSS product, the contribu-
tions of the volunteers aren’t always reliable since volunteers may stop carrying out their duties
for a long period of time or, in some cases, never return to them. Also the distributed character-
istic of the OSS project makes it impossible to gather all the volunteers at the same time[Mic04].

In this paper, we propose to apply a version of DeLone’s model, modified to accommodate
what distinguishes OSS projects from IS, to predict the success of OSS projects.

Despite of the similarities and differences between OSS projects and IS, OSS projects can
be seen as organizations. It is necessary to think of an OSS community as an organization, to
make it possible to apply the measures of success of IS in the model of DeLone and McLean
to OSS projects, taking into consideration the fact that there can be more categories/dimensions
than the ones presented in the original model. OSS can be seen as an organization but it emerges
organically bottom up, as opposed to the top down created-by-design structures of traditional
organization where information systems have been studied. Because they are organic and self-
organizing, and rely on motivated volunteers, some measures and factors that are relevant for
their categorization are different than those for the case of traditional IS.

Open Source Software (OSS) projects are often thought of having the unique characteristic
of being developed by volunteers and are perceived to have higher quality. Much attention has
been paid to the implications of development by motivated volunteers. In this paper we clarify
the concepts of quality, success, contribution, and identify a number of characteristics of com-
munication in OSS projects. We also identify measures that can be applied to assess the quality
and success of an OSS product and the distribution of contribution and communication on the
development of high quality and successful OSS projects and products. Our goal is to consider
different measures of these four properties and to establish relationships between them.

The remainder of this paper is organized as follow. In Section 1 we present the research con-
text. In Section 2, we briefly review the literature on relevant measures for software quality and
success in OSS products. Section 3, reviews the literature on communication and contribution in
OSS projects, and describes the properties used in the literature to measure communication and
contribution. In Section 4, we discuss possible links between the concepts presented in Sections
2 and 3, resorting to the DeLone and McLean Model of IS Success. Based only on the litera-
ture, this comparison suggests additional measures that may be incorporated in the development
of successful and quality OSS. We conclude in Section 5, by suggesting directions for future
research.

2 Research Context

Open Source Software (OSS) plays an increasingly important role in our society. Consequently,
it is necessary for OSS to have and maintain a suitable level of quality to justify third-party
confidence on its products. Both of these factors (quality and success) are influenced by the fact
that OSS allows users and developers to have access to the source code that is developed under

Proc. OpenCert 2011 34 / 42

some sort of ”open source” license. There are different forms of licenses[UPO11] for OSS that
grant substantially different rights to their users. However, we will not discuss the OSS licensees
in this paper. In order to have OSS (and/or Free Software)[Per04] that is not only successful but
also has quality and impact in the society, it is necessary to understand not only how success
and quality can be measured, but also the physical distribution of contributors/developers, the
distribution of the contributions made by the developers and users, and certain characteristics of
communication that takes place in the OSS development process.

One of the most quoted papers on the phenomena of OSS, is ”The Cathedral and the Bazaar”
[Ray99] by Eric Raymond. The paper claims that the OSS process is marked by volunteerism,
collaboration, and a lack of project structure. It recalls that the development progress depends
on the developers free time and because of it, there is no release schedule. Often, there is only an
outline of features. And in the limit, the end user ensures quality. Obviously, many OSS projects
involve not only volunteers; big companies put their paid employees to work on OSS as well.
Companies such as IBM and Sun Microsystems have entire divisions devoted solely to Open
Source Projects. Also, many serious OSS projects do have release schedules, testing, etc., often
adhered to even more strictly than in many non-OSS projects. Although this model characterizes
the nature of an OSS community and OSS project development, the increasing role of OSS in
our society requires more. It is necessary to take into consideration that OSS is a form of system
development and to find ways that measure quality, success, contribution and also the impact of
communication between developers and users.

Since OSS development can be defined as a form of information system development, the
study of the success measures of an IS becomes relevant.

Our starting point is the fact of OSS being somehow more like IS than traditional software
development. Due to the looser structure of OSS projects, the roles of people and the OSS
community are very important. An OSS project can be seen as an organization, that emerges
organically bottom up, as opposed to the top down created-by-design structures of traditional
organizations where in information systems have been studied. It can also be seen as an open
democratic society, were the role of the individuals and the role of the community are very
significant in contrast to the pre-established structures in the traditional software development
projects. The similarity of OSS projects to IS suggests that we may use the success measures
proposed for IS to predict the success of OSS projects.

One of the most cited models of success in IS, shown in Figure 1, is the one developed by
DeLone and McLean in [DM92], [CAH03].

The model in Figure 1, provides a schema for clarifying a multitude of measures into six
categories, or dimensions, suggesting a model of temporal and causal interdependencies between
these categories. DeLone and McLean conclude their paper with the comment that the model in
Figure 1 ‘clearly needs further development and validation before it could serve as a basis for
the selection of appropriate IS success measures”.

The model can be interpreted as follows:
Systems quality and information quality singularly and jointly affect both use and user satis-

faction. Additionally, the amount of use can affect the degree of user satisfaction positively or
negatively – as well as the other way around. Use and user satisfaction are direct antecedents of
individual impact; and lastly this impact on individual performance will eventually have some
organizational impact (DeLone and McLean, 1992: 83-87).

35 / 42

Quality, success, communication and contribution in Open Source Software

Figure 1: DeLone and McLean’s Model of IS Success

But IS is any combination of information technology and people’s activities. In traditional
software projects, the structures and goals, budgets, schedules, etc., are set more strictly before
hand. Thus, aside from the technical competence of the people involved, the ”people” involved
do not matter that much. The structures do not leave much room for their individuality to change
the process or the outcome. In OSS projects, all structures are much looser. Therefore, the
characteristics of the individuals, their personal motivations, personalities, goals, etc., play a
much more important role in the development process. Actually, we believe that the emphasis
of IS on people and their interactions with the software is their contact point with OSS projects.
OSS is free, is open source, is built by volunteers and it allows heterogeneous teams. On the other
hand traditional software must be paid, its source is closed, is built by the company employees
and has a stable development team. Also, and as in IS, an OSS community needs to coordinate
development: for example, there is the need for management to know wether each volunteer
knows what to do and all this requires decision making.

Considering an OSS project as an IS with particular characteristics, we believe that the DeLone
and McLean model fits our purpose to predict the success of OSS projects.

3 Measures for Quality and Success in OSS

Abandoned projects may find an explanation in the volunteers that find more interesting projects
but also the successful projects face important problems related to quality due to the not always
reliable contribution of volunteers [Mic04]. Also, it must be taken into consideration that OSS
communities seek newly and this fact also reflects on the web hosting services. Note that it
is possible to find abandoned projects on SourceForge that are active on GitHub or other web
hosting.

Many quality problems have been identified in interviews performed in free software commu-
nities [VMT07]. Analysis of web hosting for OSS, such as GitHub or SourceForge also provide
useful insight. SourceForge is one of the most popular hosting sites for free software with over
313,000 projects. It is not only a good resource to find well maintained projects, but also to find
out a large number of abandoned projects and low quality code.

The most common problems identified are the unsupported code, configuration management,

Proc. OpenCert 2011 36 / 42

security updates and users that do not know how to report bugs.

• unsupported code affects quality. Note that it is impossible to know how to handle code
that has previously been contributed but it is now unmaintained;

• configuration management affects quality depending on the number of contributions. It is
difficult for the lead developer to test all contributions;

• security updates affects quality since, although some bugs are fixed there isn’t any schedule
to make the fixes available;

• users who sometimes do not know how to report a bug and often fail to include enough
information in bug reports;

All these problems need to be faced and it is necessary to come up with a range of measures
that can attest the quality of an OSS product.

Some say that the quality of OSS can be measured by the number of users and the code quality.
Actually, in the book “The Cathedral and the Bazaar” [Ray99], Raymond suggests that the level
of quality is partly due to the high degree of peer review and user involvement often found in
free software projects.

Code quality has been studied extensively in software engineering. Literature provides many
possible measures of the quality of software. This includes understandability, completeness,
conciseness, portability, maintainability, testability, usability, reliability, structuredness and effi-
ciency, etc (Boehm et al. 1976; Gorton and Liu 2002). Code quality measures seem particularly
applicable on OSS, since source code is available by definition. Some authors have already stud-
ied this dimension, Stamelos et al (2002) believe that OSS is, in general, of good quality. Mishra
(2002) offers an analytic model that suggests factors contributing to OSS quality.

Based only on the literature review, we present what we consider the most relevant measures
for OSS success[CAH03]: User, Product, Development Process, Developers, Use, Recognition

and Influence.

• user who have the possibility to change the software to satisfy her needs. Moreover, some
users feel involved in the development process through mailing lists or bug reports or other
forms of communication with the development team. However, sometimes inconsistency
is observed in open source software mainly due to ”short feedback loops between users
and core developers” [RCA11], [PYM+06]. Users feel that frequent beta versions of the
software frustrates some of their expectations. However, the satisfaction of users / clients
increases while they feel involved in the development of new releases.

• product, whose key success issues are the degree of meeting requirements of design, the
code structure organized, clear and maintainable documentation. These aspects are also
related to the code quality. A final product with quality has a higher probability to achieve
success. Also code quality may be measured by its portability and compatibility with other
systems and programs, as mentioned previously. Moreover, if an OSS product is available
from more then one source, then the probability of reaching a bigger number of users
increase;

37 / 42

Quality, success, communication and contribution in Open Source Software

• process which is complex and requires a high level of activity in the form of fixing bugs,
writing, updates, etc. Developers must always work having in mind the goals of the project.
Also, after a beta release, it is important to keep track of all bugs and fix them in a rea-
sonable time. Moreover, the level of activity of a product is also a measure of the time the
group has been active;

• developers, that are the main contributors of OSS. The OSS community of developers
has the particular aspect of sharing their developers among several projects. This give
each project more opportunities to succeed due to the different background and different
expertise behind the contributions; just like users, developers also need to feel satisfaction
for innovating. This also gives them the opportunity to enjoy the process of development;

• use. Ultimately, success can be measured by the effective use of a certain OSS product.
The usage can be measured by the number of users, besides the developers, that use an
OSS product and the number of downloads it gets;

• recognition, by the peers is also a way to measure success. If other projects or organiza-
tions pay attention and recognize the importance of a product then it is more likely that
they will refer to it at some point;

• influence. Since OSS code is free, the degree of code re-use in other projects can be
considered as a measure of success.

4 Communication and Contribution in OSS

It is clear that the OSS phenomena is mainly driven by the developers communities. Although
OSS projects differ amongst themselves, for example, in their size, also the communities differ
in levels participation in coding and communication. Actually, communication and contribution
also depend on having suitable strategies. These strategies have a number of dependencies that
can be measured.

We believe that communication and contribution play an important role in OSS development.
Researches who have studied the OSS phenomena and OSS projects have largely focused their

attentions on contributions of code and the overall contribution itself. However, in addition to
contribution, we believe that also communication plays a relevant role during OSS development.
Communication in OSS also contributes to knowledge, sharing and collective innovation.

As mentioned on Section 2, OSS proponents have argued that the strengths of the OSS phe-
nomenon are associated with the bazaar model of full participation from large numbers of de-
velopers and users [Ray99]. This argument is based on the rationale that a highly participative
community may lead to richer discussions, better flow of ideas, efficient code development,
faster bug finding and fixing and, hence, faster and efficient project growth [A.C98], [Ray99],
[VMT07]. However, empirical studies have found that the numbers of contributors / develop-
ers by themselves are not a sufficient factor to sustain the bazaar view of OSS projects. A.Cox
[A.C98], a senior developer of Linux, argues that “the bazaar model may turn into a “town coun-
cil” where equally participative community produces only noise and hence no output” damaging

Proc. OpenCert 2011 38 / 42

communication. He further claims that “such a bazaar - town council model may slow down the
evolution of a project...”.

These different points of view raise the importance of communication as well as contribution
in OSS development. The impact of non- existing communication and chaotic contribution may
destroy a functional democratic OSS community and create an anarchic one compromising OSS
success and quality. Existing literature suggests measures for communication and contribution.
As far as communication is concerned stable releases, participation, interactivity and release

strategy are considered measures.

• Software stable releases are considered a communication measure even if some authors
hold that an OSS project never leaves the Beta state. Stable releases may be considered
a measure of communication since new releases typically bring in new users, i.e., the
number of downloads should increase compared to previous releases. Also, the release
notes improve communication between developers and users, which helps to boost the
testing function shared by users;

• Participation in developing, testing and use is also an obvious measure;

• Communication interactivity is expected to have a positive impact on OSS development. It
is believed that a good, interactive communication between developers leads to successful
and quality products;

• Release strategy, under the typical OSS slogan “release often and release fast”. The ad-
vantage of using this mechanism is to provide the necessary feedback to understand if the
approach followed in a project is the best.

For contribution, the existing literature suggests the following measures:

• Development time, i.e., the length of time between the inception date of the project and the
release date of the identified stable release;

• Code contribution, taking into account that there are different ways to contribute to an
OSS project, and that this should somehow be recorded;

• Number of developers, although there is no agreement if the number of developers is a
measure of real contribution and successful communication in an OSS project, we will
consider it as a measure;

• Project size, which may determine the effectiveness of an OSS project. The smaller the
project the easier it is to control the constant changes that occur during its development.

5 Quality, Success, Communication and Contribution on OSS

We began by using the information system model of DeLone and McLean[DM92]. Through
this model, we present the relationship between quality and success. However, this model is not
clear enough to further explore the effects of contribution and communication and their impact
on quality and success.

39 / 42

Quality, success, communication and contribution in Open Source Software

Although some authors, as in “The cathedral and The Bazaar” emphasize the importance of
the number of contributors, one cannot analyze only the numbers of users and developers to say
that an OSS project has quality and is successful. There is a lack of empirical data to sustain this
statement. On the other hand, appearance of these statements in the literature suggests a strong
relationship between quality and success in OSS projects.

But, how to link Quality, Success, Contribution and Communication? Do we need another
model or is it enough to extend an existing one?

It turns out that, having measures for the four concepts defined, makes it possible to determine
a relationship between quality, contribution, communication and success by extending the De-
Lone and McLean model to include contributors and communication. In section 2, quality and
success were presented together because many believe that quality by itself entails a successful
product. This is true but also the communication and contribution aspects must be considered.
An OSS can be successful, have relatively good quality but, if it lacks the communication part
then it will not be as successful as wished. Actually, success is not only measured by the number
of contributors that take part in the development team. It is necessary for the developers to be
motivated and develop OSS collaboratively.

Also in section 3, communication and contribution were presented together since, it is our
belief that it is impossible to have quality contribution without communication between contrib-
utors, and in the limit, users.

Communication during OSS development has a fundamental importance and so, we believe
the model proposed by DeLone and McLean[DM92] can be extended to deal explicitly with
communication and contribution:

Figure 2: Extended Information System Model

Figure 2 presents an extended version of the DeLone and McLean model which highlights the
relevance of communication and contribution together for OSS development. Figure 2 aims to
clarify the importance of communication to the contributors in order to develop quality software
and achieve success. The 8 dimensions in Figure 2 are interrelated, as it happens in the DeLone
and McLean model, wherein the 6 categories of success are proposed as interrelated rather than
independent dimensions.

Proc. OpenCert 2011 40 / 42

6 Conclusion and Future Work

Open source software projects demonstrate a number of similarities with traditional informa-
tion systems. However some of their characteristics significantly distinguish them from typical
information systems as traditionally understood. The similarities between OSS projects and in-
formation systems motivate researching the possibilities of extending IS theories to OSS. This
paper makes one such attempt to apply and extend the IS success model of DeLone and McLean
to evaluate the success of OSS projects. We presented the concepts and measures for quality,
success, contribution, and the characteristics of communication, defining a set of measures that
can be used in the analysis of quality and success of OSS projects, augmented with measures
for communication and contribution. We also presented an extended version of the DeLone
and McLean model in order to make clear the relevance of contribution and communication to
achieve quality and success in OSS projects.

DeLone and McLean conclude their paper commenting on the model in Figure 1 as follows:
“clearly it needs further development and validation before it could serve as a basis for the

selection of appropriate Information System success measures”. Our extended model for OSS
projects clearly needs further development and validation before it can serve as a basis for the se-
lection of the appropriate parameters in OSS projects. Nevertheless, we believe that the prospect
of having a model to predict the success and impact of OSS projects has interesting practical
implications. For instance, one can use such a model to assess the potential success of an ongo-
ing OSS project, and subsequently adjust the structure, organization, participants, contributions,
etc., that affect the parameters of the model deliberately, in order to increase the success measure
of the project, before it is too late. As future work, we intend to further develop and validate this
model.

Bibliography

[A.C98] A.Cox. Cathedrals, Bazaars and the Town Council. 1998. http://slashdot.org/.

[CAH03] K. Crowston, H. Annabi, J. Howison. Defining Open Source Software Project Suc-
cess. In in Proceedings of the 24th International Conference on Information Systems

(ICIS 2003. Pp. 327–340. 2003.

[DM92] W. Delone, E. McLean. Information Systems Success: The Quest for the Dependent
Variable. Information Systems Research 3(1):60–95, 1992.

[Mic04] M. Michlmayr. Managing Volunteer Activity in Free Software Projects. In Proceed-

ings of the 2004 USENIX Annual Technical Conference, FREENIX Track. Pp. 93–
102. Boston, USA, 2004.

[Per04] Perry Donham. Ten Rules for Evaluating Open Source Software. 2004. http://
collaborative.ws.

[PYM+06] A. Porter, C. Yilmaz, A. M. Memon, A. S. Krishna, D. C. Schmidt, A. Gokhale.
Techniques and processes for improving the quality and performance of open-source
software. Software Process: Improvement and Practice 11(6):163–176, May 2006.

41 / 42

http://collaborative.ws
http://collaborative.ws

Quality, success, communication and contribution in Open Source Software

[Ray99] E. S. Raymond. The Cathedral and the Bazaar. O’Reilly & Associates, Inc., Se-
bastopol, CA, USA, 1st edition, 1999.

[RCA11] A. Raza, L. Capretz, F. Ahmed. Users’ perception of open source usability: an em-
pirical study. Engineering with Computers, pp. 1–13, May 2011.
doi:10.1007/s00366-011-0222-1
http://dx.doi.org/10.1007/s00366-011-0222-1

[UPO11] UPOSU. User’s perception of open source usability: an empirical study. 2011. http:
//eng.uwo.ca.

[VMT07] P. Vir, S. Ming, F. Y. Tan. An Empirical Investigation of Code Contribution, Commu-
nication Participation, and Release Strategy in Open Source Software Development:
A Conditional Hazard Model Approach. 2007.

Proc. OpenCert 2011 42 / 42

http://dx.doi.org/10.1007/s00366-011-0222-1
http://dx.doi.org/10.1007/s00366-011-0222-1
http://eng.uwo.ca
http://eng.uwo.ca

Analysis of collaboration effectiveness and individuals’ contribution
in FLOSS communities

Antonio Cerone1, Simon Fong2 and Siraj A. Shaikh3

1 antonio@iist.unu.edu,
United Nations University, International Institute for Software Technology

2 ccfong@umac.mo
Department of Computer and Information Science, University of Macau

3 siraj.shaikh@gmail.com
Department of Computing, Coventry University

Abstract: Free/Libre Open Source Software (FLOSS) development has proven it-
self over the years to be able to deliver high-quality software products. However,
it is not clear how quality emerges from the large amount of loosely organised ac-
tivities of a FLOSS community. This makes it difficult to apply traditional quality
metrics and certification processes to FLOSS products.

This paper investigates possible indicators of collaboration effectiveness and qual-
ity of individuals’ contribution that could be extracted from the data available in
repositories of FLOSS projects. The ultimate purpose of this effort is to develop
quantitative metrics for these indicators and merge such metrics into a global metric
for FLOSS software quality to be used in a certification process.

Keywords: Open Source Software, software quality, collaboration models, trust
models, certification.

1 Introduction

Although the high-quality of a number of Free/Libre Open Source Software (FLOSS) products
has been accepted as a fact, it is still unclear how such high-quality emerges from the “bazaar-
style” activitis of a FLOSS community. Large communities of users have been growing around
popular high-quality FLOSS products such as Linux, Ubuntu, Apache, MySQL and Moodle,
among the others. The widespread use of FLOSS products not only involves personal users, who
install Linux/Ubuntu and MySQL on their machines, but also small and medium enterprises, who
use Apache servers and FLOSS tools in their production activities or even incorporate FLOSS
components in their software products, and academic and teaching institutions, who use FLOSS
products in their research and educational activities, including Learning Management Systems
(LMS) such as Moodle. More recently, large software companies have been launching FLOSS
projects with the aim to get revenues by adopting a freemium business model, in which the basic
product or service is provided free of charges, while a premium is charged for the provision of
support services and/or advanced features and functionality.

The only issue that still limits the diffusion of FLOSS products is the lack of certification pro-
cess. This is actually a major limitation, since most software systems that we encounter in our

43 / 48

mailto:antonio@iist.unu.edu
mailto:ccfong@umac.mo
mailto:siraj.shaikh@gmail.com

Collaboration effectiveness and individuals’ contribution in FLOSS communities

daily life include safety-critical or security components, which require the approval of a certifi-
cation authority in order to be used. However, the lack of accurate information on how quality
emerges from the large amount of loosely organised activities of a FLOSS community makes it
difficult to apply traditional quality metrics and certification processes to FLOSS products. For
instance, if we consider McCall’s production revision quality factors [MRW77], can we claim
that a FLOSS product lacks maintenability because there are no defined coding standards and
guidelines to which programming has adhered? The philosophy of freedom and absence of hier-
archical organisation typical of FLOSS communities results in collaborative production environ-
ments in which there is no space for prescriptive standards and strict guidelines. Communication
and collaboration are the drivers of such production environments and naturally determine the
evolution of programming practices within teams of contributors and across the FLOSS com-
munity, even beyond a specific FLOSS project. In such a context a descriptive approach that
analyses the FLOSS community of practise and its activities is likely to define better indicators
of the quality of the software product than a prescriptive approach that tries to check whether
these activities follow prescribed standards and guidelines.

Ih this paper, we carry out a preliminary discussion towards a methodology to analyse com-
munity activities in FLOSS projects and extract from the data collected pieces of semantic in-
formation to be used as indicators of the quality of the software product. In particular, we focus
on two aspects of the FLOSS community of practice: collaboration effectiveness and quality of
individuals’ contribution.

2 Collaboration Effectiveness

Collaboration within FLOSS communities is enabled by the usage of tools, such as versioning
systems, mailing lists, reporting systems, etc. These tools also serve as repositories which can
be data mined to understand the identities of the individuals involved in a communication, the
topics of their communication, the amount of information exchanged in each direction, as well
as the amount of contribution in terms of code commits, bug fixing, reports and documentation
produced and email postings. Such a large amount of data can be selectively collected and then
analysed not only by using inferential statistics to identify activity patterns but also by using
ontology engineering formalisms that support the extraction of semantic information. In the
area of Empirical Software Engineering, cyber-archeology [SII07] has been applied to these
repositories to learn and better understand the patterns of contribution of FLOSS developers in
the projects concerned [SC10].

In this previous work [SC10] data collection has involved communications mainly in terms
of participants, quantity and sometimes topics but neglected the objective collection of actual
communication contents. At most, content data has been collected through questionnaires and
surveys or through written reports by researcher who joined the community as observers, thus
providing subjective rather than objective data. With reference to existing cognitive-based col-
laboration models [NM02], data mining methods can be used to extract content information
from email communication and posting with the support of appropriate ontologies aiming to
identify patterns, progress, evolution and achievements in the collaboration process occurring
within groups of participants. This requires the analysis of incremental data and the construction

Proc. OpenCert 2011 44 / 48

and analysis of graph data from the overall social networking aspect of the FLOSS community.
Cognitive-based collaboration theory [NM02] aims to consider many different factors underly-

ing the mechanisms that connect community member understandings to community effectiveness
in production. There is no single model that represents all of these factors, but separate mod-
els that address different factors. Only some of these models are relevant to a self-organising
non-hierarchical community as is a FLOSS community.

The individual-team interplay model [NM02] is a cyclic model in which individuals perform a
task, notice need for interaction, prepare for interaction, perform the interaction (posting, in the
FLOSS context) and go back to the task, possibly delivering the product of the task (committing,
in the FLOSS context) and then starting a new task.

The Cognition-Behaviour-Product model [NM02] emphasises the nature of the relationship
between individual and team understandings, individual and team behaviours and individual
and team production. In a FLOSS context, this model has the important role to explain how
task quality and understanding affect each other and is essential in measuring individual task
performance and collaboration effectiveness.

An important factor in collaboration is trust. Fong et al. [CFKSA, CFda], have developed a
filtering trust network model to study about fusing elusive information and deriving trust factors
in a social network, by taking Facebook as a case.

The above models can be used to define metrics for information interaction, task performance,
product quality, peer trust [NM02, CFda]. In addition to metrics definition, some contextual
inferring mechanisms are needed as a data pre-processing step for extracting the semantics and
essences from the empirical data using machine learning techniques. Techniques previously
applied to the analysis of public moods based on Internet comments [WFDia] can be also applied
to implement such mechanisms.

3 Quality of Contributions

Quality of an individual’s contribution to a FLOSS project can be measured in terms of three
parameters: engagement, productivity and reputation.

Shaikh and Cerone [SC09] have identified some factors that are unique to the FLOSS devel-
opment process and influence the entire software development process and, consequently, the
quality of the final software product. In their work, Shaikh and Cerone also define an initial
framework in which such factors can be related to each other and to the quality. In particular,
they distinguish three main notions of quality in the context of FLOSS development

quality by access which aims to measure the degrees of availability, accessibility and readabil-
ity of source code in relation to the media and tools used to directly access source code
and all supporting materials such as the documentation, review reports, testing outcomes,
as well as the format and structural organisation of both source code and supporting mate-
rials.

quality by development which aims to measure the efficiency of all development and commu-
nication processes involved in the production, evolution and release of source code, its
execution, testing and review, as well as bug reporting and fixing;

45 / 48

Collaboration effectiveness and individuals’ contribution in FLOSS communities

quality by design which corresponds to the traditional notion of software quality [Pre00]: the
end quality is judged by the design and implementation of the actual software and the code
that underlies it.

These three notions of quality can be used as a basis for characterising the quality of engagement
of an individual in the community. Every activity of an individual can be classified under an
appropriate category of quality and marked to contribute to the final software product accord-
ingly. Bug reporting, testing and reviews enhance quality by development, the media and format
used to externalise such contributions affect quality by access, whereas evidence of planning and
design, and validation of software code contribute to quality by design.

Number of commits and communication provide indicators of the level of contribution of
an individual in the community and have been statistically analysed to determine patterns of
contribution and their implications for the quality of code [SC10]. The number of commits
describes how much the individual delivers in terms of product and is therefore an indicator
of the individual productivity. Although there is no guarantee on the quality of the product
delivered, number of commits can be considered by itself an important parameter in evaluating
the quality of the individual as a contributor. Moreover, by integrating data on contribution in
terms of commits, bug reports, bug fixing and on the approval and inclusion of the resultant
artifacts in a release by the project leader team we can define a more accurate measure of the
quality of the individual’s productivity.

Communications among members of a FLOSS community can be analysed to extract infor-
mation about the reputation an individual has achieved within the community. Text mining of
communications can be used to identify keywords and phrases that may indicate whether an in-
dividual is asking or providing support and whether an answer or suggestion is taken on board
or refuted by others. In addition, the filtering trust network model [CFKSA, CFda] discussed in
Section 2 can highlight trust factors that contribute to build an individual’s reputation.

The reputation of an individual depends not just on the participation to a specific FLOSS
project, but on the global activities of that individual in the FLOSS world. Therefore reputation
information of a given individual have to be collected over all FLOSS projects listing that in-
dividual as a participants and be integrated with personal information including the individual’s
background, publication in the FLOSS field and participation in related social networks and dis-
cussion fora. Finally, the level of engagement of a individual within a project is visible to the
entire project community and, therefore, implicitly affects that individual’s reputation.

Separate metrics can be defined to characterise engagement, productivity and reputation of
individuals. However, it is still unclear how to combine such metrics into a global metric that
quantify the quality of an individual’s contribution to a specific FLOSS project. One of the
challenges is represented by possible interrelations between the three metrics; for instance, we
have pointed out above that engagement affects reputation.

4 Conclusion and Future Work

We have discussed possible indicators of collaboration effectiveness and quality of individuals’
contribution which can be extracted from the data available in repositories of FLOSS projects.
Such indicators can be used to define metrics that characterise collaboration effectiveness in

Proc. OpenCert 2011 46 / 48

terms of information interaction, task performance, product quality and peer trust, and quality of
individuals’ contribution in terms of engagement, productivity and reputation.

In our future work we intend to merge such metrics into a global metric for FLOSS software
quality to be used in a certification process.

47 / 48

Collaboration effectiveness and individuals’ contribution in FLOSS communities

Bibliography

[CFKSA] W. Chen, S. Fong, G. Kim. Multi-Collaborative Filtering Trust Network Model for
Web 2.0 Recommender. In 2011 SIAM International Conference on Data Mining
(SDM 2011). 20–30 April 2011, Mesa, Arizona, USA. To be published.

[CFda] W. Chen, S. Fong. Social Network Collaborative Filtering Framework and Online
Trust Factors: a Case Study on Facebook. In The 5th International Conference on
Digital Information Management (ICDIM 2010). Pp. 266–273. July 2010, Thunder
Bay, Canada.

[MRW77] J. A. McCall, P. K. Richards, G. F. Walters. Factors in Software Quality. Volume I.
Concepts and Definitions of Software Quality. 1977.
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA049014&Location=U2&doc=
GetTRDoc.pdf

[NM02] D. Noble, Michael. Cognitive-Based Metrics to Evaluate Collaboration Effective-
ness. In Analysis of the Military Effectiveness of Future C2 Concepts and Systems.
RTO-MP-117, NATO Consultation, Command and Control Agency, The Hague, The
Netherlands, 23-25 April 2002.
http://www.rto.nato.int/Pubs/rdp.asp?RDP=RTO-MP-117

[Pre00] S. R. Pressman. Software Engineering - A Practitioner’s Approach. McGraw-Hill
International, London, 2000.

[SC09] S. A. Shaikh, A. Cerone. Towards a metric for Open Source Software Quality. Elec-
tronic Communications of the EASST Volume 20: Foundations and Techniques for
Open Source Certification 2009, 2009.

[SC10] S. K. Sowe, A. Cerone. Integrating Data from Multiple Repositories to Analyze Pat-
terns of Contribution in FOSS Projects. In Proceedings of OpenCert 2010. 2010. Vol.
33 of Electronic Communications of the EASST.

[SII07] S. K. Sowe, G. S. Ioannis, M. S. Ioannis (eds.). Emerging Free and Open Source
Software Practices. IGI Global, 2007.

[WFDia] C. I. Weng, S. Fong, S. Deb. An Analytical model for Evaluating Public Moods Based
on Internet Comments. In National Conference on Data Mining (NCDM 2011). 19–
2- February 2011, Pune, India.

Proc. OpenCert 2011 48 / 48

http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA049014&Location=U2&doc=GetTRDoc.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA049014&Location=U2&doc=GetTRDoc.pdf
http://www.rto.nato.int/Pubs/rdp.asp?RDP=RTO-MP-117

A Formal Specification of the DNSSEC Model

(Invited Talk)

Ezequiel Bazan Eixarch

1

Carlos Luna

1

1

ezequielbazan@gmail.com

FCEIA, Universidad Nacional de Rosario, Rosario, Argentina

2

cluna@fing.edu.uy

InCo, Facultad de Ingeniera,Universidad de la Repblica, Montevideo, Uruguay

Abstract: Many applications are based in the use of Domain Names, making de-

sirable to have trusted data into the Domain Name System (DNS). For this rea-

son the Internet Engineer Task Force (IETF) has developed security extensions for

DNS (DNSSEC). The aim of this paper is to provide a formal specification of the

DNSSEC model, that allows to reason over the security properties of the chain of

trust generated along the DNSSEC tree. This specification, which has been formal-

ized in Coq, gives an abstract representation of the state and the security- related

events, making possible to analyze important security goals, such as the effective-

ness over cache poisoning attacks.

Keywords: Security properties, DNS, formal modelling.

49 / 50

mailto:ezequielbazan@gmail.com
mailto:cluna@fing.edu.uy

A Formal Specification of the DNSSEC Model

Proc. OpenCert 2011 50 / 50

Formal verification of a theory of packages

(short paper)

Jaap Boender

1⇤

1 boender@pps.jussieu.fr
Univ Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126 CNRS, F-75205 Paris, France

Abstract: Over the years, open source distributions have become increasingly large
and complex—as an example, the latest Debian distribution contains almost 30 000
packages.

Consequently, the tools that deal with these distribution have also become more and
more complex. Furthermore, to deal with increasing distribution sizes optimisation
has become more important as well.

To make sure that correctness is not sacrificed for complexity and optimisation, it is
important to verify the underlying assumptions formally.

In this paper, we present an example of such a verification: a formalisation in Coq
of a theory of packages and their interdependencies.

Keywords: verification, theorem proving, open source distributions

1 Introduction

During the last decade, open source distributions have become more and more popular, and more
and more complex. Where the first release of Debian only had 128 packages, the latest is well
on its way to 30 000.

In order to deal with these complexities, the MANCOOSI project has developed new tools and
methods to help distribution editors gain insight into the structure of their distributions, to more
easily discover errors and to help with administrative procedures (such as migrating packages
from unstable to stable distributions).

Since distributions are so large and complex, it is very important that these tools be as fast
as possible, without sacrificing correctness. We have therefore used the Coq theorem prover to
formally verify some of the assumptions used for optimising the MANCOOSI tools.

In the rest of this article, we will present a brief overview of the formalisation and explain the
design decisions taken.

2 Formalisation

In this section, we will discuss the formalisation of the theory of packages as described in
[MBD+06], [ADBZ09] and [DB10]. We shall not repeat the definitions presented there, only
⇤ Partially supported by the European Community’s 7th Framework Programme (FP7/2007-2013), grant agreement
n�214898, “Mancoosi” project. Work developed at IRILL.

51 / 56

mailto:boender@pps.jussieu.fr

Formal verification of a theory of packages

stating them informally, so that we can concentrate on the formalisation itself.
The Coq sources of the formalisation are available for download at

http://www.pps.jussieu.fr/⇠boender/package-theory.tar.gz.

2.1 Definitions

The formalisation has been done in the Coq proof assistant, which comes with an extensive
library. The first choice to be made is of how to represent packages and repositories. In the
original definition, packages are represented as a pair (u,v), where u is the name and v 2 N the
version. We have decided to treat packages as atomic entities, since we do not use the version
number at all in our theories. If necessary, this could be changed easily, since the theory is set up
in a very modular way.

A repository is a set of packages. There are at least three ways in Coq to represent sets:
the ListSet library, which uses linked lists, the Ensemble library, which uses characteristic
functions, and the MSet library. We have chosen the latter, because it is very modular, flexible,
and comes with a large set of theorems. We do not need the complexity of the Ensemble
library, since package repositories are finite.

An example of the modularity of the MSet library is the definition of conflicts. A conflict
is a pair of packages, which can be expressed in the MSet library as a PairOrderedType
with the package type as its substrate. In this way, we can use the entire MSet library for sets of
conflicts without any extra work.

2.2 Dependencies

All definitions pertaining to dependencies have been put in a separate module. This is not only
for ease of reference, but it also allows us to use the dependency module as a parameter later
on. This is especially interesting when we start formalising the dependency cone (the transitive
closure of the dependency function, i.e. all packages that could possibly be needed to install
another package); by making this independent of the dependency function, we can easily specify
different cones: the normal dependency cone, but also the cone that includes only conjunctive
dependencies (dependencies that can only be satisfied by a single package), or even the reverse
dependency cone (the cone of packages which depend on a given package).

The dependency function itself is a function Dependencies :
Package.t! listPackageSet.t. The dependencies of a package are specified as a list of
alternatives; every alternative is a set of packages, one of which has to be installed for the package
itself to be installed.

We have added a ‘filter’ to the formalisation of dependencies, a function
dep filter : PackageSet.t! bool. This function allows us to consider only select depend-
encies, for example conjunctive ones (a dependency is conjunctive iff its set is a singleton).

This can come in useful for optimisations, for example, if q is a conjunctive dependency of p,
it will always be part of an installation set of q. Using this lemma (proven in the formalisation)
makes checking installability faster, since some 80 percent of dependencies is conjunctive.

Proc. OpenCert 2011 52 / 56

http://www.pps.jussieu.fr/~boender/package-theory.tar.gz

2.3 The dependency cone

The dependency cone is defined as the transitive closure of the aforementioned dependency func-
tion. It is formalised as follows:

Function cone (P: {x: PackageSet.t | x [<=] R})
{measure (fun x => cardinal R - cardinal (proj1 sig P)) P}: PackageSet.t :=
if equal (inter R (dependencies (proj1 sig P))) (proj1 sig P)
then (proj1 sig P)
else

cone (exist (fun v => v [<=] R) (inter R (dependencies (proj1 sig P)))
(fun a => inter subset 1 (s:=R) (s’:=dependencies (proj1 sig P)) (a:=a))).

This definition basically states that the cone of a set P is the fixed point of the repeated applic-
ation of the dependency function.

Note that the argument of cone is a dependent type: P has to be a subset of a repository R

(as stated in the type) because this is necessary to prove termination; the measure keyword
states that |R|� |dependencies P| strictly decreases. Coq now generates the necessary proof
obligations automatically.

This does complicate the definition: we need to use proj1 sig everywhere to extract the
package set x from the dependent type. Additionally, for the recursive application of the cone
function, we have to provide a proof that the recursive argument is also a subset of R; for this we
use the inter subset 1 theorem which states that 8

s,s0s
0 ✓ s ! (s\ s

0)✓ s.

2.4 Triangle conflicts

In [DB10], an algorithm was presented that finds strong conflicts, i.e. pairs of packages that
cannot be installed together under any circumstances. This algorithm is much faster than the
naive method of just checking every possible pair, by using a theorem that states that for two
packages p and q not to be installable together, there must be an explicit conflict (c,c0) such
that p depends on c and q depends on c

0. The algorithm can then traverse the dependency tree
backwards from every explicit conflict, which limits the number of candidates to check.

An optimisation to this algorithm uses the concept of triangle conflicts. Here is its definition:

Definition 1 A conflict (c1,c2) is a triangle conflict if and only if there exists a package p such
that:

• there is a d 2 Dependencies(p) such that c1 2 d and c2 2 d;

• there is no other p

0 such that p

0 depends on either c1 or c2.

An example of this situation can be found in figure 1; bravo and charlie are in conflict,
and there are no packages that depend on them except for alpha.

We have proven that triangle conflicts can be discarded when checking for strong conflicts.
Informally, the reason for this is that since the only way to get to the two packages in conflict (c1
and c2) is through p; in order to install p, we can choose either c1 or c2. Since there are no other
packages that depend on c1 or c2, which one we choose does not matter.

In Coq, we express this by the following theorem:

53 / 56

Formal verification of a theory of packages

alpha

bravo charlie
#

Figure 1: Example of a triangle conflict

Lemma triangles ok:
forall (R: PackageSet.t) (C: ConflictSet.t) (a: PackageSet.t | a [<=] R),
(For all (fun a => installable (NoSupDependencies R) R C a) (proj1 sig a)) ->
only triangles R C (fun => true) ->
˜ConflictSet.Exists (fun c => let (c1, c2) := c in
In c1 (proj1 sig a) _ In c2 (proj1 sig a)) C ->

co installable (NoSupDependencies R) R C (proj1 sig a).

This expresses that given a repository R, a set of conflicts C, and a set of packages a, if all
packages in a are installable separately, if the only conflicts are triangle conflicts, and if there
is no direct conflict between any members of a, then all packages from a must be installable
together.

The proof sketch is as follows:

• By induction on a.

1. If a = /0, then all packages in a are trivially installable together.

2. If a = a1 [{x}, then:

– By the induction hypothesis, all packages from a1 are installable together (take
A1 as the installation set). Also, x is a member of a, and therefore it is installable
by the original hypothesis (with A

x

as the installation set).
– Now, we take the union of A1 and A

x

, where we remove c1 or c2 if both are
present. This set is an installation set as well (it contains all packages needed
and no conflicts).

• Hence, all packages from a are installable together.

Using triangle conflicts can result in a speed-up in checking a distribution for strong conflicts.
Debian, for example, only has 60 triangle conflicts in its latest version, but one of these is the
debconf package with two of its dependencies. The debconf package is needed by 11 000
other packages, which means that it generates 121 million candidates for strong conflicts. Given
that the number of candidates after removal of triangle conflicts is only around 10 million, and
that every candidate has to be checked using a SAT solver, it is easy to see that the removal of
debconf alone results in a sizeable speed-up.

Proc. OpenCert 2011 54 / 56

3 Conclusion and discussion

We have presented a short overview of the formalisation of the theory of packages as used in the
MANCOOSI project.

This formalisation is not yet complete. For example, the proof presented in [Boe11] has not
yet been formalised, mostly due to the lack of an appropriate graph theory library in Coq.

The ultimate goal of this formalisation is to be able to formally verify the actual algorithms
and tools used in the MANCOOSI project, of which the computation of strong conflicts is one
(relatively simple) example. Since modern distributions are very large, the use of optimisations is
necessary, but we should be careful that these optimisations do not result in a loss of correctness.
Formal verification can be of use in that regard.

Most of the algorithms in MANCOOSI rely on a SAT solver to check for installability. Form-
ally verifying a modern SAT solver would be very difficult, but it might be possible to treat the
SAT solver as a black box and only verify its result.

Acknowledgements: The author would like to thank Roberto Di Cosmo and Pierre Letouzey
for their very useful advice and encouragement.

55 / 56

Formal verification of a theory of packages

References

[ADBZ09] P. Abate, R. Di Cosmo, J. Boender, S. Zacchiroli. Strong dependencies between
software components. In ESEM ’09: Proceedings of the 2009 3rd International

Symposium on Empirical Software Engineering and Measurement. Pp. 89–99. IEEE
Computer Society, Washington, DC, USA, 2009.
doi:http://dx.doi.org/10.1109/ESEM.2009.5316017

[Boe11] J. Boender. Efficient Computation of Dominance in Component Systems. In Pro-

ceedings of SEFM. 2011.

[DB10] R. Di Cosmo, J. Boender. Using strong conflicts to detect quality issues in
component-based complex systems. In ISEC ’10: Proceedings of the 3rd India soft-

ware engineering conference. Pp. 163–172. ACM, New York, NY, USA, 2010.
doi:http://doi.acm.org/10.1145/1730874.1730905

[MBD+06] F. Mancinelli, J. Boender, R. Di Cosmo, J. Vouillon, B. Durak, X. Leroy, R. Treinen.
Managing the Complexity of Large Free and Open Source Package-Bas ed Software
Distributions. In ASE. Pp. 199–208. 2006.

Proc. OpenCert 2011 56 / 56

http://dx.doi.org/http://dx.doi.org/10.1109/ESEM.2009.5316017
http://dx.doi.org/http://doi.acm.org/10.1145/1730874.1730905

Using antipatterns to improve the quality of FLOSS development
(short paper)

Dimitrios Settas and Antonio Cerone

settdimi@iist.unu.edu cerone@iist.unu.edu
United Nations University

International Institute for Software Technology
Macau SAR, China

Abstract: Antipatterns have been mostly reported in closed source software en-
vironments. With the advent of Free/Libre Open Source Software (FLOSS), re-
searchers have started analyzing popular FLOSS projects, seeking vitality indica-
tors and success patterns. However, an impressively high percentage of FLOSS
projects are unsuccessful. Moreover, even in the successful cases of FLOSS there
can be found tracks of failed attempts, dead-ends, forks, abandonments etc. FLOSS
antipatterns can help developers to improve their code and improve the communi-
cation and collaboration within the FLOSS community. Moreover, they can be used
as quality indicators in the certification of FLOSS products.

Keywords: FLOSS development, antipatterns, certification, ontology

1 Introduction

An antipattern is a new form of pattern that has two solutions [BMMM98]. The first is a problem-
atic solution with negative consequences and the other is a refactored solution, which describes
how to change the antipattern into a healthy solution. The second solution is what makes antipat-
terns beneficial. The difference is in the context: An antipattern is a pattern with inappropriate
context and is particularly useful in the case of knowledge representation, because it captures ex-
perience and provides information on commonly occurring solutions to problems that generate
negative consequences [LN06]. The process that is followed by a pattern to change its solution
into a better one is called refactoring. This solution has an improved structure that provides more
benefits than the original solution and refactors the system toward minimised consequences.

FLOSS anti-patterns are not yet explored to the same extent as in closed source. In addition,
because FLOSS and closed source software produce code using very different development pro-
cesses, FLOSS antipatterns are quite different in nature from their closed source counterparts.
There exist different categories of antipatterns. According to the literature [BMMM98, LN06]
closed source software antipatterns exist at a development, architectural and managerial level.
FLOSS antipatterns mostly exist at a community level and describe social and managerial is-
sues regarding communication, interaction and coordination among developers that participate
in FLOSS projects. However, closed source software development antipatterns are also applica-
ble in FLOSS projects and can greatly affect the quality of both closed and open source software
projects.

57 / 62

Using antipatters in FLOSS development

This short paper describes how antipatterns can be used in FLOSS projects by defining the
sources of these antipatterns and the different user roles of FLOSS antipatterns. While antipat-
terns cannot be used as a formal certification approach, different kinds of antipatterns (i.e. de-
velopment, community level) can be used (1) within the FLOSS development process to directly
overcome problems that may affect the certification of the FLOSS product and (2) as part of
the certification process to define indicators of the quality of the development process and the
resultant FLOSS product. Development antipatterns may help developers overcome commonly
occuring coding problems. For example, the “Spaghetti Code” antipattern [BMMM98] can be
used to describe code that has a complex and tangled control structure, especially one with sev-
eral exceptions, threads, or other “unstructured” branching constructs. Spaghetti code can be
caused by several factors, including inexperienced programmers and a complex program which
has been continuously modified over a long life cycle. A solution proposed to resolve the antipat-
tern is using a formal and predictable style of coding such as that of Structured Programming.
Community antipatterns can help developers overcome problematic FLOSS practices, such as
participation and motivation problems, which are crucial to FLOSS development. For example,
“The Big Show” antipattern [Nea11] describes the scenario in which companies will work for
several months on a software project behind closed doors before announcing it to the public. This
behaviour negatively impacts the ability of a FLOSS community to grow outside corporate walls.
The project members are assigned to “secret” projects and interact less with the community, and
the end result is a big code drop which has not had public peer review and was not listed on any
roadmap before its announcement, resulting in people outside the company feeling like second
class citizens.

Since encountered coding problems and problematic community practices hightlighted by
such antipatterns affect the quality of the FLOSS product, once an antipattern has been iden-
tified, it may be incorporated in the certification process as a negative quality indicator. One
problem is that identifying antipatterns is essentially a qualitative process, in which symptoms
are associated to antipatterns either directly or indirectly by means of existing causal relation-
ships between antipatterns. Such a qualitative nature of antipattern identification is not adequate
to the the accuracy required by a formal certification process. In order to overcome this problem,
metrics for technical quality, based on the ISO/IEC 9126 standard, that have been successfully
applied to proprietary software as well as to FLOSS [CV08] could be customised to detect spe-
cific antipatterns that describe coding problems such as the Spaghetti Code antipattern.

The main source of FLOSS antipatterns is the Web, as no further FLOSS community an-
tipatterns have been published elsewhere at the moment. These antipatterns do not use official
antipattern templates proposed by Brown et al. [BMMM98] or Laplante and Neil [LN06]. They
are documented using a short textual description in order to quickly describe them and allow
users to memorise them easily. An open issue that has not been resolved for community antipat-
terns is the lack of formalisation of this knowledge, which, in fact, would be essential to enable
the use of software tools to support this technology as well as to quantify the process of their
identification. Furthermore, as far as the authors are aware there is no single knowledge base
that documents these antipatterns and allow their use by software tools.

Proc. OpenCert 2011 58 / 62

2 FLOSS Community Antipatterns

FLOSS community antipatterns are very relevant to the certification of FLOSS projects as they
describe ways to build stronger project communities with effective communication, collaboration
and management practices.

Tobrien [Tob] has recently proposed six OSS community antipatterns, which are caracterised
by six “personalities” that have emerged in the last years among FLOSS communities: Rule
maker, Open Source Politician, Attack Dog, Non-contributing Pontificator, Back Room Dealer
and (Apache Way) Ambassadors. For each of these antipattern, Tobrien describes the causes,
symptoms and consequences as well as the refactored solution that can make the antipattern ben-
eficial to an FLOSS project. For example, although it is important to have a few rulmakers within
the community, when their growth in numbers of individuals and their attempts to advocate and
enforce standards appears to hinder productive community activities, it may be necessary to split
the community up into smaller, more focused teams, each governed by an active code contributor,
who is expected to have a natural tendency to avoid needless bureaucracy [Tob].

Josh Berkus [Ber11] has also listed ten ways on how to destroy a FLOSS community. These
antipatterns are likely to arise when companies are involved or even are leading FLOSS projects.
For example, a company leading a FLOSS project may permanently prevent anybody outside
the company from having commit access, respond evasively to queries and/or choose employees
who write no code as committers on the project.

Leung [Leu08] has identified 22 FLOSS antipatterns and has provided a very short description
of each one. Most importantly he identified the lack of management itself as an antipattern
emphasising the need for managing FLOSS projects.

Dave Neary [Nea11] has developed a Community Management Wiki in which he maintains
18 FLOSS community antipatterns. These antipatterns are described in more detail and include
the symptoms of each antipattern together with their refactored solution. For example, the ”anar-
chy” antipattern highlights the problems associated with the ”Free Software is all about absolute
Freedom” way of thinking. This kind of thinking leads to a kind of anarchistic community where
a substantial proportion of members affirm a total right to freedom of speech, freedom of expres-
sion, and other extreme libertarian principles. The result is a community where no indiscression
can easily be corrected, because any attempt to do so is perceived as a limit to the absolute
freedom of speech.

These 56 antipatterns contain valuable knowledge that can be used from the users of a FLOSS
community in order to identify problematic practices or dysfunctional processes that have been
previously documented as antipatterns. However, memorising such a big number of antipatterns
is problematic and requires the use of software tools that support the technology of antipatterns.

3 Antipatterns Users within the FLOSS Development Process

In addition to the 56 community level antipatterns considered in Section 2 different kinds of
traditional antipatterns that have been documented in the literature [BMMM98, LN06] and the
Web [Malb, Mala, WCa, WCb] can be used at either development level by FLOSS developers
(active developers or contributors) or at managerial level (by project leaders or the company

59 / 62

Using antipatters in FLOSS development

which leads the community). Therefore, defining the FLOSS user types that could benefit from
this technology is very important. These are:

Developers who are the biggest part of the community by contributing and by reporting bugs.
They can benefit from both development antipatterns that have been already documented
in the literature and antipatterns that are specific to FLOSS community.

Users of the software, who are also part of the community and download software or exchange
messages in mailing lists. They mainly benefit from community level antipatterns.

Companies FLOSS might be a crucial element in a product or service provided by a company
and this company will have to be active or even lead the community [Saa]. Companies
benefit from both community level antipatterns [Ber11] and management antipatterns that
have been already documented in the literature.

Leaders or Managers of open source communities can benefit from the existence of project
management antipatterns that exist in the literature and the Web.

Learners Students and free lerners that participate in FLOSS projects in order to learn from
more advanced developers or wish to experience FLOSS development. They can benefit
from all kinds of antipatterns.

Moreover, all these FLOSS user types would greatly benefit from working in an environment
that provides tools that support antipattern technology. The antipattern ontology [SMSB11] has
been developed using the Web Ontology Language (OWL) and define antipatterns in terms of
concepts and relationships. It has been implemented in the antipattern ontology Webprotege
installation [SMSB11], which allows users to participate in the enrichment of the content of the
ontology or edit the existing antipatterns according to their user rights. As a first step towards the
use of tool-supported antipattern technology within FLOSS communities, the OWL antipattern
ontology has been enriched with data from 13 FLOSS community antipatterns that exist on the
Web.

4 Using Antipatterns to support the FLOSS Certification Process

Community level antipatterns are strongly related to the notion of quality by development de-
fined by Shaikh and Cerone [SC09] as specific to the FLOSS development process. Quality by
development aims to measure the efficiency of all development and communication processes
involved in the production, evolution and release of source code, its execution, testing and re-
view, as well as bug reporting and fixing; [SC09]. The idea of quality by development, therefore,
is an attempt to measure the efficiency of such processes and the interaction between them.

Shaikh and Cerone identify factors that characterise the inherent quality aspects of these pro-
cesses, but also observe that it is the overall management of the project to play a more central
role, with communication and coordination being the two key aspects of this. Management qual-
ity aspects that cannot be fully captured by Shaikh and Cerone’s quality model, may instead be
described in terms of antipatterns. “Make the project depend as much as possible on difficult

Proc. OpenCert 2011 60 / 62

tools”, “provide no documentation”, “employ large amounts of legalese”, “governance obfusca-
tion” and “don’t answer queries” are examples of community level antipatterns that have been
described by Josh Berkus [Ber11].

Symptoms of these antipatterns may be detected through the analysis of communications and
the activities of the FLOSS project. Collaboration in FLOSS projects is highly mediated by the
usage of tools, such as versioning systems, mailing lists, reporting systems, etc. These tools
serve as repositories which can be data mined; data can be selectively collected and then anal-
ysed not only by using inferential statistics to identify activity patterns [SC10] but also by using
ontology engineering formalisms that support the extraction of semantic information. Appro-
priate ontologies aiming to identify symptoms of antipatterns as well as the solutions applied to
solve such antipatterns [SMSB11], together with weights for the severity of the antipatterns and
the effectiveness of the applied solution, can enable the extraction of quantitative information to
be used as a measure for quality by development.

5 Conclusion and Future Work

We have presented the potential benefits of antipatterns usage within the FLOSS development
process to allow various types of users to overcome problems that may affect the certification
of the FLOSS product. The enrichment of the OWL antipattern ontology with data from 13
FLOSS community antipatterns provides a way of realising these potential benefits. There are
clear advantages to the certification of FLOSS software that come from improving the quality of
the developed software both at a development level but also by overcoming FLOSS community
problems. The strong social aspect of the collaborative development of the antipattern ontology
will ultimately increase the communication of FLOSS user roles and will provide a platform in
which FLOSS users can discuss their problems and possible solutions using antipatterns.

We have also suggested how to relate antipatterns, especially community level antipatterns,
and their applied solutions to FLOSS quality by development as part of a FLOSS certification
process. Development within a FLOSS projects is not dictated by prescriptive rules, but naturally
emerges as the product of community activities. It is therefore an important parameter that
strongly affect the quality of the FLOSS product. Defining a metric for quality by development,
which is part of our future work, would be essential in the creation of a FLOSS certification
process.

Bibliography

[Ber11] J. Berkus. How to destroy your community. 2011.
http://lwn.net/Articles/370157/

[BMMM98] W. Brown, R. Malveau, H. McCormick, T. Mowbray. AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis. Wiley Computer Publishing, 1998.

[CV08] J. P. Correia, J. Visser. Certification of Technical Quality of Software Products.
In Proceedings of the OpenCert and FLOSS-FM 2008 joint Workshop. UNU-IIST
Research Report 398, pp. 35–51. 2008.

61 / 62

http://lwn.net/Articles/370157/

Using antipatters in FLOSS development

[Leu08] T. Leung. OReilly OSCON Open Source Convention. 2008.

[LN06] P. Laplante, C. Neil. Antipatterns: Identification, Refactoring and Management.
Taylor and Francis, 2006.

[Mala] N. Malik. Software Project Management Antipattern Blog, Pardon my dust.
http://blogs.msdn.com/nickmalik/archive/2006/01/19/
PMAntipattern-Pardon-My-Dust.aspx

[Malb] N. Malik. Software Project Management Antipattern Blog, Project Managers who
write specs.
http://blogs.msdn.com/nickmalik/archive/2006/01/03/508964.aspx

[Nea11] D. Neary. OSS community management Wiki. 2011.
http://communitymgt.wikia.com/wiki/Category:Anti-patterns,

[Saa] M. Saastamoinen. Managing OSS As an Integrated Part of Business (OSSI), The
linux foundation.
https://fossbazaar.org/content/managing-oss-integrated-part-business-ossi-final-report

[SC09] S. A. Shaikh, A. Cerone. Towards a metrics for Open Source Software Quality. In
Proc of OpenCert 2009. 2009. Vol. 20 of ECEASST.

[SC10] S. K. Sowe, A. Cerone. Integrating Data from Multiple Repositories to Analyze
Patterns of Contribution in FOSS Projects. In Proc of OpenCert 2010. 2010. Vol.
33 of ECEASST.

[SMSB11] D. L. Settas, G. Meditskos, I. G. Stamelos, N. Bassiliades. Detecting antipatterns
using a Web-based collaborative antipattern ontology knowledge base. In Proc. of
ONTOSE 2011. Volume 83, pp. 478–488. Springer, 2011.

[Tob] Tobrien. 6 Open Source Community Anti-patterns (or Less Talk. More Do.).
http://www.discursive.com/blog/4355

[WCa] Wiki-Community. Pattern Community Antipattern Catalogue.
http://c2.com/cgi/wiki?AntiPatternsCatalog

[WCb] Wiki-Community. Wikipedia Antipatterns Community Catalogue.
http://en.wikipedia.org/wiki/Anti-pattern

Proc. OpenCert 2011 62 / 62

http://blogs.msdn.com/nickmalik/archive/2006/01/19/PMAntipattern-Pardon-My-Dust.aspx
http://blogs.msdn.com/nickmalik/archive/2006/01/19/PMAntipattern-Pardon-My-Dust.aspx
http://blogs.msdn.com/nickmalik/archive/2006/01/03/508964.aspx
http://communitymgt.wikia.com/wiki/Category:Anti-patterns,
https://fossbazaar.org/content/managing-oss-integrated-part-business-ossi-final-report
http://www.discursive.com/blog/4355
http://c2.com/cgi/wiki?AntiPatternsCatalog
http://en.wikipedia.org/wiki/Anti-pattern

