
Program repair

as sound optimization of broken programs

Tarmo Uustalu, IoC

joint work with Ando Saabas, Skype,
Bernd Fischer, U. of Southampton

DI, UMinho, 25 November 2009

Program repair: the dream

Program repair: fixing a broken program (a program that
may abort), by transforming it into a safe or safer
program (one that cannot evaluate abnormally or will do
so less often).

The transformation should be compile-time and automatic
(although subject to review by the programmer).

It should also be defendable, e.g., as embodying a
plausible method of reconstructing programmer intent.

Mathematically, it should be sound for a suitable notion
of validity.

Program repair: our approach
Two central ideas:

fix the meaning of broken programs by a dedicated
error-compensating semantics,
; the psychological issue of programmer intent is
isolated into the definition of this semantics,
guide transformation by a program analysis, with
analysis results interpreted relationally,
; program repair becomes similar to sound program
optimization

In fact we get a spectrum:
– program repair

– enforcement of coding conventions
– program optimization.

Error-compensating semantics

To fix the intended meaning of broken programs
(programs that may abort under the standard
error-admitting semantics), we assign the programming
language a special error-compensating semantics with no
or fewer abnormal evaluations.

On safe programs, the two semantics must agree.

The evaluations of a given program under the
error-compensating semantics should agree with those of
the repaired program under the error-admitting semantics.

If the given program is already safe, the repair may only
optimize it.

Relationally interpreted types

Our repairs are based on program analyses, described as
type systems.

The types are interpreted as relations between states of
the error-compensating and error-admitting semantics.

Validity of repair, i.e., the agreement between the
evaluations of the given and repaired program is defined
in terms of these relations.

Example: Repairing file access errors

Error-admitting semantics: Opening an open file, reading
or closing a closed file cause abortion.

Error-compensating semantics: Opening, reading, closing
are always possible. In essence, all files are always open.
Opening and closing reset the file pointer.

Rationale behind: Likely, the programmer may have
forgotten some opens and closes.

Repair:

removes all closes and opens,
inserts some, generally elsewhere, to render all reads safe
and belonging appropriately to the same or different
sessions, minimizing session lengths.

(Cf. partial redundancy elimination: expression
evaluations removed and reinserted.)

E.g.,

read(f , x); open(f); read(f , x);
read(f , y); read(f , y); close(f);
open(f); ↪→
read(f , z); open(f); read(f , z); close(f);
w := x − z ; w := x − z
close(f)

if b then if b then
read(f , x) open(f); read(f , x)

else ↪→ else
x := x + 1; x := x + 1;

open(f);
read(f , y) read(f , y); close(f)

Error-admitting semantics

States: σ ∈ Var −→ Z, ρ ∈ F −→ {c}+ {o(n) | n ∈ N}
(closed or open and at some line)

Evaluation rules:

ρ(f) = c

σ, ρ �open(f)� σ, ρ[f 7→ o(0)]

ρ(f) = o(n)

σ, ρ �close(f)� σ, ρ[f 7→ c]

ρ(f) = o(n)

σ, ρ �read(f , x)� σ[x 7→ φ(f , n)], ρ[f 7→ o(n + 1)]

ρ(f) = o(n)

σ, ρ �open(f)�p
ρ(f) = c

σ, ρ �close(f)�p
ρ(f) = c

σ, ρ �read(f , x)�p

Safety type system

Types: d ∈ F → {c, o} (closed, open)

Typing rules:

d(f) = c

open(f) : d −→ d [f 7→ o]

d(f) = o

close(f) : d −→ d [f 7→ c]

d(f) = o

read(f , x) : d −→ d

no subsumption rule

Types as predicates on states:

o(n) |= o c |= c

∀f ∈ F. ρ(f) |= d(f)

(σ, ρ) |= d

Soundness of the safety type system

If s : d −→ d ′ in the safety type system, then

1 if (σ, ρ) |= d and (σ, ρ) �s� (σ′, ρ′) in the
error-admitting semantics, then (σ′, ρ′) |= d ′,

2 it cannot be that (σ, ρ) |= d and (σ, ρ) �s�p in the
error-admitting semantics.

Error-compensating semantics

States: σ ∈ Var −→ Z, ρ : F −→ N.

Evaluation rules:

σ, ρ �open(f)� σ, ρ[f 7→ 0] σ, ρ �close(f)� σ, ρ[f 7→ 0]

σ, ρ �read(f , x)� σ[x 7→ φ(f , ρ(f))], ρ[f 7→ ρ(f) + 1]

(no abnormal evaluations)

Repair type system

Types: d , e ∈ F → {r, u} (possibly read/certainly unread
before, after)

Subtyping:

(u, r) ≤ (r, r) ↪→f open(f) (r, r) ≤ (r, u) ↪→f close(f)

(m,m) ≤ (m,m) ↪→f skip (u,m) ≤ (m′, u) ↪→f skip

(r, u)

(r, r)

close(f) ::uuu
(u, u)

skipddJJJJ

(u, r)
open(f)

ddIII
skip

OO

skip

::tttt

∀f ∈ F. (d(f), e(f)) ≤ (d ′(f), e ′(f)) ↪→f s(f)

(d , e) ≤ (d ′, e ′) ↪→ [s(f) | f ∈ F]

Repair type system ctd.
Typing rules:

open(f) : (d , e[f 7→ u]) −→ (d [f 7→ u], e) ↪→ skip

close(f) : (d , e[f 7→ u]) −→ (d [f 7→ u], e) ↪→ skip

d(f) = e(f) = r

read(f , x) : (d , e) −→ (d , e) ↪→ read(f , x)[
read(f , x) : (d , e[f 7→ r]) −→ (d [f 7→ r], e)

↪→ [open(f) | d(f) = u]; read(f , x); [close(f) | e(f) = u]

]
(d , e) ≤ (d0, e0)

↪→ spre

s : (d0, e0) −→ (d ′
0, e

′
0)

↪→ s∗

(d ′
0, e

′
0) ≤ (d ′, e ′)

↪→ spost

s : (d , e) −→ (d ′, e ′) ↪→ spre ; s∗; spost

Types as relations:

n ∼(r,r) o(n) 0 ∼(u,r) c n ∼(m,u) c

∀f ∈ F. ρ(f) ∼(d ,e) ρ∗(f)

(σ, ρ) ∼(d ,e) (σ, ρ∗)

Soundness of the repair type system

If s : (d , e) −→ (d ′, e ′) ↪→ s∗ in the repair type system, then

1 if (σ, ρ) ∼(d ,e) (σ∗, ρ∗) and (σ, ρ) �s� (σ′, ρ′) in the
error-compensating semantics, then there exists (σ′

∗, ρ
′
∗)

such that (σ′, ρ′) ∼(d ′,e′) (σ′
∗, ρ

′
∗) and

(σ∗, ρ∗) �s∗� (σ′
∗, ρ

′
∗) in the error-admitting semantics;

2 if (σ, ρ) ∼(d ,e) (σ∗, ρ∗) and (σ∗, ρ∗) �s∗� (σ′
∗, ρ

′
∗) in the

error-admitting semantics, then there exists (σ′, ρ′) such
that (σ′, ρ′) ∼(d ′,e′) (σ′

∗, ρ
′
∗) and (σ, ρ) �s� (σ′, ρ′) in the

error-compensating semantics;

3 it cannot be that (σ, ρ) ∼(d ,e) (σ∗, ρ∗) and (σ∗, ρ∗) �s∗�p
in the error-admitting semantics;

4 s∗ : (d , e)# −→ (d ′, e ′)#

where (r, r)# =df o, (m, u)# =df c, (u, m)# =df c and
(d , e)#(f) =df (d(f), e(f))# .

Example: Queue access

Error-admitting semantics: overflow, underflow lead to
abortion.

Error-compensating semantics: some platform-specific
implementation (e.g., enqueues to a full queue skipped,
dequeues from an empty queue return some default value)

Rationale: Compensation given by an implementation.

Program repair: based on an interval analysis about queue
length, makes it explicit what the compensation does.

Error-admitting semantics

States: σ ∈ Var −→ Z, q ∈ Z∗, |q| ≤ N for a fixed N ∈ N

Evaluation rules:

|q| < N

σ, q �enq(a)� σ, q++[JaKσ] σ, v : q �deq(x)� σ[x 7→ v], q

|q| = N

σ, q �enq(a)�p σ, []�deq(x)�p

Safety type system

Types: lo, hi ∈ N, lo ≤ hi

Subtyping rules:

lo ′ ≤ lo hi ≤ hi ′

[lo, hi] ≤ [lo ′, hi ′]

Typing rules:

hi < N
enq(a) : [lo, hi] −→ [lo + 1, hi + 1]

0 < lo
deq(x) : [lo, hi] −→ [lo − 1, hi − 1]

[lo, hi] ≤ [lo0, hi0] s : [lo0, hi0] −→ [lo ′
0, hi ′0] [lo ′

0, hi ′0] ≤ [lo ′, hi ′]

s : [lo, hi] −→ [lo ′, hi ′]

Error-compensating semantics

States as in the error-admitting semantics

Evaluation rules:

|q| < N

σ, q �enq(a)� σ, q++[JaKσ]

|q| = N

σ, q �enq(a)� σ, q

σ, v : q �deq(x)� σ[x 7→ v], q σ, [] �deq(x)� σ[x 7→ 0], []

Repair type system

Types as in the safety type system

Subtyping rules:

lo ′ ≤ lo hi ≤ hi ′

[lo, hi] ≤ [lo ′, hi ′]

Typing rules:

hi < N

enq(a) : [lo, hi] −→ [lo + 1, hi + 1]

↪→ enq(a)

enq(a) : [N,N] −→ [N,N]

↪→ skip

lo < N

enq(a) : [lo,N] −→ [lo + 1,N]

↪→ if ¬full then enq(a) else skip

0 < lo

deq(x) : [lo, hi] −→ [lo − 1, hi − 1]

↪→ deq(x)

deq(x) : [0, 0] −→ [0, 0]

↪→ x := 0

0 < hi

deq(x) : [0, hi] −→ [0, hi − 1]

↪→ if ¬emp then deq(x) else x := 0

[lo0, hi0] ≤ [lo, hi] s : [lo, hi] −→ [lo ′, hi ′] ↪→ s∗ [lo ′, hi ′] ≤ [lo ′
0, hi ′0]

s : [lo0, hi0] −→ [lo ′
0, hi ′0] ↪→ s∗

Example: Modular arithmetic

Error-admitting semantics: ideal arithmetic (in
[0..N − 1]).

Error-compensating semantics: arithmetic modulo N .

Program repair: based on an interval analysis about
values of variables, inserts explicit mods (but not more
than indispensable).

Transformation of a proof about the repaired program to
a proof about a given program makes it possible to reason
in the ideal arithmetic and transfer the argument to
modular arithmetic (with proof transformation inserting
the interval reasoning).

Conclusion

Program repair can be put on a firm semantic footing.
The psychological engineering issue of reconstructing
programmer intent can be isolated.

The challenge is, given an error-compensating semantics,
to find a suitable program analysis with a suitable
semantical interpretation.

This set up, the type-systematic method makes soundness
proofs relatively straightforward checks also leading to
automatic transformations of program correctness proofs.

