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The Polymorphic Function foldl

foldl :: (α→ β → α)→ α→ [β ]→ α
foldl k z [ ] = z
foldl k z (x : xs) = foldl k (k z x) xs

Example

sum = foldl (+) 0

sum [1, 2, 3] = foldl (+) 0 [1, 2, 3]

= foldl (+) (0 + 1) [2, 3]

= foldl (+) ((0 + 1) + 2) [3]

= foldl (+) (((0 + 1) + 2) + 3) [ ]

= (((0 + 1) + 2) + 3)

= 6
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The Fusion Property

Consider a simple program transformation:

(+1) ◦ sum

= (+1) ◦ (foldl (+) 0) = foldl (+) 1

More generally:
f ◦ (foldl k z) = foldl k ′ z ′

For an inductive proof the conditions

f z = z ′

∀x , y . f (k x y) = k ′ (f x) y

are sufficient.
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Free Theorems [Wadler, 1989]

With free theorems we can prove the fusion property automatically
only using foldl ’s type

foldl :: (α→ β → α)→ α→ [β ]→ α .

Output of a generator2 for foldl ’s type as input:

forall t1,t2 in TYPES, f :: t1 -> t2 .
forall t3,t4 in TYPES, g :: t3 -> t4.
forall k :: t1 -> t3 -> t1 .

forall k’ :: t2 -> t4 -> t2 .
(forall x :: t1. forall y :: t3.

f (k x y) = k’ (f x) (g y))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl k z xs)

= foldl k’ (f z) (map g xs))

2
http://www-ps.iai.uni-bonn.de/ft/
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Speed Up with Selective Strictness

Example (sum reconsidered)

sum [1, 2, 3] = foldl (+) 0 [1, 2, 3]

= foldl (+) (0 + 1) [2, 3]

= foldl (+) ((0 + 1) + 2) [3]

. . .

Lazy evaluation results in a huge overhead.

⇒ Strict evaluation is desirable.

Haskell provides strict evaluation by the function seq ::α→ β → β:

seq a b =

{
b if a 6= ⊥
⊥ otherwise
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foldl ′ — A Strict Version of foldl

foldl ′ :: (α→ β → α)→ α→ [β ]→ α
foldl ′ k z [ ] = z
foldl ′ k z (x : xs) = let z ′ = k z x in seq z ′ (foldl ′ k z ′ xs)

Example (strict sum′)

sum′ [1, 2, 3] = foldl ′ (+) 0 [1, 2, 3]

= let z ′ = 0 + 1 in seq z ′ (foldl ′ (+) z ′ [2, 3])

= foldl ′ (+) 1 [2, 3]

= let z ′ = 1 + 2 in seq z ′ (foldl ′ (+) z ′ [3])

= foldl ′ (+) 3 [3]

. . .

sum′ evaluates the addition whenever possible.

⇒ Saving space (and time)

⇒ Strict evaluation pays off here.
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Drawbacks of Selective Strictness

Question:

f (foldl ′ k z xs)
?

= foldl ′ k ′ (f z) xs

if f (k x y) = k ′ (f x) y

Consider an example instantiation:

f = λx → x ∨ ⊥
k = k ′ = λx y → y ∨ x

xs = [False,True ]

z = False

Answer: No!

f (foldl ′ k False [False,True ]) = True
6=

foldl ′ k ′ (f False) [False,True ] = ⊥
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Analyzing the Problem

The strictness-aware free theorem:

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(( (k /= _|_) <=> (k’ /= _|_) )
&& (forall x :: t1.

( (k x /= _|_) <=> (k’ (f x) /= _|_) )
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

Question: Are all these restrictions necessary?

An inductive proof for

f (foldl ′ k z xs) = foldl ′ k ′ (f z) xs

shows that f x = ⊥ ⇔ x = ⊥ suffices (i.e. f is strict and total ).

8 / 21
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Why so Many Restrictions?

Free theorems depend only on the type.

foldl :: (α→ β → α)→ α→ [β ]→ α

foldl ′ :: (α→ β → α)→ α→ [β ]→ α

foldl ′′ :: (α→ β → α)→ α→ [β ]→ α
foldl ′′ k z [ ] = seq k z
foldl ′′ k z (x : xs) = foldl ′′ (k z x) xs

Problem: The free theorem is only aware of
the potential risks of seq, but not of its concrete use.

Solution: Make the use of seq visible from the type.
In particular where it is used.
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A Refined Type System . . .

Add new type constructors.

τ ::= α | ∀εα.τ | ∀◦α.τ | τ →ε τ | τ →◦ τ | . . .

Distinguish types whos terms are / are not allowed
to be strictly evaluated.

A former approach (Haskell 1.3)

foldl ′ :: Eval α⇒ (α→ β → α)→ α→ [β ]→ α

was not sufficient [Johann and Voigtländer, 2004].

The difference: two function types.

10 / 21

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(( (k /= _|_) <=> (k’ /= _|_) )
&& (forall x :: t1.

( (k x /= _|_) <=> (k’ (f x) /= _|_) )
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))
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. . . and its Effects on the Typing Rules (1)

A rule system for Γ ` τ ∈ Seqable:

Γ ` [τ ] ∈ Seqable Γ ` (τ1 →ε τ2) ∈ Seqable

αε ∈ Γ
Γ ` α ∈ Seqable

αε, Γ ` τ ∈ Seqable

Γ ` (∀αν .τ) ∈ Seqable

Restricting (SLet)

Γ ` τ1 ∈ Seqable Γ ` t1 :: τ1 Γ, x :: τ1 ` t2 :: τ2
(SLet’)

Γ ` (let! x = t1 in t2) :: τ2

with Γ = αν1
1 , . . . α

νn
n , x1 :: τ1, . . . xn :: τn and νi ∈ {◦, ε}.
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. . . and its Effects on the Typing Rules (2)

More typing rules because of new constructors:

Γ ` t1 :: τ1 →ε τ2 Γ ` t2 :: τ1
Γ ` (t1 t2) :: τ2

Γ ` t1 :: τ1 →◦ τ2 Γ ` t2 :: τ1
Γ ` (t1 t2) :: τ2

A term can have more than one type.

(λx :: Int. x) :: Int →ε Int
(λx :: Int. x) :: Int →◦ Int

We introduce subtyping.

Γ ` t :: τ1 τ1 � τ2 (Sub)
Γ ` t :: τ2
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Refinement Pays Off

The use of selective strictness becomes visible from the type
(◦- and ε-marks):

foldl :: ∀◦α.∀◦β. (α→◦ β →◦ α)→ε α→ε [β]→ε α
foldl ′ :: ∀εα.∀◦β. (α→◦ β →◦ α)→ε α→ε [β]→ε α

Restrictions on free theorems can be dropped if the type
guarantees selective strictness is not used.

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t3 -> t2.
(( (k /= _|_) <=> (k’ /= _|_) )
&& (forall x :: t1.

( (k x /= _|_) <=> (k’ (f x) /= _|_) )
&& (forall y :: t3. f (k x y) = k’ (f x) y)))

==> (forall z :: t1.
forall xs :: [t3].

f ( foldl k z xs) = foldl k’ (f z) xs)
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Going Algorithmic

Goal: An algorithm retyping from standard types
to (minimal) refined types.

Idea: Use typing rules backwards to (re)type a term.

Problems:

I Type annotations are standard in the input term, but we need
refined ones.

I Typing rules are in competition, especially the (Sub)-rule is
always applicable.

Solutions:

I Remove the (Sub)-rule by integrating subtyping into the
other rules.

I Start the algorithm with all possible refined type annotations.

Are these good ideas?
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How to Deal with Refined Type Annotations?

Switch to variable marks at the type annotations:

Γ ` t1 :: τ1 →ε τ2 Γ ` t2 :: τ1
Γ ` (t1 t2) :: τ2

Γ ` t1 :: τ1 →◦ τ2 Γ ` t2 :: τ1
Γ ` (t1 t2) :: τ2

⇓ combine two rules into one

Γ ` t1 :: τ1 →ν τ2 Γ ` t2 :: τ1
Γ ` (t1 t2) :: τ2

⇓ add constraints for the mark variables

〈Γ̇ ` ṫ1〉V (C1, τ̇1 →ν τ̇2) 〈Γ̇ ` ṫ2〉V (C2, τ̇
′
1) 〈τ̇1 = τ̇ ′1〉V C3

〈Γ̇ ` ṫ1 ṫ2〉V (C1 ∧ C2 ∧ C3, τ̇2)
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The Resulting (Re)Typing Algorithm

A deterministic typing algorithm.

How does it work?

input V output

〈Γ̇ ` ṫ〉V (C , τ̇)

〈 · � α〉V (True, α) 〈α � · 〉V (True, α)

〈α→ν2 α � · 〉V (True ∧ True ∧ (ν3 6 ν2), α→ν3 α)

〈αν1 , x :: α→ν2 α ` x〉V ((ν3 6 ν2), α→ν3 α)

How to get back to concrete types, without mark variables?
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Back to Concrete Typability (Example)

We have:

〈 ` Λα.Λβ. λf :: α→ν1 β. λx :: α. let! x ′ = x in f x ′〉V
((ν2 = ε) ∧ (ν4 6 ν1) ∧ (ν1 6 ν6),

∀ν2α.∀ν3β. (α→ν6 β)→ν7 α→ν5 β)

with ◦ < ε.

We test all possible instantiations for the variable marks.

ν1 = ◦ ν1 = ε ν1 = ◦
ν2 = ◦ ν2 = ε ν2 = ε
ν3 = ◦ ν3 = ε ν3 = ◦
ν4 = ◦ ν4 = ε ν4 = ◦
ν5 = ◦ ν5 = ε ν5 = ε
ν6 = ◦ ν6 = ε ν6 = ◦
ν7 = ◦ ν7 = ε ν7 = ε

We take only the minimal solution!
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Make it a Type Refinement Algorithm

input: closed term with standard type annotations

⇓ add variable marks

term with parameterized refined type annotations

⇓ the main algorithm

constraint and parameterized type

⇓ solve constraint

all possible refined types

⇓ type comparison

output: the refined types leading to the strongest free theorems
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The Webinterface

http://www-ps.iai.uni-bonn.de/cgi-bin/polyseq.cgi
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