
Taming Selective Strictness

Daniel Seidel1 and Janis Voigtländer

Institute for Computer Science
Department III

University of Bonn, Germany

{ds,jv}@informatik.uni-bonn.de

April 7, 2010

1This author was supported by the DFG under grant VO 1512/1-1.
1 / 21

The Polymorphic Function foldl

foldl :: (α→ β → α)→ α→ [β]→ α
foldl k z [] = z
foldl k z (x : xs) = foldl k (k z x) xs

Example

sum = foldl (+) 0

sum [1, 2, 3] = foldl (+) 0 [1, 2, 3]

= foldl (+) (0 + 1) [2, 3]

= foldl (+) ((0 + 1) + 2) [3]

= foldl (+) (((0 + 1) + 2) + 3) []

= (((0 + 1) + 2) + 3)

= 6

2 / 21

The Polymorphic Function foldl

foldl :: (α→ β → α)→ α→ [β]→ α
foldl k z [] = z
foldl k z (x : xs) = foldl k (k z x) xs

foldl k z (

:

a1 :

a2

an []

) =

k

an

k

a2k

a1z

2 / 21

The Polymorphic Function foldl

foldl :: (α→ β → α)→ α→ [β]→ α
foldl k z [] = z
foldl k z (x : xs) = foldl k (k z x) xs

Example

sum = foldl (+) 0

sum [1, 2, 3] = foldl (+) 0 [1, 2, 3]

= foldl (+) (0 + 1) [2, 3]

= foldl (+) ((0 + 1) + 2) [3]

= foldl (+) (((0 + 1) + 2) + 3) []

= (((0 + 1) + 2) + 3)

= 6

2 / 21

The Polymorphic Function foldl

foldl :: (α→ β → α)→ α→ [β]→ α
foldl k z [] = z
foldl k z (x : xs) = foldl k (k z x) xs

Example

sum = foldl (+) 0

sum [1, 2, 3] = foldl (+) 0 [1, 2, 3]

= foldl (+) (0 + 1) [2, 3]

= foldl (+) ((0 + 1) + 2) [3]

= foldl (+) (((0 + 1) + 2) + 3) []

= (((0 + 1) + 2) + 3)

= 6

2 / 21

The Polymorphic Function foldl

foldl :: (α→ β → α)→ α→ [β]→ α
foldl k z [] = z
foldl k z (x : xs) = foldl k (k z x) xs

Example

sum = foldl (+) 0

sum [1, 2, 3] = foldl (+) 0 [1, 2, 3]

= foldl (+) (0 + 1) [2, 3]

= foldl (+) ((0 + 1) + 2) [3]

= foldl (+) (((0 + 1) + 2) + 3) []

= (((0 + 1) + 2) + 3)

= 6

2 / 21

The Polymorphic Function foldl

foldl :: (α→ β → α)→ α→ [β]→ α
foldl k z [] = z
foldl k z (x : xs) = foldl k (k z x) xs

Example

sum = foldl (+) 0

sum [1, 2, 3] = foldl (+) 0 [1, 2, 3]

= foldl (+) (0 + 1) [2, 3]

= foldl (+) ((0 + 1) + 2) [3]

= foldl (+) (((0 + 1) + 2) + 3) []

= (((0 + 1) + 2) + 3)

= 6

2 / 21

The Polymorphic Function foldl

foldl :: (α→ β → α)→ α→ [β]→ α
foldl k z [] = z
foldl k z (x : xs) = foldl k (k z x) xs

Example

sum = foldl (+) 0

sum [1, 2, 3] = foldl (+) 0 [1, 2, 3]

= foldl (+) (0 + 1) [2, 3]

= foldl (+) ((0 + 1) + 2) [3]

= foldl (+) (((0 + 1) + 2) + 3) []

= (((0 + 1) + 2) + 3)

= 6

2 / 21

The Polymorphic Function foldl

foldl :: (α→ β → α)→ α→ [β]→ α
foldl k z [] = z
foldl k z (x : xs) = foldl k (k z x) xs

Example

sum = foldl (+) 0

sum [1, 2, 3] = foldl (+) 0 [1, 2, 3]

= foldl (+) (0 + 1) [2, 3]

= foldl (+) ((0 + 1) + 2) [3]

= foldl (+) (((0 + 1) + 2) + 3) []

= (((0 + 1) + 2) + 3)

= 6

2 / 21

The Polymorphic Function foldl

foldl :: (α→ β → α)→ α→ [β]→ α
foldl k z [] = z
foldl k z (x : xs) = foldl k (k z x) xs

Example

sum = foldl (+) 0

sum [1, 2, 3] = foldl (+) 0 [1, 2, 3]

= foldl (+) (0 + 1) [2, 3]

= foldl (+) ((0 + 1) + 2) [3]

= foldl (+) (((0 + 1) + 2) + 3) []

= (((0 + 1) + 2) + 3)

= 6

2 / 21

The Fusion Property

Consider a simple program transformation:

(+1) ◦ sum

= (+1) ◦ (foldl (+) 0) = foldl (+) 1

More generally:
f ◦ (foldl k z) = foldl k ′ z ′

For an inductive proof the conditions

f z = z ′

∀x , y . f (k x y) = k ′ (f x) y

are sufficient.

3 / 21

The Fusion Property

Consider a simple program transformation:

(+1) ◦ sum = (+1) ◦ (foldl (+) 0)

= foldl (+) 1

More generally:
f ◦ (foldl k z) = foldl k ′ z ′

For an inductive proof the conditions

f z = z ′

∀x , y . f (k x y) = k ′ (f x) y

are sufficient.

3 / 21

The Fusion Property

Consider a simple program transformation:

(+1) ◦ sum = (+1) ◦ (foldl (+) 0) = foldl (+) 1

More generally:
f ◦ (foldl k z) = foldl k ′ z ′

For an inductive proof the conditions

f z = z ′

∀x , y . f (k x y) = k ′ (f x) y

are sufficient.

3 / 21

The Fusion Property

Consider a simple program transformation:

(+1) ◦ sum = (+1) ◦ (foldl (+) 0) = foldl (+) 1

More generally:
f ◦ (foldl k z) = foldl k ′ z ′

For an inductive proof the conditions

f z = z ′

∀x , y . f (k x y) = k ′ (f x) y

are sufficient.

3 / 21

The Fusion Property

Consider a simple program transformation:

(+1) ◦ sum = (+1) ◦ (foldl (+) 0) = foldl (+) 1

More generally:
f ◦ (foldl k z) = foldl k ′ z ′

For an inductive proof the conditions

f z = z ′

∀x , y . f (k x y) = k ′ (f x) y

are sufficient.

3 / 21

Free Theorems [Wadler, 1989]

With free theorems we can prove the fusion property automatically
only using foldl ’s type

foldl :: (α→ β → α)→ α→ [β]→ α .

Output of a generator2 for foldl ’s type as input:

forall t1,t2 in TYPES, f :: t1 -> t2 .
forall t3,t4 in TYPES, g :: t3 -> t4.
forall k :: t1 -> t3 -> t1 .

forall k’ :: t2 -> t4 -> t2 .
(forall x :: t1. forall y :: t3.

f (k x y) = k’ (f x) (g y))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl k z xs)

= foldl k’ (f z) (map g xs))

2
http://www-ps.iai.uni-bonn.de/ft/

4 / 21

http://www-ps.iai.uni-bonn.de/ft/

Free Theorems [Wadler, 1989]

With free theorems we can prove the fusion property automatically
only using foldl ’s type

foldl :: (α→ β → α)→ α→ [β]→ α .

Output of a generator2 for foldl ’s type as input:

forall t1,t2 in TYPES, f :: t1 -> t2 .
forall t3,t4 in TYPES, g :: t3 -> t4.
forall k :: t1 -> t3 -> t1 .

forall k’ :: t2 -> t4 -> t2 .
(forall x :: t1. forall y :: t3.

f (k x y) = k’ (f x) (g y))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl k z xs)

= foldl k’ (f z) (map g xs))

2
http://www-ps.iai.uni-bonn.de/ft/

4 / 21

http://www-ps.iai.uni-bonn.de/ft/

Free Theorems [Wadler, 1989]

With free theorems we can prove the fusion property automatically
only using foldl ’s type

foldl :: (α→ β → α)→ α→ [β]→ α .

Output of a generator2 for foldl ’s type as input:

forall t1,t2 in TYPES, f :: t1 -> t2 .
forall t3,t4 in TYPES, g :: t3 -> t4.
forall k :: t1 -> t3 -> t1 .

forall k’ :: t2 -> t4 -> t2 .
(forall x :: t1. forall y :: t3.

f (k x y) = k’ (f x) (g y))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl k z xs)

= foldl k’ (f z) (map g xs))

2
http://www-ps.iai.uni-bonn.de/ft/

4 / 21

http://www-ps.iai.uni-bonn.de/ft/

Free Theorems [Wadler, 1989]

With free theorems we can prove the fusion property automatically
only using foldl ’s type

foldl :: (α→ β → α)→ α→ [β]→ α .

Output of a generator2 for foldl ’s type as input:

forall t1,t2 in TYPES, f :: t1 -> t2 .
forall t3,t4 in TYPES, g :: t3 -> t4.
forall k :: t1 -> t3 -> t1 .

forall k’ :: t2 -> t4 -> t2 .
(forall x :: t1. forall y :: t3.

f (k x y) = k’ (f x) (g y))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl k z xs)

= foldl k’ (f z) (map g xs))

2
http://www-ps.iai.uni-bonn.de/ft/

4 / 21

http://www-ps.iai.uni-bonn.de/ft/

Free Theorems [Wadler, 1989]

With free theorems we can prove the fusion property automatically
only using foldl ’s type

foldl :: (α→ β → α)→ α→ [β]→ α .

Output of a generator2 for foldl ’s type as input:

forall t1,t2 in TYPES, f :: t1 -> t2 .

forall k :: t1 -> t3 -> t1 .

forall k’ :: t2 -> t3 -> t2 .
(forall x :: t1. forall y :: t3.

f (k x y) = k’ (f x) (y))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl k z xs)

= foldl k’ (f z) (xs))

2
http://www-ps.iai.uni-bonn.de/ft/

4 / 21

http://www-ps.iai.uni-bonn.de/ft/

Speed Up with Selective Strictness

Example (sum reconsidered)

sum [1, 2, 3] = foldl (+) 0 [1, 2, 3]

= foldl (+) (0 + 1) [2, 3]

= foldl (+) ((0 + 1) + 2) [3]

. . .

Lazy evaluation results in a huge overhead.

⇒ Strict evaluation is desirable.

Haskell provides strict evaluation by the function seq ::α→ β → β:

seq a b =

{
b if a 6= ⊥
⊥ otherwise

5 / 21

Speed Up with Selective Strictness

Example (sum reconsidered)

sum [1, 2, 3] = foldl (+) 0 [1, 2, 3]

= foldl (+) (0 + 1) [2, 3]

= foldl (+) ((0 + 1) + 2) [3]

. . .

Lazy evaluation results in a huge overhead.

⇒ Strict evaluation is desirable.

Haskell provides strict evaluation by the function seq ::α→ β → β:

seq a b =

{
b if a 6= ⊥
⊥ otherwise

5 / 21

Speed Up with Selective Strictness

Example (sum reconsidered)

sum [1, 2, 3] = foldl (+) 0 [1, 2, 3]

= foldl (+) (0 + 1) [2, 3]

= foldl (+) ((0 + 1) + 2) [3]

. . .

Lazy evaluation results in a huge overhead.

⇒ Strict evaluation is desirable.

Haskell provides strict evaluation by the function seq ::α→ β → β:

seq a b =

{
b if a 6= ⊥
⊥ otherwise

5 / 21

Speed Up with Selective Strictness

Example (sum reconsidered)

sum [1, 2, 3] = foldl (+) 0 [1, 2, 3]

= foldl (+) (0 + 1) [2, 3]

= foldl (+) ((0 + 1) + 2) [3]

. . .

Lazy evaluation results in a huge overhead.

⇒ Strict evaluation is desirable.

Haskell provides strict evaluation by the function seq ::α→ β → β:

seq a b =

{
b if a 6= ⊥
⊥ otherwise

5 / 21

foldl ′ — A Strict Version of foldl

foldl ′ :: (α→ β → α)→ α→ [β]→ α
foldl ′ k z [] = z
foldl ′ k z (x : xs) = let z ′ = k z x in seq z ′ (foldl ′ k z ′ xs)

Example (strict sum′)

sum′ [1, 2, 3] = foldl ′ (+) 0 [1, 2, 3]

= let z ′ = 0 + 1 in seq z ′ (foldl ′ (+) z ′ [2, 3])

= foldl ′ (+) 1 [2, 3]

= let z ′ = 1 + 2 in seq z ′ (foldl ′ (+) z ′ [3])

= foldl ′ (+) 3 [3]

. . .

sum′ evaluates the addition whenever possible.

⇒ Saving space (and time)

⇒ Strict evaluation pays off here.

6 / 21

foldl ′ — A Strict Version of foldl

foldl ′ :: (α→ β → α)→ α→ [β]→ α
foldl ′ k z [] = z
foldl ′ k z (x : xs) = let z ′ = k z x in seq z ′ (foldl ′ k z ′ xs)

Example (strict sum′)

sum′ [1, 2, 3] = foldl ′ (+) 0 [1, 2, 3]

= let z ′ = 0 + 1 in seq z ′ (foldl ′ (+) z ′ [2, 3])

= foldl ′ (+) 1 [2, 3]

= let z ′ = 1 + 2 in seq z ′ (foldl ′ (+) z ′ [3])

= foldl ′ (+) 3 [3]

. . .

sum′ evaluates the addition whenever possible.

⇒ Saving space (and time)

⇒ Strict evaluation pays off here.

6 / 21

foldl ′ — A Strict Version of foldl

foldl ′ :: (α→ β → α)→ α→ [β]→ α
foldl ′ k z [] = z
foldl ′ k z (x : xs) = let z ′ = k z x in seq z ′ (foldl ′ k z ′ xs)

Example (strict sum′)

sum′ [1, 2, 3] = foldl ′ (+) 0 [1, 2, 3]

= let z ′ = 0 + 1 in seq z ′ (foldl ′ (+) z ′ [2, 3])

= foldl ′ (+) 1 [2, 3]

= let z ′ = 1 + 2 in seq z ′ (foldl ′ (+) z ′ [3])

= foldl ′ (+) 3 [3]

. . .

sum′ evaluates the addition whenever possible.

⇒ Saving space (and time)

⇒ Strict evaluation pays off here.

6 / 21

foldl ′ — A Strict Version of foldl

foldl ′ :: (α→ β → α)→ α→ [β]→ α
foldl ′ k z [] = z
foldl ′ k z (x : xs) = let z ′ = k z x in seq z ′ (foldl ′ k z ′ xs)

Example (strict sum′)

sum′ [1, 2, 3] = foldl ′ (+) 0 [1, 2, 3]

= let z ′ = 0 + 1 in seq z ′ (foldl ′ (+) z ′ [2, 3])

= foldl ′ (+) 1 [2, 3]

= let z ′ = 1 + 2 in seq z ′ (foldl ′ (+) z ′ [3])

= foldl ′ (+) 3 [3]

. . .

sum′ evaluates the addition whenever possible.

⇒ Saving space (and time)

⇒ Strict evaluation pays off here.

6 / 21

foldl ′ — A Strict Version of foldl

foldl ′ :: (α→ β → α)→ α→ [β]→ α
foldl ′ k z [] = z
foldl ′ k z (x : xs) = let z ′ = k z x in seq z ′ (foldl ′ k z ′ xs)

Example (strict sum′)

sum′ [1, 2, 3] = foldl ′ (+) 0 [1, 2, 3]

= let z ′ = 0 + 1 in seq z ′ (foldl ′ (+) z ′ [2, 3])

= foldl ′ (+) 1 [2, 3]

= let z ′ = 1 + 2 in seq z ′ (foldl ′ (+) z ′ [3])

= foldl ′ (+) 3 [3]

. . .

sum′ evaluates the addition whenever possible.

⇒ Saving space (and time)

⇒ Strict evaluation pays off here.

6 / 21

foldl ′ — A Strict Version of foldl

foldl ′ :: (α→ β → α)→ α→ [β]→ α
foldl ′ k z [] = z
foldl ′ k z (x : xs) = let z ′ = k z x in seq z ′ (foldl ′ k z ′ xs)

Example (strict sum′)

sum′ [1, 2, 3] = foldl ′ (+) 0 [1, 2, 3]

= let z ′ = 0 + 1 in seq z ′ (foldl ′ (+) z ′ [2, 3])

= foldl ′ (+) 1 [2, 3]

= let z ′ = 1 + 2 in seq z ′ (foldl ′ (+) z ′ [3])

= foldl ′ (+) 3 [3]

. . .

sum′ evaluates the addition whenever possible.

⇒ Saving space (and time)

⇒ Strict evaluation pays off here.

6 / 21

foldl ′ — A Strict Version of foldl

foldl ′ :: (α→ β → α)→ α→ [β]→ α
foldl ′ k z [] = z
foldl ′ k z (x : xs) = let z ′ = k z x in seq z ′ (foldl ′ k z ′ xs)

Example (strict sum′)

sum′ [1, 2, 3] = foldl ′ (+) 0 [1, 2, 3]

= let z ′ = 0 + 1 in seq z ′ (foldl ′ (+) z ′ [2, 3])

= foldl ′ (+) 1 [2, 3]

= let z ′ = 1 + 2 in seq z ′ (foldl ′ (+) z ′ [3])

= foldl ′ (+) 3 [3]

. . .

sum′ evaluates the addition whenever possible.

⇒ Saving space (and time)

⇒ Strict evaluation pays off here.

6 / 21

foldl ′ — A Strict Version of foldl

foldl ′ :: (α→ β → α)→ α→ [β]→ α
foldl ′ k z [] = z
foldl ′ k z (x : xs) = let z ′ = k z x in seq z ′ (foldl ′ k z ′ xs)

Example (strict sum′)

sum′ [1, 2, 3] = foldl ′ (+) 0 [1, 2, 3]

= let z ′ = 0 + 1 in seq z ′ (foldl ′ (+) z ′ [2, 3])

= foldl ′ (+) 1 [2, 3]

= let z ′ = 1 + 2 in seq z ′ (foldl ′ (+) z ′ [3])

= foldl ′ (+) 3 [3]

. . .

sum′ evaluates the addition whenever possible.

⇒ Saving space (and time)

⇒ Strict evaluation pays off here.

6 / 21

foldl ′ — A Strict Version of foldl

foldl ′ :: (α→ β → α)→ α→ [β]→ α
foldl ′ k z [] = z
foldl ′ k z (x : xs) = let z ′ = k z x in seq z ′ (foldl ′ k z ′ xs)

Example (strict sum′)

sum′ [1, 2, 3] = foldl ′ (+) 0 [1, 2, 3]

= let z ′ = 0 + 1 in seq z ′ (foldl ′ (+) z ′ [2, 3])

= foldl ′ (+) 1 [2, 3]

= let z ′ = 1 + 2 in seq z ′ (foldl ′ (+) z ′ [3])

= foldl ′ (+) 3 [3]

. . .

sum′ evaluates the addition whenever possible.

⇒ Saving space (and time)

⇒ Strict evaluation pays off here.

6 / 21

foldl ′ — A Strict Version of foldl

foldl ′ :: (α→ β → α)→ α→ [β]→ α
foldl ′ k z [] = z
foldl ′ k z (x : xs) = let z ′ = k z x in seq z ′ (foldl ′ k z ′ xs)

Example (strict sum′)

sum′ [1, 2, 3] = foldl ′ (+) 0 [1, 2, 3]

= let z ′ = 0 + 1 in seq z ′ (foldl ′ (+) z ′ [2, 3])

= foldl ′ (+) 1 [2, 3]

= let z ′ = 1 + 2 in seq z ′ (foldl ′ (+) z ′ [3])

= foldl ′ (+) 3 [3]

. . .

sum′ evaluates the addition whenever possible.

⇒ Saving space (and time)

⇒ Strict evaluation pays off here.
6 / 21

Drawbacks of Selective Strictness

Question:

f (foldl ′ k z xs)
?

= foldl ′ k ′ (f z) xs

if f (k x y) = k ′ (f x) y

Consider an example instantiation:

f = λx → x ∨ ⊥
k = k ′ = λx y → y ∨ x

xs = [False,True]

z = False

Answer: No!

f (foldl ′ k False [False,True]) = True
6=

foldl ′ k ′ (f False) [False,True] = ⊥

7 / 21

Drawbacks of Selective Strictness

Question:

f (foldl ′ k z xs)
?

= foldl ′ k ′ (f z) xs

if f (k x y) = k ′ (f x) y

Consider an example instantiation:

f = λx → x ∨ ⊥
k = k ′ = λx y → y ∨ x

xs = [False,True]

z = False

Answer: No!

f (foldl ′ k False [False,True]) = True
6=

foldl ′ k ′ (f False) [False,True] = ⊥

7 / 21

Drawbacks of Selective Strictness

Question:

f (foldl ′ k z xs)
?

= foldl ′ k ′ (f z) xs

if f (k x y) = k ′ (f x) y

Consider an example instantiation:

f = λx → x ∨ ⊥
k = k ′ = λx y → y ∨ x

xs = [False,True]

z = False

Answer: No!

f (foldl ′ k False [False,True]) = True

6=
foldl ′ k ′ (f False) [False,True] = ⊥

7 / 21

Drawbacks of Selective Strictness

Question:

f (foldl ′ k z xs)
?

= foldl ′ k ′ (f z) xs

if f (k x y) = k ′ (f x) y

Consider an example instantiation:

f = λx → x ∨ ⊥
k = k ′ = λx y → y ∨ x

xs = [False,True]

z = False

Answer: No!

f (foldl ′ k False [False,True]) = True

6=

foldl ′ k ′ (f False) [False,True] = ⊥

7 / 21

Drawbacks of Selective Strictness

Question:

f (foldl ′ k z xs)
?

= foldl ′ k ′ (f z) xs

if f (k x y) = k ′ (f x) y

Consider an example instantiation:

f = λx → x ∨ ⊥
k = k ′ = λx y → y ∨ x

xs = [False,True]

z = False

Answer: No!

f (foldl ′ k False [False,True]) = True
6=

foldl ′ k ′ (f False) [False,True] = ⊥

7 / 21

Drawbacks of Selective Strictness

Question:

f (foldl ′ k z xs) 6= foldl ′ k ′ (f z) xs

if f (k x y) = k ′ (f x) y

Consider an example instantiation:

f = λx → x ∨ ⊥
k = k ′ = λx y → y ∨ x

xs = [False,True]

z = False

Answer: No!

f (foldl ′ k False [False,True]) = True
6=

foldl ′ k ′ (f False) [False,True] = ⊥

7 / 21

Analyzing the Problem

The strictness-aware free theorem:

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

Question: Are all these restrictions necessary?

An inductive proof for

f (foldl ′ k z xs) = foldl ′ k ′ (f z) xs

shows that f x = ⊥ ⇔ x = ⊥ suffices (i.e. f is strict and total).

8 / 21

Analyzing the Problem

The strictness-aware free theorem:

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

Question: Are all these restrictions necessary?

An inductive proof for

f (foldl ′ k z xs) = foldl ′ k ′ (f z) xs

shows that f x = ⊥ ⇔ x = ⊥ suffices (i.e. f is strict and total).

8 / 21

Analyzing the Problem

The strictness-aware free theorem:

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

Question: Are all these restrictions necessary?

An inductive proof for

f (foldl ′ k z xs) = foldl ′ k ′ (f z) xs

shows that f x = ⊥ ⇔ x = ⊥ suffices (i.e. f is strict and total).
8 / 21

Why so Many Restrictions?

Free theorems depend only on the type.

foldl :: (α→ β → α)→ α→ [β]→ α

foldl ′ :: (α→ β → α)→ α→ [β]→ α

foldl ′′ :: (α→ β → α)→ α→ [β]→ α
foldl ′′ k z [] = seq k z
foldl ′′ k z (x : xs) = foldl ′′ (k z x) xs

Problem: The free theorem is only aware of
the potential risks of seq, but not of its concrete use.

Solution: Make the use of seq visible from the type.
In particular where it is used.

9 / 21

Why so Many Restrictions?

Free theorems depend only on the type.

foldl :: (α→ β → α)→ α→ [β]→ α

foldl ′ :: (α→ β → α)→ α→ [β]→ α

foldl ′′ :: (α→ β → α)→ α→ [β]→ α
foldl ′′ k z [] = seq k z
foldl ′′ k z (x : xs) = foldl ′′ (k z x) xs

Problem: The free theorem is only aware of
the potential risks of seq, but not of its concrete use.

Solution: Make the use of seq visible from the type.
In particular where it is used.

9 / 21

Why so Many Restrictions?

Free theorems depend only on the type.

foldl :: (α→ β → α)→ α→ [β]→ α

foldl ′ :: (α→ β → α)→ α→ [β]→ α

foldl ′′ :: (α→ β → α)→ α→ [β]→ α
foldl ′′ k z [] = seq k z
foldl ′′ k z (x : xs) = foldl ′′ (k z x) xs

Problem: The free theorem is only aware of
the potential risks of seq, but not of its concrete use.

Solution: Make the use of seq visible from the type.
In particular where it is used.

9 / 21

Why so Many Restrictions?

Free theorems depend only on the type.

foldl :: (α→ β → α)→ α→ [β]→ α

foldl ′ :: (α→ β → α)→ α→ [β]→ α

foldl ′′ :: (α→ β → α)→ α→ [β]→ α
foldl ′′ k z [] = seq k z
foldl ′′ k z (x : xs) = foldl ′′ (k z x) xs

Problem: The free theorem is only aware of
the potential risks of seq, but not of its concrete use.

Solution: Make the use of seq visible from the type.
In particular where it is used.

9 / 21

Why so Many Restrictions?

Free theorems depend only on the type.

foldl :: (α→ β → α)→ α→ [β]→ α

foldl ′ :: (α→ β → α)→ α→ [β]→ α

foldl ′′ :: (α→ β → α)→ α→ [β]→ α
foldl ′′ k z [] = seq k z
foldl ′′ k z (x : xs) = foldl ′′ (k z x) xs

Problem: The free theorem is only aware of
the potential risks of seq, but not of its concrete use.

Solution: Make the use of seq visible from the type.
In particular where it is used.

9 / 21

Why so Many Restrictions?

Free theorems depend only on the type.

foldl :: (α→ β → α)→ α→ [β]→ α

foldl ′ :: (α→ β → α)→ α→ [β]→ α

foldl ′′ :: (α→ β → α)→ α→ [β]→ α
foldl ′′ k z [] = seq k z
foldl ′′ k z (x : xs) = foldl ′′ (k z x) xs

Problem: The free theorem is only aware of
the potential risks of seq, but not of its concrete use.

Solution: Make the use of seq visible from the type.
In particular where it is used.

9 / 21

A Refined Type System . . .

Add new type constructors.

τ ::= α | ∀εα.τ | ∀◦α.τ | τ →ε τ | τ →◦ τ | . . .

Distinguish types whos terms are / are not allowed
to be strictly evaluated.

A former approach (Haskell 1.3)

foldl ′ :: Eval α⇒ (α→ β → α)→ α→ [β]→ α

was not sufficient [Johann and Voigtländer, 2004].

The difference: two function types.

10 / 21

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

A Refined Type System . . .

Add new type constructors.

τ ::= α | ∀εα.τ | ∀◦α.τ | τ →ε τ | τ →◦ τ | . . .

Distinguish types whos terms are / are not allowed
to be strictly evaluated.

A former approach (Haskell 1.3)

foldl ′ :: Eval α⇒ (α→ β → α)→ α→ [β]→ α

was not sufficient [Johann and Voigtländer, 2004].

The difference: two function types.

10 / 21

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

A Refined Type System . . .

Add new type constructors.

τ ::= α | ∀εα.τ | ∀◦α.τ | τ →ε τ | τ →◦ τ | . . .

Distinguish types whos terms are / are not allowed
to be strictly evaluated.

A former approach (Haskell 1.3)

foldl ′ :: Eval α⇒ (α→ β → α)→ α→ [β]→ α

was not sufficient [Johann and Voigtländer, 2004].

The difference: two function types.

10 / 21

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

A Refined Type System . . .

Add new type constructors.

τ ::= α | ∀εα.τ | ∀◦α.τ | τ →ε τ | τ →◦ τ | . . .

Distinguish types whos terms are / are not allowed
to be strictly evaluated.

A former approach (Haskell 1.3)

foldl ′ :: Eval α⇒ (α→ β → α)→ α→ [β]→ α

was not sufficient [Johann and Voigtländer, 2004].

The difference: two function types.

10 / 21

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

A Refined Type System . . .

Add new type constructors.

τ ::= α | ∀εα.τ | ∀◦α.τ | τ →ε τ | τ →◦ τ | . . .

Distinguish types whos terms are / are not allowed
to be strictly evaluated.

A former approach (Haskell 1.3)

foldl ′ :: Eval α⇒ (α→ β → α)→ α→ [β]→ α

was not sufficient [Johann and Voigtländer, 2004].

The difference: two function types.

10 / 21

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

A Refined Type System . . .

Add new type constructors.

τ ::= α | ∀εα.τ | ∀◦α.τ | τ →ε τ | τ →◦ τ | . . .

Distinguish types whos terms are / are not allowed
to be strictly evaluated.

A former approach (Haskell 1.3)

foldl ′ :: Eval α⇒ (α→ β → α)→ α→ [β]→ α

was not sufficient [Johann and Voigtländer, 2004].

The difference: two function types.

10 / 21

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

A Refined Type System . . .

Add new type constructors.

τ ::= α | ∀εα.τ | ∀◦α.τ | τ →ε τ | τ →◦ τ | . . .

Distinguish types whos terms are / are not allowed
to be strictly evaluated.

A former approach (Haskell 1.3)

foldl ′ :: Eval α⇒ (α→ β → α)→ α→ [β]→ α

was not sufficient [Johann and Voigtländer, 2004].

The difference: two function types.

10 / 21

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

A Refined Type System . . .

Add new type constructors.

τ ::= α | ∀εα.τ | ∀◦α.τ | τ →ε τ | τ →◦ τ | . . .

Distinguish types whos terms are / are not allowed
to be strictly evaluated.

A former approach (Haskell 1.3)

foldl ′ :: Eval α⇒ (α→ β → α)→ α→ [β]→ α

was not sufficient [Johann and Voigtländer, 2004].

The difference: two function types.

10 / 21

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

A Refined Type System . . .

Add new type constructors.

τ ::= α | ∀εα.τ | ∀◦α.τ | τ →ε τ | τ →◦ τ | . . .

Distinguish types whos terms are / are not allowed
to be strictly evaluated.

A former approach (Haskell 1.3)

foldl ′ :: Eval α⇒ (α→ β → α)→ α→ [β]→ α

was not sufficient [Johann and Voigtländer, 2004].

The difference: two function types.

10 / 21

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

A Refined Type System . . .

Add new type constructors.

τ ::= α | ∀εα.τ | ∀◦α.τ | τ →ε τ | τ →◦ τ | . . .

Distinguish types whos terms are / are not allowed
to be strictly evaluated.

A former approach (Haskell 1.3)

foldl ′ :: Eval α⇒ (α→ β → α)→ α→ [β]→ α

was not sufficient [Johann and Voigtländer, 2004].

The difference: two function types.

10 / 21

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

A Refined Type System . . .

Add new type constructors.

τ ::= α | ∀εα.τ | ∀◦α.τ | τ →ε τ | τ →◦ τ | . . .

Distinguish types whos terms are / are not allowed
to be strictly evaluated.

A former approach (Haskell 1.3)

foldl ′ :: Eval α⇒ (α→ β → α)→ α→ [β]→ α

was not sufficient [Johann and Voigtländer, 2004].

The difference: two function types.

10 / 21

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

A Refined Type System . . .

Add new type constructors.

τ ::= α | ∀εα.τ | ∀◦α.τ | τ →ε τ | τ →◦ τ | . . .

Distinguish types whos terms are / are not allowed
to be strictly evaluated.

A former approach (Haskell 1.3)

foldl ′ :: Eval α⇒ (α→ β → α)→ α→ [β]→ α

was not sufficient [Johann and Voigtländer, 2004].

The difference: two function types.

10 / 21

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

A Refined Type System . . .

Add new type constructors.

τ ::= α | ∀εα.τ | ∀◦α.τ | τ →ε τ | τ →◦ τ | . . .

Distinguish types whos terms are / are not allowed
to be strictly evaluated.

A former approach (Haskell 1.3)

foldl ′ :: Eval α⇒ (α→ β → α)→ α→ [β]→ α

was not sufficient [Johann and Voigtländer, 2004].

The difference: two function types.

10 / 21

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

A Refined Type System . . .

Add new type constructors.

τ ::= α | ∀εα.τ | ∀◦α.τ | τ →ε τ | τ →◦ τ | . . .

Distinguish types whos terms are / are not allowed
to be strictly evaluated.

A former approach (Haskell 1.3)

foldl ′ :: Eval α⇒ (α→ β → α)→ α→ [β]→ α

was not sufficient [Johann and Voigtländer, 2004].

The difference: two function types.

10 / 21

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

A Refined Type System . . .

Add new type constructors.

τ ::= α | ∀εα.τ | ∀◦α.τ | τ →ε τ | τ →◦ τ | . . .

Distinguish types whos terms are / are not allowed
to be strictly evaluated.

A former approach (Haskell 1.3)

foldl ′ :: Eval α⇒ (α→ β → α)→ α→ [β]→ α

was not sufficient [Johann and Voigtländer, 2004].

The difference: two function types.

10 / 21

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

A Refined Type System . . .

Add new type constructors.

τ ::= α | ∀εα.τ | ∀◦α.τ | τ →ε τ | τ →◦ τ | . . .

Distinguish types whos terms are / are not allowed
to be strictly evaluated.

A former approach (Haskell 1.3)

foldl ′ :: Eval α⇒ (α→ β → α)→ α→ [β]→ α

was not sufficient [Johann and Voigtländer, 2004].

The difference: two function types.

10 / 21

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

A Refined Type System . . .

Add new type constructors.

τ ::= α | ∀εα.τ | ∀◦α.τ | τ →ε τ | τ →◦ τ | . . .

Distinguish types whos terms are / are not allowed
to be strictly evaluated.

A former approach (Haskell 1.3)

foldl ′ :: Eval α⇒ (α→ β → α)→ α→ [β]→ α

was not sufficient [Johann and Voigtländer, 2004].

The difference: two function types.

10 / 21

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

A Refined Type System . . .

Add new type constructors.

τ ::= α | ∀εα.τ | ∀◦α.τ | τ →ε τ | τ →◦ τ | . . .

Distinguish types whos terms are / are not allowed
to be strictly evaluated.

A former approach (Haskell 1.3)

foldl ′ :: Eval α⇒ (α→ β → α)→ α→ [β]→ α

was not sufficient [Johann and Voigtländer, 2004].

The difference: two function types.

10 / 21

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

A Refined Type System . . .

Add new type constructors.

τ ::= α | ∀εα.τ | ∀◦α.τ | τ →ε τ | τ →◦ τ | . . .

Distinguish types whos terms are / are not allowed
to be strictly evaluated.

A former approach (Haskell 1.3)

foldl ′ :: Eval α⇒ (α→ β → α)→ α→ [β]→ α

was not sufficient [Johann and Voigtländer, 2004].

The difference: two function types.

10 / 21

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

A Refined Type System . . .

Add new type constructors.

τ ::= α | ∀εα.τ | ∀◦α.τ | τ →ε τ | τ →◦ τ | . . .

Distinguish types whos terms are / are not allowed
to be strictly evaluated.

A former approach (Haskell 1.3)

foldl ′ :: Eval α⇒ (α→ β → α)→ α→ [β]→ α

was not sufficient [Johann and Voigtländer, 2004].

The difference: two function types.

10 / 21

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

A Refined Type System . . .

Add new type constructors.

τ ::= α | ∀εα.τ | ∀◦α.τ | τ →ε τ | τ →◦ τ | . . .

Distinguish types whos terms are / are not allowed
to be strictly evaluated.

A former approach (Haskell 1.3)

foldl ′ :: Eval α⇒ (α→ β → α)→ α→ [β]→ α

was not sufficient [Johann and Voigtländer, 2004].

The difference: two function types.

10 / 21

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

A Refined Type System . . .

Add new type constructors.

τ ::= α | ∀εα.τ | ∀◦α.τ | τ →ε τ | τ →◦ τ | . . .

Distinguish types whos terms are / are not allowed
to be strictly evaluated.

A former approach (Haskell 1.3)

foldl ′ :: Eval α⇒ (α→ β → α)→ α→ [β]→ α

was not sufficient [Johann and Voigtländer, 2004].

The difference: two function types.

10 / 21

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

A Refined Type System . . .

Add new type constructors.

τ ::= α | ∀εα.τ | ∀◦α.τ | τ →ε τ | τ →◦ τ | . . .

Distinguish types whos terms are / are not allowed
to be strictly evaluated.

A former approach (Haskell 1.3)

foldl ′ :: Eval α⇒ (α→ β → α)→ α→ [β]→ α

was not sufficient [Johann and Voigtländer, 2004].

The difference: two function types.

10 / 21

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

A Refined Type System . . .

Add new type constructors.

τ ::= α | ∀εα.τ | ∀◦α.τ | τ →ε τ | τ →◦ τ | . . .

Distinguish types whos terms are / are not allowed
to be strictly evaluated.

A former approach (Haskell 1.3)

foldl ′ :: Eval α⇒ (α→ β → α)→ α→ [β]→ α

was not sufficient [Johann and Voigtländer, 2004].

The difference: two function types.

10 / 21

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .

forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) (g y))))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) (map g xs))

. . . and its Effects on the Typing Rules (1)

A rule system for Γ ` τ ∈ Seqable:

Γ ` [τ] ∈ Seqable Γ ` (τ1 →ε τ2) ∈ Seqable

αε ∈ Γ
Γ ` α ∈ Seqable

αε, Γ ` τ ∈ Seqable

Γ ` (∀αν .τ) ∈ Seqable

Restricting (SLet)

Γ ` τ1 ∈ Seqable Γ ` t1 :: τ1 Γ, x :: τ1 ` t2 :: τ2
(SLet’)

Γ ` (let! x = t1 in t2) :: τ2

with Γ = αν1
1 , . . . α

νn
n , x1 :: τ1, . . . xn :: τn and νi ∈ {◦, ε}.

11 / 21

. . . and its Effects on the Typing Rules (1)

A rule system for Γ ` τ ∈ Seqable:

Γ ` [τ] ∈ Seqable Γ ` (τ1 →ε τ2) ∈ Seqable

αε ∈ Γ
Γ ` α ∈ Seqable

αε, Γ ` τ ∈ Seqable

Γ ` (∀αν .τ) ∈ Seqable

Restricting (SLet)

Γ ` τ1 ∈ Seqable Γ ` t1 :: τ1 Γ, x :: τ1 ` t2 :: τ2
(SLet’)

Γ ` (let! x = t1 in t2) :: τ2

with Γ = αν1
1 , . . . α

νn
n , x1 :: τ1, . . . xn :: τn and νi ∈ {◦, ε}.

11 / 21

. . . and its Effects on the Typing Rules (1)

A rule system for Γ ` τ ∈ Seqable:

Γ ` [τ] ∈ Seqable Γ ` (τ1 →ε τ2) ∈ Seqable

αε ∈ Γ
Γ ` α ∈ Seqable

αε, Γ ` τ ∈ Seqable

Γ ` (∀αν .τ) ∈ Seqable

Restricting (SLet)

Γ ` τ1 ∈ Seqable Γ ` t1 :: τ1 Γ, x :: τ1 ` t2 :: τ2
(SLet’)

Γ ` (let! x = t1 in t2) :: τ2

with Γ = αν1
1 , . . . α

νn
n , x1 :: τ1, . . . xn :: τn and νi ∈ {◦, ε}.

11 / 21

. . . and its Effects on the Typing Rules (2)

More typing rules because of new constructors:

Γ ` t1 :: τ1 →ε τ2 Γ ` t2 :: τ1
Γ ` (t1 t2) :: τ2

Γ ` t1 :: τ1 →◦ τ2 Γ ` t2 :: τ1
Γ ` (t1 t2) :: τ2

A term can have more than one type.

(λx :: Int. x) :: Int →ε Int
(λx :: Int. x) :: Int →◦ Int

We introduce subtyping.

Γ ` t :: τ1 τ1 � τ2 (Sub)
Γ ` t :: τ2

12 / 21

. . . and its Effects on the Typing Rules (2)

More typing rules because of new constructors:

Γ ` t1 :: τ1 →ε τ2 Γ ` t2 :: τ1
Γ ` (t1 t2) :: τ2

Γ ` t1 :: τ1 →◦ τ2 Γ ` t2 :: τ1
Γ ` (t1 t2) :: τ2

A term can have more than one type.

(λx :: Int. x) :: Int →ε Int
(λx :: Int. x) :: Int →◦ Int

We introduce subtyping.

Γ ` t :: τ1 τ1 � τ2 (Sub)
Γ ` t :: τ2

12 / 21

. . . and its Effects on the Typing Rules (2)

More typing rules because of new constructors:

Γ ` t1 :: τ1 →ε τ2 Γ ` t2 :: τ1
Γ ` (t1 t2) :: τ2

Γ ` t1 :: τ1 →◦ τ2 Γ ` t2 :: τ1
Γ ` (t1 t2) :: τ2

A term can have more than one type.

(λx :: Int. x) :: Int →ε Int
(λx :: Int. x) :: Int →◦ Int

We introduce subtyping.

Γ ` t :: τ1 τ1 � τ2 (Sub)
Γ ` t :: τ2

12 / 21

Refinement Pays Off

The use of selective strictness becomes visible from the type
(◦- and ε-marks):

foldl :: ∀◦α.∀◦β. (α→◦ β →◦ α)→ε α→ε [β]→ε α
foldl ′ :: ∀εα.∀◦β. (α→◦ β →◦ α)→ε α→ε [β]→ε α

Restrictions on free theorems can be dropped if the type
guarantees selective strictness is not used.

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t3 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) y)))

==> (forall z :: t1.
forall xs :: [t3].

f (foldl k z xs) = foldl k’ (f z) xs)

13 / 21

Refinement Pays Off

The use of selective strictness becomes visible from the type
(◦- and ε-marks):

foldl :: ∀◦α.∀◦β. (α→◦ β →◦ α)→ε α→ε [β]→ε α
foldl ′ :: ∀εα.∀◦β. (α→◦ β →◦ α)→ε α→ε [β]→ε α

Restrictions on free theorems can be dropped if the type
guarantees selective strictness is not used.

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t3 -> t2.
(((k /= _|_) <=> (k’ /= _|_))
&& (forall x :: t1.

((k x /= _|_) <=> (k’ (f x) /= _|_))
&& (forall y :: t3. f (k x y) = k’ (f x) y)))

==> (forall z :: t1.
forall xs :: [t3].
f (foldl k z xs) = foldl k’ (f z) xs)

13 / 21

Refinement Pays Off

The use of selective strictness becomes visible from the type
(◦- and ε-marks):

foldl :: ∀◦α.∀◦β. (α→◦ β →◦ α)→ε α→ε [β]→ε α
foldl ′ :: ∀εα.∀◦β. (α→◦ β →◦ α)→ε α→ε [β]→ε α

Restrictions on free theorems can be dropped if the type
guarantees selective strictness is not used.

forall t1,t2 in TYPES, f :: t1 -> t2 .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t3 -> t2.
(

(forall x :: t1.

(forall y :: t3. f (k x y) = k’ (f x) y)))
==> (forall z :: t1.

forall xs :: [t3].
f (foldl k z xs) = foldl k’ (f z) xs)

13 / 21

Refinement Pays Off

The use of selective strictness becomes visible from the type
(◦- and ε-marks):

foldl :: ∀◦α.∀◦β. (α→◦ β →◦ α)→ε α→ε [β]→ε α
foldl ′ :: ∀εα.∀◦β. (α→◦ β →◦ α)→ε α→ε [β]→ε α

Restrictions on free theorems can be dropped if the type
guarantees selective strictness is not used.

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total .
forall k :: t1 -> t3 -> t1.
forall k’ :: t2 -> t3 -> t2.
(

(forall x :: t1.

(forall y :: t3. f (k x y) = k’ (f x) y)))
==> (forall z :: t1.

forall xs :: [t3].
f (foldl’ k z xs) = foldl’ k’ (f z) xs)

13 / 21

Going Algorithmic

Goal: An algorithm retyping from standard types
to (minimal) refined types.

Idea: Use typing rules backwards to (re)type a term.

Problems:

I Type annotations are standard in the input term, but we need
refined ones.

I Typing rules are in competition, especially the (Sub)-rule is
always applicable.

Solutions:

I Remove the (Sub)-rule by integrating subtyping into the
other rules.

I Start the algorithm with all possible refined type annotations.

Are these good ideas?

14 / 21

Going Algorithmic

Goal: An algorithm retyping from standard types
to (minimal) refined types.

Idea: Use typing rules backwards to (re)type a term.

Problems:

I Type annotations are standard in the input term, but we need
refined ones.

I Typing rules are in competition, especially the (Sub)-rule is
always applicable.

Solutions:

I Remove the (Sub)-rule by integrating subtyping into the
other rules.

I Start the algorithm with all possible refined type annotations.

Are these good ideas?

14 / 21

Going Algorithmic

Goal: An algorithm retyping from standard types
to (minimal) refined types.

Idea: Use typing rules backwards to (re)type a term.

Problems:

I Type annotations are standard in the input term, but we need
refined ones.

I Typing rules are in competition, especially the (Sub)-rule is
always applicable.

Solutions:

I Remove the (Sub)-rule by integrating subtyping into the
other rules.

I Start the algorithm with all possible refined type annotations.

Are these good ideas?

14 / 21

Going Algorithmic

Goal: An algorithm retyping from standard types
to (minimal) refined types.

Idea: Use typing rules backwards to (re)type a term.

Problems:

I Type annotations are standard in the input term, but we need
refined ones.

I Typing rules are in competition, especially the (Sub)-rule is
always applicable.

Solutions:

I Remove the (Sub)-rule by integrating subtyping into the
other rules.

I Start the algorithm with all possible refined type annotations.

Are these good ideas?

14 / 21

Going Algorithmic

Goal: An algorithm retyping from standard types
to (minimal) refined types.

Idea: Use typing rules backwards to (re)type a term.

Problems:

I Type annotations are standard in the input term, but we need
refined ones.

I Typing rules are in competition, especially the (Sub)-rule is
always applicable.

Solutions:

I Remove the (Sub)-rule by integrating subtyping into the
other rules.

I Start the algorithm with all possible refined type annotations.

Are these good ideas?

14 / 21

Going Algorithmic

Goal: An algorithm retyping from standard types
to (minimal) refined types.

Idea: Use typing rules backwards to (re)type a term.

Problems:

I Type annotations are standard in the input term, but we need
refined ones.

I Typing rules are in competition, especially the (Sub)-rule is
always applicable.

Solutions:

I Remove the (Sub)-rule by integrating subtyping into the
other rules.

I Start the algorithm with all possible refined type annotations.

Are these good ideas?

14 / 21

Going Algorithmic

Goal: An algorithm retyping from standard types
to (minimal) refined types.

Idea: Use typing rules backwards to (re)type a term.

Problems:

I Type annotations are standard in the input term, but we need
refined ones.

I Typing rules are in competition, especially the (Sub)-rule is
always applicable.

Solutions:

I Remove the (Sub)-rule by integrating subtyping into the
other rules.

I Start the algorithm with all possible refined type annotations.

Are these good ideas?

14 / 21

Going Algorithmic

Goal: An algorithm retyping from standard types
to (minimal) refined types.

Idea: Use typing rules backwards to (re)type a term.

Problems:

I Type annotations are standard in the input term, but we need
refined ones.

I Typing rules are in competition, especially the (Sub)-rule is
always applicable.

Solutions:

I Remove the (Sub)-rule by integrating subtyping into the
other rules.

I Start the algorithm with all possible refined type annotations.

Are these good ideas?

14 / 21

Going Algorithmic

Goal: An algorithm retyping from standard types
to (minimal) refined types.

Idea: Use typing rules backwards to (re)type a term.

Problems:

I Type annotations are standard in the input term, but we need
refined ones.

I Typing rules are in competition, especially the (Sub)-rule is
always applicable.

Solutions:

I Remove the (Sub)-rule by integrating subtyping into the
other rules.

I Start the algorithm with all possible refined type annotations.

Are these good ideas?

14 / 21

How to Deal with Refined Type Annotations?

Switch to variable marks at the type annotations:

Γ ` t1 :: τ1 →ε τ2 Γ ` t2 :: τ1
Γ ` (t1 t2) :: τ2

Γ ` t1 :: τ1 →◦ τ2 Γ ` t2 :: τ1
Γ ` (t1 t2) :: τ2

⇓ combine two rules into one

Γ ` t1 :: τ1 →ν τ2 Γ ` t2 :: τ1
Γ ` (t1 t2) :: τ2

⇓ add constraints for the mark variables

〈Γ̇ ` ṫ1〉V (C1, τ̇1 →ν τ̇2) 〈Γ̇ ` ṫ2〉V (C2, τ̇
′
1) 〈τ̇1 = τ̇ ′1〉V C3

〈Γ̇ ` ṫ1 ṫ2〉V (C1 ∧ C2 ∧ C3, τ̇2)

15 / 21

How to Deal with Refined Type Annotations?

Switch to variable marks at the type annotations:

Γ ` t1 :: τ1 →ε τ2 Γ ` t2 :: τ1
Γ ` (t1 t2) :: τ2

Γ ` t1 :: τ1 →◦ τ2 Γ ` t2 :: τ1
Γ ` (t1 t2) :: τ2

⇓ combine two rules into one

Γ ` t1 :: τ1 →ν τ2 Γ ` t2 :: τ1
Γ ` (t1 t2) :: τ2

⇓ add constraints for the mark variables

〈Γ̇ ` ṫ1〉V (C1, τ̇1 →ν τ̇2) 〈Γ̇ ` ṫ2〉V (C2, τ̇
′
1) 〈τ̇1 = τ̇ ′1〉V C3

〈Γ̇ ` ṫ1 ṫ2〉V (C1 ∧ C2 ∧ C3, τ̇2)

15 / 21

How to Deal with Refined Type Annotations?

Switch to variable marks at the type annotations:

Γ ` t1 :: τ1 →ε τ2 Γ ` t2 :: τ1
Γ ` (t1 t2) :: τ2

Γ ` t1 :: τ1 →◦ τ2 Γ ` t2 :: τ1
Γ ` (t1 t2) :: τ2

⇓ combine two rules into one

Γ ` t1 :: τ1 →ν τ2 Γ ` t2 :: τ1
Γ ` (t1 t2) :: τ2

⇓ add constraints for the mark variables

〈Γ̇ ` ṫ1〉V (C1, τ̇1 →ν τ̇2) 〈Γ̇ ` ṫ2〉V (C2, τ̇
′
1) 〈τ̇1 = τ̇ ′1〉V C3

〈Γ̇ ` ṫ1 ṫ2〉V (C1 ∧ C2 ∧ C3, τ̇2)

15 / 21

The Resulting (Re)Typing Algorithm

A deterministic typing algorithm.

How does it work?

input V output

〈Γ̇ ` ṫ〉V (C , τ̇)

〈 · � α〉V (True, α) 〈α � · 〉V (True, α)

〈α→ν2 α � · 〉V (True ∧ True ∧ (ν3 6 ν2), α→ν3 α)

〈αν1 , x :: α→ν2 α ` x〉V ((ν3 6 ν2), α→ν3 α)

How to get back to concrete types, without mark variables?

16 / 21

The Resulting (Re)Typing Algorithm

A deterministic typing algorithm.

How does it work?

input V output

〈Γ̇ ` ṫ〉V (C , τ̇)

〈 · � α〉V (True, α) 〈α � · 〉V (True, α)

〈α→ν2 α � · 〉V (True ∧ True ∧ (ν3 6 ν2), α→ν3 α)

〈αν1 , x :: α→ν2 α ` x〉V ((ν3 6 ν2), α→ν3 α)

How to get back to concrete types, without mark variables?

16 / 21

The Resulting (Re)Typing Algorithm

A deterministic typing algorithm.

How does it work?

input V output

〈Γ̇ ` ṫ〉V (C , τ̇)

〈 · � α〉V (True, α) 〈α � · 〉V (True, α)

〈α→ν2 α � · 〉V (True ∧ True ∧ (ν3 6 ν2), α→ν3 α)

〈αν1 , x :: α→ν2 α ` x〉V ((ν3 6 ν2), α→ν3 α)

How to get back to concrete types, without mark variables?

16 / 21

The Resulting (Re)Typing Algorithm

A deterministic typing algorithm.

How does it work?

input V output

〈Γ̇ ` ṫ〉V (C , τ̇)

〈 · � α〉V (True, α) 〈α � · 〉V (True, α)

〈α→ν2 α � · 〉V (True ∧ True ∧ (ν3 6 ν2), α→ν3 α)

〈αν1 , x :: α→ν2 α ` x〉V (?, ?)

How to get back to concrete types, without mark variables?

16 / 21

The Resulting (Re)Typing Algorithm

A deterministic typing algorithm.

How does it work?

input V output

〈Γ̇ ` ṫ〉V (C , τ̇)

〈 · � α〉V (True, α) 〈α � · 〉V (True, α)

〈α→ν2 α � · 〉V (?, ?)

〈αν1 , x :: α→ν2 α ` x〉V (?, ?)

How to get back to concrete types, without mark variables?

16 / 21

The Resulting (Re)Typing Algorithm

A deterministic typing algorithm.

How does it work?

input V output

〈Γ̇ ` ṫ〉V (C , τ̇)

〈 · � α〉V (?, ?) 〈α � · 〉V (?, ?)

〈α→ν2 α � · 〉V (?, ?)

〈αν1 , x :: α→ν2 α ` x〉V (?, ?)

How to get back to concrete types, without mark variables?

16 / 21

The Resulting (Re)Typing Algorithm

A deterministic typing algorithm.

How does it work?

input V output

〈Γ̇ ` ṫ〉V (C , τ̇)

〈 · � α〉V (True, α) 〈α � · 〉V (?, ?)

〈α→ν2 α � · 〉V (?, ?)

〈αν1 , x :: α→ν2 α ` x〉V (?, ?)

How to get back to concrete types, without mark variables?

16 / 21

The Resulting (Re)Typing Algorithm

A deterministic typing algorithm.

How does it work?

input V output

〈Γ̇ ` ṫ〉V (C , τ̇)

〈 · � α〉V (True, α) 〈α � · 〉V (True, α)

〈α→ν2 α � · 〉V (?, ?)

〈αν1 , x :: α→ν2 α ` x〉V (?, ?)

How to get back to concrete types, without mark variables?

16 / 21

The Resulting (Re)Typing Algorithm

A deterministic typing algorithm.

How does it work?

input V output

〈Γ̇ ` ṫ〉V (C , τ̇)

〈 · � α〉V (True, α) 〈α � · 〉V (True, α)

〈α→ν2 α � · 〉V (True ∧ True ∧ (ν3 6 ν2), α→ν3 α)

〈αν1 , x :: α→ν2 α ` x〉V (?, ?)

How to get back to concrete types, without mark variables?

16 / 21

The Resulting (Re)Typing Algorithm

A deterministic typing algorithm.

How does it work?

input V output

〈Γ̇ ` ṫ〉V (C , τ̇)

〈 · � α〉V (True, α) 〈α � · 〉V (True, α)

〈α→ν2 α � · 〉V (True ∧ True ∧ (ν3 6 ν2), α→ν3 α)

〈αν1 , x :: α→ν2 α ` x〉V ((ν3 6 ν2), α→ν3 α)

How to get back to concrete types, without mark variables?

16 / 21

The Resulting (Re)Typing Algorithm

A deterministic typing algorithm.

How does it work?

input V output

〈Γ̇ ` ṫ〉V (C , τ̇)

〈 · � α〉V (True, α) 〈α � · 〉V (True, α)

〈α→ν2 α � · 〉V (True ∧ True ∧ (ν3 6 ν2), α→ν3 α)

〈αν1 , x :: α→ν2 α ` x〉V ((ν3 6 ν2), α→ν3 α)

How to get back to concrete types, without mark variables?

16 / 21

Back to Concrete Typability (Example)

We have:

〈 ` Λα.Λβ. λf :: α→ν1 β. λx :: α. let! x ′ = x in f x ′〉V
((ν2 = ε) ∧ (ν4 6 ν1) ∧ (ν1 6 ν6),

∀ν2α.∀ν3β. (α→ν6 β)→ν7 α→ν5 β)

with ◦ < ε.

We test all possible instantiations for the variable marks.

ν1 = ◦ ν1 = ε ν1 = ◦
ν2 = ◦ ν2 = ε ν2 = ε
ν3 = ◦ ν3 = ε ν3 = ◦
ν4 = ◦ ν4 = ε ν4 = ◦
ν5 = ◦ ν5 = ε ν5 = ε
ν6 = ◦ ν6 = ε ν6 = ◦
ν7 = ◦ ν7 = ε ν7 = ε

We take only the minimal solution!

17 / 21

Back to Concrete Typability (Example)

We have:

〈 ` Λα.Λβ. λf :: α→ν1 β. λx :: α. let! x ′ = x in f x ′〉V
((ν2 = ε) ∧ (ν4 6 ν1) ∧ (ν1 6 ν6),

∀ν2α.∀ν3β. (α→ν6 β)→ν7 α→ν5 β)

with ◦ < ε.

We test all possible instantiations for the variable marks.

ν1 = ◦ ν1 = ε ν1 = ◦
ν2 = ◦ ν2 = ε ν2 = ε
ν3 = ◦ ν3 = ε ν3 = ◦
ν4 = ◦ ν4 = ε ν4 = ◦
ν5 = ◦ ν5 = ε ν5 = ε
ν6 = ◦ ν6 = ε ν6 = ◦
ν7 = ◦ ν7 = ε ν7 = ε

We take only the minimal solution!

17 / 21

Back to Concrete Typability (Example)

We have:

〈 ` Λα.Λβ. λf :: α→ν1 β. λx :: α. let! x ′ = x in f x ′〉V
((ν2 = ε) ∧ (ν4 6 ν1) ∧ (ν1 6 ν6),

∀ν2α.∀ν3β. (α→ν6 β)→ν7 α→ν5 β)

with ◦ < ε.

We test all possible instantiations for the variable marks.

ν1 = ◦ ν1 = ε ν1 = ◦
ν2 = ◦ ν2 = ε ν2 = ε
ν3 = ◦ ν3 = ε ν3 = ◦
ν4 = ◦ ν4 = ε ν4 = ◦
ν5 = ◦ ν5 = ε ν5 = ε
ν6 = ◦ ν6 = ε ν6 = ◦
ν7 = ◦ ν7 = ε ν7 = ε

We take only the minimal solution!

17 / 21

Back to Concrete Typability (Example)

We have:

〈 ` Λα.Λβ. λf :: α→ν1 β. λx :: α. let! x ′ = x in f x ′〉V
((ν2 = ε) ∧ (ν4 6 ν1) ∧ (ν1 6 ν6),

∀ν2α.∀ν3β. (α→ν6 β)→ν7 α→ν5 β)

with ◦ < ε.

We test all possible instantiations for the variable marks.

ν1 = ◦ ν1 = ε ν1 = ◦
ν2 = ◦ ν2 = ε ν2 = ε
ν3 = ◦ ν3 = ε ν3 = ◦
ν4 = ◦ ν4 = ε ν4 = ◦
ν5 = ◦ ν5 = ε ν5 = ε
ν6 = ◦ ν6 = ε ν6 = ◦
ν7 = ◦ ν7 = ε ν7 = ε

We take only the minimal solution!

17 / 21

Back to Concrete Typability (Example)

We have:

〈 ` Λα.Λβ. λf :: α→ν1 β. λx :: α. let! x ′ = x in f x ′〉V
((ν2 = ε) ∧ (ν4 6 ν1) ∧ (ν1 6 ν6),

∀ν2α.∀ν3β. (α→ν6 β)→ν7 α→ν5 β)

with ◦ < ε.

We test all possible instantiations for the variable marks.

ν1 = ◦ ν1 = ε ν1 = ◦
ν2 = ◦ ν2 = ε ν2 = ε
ν3 = ◦ ν3 = ε ν3 = ◦
ν4 = ◦ ν4 = ε ν4 = ◦
ν5 = ◦ ν5 = ε ν5 = ε
ν6 = ◦ ν6 = ε ν6 = ◦
ν7 = ◦ ν7 = ε ν7 = ε

We take only the minimal solution!

17 / 21

Back to Concrete Typability (Example)

We have:

〈 ` Λα.Λβ. λf :: α→ν1 β. λx :: α. let! x ′ = x in f x ′〉V
((ν2 = ε) ∧ (ν4 6 ν1) ∧ (ν1 6 ν6),

∀ν2α.∀ν3β. (α→ν6 β)→ν7 α→ν5 β)

with ◦ < ε.

We test all possible instantiations for the variable marks.

ν1 = ◦ ν1 = ε ν1 = ◦
ν2 = ◦ ν2 = ε ν2 = ε
ν3 = ◦ ν3 = ε ν3 = ◦
ν4 = ◦ ν4 = ε ν4 = ◦
ν5 = ◦ ν5 = ε ν5 = ε
ν6 = ◦ ν6 = ε ν6 = ◦
ν7 = ◦ ν7 = ε ν7 = ε

We take only the minimal solution!

17 / 21

Back to Concrete Typability (Example)

We have:

〈 ` Λα.Λβ. λf :: α→ν1 β. λx :: α. let! x ′ = x in f x ′〉V
((ν2 = ε) ∧ (ν4 6 ν1) ∧ (ν1 6 ν6),

∀ν2α.∀ν3β. (α→ν6 β)→ν7 α→ν5 β)

with ◦ < ε.

We test all possible instantiations for the variable marks.

ν1 = ◦

ν1 = ε ν1 = ◦

ν2 = ◦

ν2 = ε ν2 = ε

ν3 = ◦

ν3 = ε ν3 = ◦

ν4 = ◦

ν4 = ε ν4 = ◦

ν5 = ◦

ν5 = ε ν5 = ε

ν6 = ◦

ν6 = ε ν6 = ◦

ν7 = ◦

ν7 = ε ν7 = ε

We take only the minimal solution!

17 / 21

Back to Concrete Typability (Example)

We have:

〈 ` Λα.Λβ. λf :: α→◦ β. λx :: α. let! x ′ = x in f x ′〉V
((◦ = ε) ∧ (◦ 6 ◦) ∧ (◦ 6 ◦),

∀◦α.∀◦β. (α→◦ β)→◦ α→◦ β)

with ◦ < ε.

We test all possible instantiations for the variable marks.

ν1 = ◦

ν1 = ε ν1 = ◦

ν2 = ◦

ν2 = ε ν2 = ε

ν3 = ◦

ν3 = ε ν3 = ◦

ν4 = ◦

ν4 = ε ν4 = ◦

ν5 = ◦

ν5 = ε ν5 = ε

ν6 = ◦

ν6 = ε ν6 = ◦

ν7 = ◦

ν7 = ε ν7 = ε

We take only the minimal solution!

17 / 21

Back to Concrete Typability (Example)

We have:

〈 ` Λα.Λβ. λf :: α→◦ β. λx :: α. let! x ′ = x in f x ′〉V
(False,

∀◦α.∀◦β. (α→◦ β)→◦ α→◦ β)

with ◦ < ε.

We test all possible instantiations for the variable marks.

ν1 = ◦

ν1 = ε ν1 = ◦

ν2 = ◦

ν2 = ε ν2 = ε

ν3 = ◦

ν3 = ε ν3 = ◦

ν4 = ◦

ν4 = ε ν4 = ◦

ν5 = ◦

ν5 = ε ν5 = ε

ν6 = ◦

ν6 = ε ν6 = ◦

ν7 = ◦

ν7 = ε ν7 = ε

We take only the minimal solution!

17 / 21

Back to Concrete Typability (Example)

We have:

〈 ` Λα.Λβ. λf :: α→ε β. λx :: α. let! x ′ = x in f x ′〉V
((ε = ε) ∧ (ε 6 ε) ∧ (ε 6 ε),

∀εα.∀εβ. (α→ε β)→ε α→ε β)

with ◦ < ε.

We test all possible instantiations for the variable marks.

ν1 = ◦ ν1 = ε

ν1 = ◦

ν2 = ◦ ν2 = ε

ν2 = ε

ν3 = ◦ ν3 = ε

ν3 = ◦

ν4 = ◦ ν4 = ε

ν4 = ◦

ν5 = ◦ ν5 = ε

ν5 = ε

ν6 = ◦ ν6 = ε

ν6 = ◦

ν7 = ◦ ν7 = ε

ν7 = ε

We take only the minimal solution!

17 / 21

Back to Concrete Typability (Example)

We have:

〈 ` Λα.Λβ. λf :: α→ε β. λx :: α. let! x ′ = x in f x ′〉V
(True,

∀εα.∀εβ. (α→ε β)→ε α→ε β)

with ◦ < ε.

We test all possible instantiations for the variable marks.

ν1 = ◦ ν1 = ε

ν1 = ◦

ν2 = ◦ ν2 = ε

ν2 = ε

ν3 = ◦ ν3 = ε

ν3 = ◦

ν4 = ◦ ν4 = ε

ν4 = ◦

ν5 = ◦ ν5 = ε

ν5 = ε

ν6 = ◦ ν6 = ε

ν6 = ◦

ν7 = ◦ ν7 = ε

ν7 = ε

We take only the minimal solution!

17 / 21

Back to Concrete Typability (Example)

We have:

〈 ` Λα.Λβ. λf :: α→◦ β. λx :: α. let! x ′ = x in f x ′〉V
((ε = ε) ∧ (◦ 6 ◦) ∧ (◦ 6 ◦),

∀εα.∀◦β. (α→◦ β)→ε α→ε β)

with ◦ < ε.

We test all possible instantiations for the variable marks.

ν1 = ◦ ν1 = ε ν1 = ◦
ν2 = ◦ ν2 = ε ν2 = ε
ν3 = ◦ ν3 = ε ν3 = ◦
ν4 = ◦ ν4 = ε ν4 = ◦
ν5 = ◦ ν5 = ε ν5 = ε
ν6 = ◦ ν6 = ε ν6 = ◦
ν7 = ◦ ν7 = ε ν7 = ε

We take only the minimal solution!

17 / 21

Back to Concrete Typability (Example)

We have:

〈 ` Λα.Λβ. λf :: α→◦ β. λx :: α. let! x ′ = x in f x ′〉V
(True,

∀εα.∀◦β. (α→◦ β)→ε α→ε β)

with ◦ < ε.

We test all possible instantiations for the variable marks.

ν1 = ◦ ν1 = ε ν1 = ◦
ν2 = ◦ ν2 = ε ν2 = ε
ν3 = ◦ ν3 = ε ν3 = ◦
ν4 = ◦ ν4 = ε ν4 = ◦
ν5 = ◦ ν5 = ε ν5 = ε
ν6 = ◦ ν6 = ε ν6 = ◦
ν7 = ◦ ν7 = ε ν7 = ε

We take only the minimal solution!

17 / 21

Back to Concrete Typability (Example)

We have:

〈 ` Λα.Λβ. λf :: α→◦ β. λx :: α. let! x ′ = x in f x ′〉V
(True,

∀εα.∀◦β. (α→◦ β)→ε α→ε β)

with ◦ < ε.

We test all possible instantiations for the variable marks.

ν1 = ◦

ν1 = ε ν1 = ◦

ν2 = ◦

ν2 = ε ν2 = ε

ν3 = ◦

ν3 = ε ν3 = ◦

ν4 = ◦

ν4 = ε ν4 = ◦

ν5 = ◦

ν5 = ε ν5 = ε

ν6 = ◦

ν6 = ε ν6 = ◦

ν7 = ◦

ν7 = ε ν7 = ε

We take only the minimal solution!

17 / 21

Back to Concrete Typability (Example)

We have:

〈 ` Λα.Λβ. λf :: α→◦ β. λx :: α. let! x ′ = x in f x ′〉V
(True,

∀εα.∀◦β. (α→◦ β)→ε α→ε β)

with ◦ < ε.

We test all possible instantiations for the variable marks.

ν1 = ◦ ν1 = ε

ν1 = ◦

ν2 = ◦ ν2 = ε

ν2 = ε

ν3 = ◦ ν3 = ε

ν3 = ◦

ν4 = ◦ ν4 = ε

ν4 = ◦

ν5 = ◦ ν5 = ε

ν5 = ε

ν6 = ◦ ν6 = ε

ν6 = ◦

ν7 = ◦ ν7 = ε

ν7 = ε

We take only the minimal solution!
17 / 21

Make it a Type Refinement Algorithm

input: closed term with standard type annotations

⇓ add variable marks

term with parameterized refined type annotations

⇓ the main algorithm

constraint and parameterized type

⇓ solve constraint

all possible refined types

⇓ type comparison

output: the refined types leading to the strongest free theorems

18 / 21

Make it a Type Refinement Algorithm

input: closed term with standard type annotations

⇓ add variable marks

term with parameterized refined type annotations

⇓ the main algorithm

constraint and parameterized type

⇓ solve constraint

all possible refined types

⇓ type comparison

output: the refined types leading to the strongest free theorems

18 / 21

Make it a Type Refinement Algorithm

input: closed term with standard type annotations

⇓ add variable marks

term with parameterized refined type annotations

⇓ the main algorithm

constraint and parameterized type

⇓ solve constraint

all possible refined types

⇓ type comparison

output: the refined types leading to the strongest free theorems

18 / 21

Make it a Type Refinement Algorithm

input: closed term with standard type annotations

⇓ add variable marks

term with parameterized refined type annotations

⇓ the main algorithm

constraint and parameterized type

⇓ solve constraint

all possible refined types

⇓ type comparison

output: the refined types leading to the strongest free theorems

18 / 21

Make it a Type Refinement Algorithm

input: closed term with standard type annotations

⇓ add variable marks

term with parameterized refined type annotations

⇓ the main algorithm

constraint and parameterized type

⇓ solve constraint

all possible refined types

⇓ type comparison

output: the refined types leading to the strongest free theorems

18 / 21

The Webinterface

http://www-ps.iai.uni-bonn.de/cgi-bin/polyseq.cgi
19 / 21

http://www-ps.iai.uni-bonn.de/cgi-bin/polyseq.cgi

References I

Johann, P. and Voigtländer, J. (2004).

Free theorems in the presence of seq.

In Principles of Programming Languages, Proceedings, pages
99–110. ACM Press.

Launchbury, J. and Paterson, R. (1996).

Parametricity and unboxing with unpointed types.

In European Symposium on Programming, Proceedings, volume
1058 of LNCS, pages 204–218. Springer-Verlag.

Reynolds, J. (1983).

Types, abstraction and parametric polymorphism.

In Information Processing, Proceedings, pages 513–523. Elsevier.

20 / 21

References II

Seidel, D. and Voigtländer, J. (2009).

Taming selective strictness.

Technical Report TUD-FI09-06, Technische Universität Dresden.

http://wwwtcs.inf.tu-dresden.de/~voigt/TUD-FI09-06.pdf.

Wadler, P. (1989).

Theorems for free!

In Functional Programming Languages and Computer Architecture,
Proceedings, pages 347–359. ACM Press.

21 / 21

http://wwwtcs.inf.tu-dresden.de/~voigt/TUD-FI09-06.pdf

	Outline
	The Beauty --- Free Theorems
	The Fusion Property for foldl
	Theorems for Free

	The Beast --- Selective Strictness
	Advantages of Selective Strictness
	Drawbacks of Selective Strictness

	Taming The Beast
	A Polymorphic Lambda Calculus with Selective Strictness
	A Refined Calculus
	Going Algorithmic
	The Tool

