#### Taming Selective Strictness

#### Daniel Seidel<sup>1</sup> and Janis Voigtländer

Institute for Computer Science Department III University of Bonn, Germany

{ds,jv}@informatik.uni-bonn.de

April 7, 2010

<sup>&</sup>lt;sup>1</sup>This author was supported by the DFG under grant VO 1512/1-1.

$$\begin{array}{l} \text{foldI} :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha \\ \text{foldI } k \ z \ [] = z \\ \text{foldI } k \ z \ (x : xs) = \text{foldI } k \ (k \ z \ x) \ xs \end{array}$$

$$\begin{array}{l} \text{foldI} :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha \\ \text{foldI } k \ z \ [] = z \\ \text{foldI } k \ z \ (x : xs) = \text{foldI } k \ (k \ z \ x) \ xs \end{array}$$



$$\begin{array}{l} \text{foldI} :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha \\ \text{foldI } k \ z \ [] = z \\ \text{foldI } k \ z \ (x : xs) = \text{foldI } k \ (k \ z \ x) \ xs \end{array}$$

Example

$$sum = foldl (+) 0$$

$$\begin{array}{l} \text{foldI} :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha \\ \text{foldI } k \ z \ [] = z \\ \text{foldI } k \ z \ (x : xs) = \text{foldI } k \ (k \ z \ x) \ xs \end{array}$$

Example

$$sum = foldl (+) 0$$

$$sum [1, 2, 3] = foldl (+) 0 [1, 2, 3]$$

$$\begin{array}{l} \text{foldI} :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha \\ \text{foldI } k \ z \ [] = z \\ \text{foldI } k \ z \ (x : xs) = \text{foldI } k \ (k \ z \ x) \ xs \end{array}$$

Example

$$sum = foldl (+) 0$$

$$sum [1,2,3] = foldl (+) 0 [1,2,3]$$
$$= foldl (+) (0+1) [2,3]$$

$$\begin{array}{l} \text{foldl} :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha \\ \text{foldl } k \ z \ [] = z \\ \text{foldl } k \ z \ (x : xs) = \text{foldl } k \ (k \ z \ x) \ xs \end{array}$$

Example

$$sum [1, 2, 3] = foldl (+) 0 [1, 2, 3]$$
  
= foldl (+) (0 + 1) [2, 3]  
= foldl (+) ((0 + 1) + 2) [3]

$$\begin{array}{l} \text{foldl} :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha \\ \text{foldl } k \ z \ [] = z \\ \text{foldl } k \ z \ (x : xs) = \text{foldl } k \ (k \ z \ x) \ xs \end{array}$$

Example

$$sum [1, 2, 3] = foldl (+) 0 [1, 2, 3]$$
  
= foldl (+) (0 + 1) [2, 3]  
= foldl (+) ((0 + 1) + 2) [3]  
= foldl (+) (((0 + 1) + 2) + 3) []

$$\begin{array}{l} \text{foldI} :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha \\ \text{foldI } k \ z \ [] = z \\ \text{foldI } k \ z \ (x : xs) = \text{foldI } k \ (k \ z \ x) \ xs \end{array}$$

Example

$$sum [1, 2, 3] = foldl (+) 0 [1, 2, 3]$$
  
= foldl (+) (0 + 1) [2, 3]  
= foldl (+) ((0 + 1) + 2) [3]  
= foldl (+) (((0 + 1) + 2) + 3) []  
= (((0 + 1) + 2) + 3)

$$\begin{array}{l} \text{foldl} :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha \\ \text{foldl } k \ z \ [] = z \\ \text{foldl } k \ z \ (x : xs) = \text{foldl } k \ (k \ z \ x) \ xs \end{array}$$

Example

$$sum [1, 2, 3] = foldl (+) 0 [1, 2, 3]$$
  
= foldl (+) (0 + 1) [2, 3]  
= foldl (+) ((0 + 1) + 2) [3]  
= foldl (+) (((0 + 1) + 2) + 3) []  
= (((0 + 1) + 2) + 3)  
= 6

Consider a simple program transformation:

 $(+1) \circ sum$ 

Consider a simple program transformation:

$$(+1) \circ sum = (+1) \circ (foldl (+) 0)$$

Consider a simple program transformation:

$$(+1) \circ sum = (+1) \circ (foldl (+) 0) = foldl (+) 1$$

Consider a simple program transformation:

$$(+1) \circ sum = (+1) \circ (foldl (+) 0) = foldl (+) 1$$

More generally:

$$f \circ (foldl \ k \ z) = foldl \ k' \ z'$$

Consider a simple program transformation:

$$(+1) \circ sum = (+1) \circ (foldl (+) 0) = foldl (+) 1$$

More generally:

$$f \circ (foldl \ k \ z) = foldl \ k' \ z'$$

For an inductive proof the conditions

$$f z = z'$$
$$\forall x, y. f (k x y) = k' (f x) y$$

are sufficient.

With free theorems we can prove the fusion property automatically only using *foldI*'s type

<sup>&</sup>lt;sup>2</sup> http://www-ps.iai.uni-bonn.de/ft/

With free theorems we can prove the fusion property automatically only using *foldI*'s type

fold :: 
$$(\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha$$
.

<sup>&</sup>lt;sup>2</sup> http://www-ps.iai.uni-bonn.de/ft/

With free theorems we can prove the fusion property automatically only using *foldI*'s type

fold ::: 
$$(\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha$$
.

Output of a generator<sup>2</sup> for *foldI*'s type as input:

<sup>&</sup>lt;sup>2</sup>http://www-ps.iai.uni-bonn.de/ft/

With free theorems we can prove the fusion property automatically only using *foldI*'s type

fold ::: 
$$(\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha$$
.

Output of a generator<sup>2</sup> for *foldl*'s type as input:

```
forall t1,t2 in TYPES, f :: t1 -> t2.
forall t3,t4 in TYPES, g :: t3 -> t4.
forall k :: t1 -> t3 -> t1.
forall k' :: t2 -> t4 -> t2.
  (forall x :: t1. forall y :: t3.
            f (k x y) = k' (f x) (g y))
        ==> (forall z :: t1.
            forall xs :: [t3].
            f (foldl k z xs)
            = foldl k' (f z) (map g xs))
```

<sup>&</sup>lt;sup>2</sup>http://www-ps.iai.uni-bonn.de/ft/

With free theorems we can prove the fusion property automatically only using *foldI*'s type

fold ::: 
$$(\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha$$
.

Output of a generator<sup>2</sup> for *foldl*'s type as input:

forall t1,t2 in TYPES,  $f :: t1 \rightarrow t2$ .

<sup>2</sup> http://www-ps.iai.uni-bonn.de/ft/

Example (sum reconsidered)

$$sum [1, 2, 3] = foldl (+) 0 [1, 2, 3]$$
$$= foldl (+) (0 + 1) [2, 3]$$
$$= foldl (+) ((0 + 1) + 2) [3]$$

. . .

Example (sum reconsidered)

$$sum [1, 2, 3] = foldl (+) 0 [1, 2, 3]$$
$$= foldl (+) (0 + 1) [2, 3]$$
$$= foldl (+) ((0 + 1) + 2) [3]$$

Lazy evaluation results in a huge overhead.

. . .

Example (sum reconsidered)

$$sum [1, 2, 3] = foldl (+) 0 [1, 2, 3]$$
$$= foldl (+) (0 + 1) [2, 3]$$
$$= foldl (+) ((0 + 1) + 2) [3]$$

Lazy evaluation results in a huge overhead.

. . .

 $\Rightarrow$  Strict evaluation is desirable.

Example (sum reconsidered)

$$sum [1, 2, 3] = foldl (+) 0 [1, 2, 3]$$
$$= foldl (+) (0 + 1) [2, 3]$$
$$= foldl (+) ((0 + 1) + 2) [3]$$

Lazy evaluation results in a huge overhead.

. . .

 $\Rightarrow$  Strict evaluation is desirable.

Haskell provides strict evaluation by the function  $seq :: \alpha \to \beta \to \beta$ :

seq a 
$$b = \begin{cases} b & \text{if } a \neq \bot \\ \bot & \text{otherwise} \end{cases}$$

$$\begin{array}{l} \text{fold}l' :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha \\ \text{fold}l' \ k \ z \ [] = z \\ \text{fold}l' \ k \ z \ (x : xs) = \textbf{let} \ z' = k \ z \ x \ \textbf{in} \ seq \ z' \ (\text{fold}l' \ k \ z' \ xs) \end{array}$$

$$\begin{array}{l} \text{fold}l' :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha \\ \text{fold}l' \ k \ z \ [] = z \\ \text{fold}l' \ k \ z \ (x : xs) = \textbf{let} \ z' = k \ z \ x \ \textbf{in} \ seq \ z' \ (\text{fold}l' \ k \ z' \ xs) \end{array}$$

Example (strict *sum*')

sum' [1, 2, 3] = foldl' (+) 0 [1, 2, 3]

$$\begin{array}{l} \text{fold}l' :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha \\ \text{fold}l' \ k \ z \ [] = z \\ \text{fold}l' \ k \ z \ (x : xs) = \textbf{let} \ z' = k \ z \ x \ \textbf{in} \ seq \ z' \ (\text{fold}l' \ k \ z' \ xs) \end{array}$$

$$sum' [1,2,3] = foldl' (+) 0 [1,2,3]$$
  
= let z' = 0 + 1 in seq z' (foldl' (+) z' [2,3])

$$\begin{array}{l} \text{fold}l' :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha \\ \text{fold}l' \ k \ z \ [] = z \\ \text{fold}l' \ k \ z \ (x : xs) = \textbf{let} \ z' = k \ z \ x \ \textbf{in} \ seq \ z' \ (\text{fold}l' \ k \ z' \ xs) \end{array}$$

$$sum' [1, 2, 3] = foldl' (+) 0 [1, 2, 3]$$
  
= let  $z' = 0 + 1$  in seq  $z'$  (foldl' (+)  $z'$  [2, 3])  
= foldl' (+) 1 [2, 3]

$$\begin{array}{l} \textit{foldI'} :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha \\ \textit{foldI'} \ k \ z \ [] = z \\ \textit{foldI'} \ k \ z \ (x : xs) = \textbf{let} \ z' = k \ z \ x \ \textbf{in} \ seq \ z' \ (\textit{foldI'} \ k \ z' \ xs) \end{array}$$

$$sum' [1, 2, 3] = foldl' (+) 0 [1, 2, 3]$$
  
= let z' = 0 + 1 in seq z' (foldl' (+) z' [2, 3])  
= foldl' (+) 1 [2, 3]  
= let z' = 1 + 2 in seq z' (foldl' (+) z' [3])

$$\begin{array}{l} \text{fold}l' :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha \\ \text{fold}l' \ k \ z \ [] = z \\ \text{fold}l' \ k \ z \ (x : xs) = \textbf{let} \ z' = k \ z \ x \ \textbf{in} \ seq \ z' \ (\text{fold}l' \ k \ z' \ xs) \end{array}$$

$$sum' [1, 2, 3] = foldl' (+) 0 [1, 2, 3]$$
  
= let  $z' = 0 + 1$  in seq  $z'$  (foldl' (+)  $z'$  [2, 3])  
= foldl' (+) 1 [2, 3]  
= let  $z' = 1 + 2$  in seq  $z'$  (foldl' (+)  $z'$  [3])  
= foldl' (+) 3 [3]

. . .

$$\begin{array}{l} \textit{foldI'} :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha \\ \textit{foldI'} \ k \ z \ [] = z \\ \textit{foldI'} \ k \ z \ (x : xs) = \textbf{let} \ z' = k \ z \ x \ \textbf{in} \ seq \ z' \ (\textit{foldI'} \ k \ z' \ xs) \end{array}$$

$$sum' [1, 2, 3] = foldl' (+) 0 [1, 2, 3]$$
  
= let z' = 0 + 1 in seq z' (foldl' (+) z' [2, 3])  
= foldl' (+) 1 [2, 3]  
= let z' = 1 + 2 in seq z' (foldl' (+) z' [3])  
= foldl' (+) 3 [3]

$$\begin{array}{l} \textit{foldI'} :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha \\ \textit{foldI'} \ k \ z \ [] = z \\ \textit{foldI'} \ k \ z \ (x : xs) = \textbf{let} \ z' = k \ z \ x \ \textbf{in} \ seq \ z' \ (\textit{foldI'} \ k \ z' \ xs) \end{array}$$

#### Example (strict *sum*')

$$sum' [1, 2, 3] = foldl' (+) 0 [1, 2, 3]$$
  
= let z' = 0 + 1 in seq z' (foldl' (+) z' [2, 3])  
= foldl' (+) 1 [2, 3]  
= let z' = 1 + 2 in seq z' (foldl' (+) z' [3])  
= foldl' (+) 3 [3]

sum' evaluates the addition whenever possible.

. . .

$$\begin{array}{l} \textit{foldl'} :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha \\ \textit{foldl'} \ k \ z \ [] = z \\ \textit{foldl'} \ k \ z \ (x : xs) = \textbf{let} \ z' = k \ z \ x \ \textbf{in} \ seq \ z' \ (\textit{foldl'} \ k \ z' \ xs) \end{array}$$

#### Example (strict *sum*')

$$sum' [1, 2, 3] = foldl' (+) 0 [1, 2, 3]$$
  
= let z' = 0 + 1 in seq z' (foldl' (+) z' [2, 3])  
= foldl' (+) 1 [2, 3]  
= let z' = 1 + 2 in seq z' (foldl' (+) z' [3])  
= foldl' (+) 3 [3]

sum' evaluates the addition whenever possible.

. . .

 $\Rightarrow$  Saving space (and time)

$$\begin{array}{l} \textit{foldI'} :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha \\ \textit{foldI'} \ k \ z \ [] = z \\ \textit{foldI'} \ k \ z \ (x : xs) = \textbf{let} \ z' = k \ z \ x \ \textbf{in} \ seq \ z' \ (\textit{foldI'} \ k \ z' \ xs) \end{array}$$

#### Example (strict *sum*')

$$sum' [1,2,3] = foldl' (+) 0 [1,2,3]$$
  
= let  $z' = 0 + 1$  in seq  $z'$  (foldl' (+)  $z'$  [2,3])  
= foldl' (+) 1 [2,3]  
= let  $z' = 1 + 2$  in seq  $z'$  (foldl' (+)  $z'$  [3])  
= foldl' (+) 3 [3]

sum' evaluates the addition whenever possible.

- $\Rightarrow$  Saving space (and time)
- $\Rightarrow$  Strict evaluation pays off here.

. . .

## Drawbacks of Selective Strictness

Question:

$$f (foldl' k z xs) \stackrel{?}{=} foldl' k' (f z) xs$$
  
if  $f (k x y) = k' (f x) y$ 

## Drawbacks of Selective Strictness

Question:

$$f (foldl' k z xs) \stackrel{?}{=} foldl' k' (f z) xs$$
  
if  $f (k x y) = k' (f x) y$ 

Consider an example instantiation:

$$f = \lambda x \rightarrow x \lor \bot$$
  

$$k = k' = \lambda x \ y \rightarrow y \lor x$$
  

$$xs = [False, True]$$
  

$$z = False$$

Question:

$$f (foldl' k z xs) \stackrel{?}{=} foldl' k' (f z) xs$$
  
if  $f (k x y) = k' (f x) y$ 

Consider an example instantiation:

$$f = \lambda x \to x \lor \bot$$
  

$$k = k' = \lambda x \ y \to y \lor x$$
  

$$xs = [False, True]$$
  

$$z = False$$

Question:

$$f (foldl' k z xs) \stackrel{?}{=} foldl' k' (f z) xs$$
  
if  $f (k x y) = k' (f x) y$ 

Consider an example instantiation:

$$f = \lambda x \rightarrow x \lor \bot$$
  
$$k = k' = \lambda x \ y \rightarrow y \lor x$$
  
$$xs = [False, True]$$
  
$$z = False$$

f (foldl' k False [False, True]) = True

foldl' k' (f False) [False, True] =  $\bot$ 

Question:

$$f (foldl' k z xs) \stackrel{?}{=} foldl' k' (f z) xs$$
  
if  $f (k x y) = k' (f x) y$ 

Consider an example instantiation:

$$f = \lambda x \rightarrow x \lor \bot$$
  
$$k = k' = \lambda x \ y \rightarrow y \lor x$$
  
$$xs = [False, True]$$
  
$$z = False$$

$$\begin{array}{l} f \ (foldl' \ k \ False \ [False, \ True]) = \ True \\ \neq \\ foldl' \ k' \ (f \ False) \ [False, \ True] = \bot \end{array}$$

Question:

$$f (foldl' k z xs) \neq foldl' k' (f z) xs$$
  
if  $f (k x y) = k' (f x) y$ 

Consider an example instantiation:

$$f = \lambda x \to x \lor \bot$$
  

$$k = k' = \lambda x \ y \to y \lor x$$
  

$$xs = [False, True]$$
  

$$z = False$$

Answer: No!

$$\begin{array}{l} \textit{f (foldl' k False [False, True])} = \textit{True} \\ \neq \\ \textit{foldl' k' (f False) [False, True]} = \bot \end{array}$$

#### Analyzing the Problem

The strictness-aware free theorem:

#### Analyzing the Problem

The strictness-aware free theorem:

Question: Are all these restrictions necessary?

#### Analyzing the Problem

The strictness-aware free theorem:

Question: Are all these restrictions necessary? An inductive proof for

$$f (foldl' k z xs) = foldl' k' (f z) xs$$

shows that  $f x = \bot \Leftrightarrow x = \bot$  suffices (i.e. f is strict and total).

Free theorems depend only on the type.

Free theorems depend only on the type.

foldI :: 
$$(\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha$$

Free theorems depend only on the type.

$$\textit{foldI} :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha$$

 $\textit{foldI}' :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha$ 

Free theorems depend only on the type.

foldI :: 
$$(\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha$$

$$\textit{foldl}' :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha$$

$$\begin{array}{l} \textit{foldI''} :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha \\ \textit{foldI''} \ k \ z \ [] = \textit{seq} \ k \ z \\ \textit{foldI''} \ k \ z \ (x : xs) = \textit{foldI''} \ (k \ z \ x) \ xs \end{array}$$

Free theorems depend only on the type.

$$\textit{foldl} :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha$$

$$\textit{foldl}' :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha$$

$$\begin{array}{l} \textit{foldI''} :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha \\ \textit{foldI''} \ k \ z \ [] = \textit{seq} \ k \ z \\ \textit{foldI''} \ k \ z \ (x : xs) = \textit{foldI''} \ (k \ z \ x) \ xs \end{array}$$

Problem: The free theorem is only aware of the potential risks of *seq*, but not of its concrete use.

Free theorems depend only on the type.

$$\textit{foldl} :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha$$

$$\textit{foldl}' :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha$$

$$\begin{array}{l} \textit{foldI''} :: (\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha \\ \textit{foldI''} \ k \ z \ [] = \textit{seq} \ k \ z \\ \textit{foldI''} \ k \ z \ (x : xs) = \textit{foldI''} \ (k \ z \ x) \ xs \end{array}$$

- Problem: The free theorem is only aware of the potential risks of *seq*, but not of its concrete use.
- Solution: Make the use of *seq* visible from the type. In particular where it is used.

Add new type constructors.

$$\tau ::= \alpha \mid \forall^{\varepsilon} \alpha . \tau \mid \forall^{\circ} \alpha . \tau \mid \tau \to^{\varepsilon} \tau \mid \tau \to^{\circ} \tau \mid \dots$$

Add new type constructors.

$$\tau ::= \alpha \mid \forall^{\varepsilon} \alpha . \tau \mid \forall^{\circ} \alpha . \tau \mid \tau \to^{\varepsilon} \tau \mid \tau \to^{\circ} \tau \mid \dots$$

Distinguish types whos terms are / are not allowed to be strictly evaluated.

Add new type constructors.

$$\tau ::= \alpha \mid \forall^{\varepsilon} \alpha . \tau \mid \forall^{\circ} \alpha . \tau \mid \tau \to^{\varepsilon} \tau \mid \tau \to^{\circ} \tau \mid \dots$$

Distinguish types whos terms are / are not allowed to be strictly evaluated.

A former approach (Haskell 1.3)

$$\textit{foldl}' :: \textit{Eval} \ \alpha \Rightarrow (\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow [\beta] \rightarrow \alpha$$

was not sufficient [Johann and Voigtländer, 2004].

Add new type constructors.

$$\tau ::= \alpha \mid \forall^{\varepsilon} \alpha . \tau \mid \forall^{\circ} \alpha . \tau \mid \tau \to^{\varepsilon} \tau \mid \tau \to^{\circ} \tau \mid \dots$$

Distinguish types whos terms are / are not allowed to be strictly evaluated.

A former approach (Haskell 1.3)

$$\textit{foldl}' :: \textit{Eval} \ \alpha \Rightarrow (\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow [\beta] \rightarrow \alpha$$

was not sufficient [Johann and Voigtländer, 2004].

Add new type constructors.

$$\tau ::= \alpha \mid \forall^{\varepsilon} \alpha . \tau \mid \forall^{\circ} \alpha . \tau \mid \tau \to^{\varepsilon} \tau \mid \tau \to^{\circ} \tau \mid \dots$$

Add new type constructors.

$$\tau ::= \alpha \mid \forall^{\varepsilon} \alpha . \tau \mid \forall^{\circ} \alpha . \tau \mid \tau \to^{\varepsilon} \tau \mid \tau \to^{\circ} \tau \mid \dots$$

```
forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total.
forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total.
forall k :: t1 -> t3 -> t1.
forall k' :: t2 -> t4 -> t2.
  (((k /= _|_) <=> (k' /= _|_))
      && (forall x :: t1.
            ((k x /= _|_) <=> (k' (f x) /= _|_))
            && (forall y :: t3. f (k x y) = k' (f x) (g y))))
==> (forall z :: t1.
            forall xs :: [t3].
            f (foldl' k z xs) = foldl' k' (f z) (map g xs))
```

Add new type constructors.

$$\tau ::= \alpha \mid \forall^{\varepsilon} \alpha . \tau \mid \forall^{\circ} \alpha . \tau \mid \tau \to^{\varepsilon} \tau \mid \tau \to^{\circ} \tau \mid \dots$$

Add new type constructors.

$$\tau ::= \alpha \mid \forall^{\varepsilon} \alpha . \tau \mid \forall^{\circ} \alpha . \tau \mid \tau \to^{\varepsilon} \tau \mid \tau \to^{\circ} \tau \mid \dots$$

Add new type constructors.

$$\tau ::= \alpha \mid \forall^{\varepsilon} \alpha . \tau \mid \forall^{\circ} \alpha . \tau \mid \tau \to^{\varepsilon} \tau \mid \tau \to^{\circ} \tau \mid \dots$$

Add new type constructors.

$$\tau ::= \alpha \mid \forall^{\varepsilon} \alpha . \tau \mid \forall^{\circ} \alpha . \tau \mid \tau \to^{\varepsilon} \tau \mid \tau \to^{\circ} \tau \mid \dots$$

Add new type constructors.

$$\tau ::= \alpha \mid \forall^{\varepsilon} \alpha . \tau \mid \forall^{\circ} \alpha . \tau \mid \tau \to^{\varepsilon} \tau \mid \tau \to^{\circ} \tau \mid \dots$$

Add new type constructors.

$$\tau ::= \alpha \mid \forall^{\varepsilon} \alpha . \tau \mid \forall^{\circ} \alpha . \tau \mid \tau \to^{\varepsilon} \tau \mid \tau \to^{\circ} \tau \mid \dots$$

Add new type constructors.

$$\tau ::= \alpha \mid \forall^{\varepsilon} \alpha . \tau \mid \forall^{\circ} \alpha . \tau \mid \tau \to^{\varepsilon} \tau \mid \tau \to^{\circ} \tau \mid \dots$$

Add new type constructors.

$$\tau ::= \alpha \mid \forall^{\varepsilon} \alpha . \tau \mid \forall^{\circ} \alpha . \tau \mid \tau \to^{\varepsilon} \tau \mid \tau \to^{\circ} \tau \mid \dots$$

Add new type constructors.

$$\tau ::= \alpha \mid \forall^{\varepsilon} \alpha . \tau \mid \forall^{\circ} \alpha . \tau \mid \tau \to^{\varepsilon} \tau \mid \tau \to^{\circ} \tau \mid \dots$$

Add new type constructors.

$$\tau ::= \alpha \mid \forall^{\varepsilon} \alpha . \tau \mid \forall^{\circ} \alpha . \tau \mid \tau \to^{\varepsilon} \tau \mid \tau \to^{\circ} \tau \mid \dots$$

Add new type constructors.

$$\tau ::= \alpha \mid \forall^{\varepsilon} \alpha . \tau \mid \forall^{\circ} \alpha . \tau \mid \tau \to^{\varepsilon} \tau \mid \tau \to^{\circ} \tau \mid \dots$$

Add new type constructors.

$$\tau ::= \alpha \mid \forall^{\varepsilon} \alpha . \tau \mid \forall^{\circ} \alpha . \tau \mid \tau \to^{\varepsilon} \tau \mid \tau \to^{\circ} \tau \mid \dots$$

```
forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total.
forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total.
forall k :: t1 -> t3 -> t1.
forall k' :: t2 -> t4 -> t2.
  (((k /= _|_) <=> (k' /= _|_))
      && (forall x :: t1.
            ((k x /= _|_) <=> (k' (f x) /= _|_))
            && (forall y :: t3. f (k x y) = k' (f x) (g y))))
==> (forall z :: t1.
            forall xs :: [t3].
            f (foldl' k z xs) = foldl' k' (f z) (map g xs))
```

Add new type constructors.

$$\tau ::= \alpha \mid \forall^{\varepsilon} \alpha . \tau \mid \forall^{\circ} \alpha . \tau \mid \tau \to^{\varepsilon} \tau \mid \tau \to^{\circ} \tau \mid \dots$$

```
forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total.
forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total.
forall k :: t1 -> t3 -> t1.
forall k' :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k' /= _|_))
&&& (forall x :: t1.
        ((k x /= _|_) <=> (k' (f x) /= _|_))
        && (forall y :: t3. f (k x y) = k' (f x) (g y))))
==> (forall z :: t1.
        forall xs :: [t3].
        f (foldl' k z xs) = foldl' k' (f z) (map g xs))
```

Add new type constructors.

$$\tau ::= \alpha \mid \forall^{\varepsilon} \alpha . \tau \mid \forall^{\circ} \alpha . \tau \mid \tau \to^{\varepsilon} \tau \mid \tau \to^{\circ} \tau \mid \dots$$

```
forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total.
forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total.
forall k :: t1 -> t3 -> t1.
forall k' :: t2 -> t4 -> t2.
(((k /= _|_) <=> (k' /= _|_))
&&& (forall x :: t1.
        ((k x /= _|_) <=> (k' (f x) /= _|_))
        && (forall y :: t3. f (k x y) = k' (f x) (g y))))
==> (forall z :: t1.
        forall xs :: [t3].
        f (foldl' k z xs) = foldl' k' (f z) (map g xs))
```

Add new type constructors.

$$\tau ::= \alpha \mid \forall^{\varepsilon} \alpha . \tau \mid \forall^{\circ} \alpha . \tau \mid \tau \to^{\varepsilon} \tau \mid \tau \to^{\circ} \tau \mid \dots$$

Add new type constructors.

$$\tau ::= \alpha \mid \forall^{\varepsilon} \alpha . \tau \mid \forall^{\circ} \alpha . \tau \mid \tau \to^{\varepsilon} \tau \mid \tau \to^{\circ} \tau \mid \dots$$

Add new type constructors.

$$\tau ::= \alpha \mid \forall^{\varepsilon} \alpha . \tau \mid \forall^{\circ} \alpha . \tau \mid \tau \to^{\varepsilon} \tau \mid \tau \to^{\circ} \tau \mid \dots$$

```
forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total.
forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total.
forall k :: t1 -> t3 -> t1.
forall k' :: t2 -> t4 -> t2.
  (((k /= _|_) <=> (k' /= _|_))
  && (forall x :: t1.
        ((k x /= _|_) <=> (k' (f x) /= _|_))
        && (forall y :: t3. f (k x y) = k' (f x) (g y))))
==> (forall z :: t1.
        forall xs :: [t3].
        f (foldl' k z xs) = foldl' k' (f z) (map g xs))
```

### A Refined Type System ...

Add new type constructors.

$$\tau ::= \alpha \mid \forall^{\varepsilon} \alpha . \tau \mid \forall^{\circ} \alpha . \tau \mid \tau \to^{\varepsilon} \tau \mid \tau \to^{\circ} \tau \mid \dots$$

The difference: two function types.

... and its Effects on the Typing Rules (1)

A rule system for  $\Gamma \vdash \tau \in$  Seqable:

$$\begin{array}{ll} \mathsf{\Gamma} \vdash [\tau] \in \mathsf{Seqable} & \mathsf{\Gamma} \vdash (\tau_1 \to^{\varepsilon} \tau_2) \in \mathsf{Seqable} \\ \\ \hline \frac{\alpha^{\varepsilon} \in \mathsf{\Gamma}}{\mathsf{\Gamma} \vdash \alpha \in \mathsf{Seqable}} & \frac{\alpha^{\varepsilon}, \mathsf{\Gamma} \vdash \tau \in \mathsf{Seqable}}{\mathsf{\Gamma} \vdash (\forall \alpha^{\nu}.\tau) \in \mathsf{Seqable}} \end{array}$$

 $\ldots$  and its Effects on the Typing Rules (1)

A rule system for  $\Gamma \vdash \tau \in$  Seqable:

$$\begin{array}{ll} \mathsf{\Gamma} \vdash [\tau] \in \mathsf{Seqable} & \mathsf{\Gamma} \vdash (\tau_1 \to^{\varepsilon} \tau_2) \in \mathsf{Seqable} \\ \\ \hline \hline & \alpha^{\varepsilon} \in \mathsf{\Gamma} \\ \hline & \mathsf{\Gamma} \vdash \alpha \in \mathsf{Seqable} \end{array} & \hline & \alpha^{\varepsilon}, \mathsf{\Gamma} \vdash \tau \in \mathsf{Seqable} \\ \hline & \mathsf{\Gamma} \vdash (\forall \alpha^{\nu}.\tau) \in \mathsf{Seqable} \end{array}$$

Restricting (SLET)

 $\begin{array}{c|c} \hline \Gamma \vdash \tau_1 \in \mathsf{Seqable} & \Gamma \vdash t_1 :: \tau_1 & \Gamma, x :: \tau_1 \vdash t_2 :: \tau_2 \\ \hline \Gamma \vdash (\mathsf{let}! \; x = t_1 \; \mathsf{in} \; t_2) :: \tau_2 \end{array} (\mathsf{SLet'})$ 

 $\ldots$  and its Effects on the Typing Rules (1)

A rule system for  $\Gamma \vdash \tau \in$  Seqable:

$$\begin{array}{ll} \mathsf{\Gamma} \vdash [\tau] \in \mathsf{Seqable} & \mathsf{\Gamma} \vdash (\tau_1 \to^{\varepsilon} \tau_2) \in \mathsf{Seqable} \\ \\ \hline \hline & \alpha^{\varepsilon} \in \mathsf{\Gamma} \\ \hline & \mathsf{\Gamma} \vdash \alpha \in \mathsf{Seqable} \end{array} & \hline & \alpha^{\varepsilon}, \mathsf{\Gamma} \vdash \tau \in \mathsf{Seqable} \\ \hline & \mathsf{\Gamma} \vdash (\forall \alpha^{\nu}.\tau) \in \mathsf{Seqable} \end{array}$$

Restricting (SLET)

$$\frac{\Gamma \vdash \tau_1 \in \mathsf{Seqable} \quad \Gamma \vdash t_1 :: \tau_1 \quad \Gamma, x :: \tau_1 \vdash t_2 :: \tau_2}{\Gamma \vdash (\mathsf{let}! \; x = t_1 \; \mathsf{in} \; t_2) :: \tau_2} \; (\mathsf{SLET'})$$
  
with  $\Gamma = \alpha_1^{\nu_1}, \dots \alpha_n^{\nu_n}, x_1 :: \tau_1, \dots x_n :: \tau_n \; \mathsf{and} \; \nu_i \in \{\circ, \varepsilon\}.$ 

### ... and its Effects on the Typing Rules (2)

More typing rules because of new constructors:

$$\frac{\Gamma \vdash t_1 :: \tau_1 \to^{\mathfrak{e}} \tau_2 \qquad \Gamma \vdash t_2 :: \tau_1}{\Gamma \vdash (t_1 \ t_2) :: \tau_2}$$
$$\frac{\Gamma \vdash t_1 :: \tau_1 \to^{\mathfrak{o}} \tau_2 \qquad \Gamma \vdash t_2 :: \tau_1}{\Gamma \vdash (t_1 \ t_2) :: \tau_2}$$

### ... and its Effects on the Typing Rules (2)

More typing rules because of new constructors:

$$\frac{\Gamma \vdash t_1 :: \tau_1 \to^{\varepsilon} \tau_2 \qquad \Gamma \vdash t_2 :: \tau_1}{\Gamma \vdash (t_1 \ t_2) :: \tau_2}$$
$$\frac{\Gamma \vdash t_1 :: \tau_1 \to^{\circ} \tau_2 \qquad \Gamma \vdash t_2 :: \tau_1}{\Gamma \vdash (t_1 \ t_2) :: \tau_2}$$

A term can have more than one type.

$$(\lambda x :: Int. x) :: Int \to^{\varepsilon} Int$$
  
 $(\lambda x :: Int. x) :: Int \to^{\circ} Int$ 

### ... and its Effects on the Typing Rules (2)

More typing rules because of new constructors:

$$\frac{\Gamma \vdash t_1 :: \tau_1 \to^{\epsilon} \tau_2 \qquad \Gamma \vdash t_2 :: \tau_1}{\Gamma \vdash (t_1 \ t_2) :: \tau_2}$$
$$\frac{\Gamma \vdash t_1 :: \tau_1 \to^{\circ} \tau_2 \qquad \Gamma \vdash t_2 :: \tau_1}{\Gamma \vdash (t_1 \ t_2) :: \tau_2}$$

A term can have more than one type.

$$(\lambda x :: Int. x) :: Int \to^{\varepsilon} Int$$
  
 $(\lambda x :: Int. x) :: Int \to^{\circ} Int$ 

We introduce subtyping.

$$\frac{\Gamma \vdash t :: \tau_1 \quad \tau_1 \preceq \tau_2}{\Gamma \vdash t :: \tau_2}$$
(SUB)

The use of selective strictness becomes visible from the type (o- and  $\varepsilon$ -marks):

$$\begin{array}{l} \textit{foldI} :: \forall^{\circ} \alpha. \forall^{\circ} \beta. (\alpha \to^{\circ} \beta \to^{\circ} \alpha) \to^{\varepsilon} \alpha \to^{\varepsilon} [\beta] \to^{\varepsilon} \alpha \\ \textit{foldI'} :: \forall^{\varepsilon} \alpha. \forall^{\circ} \beta. (\alpha \to^{\circ} \beta \to^{\circ} \alpha) \to^{\varepsilon} \alpha \to^{\varepsilon} [\beta] \to^{\varepsilon} \alpha \end{array}$$

The use of selective strictness becomes visible from the type (o- and  $\varepsilon$ -marks):

$$\begin{array}{l} \text{foldI} :: \forall^{\circ} \alpha. \forall^{\circ} \beta. (\alpha \to^{\circ} \beta \to^{\circ} \alpha) \to^{\varepsilon} \alpha \to^{\varepsilon} [\beta] \to^{\varepsilon} \alpha \\ \text{foldI'} :: \forall^{\varepsilon} \alpha. \forall^{\circ} \beta. (\alpha \to^{\circ} \beta \to^{\circ} \alpha) \to^{\varepsilon} \alpha \to^{\varepsilon} [\beta] \to^{\varepsilon} \alpha \end{array}$$

The use of selective strictness becomes visible from the type (o- and  $\varepsilon$ -marks):

$$\begin{array}{l} \text{foldI} :: \forall^{\circ} \alpha. \forall^{\circ} \beta. (\alpha \to^{\circ} \beta \to^{\circ} \alpha) \to^{\varepsilon} \alpha \to^{\varepsilon} [\beta] \to^{\varepsilon} \alpha \\ \text{foldI'} :: \forall^{\varepsilon} \alpha. \forall^{\circ} \beta. (\alpha \to^{\circ} \beta \to^{\circ} \alpha) \to^{\varepsilon} \alpha \to^{\varepsilon} [\beta] \to^{\varepsilon} \alpha \end{array}$$

Restrictions on free theorems can be dropped if the type guarantees selective strictness is not used.

```
forall t1,t2 in TYPES, f :: t1 -> t2
forall k :: t1 -> t3 -> t1.
forall k' :: t2 -> t3 -> t2.
(
        (forall x :: t1.
        (forall y :: t3. f (k x y) = k' (f x) y)))
==> (forall z :: t1.
        forall xs :: [t3].
        f (foldl k z xs) = foldl k' (f z) xs)
```

The use of selective strictness becomes visible from the type (o- and  $\varepsilon$ -marks):

$$\begin{array}{l} \text{foldI} :: \forall^{\circ} \alpha. \forall^{\circ} \beta. (\alpha \to^{\circ} \beta \to^{\circ} \alpha) \to^{\varepsilon} \alpha \to^{\varepsilon} [\beta] \to^{\varepsilon} \alpha \\ \text{foldI'} :: \forall^{\varepsilon} \alpha. \forall^{\circ} \beta. (\alpha \to^{\circ} \beta \to^{\circ} \alpha) \to^{\varepsilon} \alpha \to^{\varepsilon} [\beta] \to^{\varepsilon} \alpha \end{array}$$

Restrictions on free theorems can be dropped if the type guarantees selective strictness is not used.

```
forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total.
forall k :: t1 -> t3 -> t1.
forall k' :: t2 -> t3 -> t2.
(
        (forall x :: t1.
        (forall y :: t3. f (k x y) = k' (f x) y)))
==> (forall z :: t1.
        forall x s :: [t3].
        f (foldl' k z xs) = foldl' k' (f z) xs)
```

Goal: An algorithm retyping from standard types to (minimal) refined types.

- Goal: An algorithm retyping from standard types to (minimal) refined types.
- Idea: Use typing rules backwards to (re)type a term.

Goal: An algorithm retyping from standard types to (minimal) refined types.

Idea: Use typing rules backwards to (re)type a term.

Problems:

Type annotations are standard in the input term, but we need refined ones.

Goal: An algorithm retyping from standard types to (minimal) refined types.

Idea: Use typing rules backwards to (re)type a term.

Problems:

- Type annotations are standard in the input term, but we need refined ones.
- ► Typing rules are in competition, especially the (SUB)-rule is always applicable.

Goal: An algorithm retyping from standard types to (minimal) refined types.

Idea: Use typing rules backwards to (re)type a term.

Problems:

- Type annotations are standard in the input term, but we need refined ones.
- ► Typing rules are in competition, especially the (SUB)-rule is always applicable.

Solutions:

► Remove the (SUB)-rule by integrating subtyping into the other rules.

Goal: An algorithm retyping from standard types to (minimal) refined types.

Idea: Use typing rules backwards to (re)type a term.

Problems:

- Type annotations are standard in the input term, but we need refined ones.
- ► Typing rules are in competition, especially the (SUB)-rule is always applicable.

Solutions:

- ► Remove the (SUB)-rule by integrating subtyping into the other rules.
- Start the algorithm with all possible refined type annotations.

Goal: An algorithm retyping from standard types to (minimal) refined types.

Idea: Use typing rules backwards to (re)type a term.

Problems:

- Type annotations are standard in the input term, but we need refined ones.
- ► Typing rules are in competition, especially the (SUB)-rule is always applicable.

Solutions:

- ► Remove the (SUB)-rule by integrating subtyping into the other rules.
- Start the algorithm with all possible refined type annotations.

Are these good ideas?

Goal: An algorithm retyping from standard types to (minimal) refined types.

Idea: Use typing rules backwards to (re)type a term.

Problems:

- Type annotations are standard in the input term, but we need refined ones.
- ► Typing rules are in competition, especially the (SUB)-rule is always applicable.

Solutions:

- ► Remove the (SUB)-rule by integrating subtyping into the other rules.
- Start the algorithm with all possible refined type annotations.

Are these good ideas?

Goal: An algorithm retyping from standard types to (minimal) refined types.

Idea: Use typing rules backwards to (re)type a term.

Problems:

- Type annotations are standard in the input term, but we need refined ones.
- ► Typing rules are in competition, especially the (SUB)-rule is always applicable.

Solutions:

- ► Remove the (SUB)-rule by integrating subtyping into the other rules.
- Start the algorithm with all possible refined type annotations.

Are these good ideas?

#### How to Deal with Refined Type Annotations?

Switch to variable marks at the type annotations:

$$\frac{\Gamma \vdash t_1 :: \tau_1 \to^{\mathfrak{e}} \tau_2 \quad \Gamma \vdash t_2 :: \tau_1}{\Gamma \vdash (t_1 \ t_2) :: \tau_2} \quad \frac{\Gamma \vdash t_1 :: \tau_1 \to^{\circ} \tau_2 \quad \Gamma \vdash t_2 :: \tau_1}{\Gamma \vdash (t_1 \ t_2) :: \tau_2}$$

#### How to Deal with Refined Type Annotations?

Switch to variable marks at the type annotations:

$$\frac{\Gamma \vdash t_1 :: \tau_1 \to^{\varepsilon} \tau_2 \quad \Gamma \vdash t_2 :: \tau_1}{\Gamma \vdash (t_1 \ t_2) :: \tau_2} \quad \frac{\Gamma \vdash t_1 :: \tau_1 \to^{\circ} \tau_2 \quad \Gamma \vdash t_2 :: \tau_1}{\Gamma \vdash (t_1 \ t_2) :: \tau_2}$$

 $\Downarrow$  combine two rules into one

$$\frac{\Gamma \vdash t_1 :: \tau_1 \to^{\nu} \tau_2 \quad \Gamma \vdash t_2 :: \tau_1}{\Gamma \vdash (t_1 \ t_2) :: \tau_2}$$

#### How to Deal with Refined Type Annotations?

Switch to variable marks at the type annotations:

$$\frac{\Gamma \vdash t_1 :: \tau_1 \to^{\mathfrak{c}} \tau_2 \quad \Gamma \vdash t_2 :: \tau_1}{\Gamma \vdash (t_1 \ t_2) :: \tau_2} \quad \frac{\Gamma \vdash t_1 :: \tau_1 \to^{\mathfrak{c}} \tau_2 \quad \Gamma \vdash t_2 :: \tau_1}{\Gamma \vdash (t_1 \ t_2) :: \tau_2}$$

 $\Downarrow$  combine two rules into one

$$\frac{\Gamma \vdash t_1 :: \tau_1 \to^{\nu} \tau_2 \quad \Gamma \vdash t_2 :: \tau_1}{\Gamma \vdash (t_1 \ t_2) :: \tau_2}$$

 $\Downarrow$  add constraints for the mark variables

$$\begin{array}{c} \langle \dot{\Gamma} \vdash \dot{t}_1 \rangle \Rrightarrow (\mathcal{C}_1, \dot{\tau}_1 \rightarrow^{\nu} \dot{\tau}_2) \quad \langle \dot{\Gamma} \vdash \dot{t}_2 \rangle \Rrightarrow (\mathcal{C}_2, \dot{\tau}_1') \quad \langle \dot{\tau}_1 = \dot{\tau}_1' \rangle \Rrightarrow \mathcal{C}_3 \\ \\ \langle \dot{\Gamma} \vdash \dot{t}_1 \ \dot{t}_2 \rangle \Rrightarrow (\mathcal{C}_1 \land \mathcal{C}_2 \land \mathcal{C}_3, \dot{\tau}_2) \end{array}$$

A deterministic typing algorithm.

A deterministic typing algorithm.

How does it work?

 $input \Rightarrow output$ 

A deterministic typing algorithm.

How does it work?

A deterministic typing algorithm.

How does it work?

$$\langle \alpha^{\nu_1}, x :: \alpha \to^{\nu_2} \alpha \vdash x \rangle \Rrightarrow (?,?)$$

A deterministic typing algorithm.

How does it work?

$$\frac{\langle \alpha \to^{\nu_2} \alpha \preceq \cdot \rangle \Rrightarrow (?,?)}{\langle \alpha^{\nu_1}, x :: \alpha \to^{\nu_2} \alpha \vdash x \rangle \Rrightarrow (?,?)}$$

A deterministic typing algorithm.

How does it work?

$$\frac{\langle \cdot \preceq \alpha \rangle \Rrightarrow (?, ?) \qquad \langle \alpha \preceq \cdot \rangle \Rrightarrow (?, ?)}{\langle \alpha \rightarrow^{\nu_2} \alpha \preceq \cdot \rangle \Rrightarrow (?, ?)}$$
$$\frac{\langle \alpha \rightarrow^{\nu_2} \alpha \preceq \cdot \rangle \Rrightarrow (?, ?)}{\langle \alpha^{\nu_1}, x :: \alpha \rightarrow^{\nu_2} \alpha \vdash x \rangle \Rrightarrow (?, ?)}$$

A deterministic typing algorithm.

How does it work?

input  $\Rightarrow$  output  $\langle \dot{\Gamma} \vdash \dot{t} \rangle \Rightarrow (C, \dot{\tau})$ 

 $\begin{array}{l} \langle \cdot \preceq \alpha \rangle \Rrightarrow (\mathsf{True}, \alpha) & \langle \alpha \preceq \cdot \rangle \Rrightarrow (?, ?) \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \langle \alpha^{\nu_1}, x :: \alpha \to^{\nu_2} \alpha \vdash x \rangle \Rrightarrow (?, ?) \\ \hline \end{array}$ 

A deterministic typing algorithm.

How does it work?

input  $\Rightarrow$  output  $\langle \dot{\Gamma} \vdash \dot{t} \rangle \Rightarrow (C, \dot{\tau})$ 

 $\begin{array}{c} \langle \cdot \preceq \alpha \rangle \Rrightarrow (\mathsf{True}, \alpha) & \langle \alpha \preceq \cdot \rangle \Rrightarrow (\mathsf{True}, \alpha) \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \langle \alpha^{\nu_1}, x :: \alpha \to^{\nu_2} \alpha \vdash x \rangle \Rrightarrow (?, ?) \\ \hline \end{array}$ 

A deterministic typing algorithm.

How does it work?

input  $\Rightarrow$  output  $\langle \dot{\Gamma} \vdash \dot{t} \rangle \Rightarrow (C, \dot{\tau})$ 

$$\langle \cdot \preceq \alpha \rangle \Rrightarrow (\mathsf{True}, \alpha) \qquad \langle \alpha \preceq \cdot \rangle \Rrightarrow (\mathsf{True}, \alpha)$$

 $\langle \alpha \rightarrow^{\nu_2} \alpha \preceq \cdot \rangle \Rrightarrow (\mathsf{True} \land \mathsf{True} \land (\nu_3 \leqslant \nu_2), \alpha \rightarrow^{\nu_3} \alpha)$ 

$$\langle \alpha^{\nu_1}, x :: \alpha \to^{\nu_2} \alpha \vdash x \rangle \Rrightarrow (?,?)$$

A deterministic typing algorithm.

How does it work?

$$\frac{\langle \cdot \preceq \alpha \rangle \Rrightarrow (\mathsf{True}, \alpha) \qquad \langle \alpha \preceq \cdot \rangle \Rrightarrow (\mathsf{True}, \alpha)}{\langle \alpha \to^{\nu_2} \alpha \preceq \cdot \rangle \Rrightarrow (\mathsf{True} \wedge \mathsf{True} \wedge (\nu_3 \leqslant \nu_2), \alpha \to^{\nu_3} \alpha)}$$
$$\frac{\langle \alpha^{\nu_1}, x :: \alpha \to^{\nu_2} \alpha \vdash x \rangle \Rrightarrow ((\nu_3 \leqslant \nu_2), \alpha \to^{\nu_3} \alpha)}{\langle \alpha^{\nu_1}, x :: \alpha \to^{\nu_2} \alpha \vdash x \rangle \Rrightarrow ((\nu_3 \leqslant \nu_2), \alpha \to^{\nu_3} \alpha)}$$

A deterministic typing algorithm.

How does it work?

input  $\Rightarrow$  output  $\langle \dot{\Gamma} \vdash \dot{t} \rangle \Rightarrow (C, \dot{\tau})$ 

$$\langle \cdot \preceq \alpha \rangle \Rrightarrow (\mathsf{True}, \alpha) \qquad \langle \alpha \preceq \cdot \rangle \Rrightarrow (\mathsf{True}, \alpha)$$
$$\langle \alpha \rightarrow^{\nu_2} \alpha \preceq \cdot \rangle \Rrightarrow (\mathsf{True} \land \mathsf{True} \land (\nu_3 \leqslant \nu_2), \alpha \rightarrow^{\nu_3} \alpha)$$
$$\langle \alpha^{\nu_1}, x :: \alpha \rightarrow^{\nu_2} \alpha \vdash x \rangle \Rrightarrow ((\nu_3 \leqslant \nu_2), \alpha \rightarrow^{\nu_3} \alpha)$$

How to get back to concrete types, without mark variables?

### Back to Concrete Typability (Example)

We have:

$$\begin{array}{l} \langle \vdash \Lambda \alpha. \Lambda \beta. \lambda f :: \alpha \to^{\nu_1} \beta. \lambda x :: \alpha. \, \mathsf{let}! \, x' = x \, \mathsf{in} \, f \, x' \rangle \Rrightarrow \\ ((\nu_2 = \varepsilon) \land (\nu_4 \leqslant \nu_1) \land (\nu_1 \leqslant \nu_6), \\ \forall^{\nu_2} \alpha. \forall^{\nu_3} \beta. \, (\alpha \to^{\nu_6} \beta) \to^{\nu_7} \alpha \to^{\nu_5} \beta) \end{array}$$

with  $\circ < \varepsilon$ .

### Back to Concrete Typability (Example)

We have:

with  $\circ < \varepsilon$ .

We have:

with  $\circ < \varepsilon$ .

We have:

$$\begin{array}{l} \langle \vdash \Lambda \alpha. \Lambda \beta. \lambda f :: \alpha \to^{\nu_1} \beta. \lambda x :: \alpha. \, \mathsf{let}! \, x' = x \, \mathsf{in} \, f \, x' \rangle \Rrightarrow \\ ((\nu_2 = \varepsilon) \land (\nu_4 \leqslant \nu_1) \land (\nu_1 \leqslant \nu_6), \\ \forall^{\nu_2} \alpha. \forall^{\nu_3} \beta. \, (\alpha \to^{\nu_6} \beta) \to^{\nu_7} \alpha \to^{\nu_5} \beta) \end{array}$$

with  $\circ < \varepsilon$ .

We have:

$$\begin{array}{l} \langle \vdash \Lambda \alpha. \Lambda \beta. \lambda f :: \alpha \to^{\nu_1} \beta. \lambda x :: \alpha. \, \mathsf{let}! \, x' = x \, \mathsf{in} \, f \, x' \rangle \Rrightarrow \\ ((\nu_2 = \varepsilon) \land (\nu_4 \leqslant \nu_1) \land (\nu_1 \leqslant \nu_6), \\ \forall^{\nu_2} \alpha. \forall^{\nu_3} \beta. (\alpha \to^{\nu_6} \beta) \to^{\nu_7} \alpha \to^{\nu_5} \beta) \end{array}$$

with  $\circ < \varepsilon$ .

We have:

with  $\circ < \varepsilon$ .

We have:

with  $\circ < \varepsilon$ .

$$\begin{array}{rcl}
\nu_{1} & = & \circ \\
\nu_{2} & = & \circ \\
\nu_{3} & = & \circ \\
\nu_{4} & = & \circ \\
\nu_{5} & = & \circ \\
\nu_{6} & = & \circ \\
\nu_{7} & = & \circ
\end{array}$$

We have:

$$\begin{array}{l} \langle \vdash \Lambda \alpha. \ \Lambda \beta. \ \lambda f :: \alpha \to^{\circ} \beta. \ \lambda x :: \alpha. \ \mathbf{let!} \ x' = x \ \mathbf{in} \ f \ x' \rangle \Rrightarrow \\ ((\circ = \varepsilon) \land (\circ \leqslant \circ) \land (\circ \leqslant \circ), \\ \forall^{\circ} \alpha. \ \forall^{\circ} \beta. \ (\alpha \to^{\circ} \beta) \to^{\circ} \alpha \to^{\circ} \beta) \end{array}$$

with  $\circ < \varepsilon$ .

$$\begin{array}{rcl}
\nu_{1} & = & \circ \\
\nu_{2} & = & \circ \\
\nu_{3} & = & \circ \\
\nu_{4} & = & \circ \\
\nu_{5} & = & \circ \\
\nu_{6} & = & \circ \\
\nu_{7} & = & \circ
\end{array}$$

We have:

with  $\circ < \varepsilon$ .

$$\begin{array}{rcl}
\nu_{1} & = & \circ \\
\nu_{2} & = & \circ \\
\nu_{3} & = & \circ \\
\nu_{4} & = & \circ \\
\nu_{5} & = & \circ \\
\nu_{6} & = & \circ \\
\nu_{7} & = & \circ
\end{array}$$

We have:

$$\begin{array}{l} \langle \vdash \Lambda \alpha. \Lambda \beta. \lambda f :: \alpha \to^{\varepsilon} \beta. \lambda x :: \alpha. \, \mathsf{let}! \, x' = x \, \mathsf{in} \, f \, x' \rangle \Rrightarrow \\ ((\varepsilon = \varepsilon) \land (\varepsilon \leqslant \varepsilon) \land (\varepsilon \leqslant \varepsilon), \\ \forall^{\varepsilon} \alpha. \, \forall^{\varepsilon} \beta. \, (\alpha \to^{\varepsilon} \beta) \to^{\varepsilon} \alpha \to^{\varepsilon} \beta) \end{array}$$

with  $\circ < \varepsilon$ .

$$\begin{array}{rcl}
\nu_1 &= & \circ & \nu_1 &= & \varepsilon \\
\nu_2 &= & \circ & \nu_2 &= & \varepsilon \\
\nu_3 &= & \circ & \nu_3 &= & \varepsilon \\
\nu_4 &= & \circ & \nu_4 &= & \varepsilon \\
\nu_5 &= & \circ & \nu_5 &= & \varepsilon \\
\nu_6 &= & \circ & \nu_6 &= & \varepsilon \\
\nu_7 &= & \circ & \nu_7 &= & \varepsilon
\end{array}$$

We have:

with  $\circ < \varepsilon$ .

$$\begin{array}{rcl}
\nu_1 &=& \circ & \nu_1 &=& \varepsilon \\
\nu_2 &=& \circ & \nu_2 &=& \varepsilon \\
\nu_3 &=& \circ & \nu_3 &=& \varepsilon \\
\nu_4 &=& \circ & \nu_4 &=& \varepsilon \\
\nu_5 &=& \circ & \nu_5 &=& \varepsilon \\
\nu_6 &=& \circ & \nu_6 &=& \varepsilon \\
\nu_7 &=& \circ & \nu_7 &=& \varepsilon
\end{array}$$

We have:

$$\begin{array}{l} \langle \vdash \Lambda \alpha. \Lambda \beta. \lambda f :: \alpha \to^{\circ} \beta. \lambda x :: \alpha. \, \mathsf{let}! \, x' = x \, \mathsf{in} \, f \, x' \rangle \Rrightarrow \\ ((\varepsilon = \varepsilon) \land (\circ \leqslant \circ) \land (\circ \leqslant \circ), \\ \forall^{\varepsilon} \alpha. \forall^{\circ} \beta. \, (\alpha \to^{\circ} \beta) \to^{\varepsilon} \alpha \to^{\varepsilon} \beta) \end{array}$$

with  $\circ < \varepsilon$ .

We have:

with  $\circ < \varepsilon$ .

We have:

with  $\circ < \varepsilon$ .

$$\nu_{1} = \varepsilon \qquad \nu_{1} = \circ$$

$$\nu_{2} = \varepsilon \qquad \nu_{2} = \varepsilon$$

$$\nu_{3} = \varepsilon \qquad \nu_{3} = \circ$$

$$\nu_{4} = \varepsilon \qquad \nu_{4} = \circ$$

$$\nu_{5} = \varepsilon \qquad \nu_{5} = \varepsilon$$

$$\nu_{6} = \varepsilon \qquad \nu_{6} = \circ$$

$$\nu_{7} = \varepsilon \qquad \nu_{7} = \varepsilon$$

We have:

with  $\circ < \varepsilon$ .

We test all possible instantiations for the variable marks.

$$\nu_{1} = \circ$$

$$\nu_{2} = \varepsilon$$

$$\nu_{3} = \circ$$

$$\nu_{4} = \circ$$

$$\nu_{5} = \varepsilon$$

$$\nu_{6} = \circ$$

$$\nu_{7} = \varepsilon$$

We take only the minimal solution!

input: closed term with standard type annotations

input: closed term with standard type annotations

 $\Downarrow$  add variable marks

term with parameterized refined type annotations

input: closed term with standard type annotations

 $\Downarrow$  add variable marks

term with parameterized refined type annotations

 $\Downarrow$  the main algorithm

constraint and parameterized type

input: closed term with standard type annotations

 $\Downarrow$  add variable marks

term with parameterized refined type annotations

 $\Downarrow$  the main algorithm

constraint and parameterized type

 $\Downarrow$  solve constraint

all possible refined types

input: closed term with standard type annotations

 $\Downarrow$  add variable marks

term with parameterized refined type annotations

 $\Downarrow$  the main algorithm

constraint and parameterized type

 $\Downarrow$  solve constraint

all possible refined types

 $\Downarrow \text{ type comparison}$ 

output: the refined types leading to the strongest free theorems

#### The Webinterface

The term

```
t = (/\a.
 (/\b.
 (\c::(a -> (b -> a)).
 (fix (\h::(a -> ([b] -> a)).
 (\n::a.
 (\y::[b].
 (seq (c n) (case ys of {[] -> n; x:xs ->
 (seq xs (seq x (let n' = ((c n) x) in
 (((n' ) xs))))))))))))))
```

can be typed to the optimal type

(forall^n a. (forall^e b. ((a ->^n (b ->^e a)) ->^e (a ->^e ([b] ->^e a)))))

with the free theorem

forall t1,t2 in TYPES, f :: t1 -> t2, f strict. forall t1,t2 in TYPES, f :: t1 -> t2, g strict and total. {t1 (t1) t3) /= \_\_\_\_\_\_ === t (t2) (t4) /= \_\_\_) 66 (forall p :: t1 -> (t3 >> t1). forall q :: t2 -> (t4 -> t2). (forall x :: t1. (ip x/= \_\_\_\_\_\_ === (q (f x) /= \_\_\_)) 66 (forall y :: t3, f (p x y) = q (f x) (g y))) ==> (t1 (t1) t2) p /= \_\_\_ >= (x = (t2) (t4) q (f z) /= \_\_\_)) 66 (forall y :: t1. (if (t1) (t3) p x /= \_\_\_) <=> (t\_(t2) (t4) q (f z) /= \_\_\_)) 66 (forall y :: [t3]. f (t\_(t1) (t3) p z /= \_\_\_) <=> (t\_(t2) (t4) q (f z) /= \_\_\_)) 66 (forall y :: [t3]. f (t\_(t1) (t3) p z /= \_\_\_) <=> (t\_(t2) (t4) q (f z) (map{t3}(t4) g v)))))

The normal free theorem for the type without marks would be:

http://www-ps.iai.uni-bonn.de/cgi-bin/polyseq.cgi

## References I



Johann, P. and Voigtländer, J. (2004).

Free theorems in the presence of seq.

In *Principles of Programming Languages, Proceedings*, pages 99–110. ACM Press.



Launchbury, J. and Paterson, R. (1996).

Parametricity and unboxing with unpointed types.

In *European Symposium on Programming, Proceedings*, volume 1058 of *LNCS*, pages 204–218. Springer-Verlag.



Reynolds, J. (1983).

Types, abstraction and parametric polymorphism.

In Information Processing, Proceedings, pages 513-523. Elsevier.

## References II



Taming selective strictness.

Technical Report TUD-FI09-06, Technische Universität Dresden.

http://wwwtcs.inf.tu-dresden.de/~voigt/TUD-FI09-06.pdf.



Wadler, P. (1989).

Theorems for free!

In Functional Programming Languages and Computer Architecture, Proceedings, pages 347–359. ACM Press.