Taming Selective Strictness

Daniel Seidel ${ }^{1}$ and Janis Voigtländer

Institute for Computer Science
Department III
University of Bonn, Germany
\{ds,jv\}@informatik.uni-bonn.de

April 7, 2010
${ }^{1}$ This author was supported by the DFG under grant VO 1512/1-1.

The Polymorphic Function foldl

$$
\begin{aligned}
& \text { foldl }::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { foldl } k z[]=z \\
& \text { foldl } k z(x: x s)=\text { foldl } k(k z x) x s
\end{aligned}
$$

The Polymorphic Function foldl

$$
\begin{aligned}
& \text { foldl :: }(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { foldl } k z[]=z \\
& \text { foldl } k z(x: x s)=\text { foldl } k(k z x) x s
\end{aligned}
$$

foldl kz (

$)=$

The Polymorphic Function foldl

$$
\begin{aligned}
& \text { foldl :: }(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { foldl } k z[]=z \\
& \text { foldl } k z(x: x s)=\text { foldl } k(k z x) x s
\end{aligned}
$$

Example

$$
\text { sum }=\text { foldl }(+) 0
$$

The Polymorphic Function foldl

$$
\begin{aligned}
& \text { foldl :: }(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { foldl } k z[]=z \\
& \text { foldl } k z(x: x s)=\text { foldl } k(k z x) x s
\end{aligned}
$$

Example

$$
\begin{aligned}
\text { sum } & =\text { foldl }(+) 0 \\
\text { sum }[1,2,3] & =\text { foldl }(+) 0[1,2,3]
\end{aligned}
$$

The Polymorphic Function foldl

$$
\begin{aligned}
& \text { foldl :: }(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { foldl } k z[]=z \\
& \text { foldl } k z(x: x s)=\text { foldl } k(k z x) x s
\end{aligned}
$$

Example

$$
\begin{aligned}
\text { sum } & =\text { foldl }(+) 0 \\
\text { sum }[1,2,3] & =\text { foldl }(+) 0[1,2,3] \\
& =\text { foldl }(+)(0+1)[2,3]
\end{aligned}
$$

The Polymorphic Function foldl

$$
\begin{aligned}
& \text { foldl :: }(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { foldl } k z[]=z \\
& \text { foldl } k z(x: x s)=\text { foldl } k(k z x) x s
\end{aligned}
$$

Example

$$
\begin{aligned}
\text { sum } & =\text { foldl }(+) 0 \\
\text { sum }[1,2,3] & =\text { foldl }(+) 0[1,2,3] \\
& =\text { foldl }(+)(0+1)[2,3] \\
& =\text { foldl }(+)((0+1)+2)[3]
\end{aligned}
$$

The Polymorphic Function foldl

$$
\begin{aligned}
& \text { foldl :: }(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { foldl } k z[]=z \\
& \text { foldl } k z(x: x s)=\text { foldl } k(k z x) x s
\end{aligned}
$$

Example

$$
\begin{aligned}
\text { sum } & =\text { foldl }(+) 0 \\
\text { sum }[1,2,3] & =\text { foldl }(+) 0[1,2,3] \\
& =\text { foldl }(+)(0+1)[2,3] \\
& =\text { foldl }(+)((0+1)+2)[3] \\
& =\text { foldl }(+)(((0+1)+2)+3)[]
\end{aligned}
$$

The Polymorphic Function foldl

$$
\begin{aligned}
& \text { foldl :: }(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { foldl } k z[]=z \\
& \text { foldl } k z(x: x s)=\text { foldl } k(k z x) x s
\end{aligned}
$$

Example

$$
\begin{aligned}
\text { sum } & =\text { foldl }(+) 0 \\
\text { sum }[1,2,3] & =\text { foldl }(+) 0[1,2,3] \\
& =\text { foldl }(+)(0+1)[2,3] \\
& =\text { foldl }(+)((0+1)+2)[3] \\
& =\text { foldl }(+)(((0+1)+2)+3)[] \\
& =(((0+1)+2)+3)
\end{aligned}
$$

The Polymorphic Function foldl

$$
\begin{aligned}
& \text { foldl :: }(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { foldl } k z[]=z \\
& \text { foldl } k z(x: x s)=\text { foldl } k(k z x) x s
\end{aligned}
$$

Example

$$
\begin{aligned}
\text { sum } & =\text { foldl }(+) 0 \\
\text { sum }[1,2,3] & =\text { foldl }(+) 0[1,2,3] \\
& =\text { foldl }(+)(0+1)[2,3] \\
& =\text { foldl }(+)((0+1)+2)[3] \\
& =\text { foldl }(+)(((0+1)+2)+3)[] \\
& =(((0+1)+2)+3) \\
& =6
\end{aligned}
$$

The Fusion Property

Consider a simple program transformation:

$$
(+1) \circ \text { sum }
$$

The Fusion Property

Consider a simple program transformation:

$$
(+1) \circ \text { sum }=(+1) \circ(\text { foldl }(+) 0)
$$

The Fusion Property

Consider a simple program transformation:

$$
(+1) \circ \text { sum }=(+1) \circ(\text { foldl }(+) 0)=\text { foldl }(+) 1
$$

The Fusion Property

Consider a simple program transformation:

$$
(+1) \circ \text { sum }=(+1) \circ(\text { foldl }(+) 0)=\text { foldl }(+) 1
$$

More generally:

$$
f \circ(\text { foldl } k z)=\text { foldl } k^{\prime} z^{\prime}
$$

The Fusion Property

Consider a simple program transformation:

$$
(+1) \circ \text { sum }=(+1) \circ(\text { foldl }(+) 0)=\text { foldl }(+) 1
$$

More generally:

$$
f \circ(\text { foldl } k z)=\text { foldl } k^{\prime} z^{\prime}
$$

For an inductive proof the conditions

$$
\begin{gathered}
f z=z^{\prime} \\
\forall x, y \cdot f(k x y)=k^{\prime}(f x) y
\end{gathered}
$$

are sufficient.

Free Theorems [Wadler, 1989]

With free theorems we can prove the fusion property automatically only using foldl's type

[^0]
Free Theorems [Wadler, 1989]

With free theorems we can prove the fusion property automatically only using foldl's type

$$
\text { foldl }::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha .
$$

[^1]
Free Theorems [Wadler, 1989]

With free theorems we can prove the fusion property automatically only using fold's type

$$
\text { fold }::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha
$$

Output of a generator ${ }^{2}$ for fold's type as input:

```
forall t1,t2 in TYPES, f :: t1 -> t2 .
    forall t3,t4 in TYPES, g :: t3 -> t4.
    forall k :: t1 -> t3 -> t1.
        forall k' :: t2 -> t4 -> t2 .
            (forall x :: t1. forall y :: t3.
            f (k x y) = k' (f x) (g y))
        ==> (forall z :: t1.
            forall xs :: [t3].
            f (foldl k z xs)
                        = foldl k' (f z) (map g xs))
```

 \(2_{\text {http://www-ps.iai.uni-bonn.de/ft/ }}\)

Free Theorems [Wadler, 1989]

With free theorems we can prove the fusion property automatically only using foldl's type

$$
\text { foldl }::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha .
$$

Output of a generator ${ }^{2}$ for foldl's type as input:

```
forall t1,t2 in TYPES, f :: t1 -> t2.
    forall t3,t4 in TYPES, g :: t3 -> t4.
    forall k :: t1 -> t3 -> t1.
        forall k' :: t2 -> t4 -> t2.
            (forall x :: t1. forall y :: t3.
            f (k x y) = k' (f x) (g y))
        ==> (forall z :: t1.
            forall xs :: [t3].
            f (foldl k z xs)
                        = foldl k' (f z) (map g xs))
```

 \(2_{\text {http://www-ps.iai.uni-bonn.de/ft/ }}\)

Free Theorems [Wadler, 1989]

With free theorems we can prove the fusion property automatically only using foldl's type

$$
\text { foldl }::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha
$$

Output of a generator ${ }^{2}$ for foldl's type as input:

```
forall t1,t2 in TYPES, f :: t1 -> t2.
```

```
forall k :: t1 -> t3 -> t1.
    forall k' :: t2 -> t3 -> t2.
        (forall x :: t1. forall y :: t3.
            f (k x y) = k' (f x) ( y))
    ==> (forall z :: t1.
        forall xs :: [t3].
            f (foldl k z xs)
            = foldl k'
```

 xs))
 [^2]
Speed Up with Selective Strictness

Example (sum reconsidered)

$$
\begin{aligned}
\text { sum }[1,2,3] & =\text { fold }(+) 0[1,2,3] \\
& =\text { fold }(+)(0+1)[2,3] \\
& =\text { fold }(+)((0+1)+2)[3]
\end{aligned}
$$

Speed Up with Selective Strictness

Example (sum reconsidered)

$$
\begin{aligned}
\operatorname{sum}[1,2,3] & =\text { foldl }(+) 0[1,2,3] \\
& =\text { foldl }(+)(0+1)[2,3] \\
& =\text { foldl }(+)((0+1)+2)[3]
\end{aligned}
$$

Lazy evaluation results in a huge overhead.

Speed Up with Selective Strictness

Example (sum reconsidered)

$$
\begin{aligned}
\operatorname{sum}[1,2,3] & =\text { foldl }(+) 0[1,2,3] \\
& =\text { foldl }(+)(0+1)[2,3] \\
& =\text { foldl }(+)((0+1)+2)[3]
\end{aligned}
$$

Lazy evaluation results in a huge overhead.
\Rightarrow Strict evaluation is desirable.

Speed Up with Selective Strictness

Example (sum reconsidered)

$$
\begin{aligned}
\text { sum }[1,2,3] & =\text { foldl }(+) 0[1,2,3] \\
& =\text { foldl }(+)(0+1)[2,3] \\
& =\text { foldl }(+)((0+1)+2)[3]
\end{aligned}
$$

Lazy evaluation results in a huge overhead.
\Rightarrow Strict evaluation is desirable.
Haskell provides strict evaluation by the function seq :: $\alpha \rightarrow \beta \rightarrow \beta$:

$$
\text { seq a } b= \begin{cases}b & \text { if } a \neq \perp \\ \perp & \text { otherwise }\end{cases}
$$

fold ${ }^{\prime}$ - A Strict Version of foldl

$$
\begin{aligned}
& \text { foldl' }::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { foldl' } k z[]=z \\
& \text { foldl' } k z(x: x s)=\text { let } z^{\prime}=k z x \text { in seq } z^{\prime}\left(\text { fold } l^{\prime} k z^{\prime} x s\right)
\end{aligned}
$$

fold ${ }^{\prime}$ - A Strict Version of foldl

$$
\begin{aligned}
& \text { foldl' }::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { foldl' } k z[]=z \\
& \text { foldl' } k z(x: x s)=\text { let } z^{\prime}=k z x \text { in seq } z^{\prime}\left(f o l d l^{\prime} k z^{\prime} x s\right)
\end{aligned}
$$

Example (strict sum')

$$
\operatorname{sum}^{\prime}[1,2,3]=\text { foldl' }(+) 0[1,2,3]
$$

fold ${ }^{\prime}$ - A Strict Version of foldl

$$
\begin{aligned}
& \text { foldl' }::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { foldl' } k z[]=z \\
& \text { foldl' } k z(x: x s)=\text { let } z^{\prime}=k z x \text { in seq } z^{\prime}\left(f o l d l^{\prime} k z^{\prime} x s\right)
\end{aligned}
$$

Example (strict sum')

$$
\begin{aligned}
\operatorname{sum}^{\prime}[1,2,3] & =\text { foldl } l^{\prime}(+) 0[1,2,3] \\
& =\text { let } z^{\prime}=0+1 \text { in seq } z^{\prime}\left(\text { foldl } \prime^{\prime}(+) z^{\prime}[2,3]\right)
\end{aligned}
$$

fold ${ }^{\prime}$ - A Strict Version of foldl

$$
\begin{aligned}
& \text { foldl' }::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { foldl' } k z[]=z \\
& \text { foldl' } k z(x: x s)=\text { let } z^{\prime}=k z x \text { in seq } z^{\prime}\left(f o l d l^{\prime} k z^{\prime} x s\right)
\end{aligned}
$$

Example (strict sum')

$$
\begin{aligned}
\text { sum }^{\prime}[1,2,3] & =\text { foldl' }(+) 0[1,2,3] \\
& =\text { let } z^{\prime}=0+1 \text { in seq } z^{\prime}\left(\text { foldl }{ }^{\prime}(+) z^{\prime}[2,3]\right) \\
& =\text { foldl }{ }^{\prime}(+) 1[2,3]
\end{aligned}
$$

fold l^{\prime} - A Strict Version of foldl

$$
\begin{aligned}
& \text { foldl' }::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { foldl' } k z[]=z \\
& \text { foldl' } k z(x: x s)=\text { let } z^{\prime}=k z x \text { in seq } z^{\prime}\left(\text { fold } \prime^{\prime} k z^{\prime} x s\right)
\end{aligned}
$$

Example (strict sum')

$$
\begin{aligned}
\operatorname{sum}^{\prime}[1,2,3] & =\text { foldl' }(+) 0[1,2,3] \\
& =\text { let } z^{\prime}=0+1 \text { in seq } z^{\prime}\left(\text { fold } \prime^{\prime}(+) z^{\prime}[2,3]\right) \\
& =\text { foldl } l^{\prime}(+) 1[2,3] \\
& =\text { let } z^{\prime}=1+2 \text { in seq } z^{\prime}\left(\text { fold } \prime^{\prime}(+) z^{\prime}[3]\right)
\end{aligned}
$$

fold l^{\prime} - A Strict Version of foldl

$$
\begin{aligned}
& \text { foldl' }::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { foldl' } k z[]=z \\
& \text { foldl' } k z(x: x s)=\text { let } z^{\prime}=k z x \text { in seq } z^{\prime}\left(\text { fold } \prime^{\prime} k z^{\prime} x s\right)
\end{aligned}
$$

Example (strict sum')

$$
\begin{aligned}
\text { sum }^{\prime}[1,2,3] & =\text { foldl' }(+) 0[1,2,3] \\
& =\text { let } z^{\prime}=0+1 \text { in seq } z^{\prime}\left(\text { foldl } \prime^{\prime}(+) z^{\prime}[2,3]\right) \\
& =\text { foldl } l^{\prime}(+) 1[2,3] \\
& =\text { let } z^{\prime}=1+2 \text { in seq } z^{\prime}\left(\text { foldl }{ }^{\prime}(+) z^{\prime}[3]\right) \\
& =\text { foldl } l^{\prime}(+) 3[3]
\end{aligned}
$$

fold l^{\prime} - A Strict Version of foldl

$$
\begin{aligned}
& \text { foldl' }::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { foldl' } k z[]=z \\
& \text { foldl' } k z(x: x s)=\text { let } z^{\prime}=k z x \text { in seq } z^{\prime}\left(\text { fold } \prime^{\prime} k z^{\prime} x s\right)
\end{aligned}
$$

Example (strict sum')

$$
\begin{aligned}
\text { sum }^{\prime}[1,2,3] & =\text { foldl' }(+) 0[1,2,3] \\
& =\text { let } z^{\prime}=0+1 \text { in seq } z^{\prime}\left(\text { foldl } \prime^{\prime}(+) z^{\prime}[2,3]\right) \\
& =\text { foldl } l^{\prime}(+) 1[2,3] \\
& =\text { let } z^{\prime}=1+2 \text { in seq } z^{\prime}\left(\text { foldl }{ }^{\prime}(+) z^{\prime}[3]\right) \\
& =\text { foldl } l^{\prime}(+) 3[3]
\end{aligned}
$$

fold l^{\prime} - A Strict Version of foldl

$$
\begin{aligned}
& \text { foldl' }::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { foldl' } k z[]=z \\
& \text { foldl' } k z(x: x s)=\text { let } z^{\prime}=k z x \text { in seq } z^{\prime}\left(\text { fold } \prime^{\prime} k z^{\prime} x s\right)
\end{aligned}
$$

Example (strict sum')

$$
\begin{aligned}
\text { sum }^{\prime}[1,2,3] & =\text { foldl' }(+) 0[1,2,3] \\
& =\text { let } z^{\prime}=0+1 \text { in seq } z^{\prime}\left(\text { foldl } \prime^{\prime}(+) z^{\prime}[2,3]\right) \\
& =\text { foldl } l^{\prime}(+) 1[2,3] \\
& =\text { let } z^{\prime}=1+2 \text { in seq } z^{\prime}\left(\text { foldl }{ }^{\prime}(+) z^{\prime}[3]\right) \\
& =\text { foldl } l^{\prime}(+) 3[3]
\end{aligned}
$$

$s u m^{\prime}$ evaluates the addition whenever possible.

fold l^{\prime} - A Strict Version of foldl

$$
\begin{aligned}
& \text { foldl' }::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { foldl' } k z[]=z \\
& \text { foldl' } k z(x: x s)=\text { let } z^{\prime}=k z x \text { in seq } z^{\prime}\left(\text { fold } \prime^{\prime} k z^{\prime} x s\right)
\end{aligned}
$$

Example (strict sum')

$$
\begin{aligned}
\text { sum }^{\prime}[1,2,3] & =\text { foldl' }(+) 0[1,2,3] \\
& =\text { let } z^{\prime}=0+1 \text { in seq } z^{\prime}(\text { foldl' } \\
& \left.=\text { foldl }(+) z^{\prime}[2,3]\right) \\
& \left.=\text { let } z^{\prime}=1+2,3\right] \\
& =\text { foldl } l^{\prime}(+) 3[3]
\end{aligned}
$$

sum ${ }^{\prime}$ evaluates the addition whenever possible.
\Rightarrow Saving space (and time)

fold l^{\prime} - A Strict Version of foldl

$$
\begin{aligned}
& \text { foldl' }::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { foldl' } k z[]=z \\
& \text { foldl' } k z(x: x s)=\text { let } z^{\prime}=k z x \text { in seq } z^{\prime}\left(\text { fold } \prime^{\prime} k z^{\prime} x s\right)
\end{aligned}
$$

Example (strict sum')

$$
\begin{aligned}
\text { sum }^{\prime}[1,2,3] & =\text { foldl' }(+) 0[1,2,3] \\
& =\text { let } z^{\prime}=0+1 \text { in seq } z^{\prime}\left(\text { foldl } \prime^{\prime}(+) z^{\prime}[2,3]\right) \\
& =\text { foldl } l^{\prime}(+) 1[2,3] \\
& =\text { let } z^{\prime}=1+2 \text { in seq } z^{\prime}\left(\text { foldl }{ }^{\prime}(+) z^{\prime}[3]\right) \\
& =\text { foldl } l^{\prime}(+) 3[3]
\end{aligned}
$$

sum ${ }^{\prime}$ evaluates the addition whenever possible.
\Rightarrow Saving space (and time)
\Rightarrow Strict evaluation pays off here.

Drawbacks of Selective Strictness

Question:

$$
\begin{gathered}
f(\text { foldl' } k z x s) \stackrel{?}{=} \text { foldl' } k^{\prime}(f z) x s \\
\text { if } f(k x y)=k^{\prime}(f x) y
\end{gathered}
$$

Drawbacks of Selective Strictness

Question:

$$
\begin{gathered}
f(\text { foldl' } k z x s) \stackrel{?}{=} \text { foldl' } k^{\prime}(f z) x s \\
\text { if } f(k x y)=k^{\prime}(f x) y
\end{gathered}
$$

Consider an example instantiation:

$$
\begin{aligned}
f & =\lambda x \rightarrow x \vee \perp \\
k=k^{\prime} & =\lambda x y \rightarrow y \vee x \\
x s & =[\text { False, True }] \\
z & =\text { False }
\end{aligned}
$$

Drawbacks of Selective Strictness

Question:

$$
\begin{gathered}
f(\text { foldl' } k z x s) \stackrel{?}{=} \text { foldl' } k^{\prime}(f z) x s \\
\text { if } f(k x y)=k^{\prime}(f x) y
\end{gathered}
$$

Consider an example instantiation:

$$
\begin{aligned}
f & =\lambda x \rightarrow x \vee \perp \\
k=k^{\prime} & =\lambda x y \rightarrow y \vee x \\
x s & =[\text { False, True }] \\
z & =\text { False }
\end{aligned}
$$

$f($ foldl' k False [False, True] $)=$ True

Drawbacks of Selective Strictness

Question:

$$
\begin{gathered}
f(\text { foldl' } k z x s) \stackrel{?}{=} \text { foldl' } k^{\prime}(f z) x s \\
\text { if } f(k x y)=k^{\prime}(f x) y
\end{gathered}
$$

Consider an example instantiation:

$$
\begin{aligned}
f & =\lambda x \rightarrow x \vee \perp \\
k=k^{\prime} & =\lambda x y \rightarrow y \vee x \\
x s & =[\text { False, True }] \\
z & =\text { False }
\end{aligned}
$$

$f($ foldl' k False [False, True] $)=$ True
foldl' k^{\prime} (f False) [False, True] $=\perp$

Drawbacks of Selective Strictness

Question:

$$
\begin{gathered}
f(\text { foldl' } k z x s) \stackrel{?}{=} \text { foldl' } k^{\prime}(f z) x s \\
\text { if } f(k x y)=k^{\prime}(f x) y
\end{gathered}
$$

Consider an example instantiation:

$$
\begin{aligned}
f & =\lambda x \rightarrow x \vee \perp \\
k=k^{\prime} & =\lambda x y \rightarrow y \vee x \\
x s & =[\text { False, True }] \\
z & =\text { False }
\end{aligned}
$$

$f($ foldl' k False [False, True] $)=$ True

$$
\neq
$$

$$
\text { foldl' } k^{\prime} \text { (f False) [False, True] }=\perp
$$

Drawbacks of Selective Strictness

Question:

$$
\begin{gathered}
f\left(\text { fold } \prime^{\prime} k z x s\right) \neq \text { fold }^{\prime} k^{\prime}(f z) x s \\
\text { if } f(k x y)=k^{\prime}(f x) y
\end{gathered}
$$

Consider an example instantiation:

$$
\begin{aligned}
f & =\lambda x \rightarrow x \vee \perp \\
k=k^{\prime} & =\lambda x y \rightarrow y \vee x \\
x s & =[\text { False, True }] \\
z & =\text { False }
\end{aligned}
$$

Answer: No!

$$
\begin{gathered}
f\left(\text { fold } l^{\prime} k \text { False }[\text { False, True }]\right)=\text { True } \\
\neq \\
\text { foldl' } k^{\prime}(f \text { False })[\text { False, True }]=\perp
\end{gathered}
$$

Analyzing the Problem

The strictness-aware free theorem:

```
forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total.
    forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total.
        forall k :: t1 -> t3 -> t1.
        forall k' :: t2 -> t4 -> t2.
            (((k /= _l_) <> (k'/= _l_))
            && (forall x :: t1.
            ((k x /= _ l_) <> (k' (f x) /= _ l_))
            && (forall y :: t3. f (k x y) = k' (f x) (g y))))
        ==> (forall z :: t1.
            forall xs :: [t3].
                f (foldl' k z xs) = foldl' k' (f z) (map g xs))
```


Analyzing the Problem

The strictness-aware free theorem:

```
forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total.
    forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total.
        forall k :: t1 -> t3 -> t1.
        forall k' :: t2 -> t4 -> t2.
            (((k /= _l_) <> (k' /= _l_))
            && (forall x :: t1.
            ((k x /= _ l_) << (k' (f x) /= _ l_))
            && (forall y :: t3. f (k x y) = k' (f x) (g y))))
        ==> (forall z :: t1.
            forall xs :: [t3].
                f (foldl' k z xs) = foldl' k' (f z) (map g xs))
```

Question: Are all these restrictions necessary?

Analyzing the Problem

The strictness-aware free theorem:

```
forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total.
    forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total.
        forall k :: t1 -> t3 -> t1.
        forall k' :: t2 -> t4 -> t2.
            (((k /= _l_) \Leftrightarrow(k'/= _l_))
            && (forall x :: t1.
            ((k x /= _l_) << (k' (f x) /= _ l_))
            && (forall y :: t3. f (k x y) = k' (f x) (g y))))
    ==> (forall z :: t1.
        forall xs :: [t3].
                        f (foldl' k z xs) = foldl' k' (f z) (map g xs))
```

Question: Are all these restrictions necessary?
An inductive proof for

$$
f\left(\text { fold } l^{\prime} k z x s\right)=\text { foldl } l^{\prime} k^{\prime}(f z) x s
$$

shows that $f x=\perp \Leftrightarrow x=\perp$ suffices (i.e. f is strict and total).

Why so Many Restrictions?

Free theorems depend only on the type.

Why so Many Restrictions?

Free theorems depend only on the type.

$$
\text { foldl }::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha
$$

Why so Many Restrictions?

Free theorems depend only on the type.

$$
\begin{aligned}
& \text { fold }::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { fold } l^{\prime}::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha
\end{aligned}
$$

Why so Many Restrictions?

Free theorems depend only on the type.

$$
\begin{aligned}
& \text { foldl }::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { fold }{ }^{\prime}::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { fold I' }::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { foldl" } k z[]=\text { seq } k z \\
& \text { fold } l^{\prime \prime} k z(x: x s)=\text { fold } l^{\prime \prime}(k z x) x s
\end{aligned}
$$

Why so Many Restrictions?

Free theorems depend only on the type.

$$
\begin{aligned}
& \text { foldl }::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { foldl' }::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { fold }{ }^{\prime \prime}::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { foldl" } k z[]=\text { seq } k z \\
& \text { fold } l^{\prime \prime} k z(x: x s)=\text { fold } l^{\prime \prime}(k z x) x s
\end{aligned}
$$

Problem: The free theorem is only aware of the potential risks of seq, but not of its concrete use.

Why so Many Restrictions?

Free theorems depend only on the type.

$$
\begin{aligned}
& \text { foldl }::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { foldl' }::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { fold }{ }^{\prime \prime}::(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { foldl" } k z[]=\text { seq } k z \\
& \text { fold } l^{\prime \prime} k z(x: x s)=\text { fold } l^{\prime \prime}(k z x) x s
\end{aligned}
$$

Problem: The free theorem is only aware of the potential risks of seq, but not of its concrete use.

Solution: Make the use of seq visible from the type. In particular where it is used.

A Refined Type System ...

Add new type constructors.

$$
\tau::=\alpha\left|\forall^{\varepsilon} \alpha . \tau\right| \forall^{\circ} \alpha . \tau\left|\tau \rightarrow^{\varepsilon} \tau\right| \tau \rightarrow^{\circ} \tau \mid \ldots
$$

A Refined Type System ...

Add new type constructors.

$$
\tau::=\alpha\left|\forall^{\varepsilon} \alpha . \tau\right| \forall^{\circ} \alpha . \tau\left|\tau \rightarrow^{\varepsilon} \tau\right| \tau \rightarrow^{\circ} \tau \mid \ldots
$$

Distinguish types whos terms are / are not allowed to be strictly evaluated.

A Refined Type System ...

Add new type constructors.

$$
\tau::=\alpha\left|\forall^{\varepsilon} \alpha . \tau\right| \forall^{\circ} \alpha . \tau\left|\tau \rightarrow^{\varepsilon} \tau\right| \tau \rightarrow^{\circ} \tau \mid \ldots
$$

Distinguish types whos terms are / are not allowed to be strictly evaluated.

A former approach (Haskell 1.3)

$$
\text { foldl' }:: \text { Eval } \alpha \Rightarrow(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha
$$

was not sufficient [Johann and Voigtländer, 2004].

A Refined Type System ...

Add new type constructors.

$$
\tau::=\alpha\left|\forall^{\varepsilon} \alpha . \tau\right| \forall^{\circ} \alpha . \tau\left|\tau \rightarrow^{\varepsilon} \tau\right| \tau \rightarrow^{\circ} \tau \mid \ldots
$$

Distinguish types whos terms are / are not allowed to be strictly evaluated.

A former approach (Haskell 1.3)

$$
\text { foldl' }:: \text { Eval } \alpha \Rightarrow(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha
$$

was not sufficient [Johann and Voigtländer, 2004].

The difference: two function types.

A Refined Type System ...

Add new type constructors.

$$
\tau::=\alpha\left|\forall^{\varepsilon} \alpha . \tau\right| \forall^{\circ} \alpha . \tau\left|\tau \rightarrow^{\varepsilon} \tau\right| \tau \rightarrow^{\circ} \tau \mid \ldots
$$

The difference: two function types.

A Refined Type System ...

Add new type constructors.

$$
\tau::=\alpha\left|\forall^{\varepsilon} \alpha . \tau\right| \forall^{\circ} \alpha . \tau\left|\tau \rightarrow^{\varepsilon} \tau\right| \tau \rightarrow^{\circ} \tau \mid \ldots
$$

The difference: two function types.

A Refined Type System ...

Add new type constructors.

```
\(\tau::=\alpha\left|\forall^{\varepsilon} \alpha . \tau\right| \forall^{\circ} \alpha . \tau\left|\tau \rightarrow^{\varepsilon} \tau\right| \tau \rightarrow{ }^{\circ} \tau \mid \ldots\)
```



```
    forall t3, t4 in TYPES, g :: t3 -> t4, g strict and total
    forall k :: t1 -> t3 -> t1.
    forall k \(\mathrm{k}^{3}\) : t t2 -> t4 -> t2.
    (( (k /= _ l_) <=> (k' /= _ | _) )
    \&\& (forall x :: t1.
    ( (kx /= _ _ ) <=> (k' (f x) /= _ _ \()\) )
    \&\& (forall y : : t3. f (k x y) \(=k \prime(f \times x)(g y)))\)
    ==> (forall z :: t1.
    forall xs :: [t3].
                f (foldl' k z xs) = foldl' k' (f z) (map g xs))
```

The difference: two function types.

A Refined Type System ...

Add new type constructors.

```
\(\tau::=\alpha\left|\forall^{\varepsilon} \alpha . \tau\right| \forall^{\circ} \alpha . \tau\left|\tau \rightarrow^{\varepsilon} \tau\right| \tau \rightarrow{ }^{\circ} \tau \mid \ldots\)
forall t1,t2 in TYPES, \(f\) :: t1 -> t2, f strict and total.
    forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total
    forall k :: t1 -> t3 -> t1.
    forall k' :: t2 -> t4 -> t2.
    (( (k /= _ l_) <=> (k' /= _ _ _) )
            \&\& (forall x :: t1.
                    ( (k x /= _ l_) <=> (k' (f x) /= _ _ _ ) )
                            \&\& (forall y :: t3. f (k x y) = k' (f x) (g y))))
        ==> (forall z :: t1.
    forall xs :: [t3].
                                f (foldl' k z xs) = foldl' k' (f z) (map g xs))
```

The difference: two function types.

A Refined Type System ...

Add new type constructors.

```
\(\tau::=\alpha\left|\forall^{\varepsilon} \alpha . \tau\right| \forall^{\circ} \alpha . \tau\left|\tau \rightarrow^{\varepsilon} \tau\right| \tau \rightarrow^{\circ} \tau \mid \ldots\)
```



```
    forall t3, t4 in TYPES, g :: t3 -> t4, g strict and total.
        forall k :: t1 -> t3 -> t1.
        forall k' :: t2 -> t4 -> t2.
            (( (k /= _ l_) <=> (k' /= _ |_) )
            \&\& (forall x :: t1.
                    ( (k x /= _ _ _) <=> (k' (f x) /= _ _ _) )
```



```
        ==> (forall z :: t1.
            forall xs :: [t3].
                        f (foldl' k z xs) = foldl' k' (f z) (map g xs))
```

The difference: two function types.

A Refined Type System ...

Add new type constructors.

$$
\tau::=\alpha\left|\forall^{\varepsilon} \alpha . \tau\right| \forall^{\circ} \alpha . \tau\left|\tau \rightarrow^{\varepsilon} \tau\right| \tau \rightarrow^{\circ} \tau \mid \ldots
$$

```
forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total.
    forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total.
        forall k :: t1 -> t3 -> t1.
        forall k' :: t2 -> t4 -> t2.
            (((k /= _l_) <=> (k' /= _ | )))
            && (forall x :: t1.
                    ((k x /= _ l_) <=> (k' (f x) /= _ |_))
                        && (forall y :: t3. f (k x y) = k' (f x) (g y))))
        ==> (forall z :: t1.
            forall xs :: [t3].
                        f (foldl' k z xs) = foldl' k' (f z) (map g xs))
```

The difference: two function types.

A Refined Type System ...

Add new type constructors.

$$
\tau::=\alpha\left|\forall^{\varepsilon} \alpha . \tau\right| \forall^{\circ} \alpha . \tau\left|\tau \rightarrow^{\varepsilon} \tau\right| \tau \rightarrow^{\circ} \tau \mid \ldots
$$

```
forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total.
    forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total.
        forall k :: t1 -> t3 -> t1.
        forall k' :: t2 -> t4 -> t2.
            (((k /= _ l_) <=> (k' /= _ | )))
            && (forall x :: t1.
                    ((k x /= _ __) <=> (k' (f x) /= _ _ ) )
                            && (forall y :: t3. f (k x y) = k' (f x) (g y))))
        ==> (forall z :: t1.
            forall xs :: [t3].
                f (foldl' k z xs) = foldl' k' (f z) (map g xs))
```

The difference: two function types.

A Refined Type System ...

Add new type constructors.

$$
\tau::=\alpha\left|\forall^{\varepsilon} \alpha . \tau\right| \forall^{\circ} \alpha . \tau\left|\tau \rightarrow^{\varepsilon} \tau\right| \tau \rightarrow^{\circ} \tau \mid \ldots
$$

```
forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total.
    forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total.
        forall k :: t1 -> t3 -> t1.
        forall k' :: t2 -> t4 -> t2.
            (((k /= _l_) <=> (k' /= _ |_))
            && (forall x :: t1.
                    ((k x /= _ __) <=> (k' (f x ) /= _ _ ) )
            && (forall y :: t3. f (k x y) = k' (f x) (g y))))
        ==> (forall z :: t1.
            forall xs :: [t3].
                f (foldl' k z xs) = foldl' k' (f z) (map g xs))
```

The difference: two function types.

A Refined Type System ...

Add new type constructors.

$$
\tau::=\alpha\left|\forall^{\varepsilon} \alpha . \tau\right| \forall^{\circ} \alpha . \tau\left|\tau \rightarrow^{\varepsilon} \tau\right| \tau \rightarrow^{\circ} \tau \mid \ldots
$$

```
forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total.
    forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total.
        forall k :: t1 -> t3 -> t1.
        forall k' :: t2 -> t4 -> t2.
            (((k /= _l_) <=> (k' /= _ l_))
            && (forall x :: t1.
            ((k x /= _l_) <<> (k' (f x) /= _ l_))
            && (forall y :: t3.f (k x y) = k' (f x) (g y))))
    ==> (forall z :: t1.
            forall xs :: [t3].
                                f (foldl' k z xs) = foldl' k' (f z) (map g xs))
```

The difference: two function types.

A Refined Type System ...

Add new type constructors.

$$
\tau::=\alpha\left|\forall^{\varepsilon} \alpha . \tau\right| \forall^{\circ} \alpha . \tau\left|\tau \rightarrow^{\varepsilon} \tau\right| \tau \rightarrow^{\circ} \tau \mid \ldots
$$

```
forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total.
    forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total.
        forall k :: t1 -> t3 -> t1.
        forall k' :: t2 -> t4 -> t2.
            (((k /= _ l_) <=> (k' /= _ l_))
            && (forall x :: t1.
            ((k x /= _l_) << (k' (f x) /= _ |_))
            && (forall y :: t3.f (k x y) = k' (f x) (g y))))
    ==> (forall z :: t1.
    forall xs :: [t3].
                                f (foldl' k z xs) = foldl' k' (f z) (map g xs))
```

The difference: two function types.

A Refined Type System ...

Add new type constructors.

$$
\tau::=\alpha\left|\forall^{\varepsilon} \alpha . \tau\right| \forall^{\circ} \alpha . \tau\left|\tau \rightarrow^{\varepsilon} \tau\right| \tau \rightarrow^{\circ} \tau \mid \ldots
$$

```
forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total.
    forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total.
        forall k :: t1 -> t3 -> t1.
        forall k' :: t2 -> t4 -> t2.
            (((k /= _ l_) <=> (k' /= _ l_))
            && (forall x :: t1.
            ((k x /= _l_) << (k' (f x) /= _ |_))
            && (forall y :: t3.f (k x y) = k' (f x) (g y))))
    ==> (forall z :: t1.
    forall xs :: [t3].
                                f (foldl' k z xs) = foldl' k' (f z) (map g xs))
```

The difference: two function types.

A Refined Type System ...

Add new type constructors.

$$
\tau::=\alpha\left|\forall^{\varepsilon} \alpha . \tau\right| \forall^{\circ} \alpha . \tau\left|\tau \rightarrow^{\varepsilon} \tau\right| \tau \rightarrow^{\circ} \tau \mid \ldots
$$

```
forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total.
    forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total.
        forall k :: t1 -> t3 -> t1.
        forall k' :: t2 -> t4 -> t2.
            (((k /= _l_) <=> (k' /= _ l_))
            && (forall x :: t1.
            ((k x /= _l_) <<> (k' (f x) /= _ |_))
            && (forall y :: t3.f (k x y) = k' (f x) (g y))))
    ==> (forall z :: t1.
            forall xs :: [t3].
                                f (foldl' k z xs) = foldl' k' (f z) (map g xs))
```

The difference: two function types.

A Refined Type System ...

Add new type constructors.

$$
\tau::=\alpha\left|\forall^{\varepsilon} \alpha . \tau\right| \forall^{\circ} \alpha . \tau\left|\tau \rightarrow^{\varepsilon} \tau\right| \tau \rightarrow{ }^{\circ} \tau \mid \ldots
$$

```
forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total.
    forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total.
        forall k :: t1 -> t3 -> t1.
        forall k' :: t2 -> t4 -> t2.
            (((k /= _l_) <=> (k' /= _ |_))
            && (forall x :: t1.
                    ((k x /= _ __) <=> (k' (f x) /= _ __))
            && (forall y :: t3.f (k x y) = k' (f x) (g y))))
    ==> (forall z :: t1.
            forall xs :: [t3].
                f (foldl' k z xs) = foldl' k' (f z) (map g xs))
```

The difference: two function types.

A Refined Type System ...

Add new type constructors.

$$
\tau::=\alpha\left|\forall^{\varepsilon} \alpha . \tau\right| \forall^{\circ} \alpha . \tau\left|\tau \rightarrow^{\varepsilon} \tau\right| \tau \rightarrow^{\circ} \tau \mid \ldots
$$

```
forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total.
    forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total.
        forall k :: t1 -> t3 -> t1.
        forall k' :: t2 -> t4 -> t2.
            (((k /= _ l_) <=> (k' /= _ | )))
            && (forall x :: t1.
                    ((k x /= _ __) <=> (k' (f x) /= _ _ ) )
                            && (forall y :: t3. f (k x y) = k' (f x) (g y))))
        ==> (forall z :: t1.
            forall xs :: [t3].
                f (foldl' k z xs) = foldl' k' (f z) (map g xs))
```

The difference: two function types.

A Refined Type System ...

Add new type constructors.

$$
\tau::=\alpha\left|\forall^{\varepsilon} \alpha . \tau\right| \forall^{\circ} \alpha . \tau\left|\tau \rightarrow^{\varepsilon} \tau\right| \tau \rightarrow^{\circ} \tau \mid \ldots
$$

```
forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total.
    forall t3,t4 in TYPES, g :: t3 -> t4, g strict and total.
        forall k :: t1 -> t3 -> t1.
        forall k' :: t2 -> t4 -> t2.
            (((k /= _ l_) <=> (k' /= _ | )))
            && (forall x :: t1.
                    ((k x /= _ l_) <=> (k' (f x) /= _ |_))
                        && (forall y :: t3. f (k x y) = k' (f x) (g y))))
        ==> (forall z :: t1.
            forall xs :: [t3].
                        f (foldl' k z xs) = foldl' k' (f z) (map g xs))
```

The difference: two function types.

A Refined Type System ...

Add new type constructors.

```
\(\tau::=\alpha\left|\forall^{\varepsilon} \alpha . \tau\right| \forall^{\circ} \alpha . \tau\left|\tau \rightarrow^{\varepsilon} \tau\right| \tau \rightarrow^{\circ} \tau \mid \ldots\)
```



```
    forall t3, t4 in TYPES, g :: t3 -> t4, g strict and total.
        forall k :: t1 -> t3 -> t1.
        forall k' :: t2 -> t4 -> t2.
            (( (k /= _ l_) <=> (k' /= _ l_) )
            \&\& (forall x :: t1.
                    ( (k x /= _ _ ) <=> (k' (f x) /= _ _ _) )
```



```
        ==> (forall z :: t1.
            forall xs :: [t3].
                        f (foldl' k z xs) = foldl' k' (f z) (map g xs))
```

The difference: two function types.

A Refined Type System ...

Add new type constructors.

```
\(\tau::=\alpha\left|\forall^{\varepsilon} \alpha . \tau\right| \forall^{\circ} \alpha . \tau\left|\tau \rightarrow^{\varepsilon} \tau\right| \tau \rightarrow^{\circ} \tau \mid \ldots\)
forall t1,t2 in TYPES, \(f\) :: t1 -> t2, f strict and total.
    forall t3, t4 in TYPES, g :: t3 -> t4, g strict and total.
        forall k :: t1 -> t3 -> t1.
        forall k' :: t2 -> t4 -> t2.
            (( (k /= _ l_) <=> (k' /= _ _ _) )
            \&\& (forall x :: t1.
                    ( (kx /= _ _ ) <=> (k' (f x) /= _ _ _) )
                    \&\& (forall y :: t3. f (k x y) \(=k\) ( \(\quad(\mathrm{x})(\mathrm{g} y)))\) )
        ==> (forall z :: t1.
            forall xs :: [t3].
                f (foldl' k z xs) = foldl' k' (f z) (map g xs))
```

The difference: two function types.

A Refined Type System ...

Add new type constructors.

```
\(\tau::=\alpha\left|\forall^{\varepsilon} \alpha . \tau\right| \forall^{\circ} \alpha . \tau\left|\tau \rightarrow^{\varepsilon} \tau\right| \tau \rightarrow^{\circ} \tau \mid \ldots\)
```



```
    forall t3, t4 in TYPES, g :: t3 -> t4, g strict and total
    forall k :: t1 -> t3 -> t1.
    forall k \({ }^{3}\) : : t2 -> t4 -> t2.
    (( (k /= _ l_) <=> (k' /= _ | _) )
        \&\& (forall x :: t1.
    ( (kx /= _ _ ) <=> (k' (f x) /= _ _ ) )
    \&\& (forall y :: t3. f (k x y) \(\left.\left.=k^{\prime}(f \times x)(g y)\right)\right)\)
        ==> (forall z :: t1.
    forall xs :: [t3].
                f (foldl' k z xs) = foldl' k' (f z) (map g xs))
```

The difference: two function types.

A Refined Type System ...

Add new type constructors.

$$
\tau::=\alpha\left|\forall^{\varepsilon} \alpha . \tau\right| \forall^{\circ} \alpha . \tau\left|\tau \rightarrow^{\varepsilon} \tau\right| \tau \rightarrow^{\circ} \tau \mid \ldots
$$

The difference: two function types.

A Refined Type System ...

Add new type constructors.

$$
\tau::=\alpha\left|\forall^{\varepsilon} \alpha . \tau\right| \forall^{\circ} \alpha . \tau\left|\tau \rightarrow^{\varepsilon} \tau\right| \tau \rightarrow^{\circ} \tau \mid \ldots
$$

The difference: two function types.
... and its Effects on the Typing Rules (1)

A rule system for $\Gamma \vdash \tau \in$ Seqable:

$$
\begin{array}{cc}
\Gamma \vdash[\tau] \in \text { Seqable } & \Gamma \vdash\left(\tau_{1} \rightarrow^{\varepsilon} \tau_{2}\right) \in \text { Seqable } \\
\frac{\alpha^{\varepsilon} \in \Gamma}{\Gamma \vdash \alpha \in \text { Seqable }} & \frac{\alpha^{\varepsilon}, \Gamma \vdash \tau \in \text { Seqable }}{\Gamma \vdash\left(\forall \alpha^{\nu} . \tau\right) \in \text { Seqable }}
\end{array}
$$

A rule system for $\Gamma \vdash \tau \in$ Seqable:

$$
\begin{array}{cc}
\Gamma \vdash[\tau] \in \text { Seqable } & \Gamma \vdash\left(\tau_{1} \rightarrow^{\varepsilon} \tau_{2}\right) \in \text { Seqable } \\
\frac{\alpha^{\varepsilon} \in \Gamma}{\Gamma \vdash \alpha \in \text { Seqable }} & \frac{\alpha^{\varepsilon}, \Gamma \vdash \tau \in \text { Seqable }}{\Gamma \vdash\left(\forall \alpha^{\nu} . \tau\right) \in \text { Seqable }}
\end{array}
$$

Restricting (SLET)
$\frac{\Gamma \vdash \tau_{1} \in \text { Seqable } \quad \Gamma \vdash t_{1}:: \tau_{1} \quad \Gamma, x:: \tau_{1} \vdash t_{2}:: \tau_{2}}{\Gamma \vdash\left(\text { let }!x=t_{1} \text { in } t_{2}\right):: \tau_{2}}\left(\right.$ SLET' $\left.^{\prime}\right)$

A rule system for $\Gamma \vdash \tau \in$ Seqable:

$$
\begin{array}{cc}
\Gamma \vdash[\tau] \in \text { Seqable } & \Gamma \vdash\left(\tau_{1} \rightarrow^{\varepsilon} \tau_{2}\right) \in \text { Seqable } \\
\frac{\alpha^{\varepsilon} \in \Gamma}{\Gamma \vdash \alpha \in \text { Seqable }} & \frac{\alpha^{\varepsilon}, \Gamma \vdash \tau \in \text { Seqable }}{\Gamma \vdash\left(\forall \alpha^{\nu} . \tau\right) \in \text { Seqable }}
\end{array}
$$

Restricting (SLET)

$$
\frac{\Gamma \vdash \tau_{1} \in \text { Seqable } \quad \Gamma \vdash t_{1}:: \tau_{1} \quad \Gamma, x:: \tau_{1} \vdash t_{2}:: \tau_{2}}{\Gamma \vdash\left(\text { let }!x=t_{1} \text { in } t_{2}\right):: \tau_{2}}\left(\text { SLET' }^{\prime}\right)
$$

with $\Gamma=\alpha_{1}^{\nu_{1}}, \ldots \alpha_{n}^{\nu_{n}}, x_{1}:: \tau_{1}, \ldots x_{n}:: \tau_{n}$ and $\nu_{i} \in\{0, \varepsilon\}$.
... and its Effects on the Typing Rules (2)
More typing rules because of new constructors:

$$
\begin{gathered}
\frac{\Gamma \vdash t_{1}:: \tau_{1} \rightarrow^{\varepsilon} \tau_{2}}{\Gamma \vdash\left(t_{1} t_{2}\right):: \tau_{2}} \\
\frac{\Gamma \vdash t_{2}:: \tau_{1}}{\Gamma \vdash\left(t_{1} t_{2}\right):: \tau_{2}}
\end{gathered}
$$

... and its Effects on the Typing Rules (2)
More typing rules because of new constructors:

$$
\begin{gathered}
\frac{\Gamma \vdash t_{1}:: \tau_{1} \rightarrow^{\varepsilon} \tau_{2} \quad \Gamma \vdash t_{2}:: \tau_{1}}{\Gamma \vdash\left(t_{1} t_{2}\right):: \tau_{2}} \\
\frac{\Gamma \vdash t_{1}:: \tau_{1} \rightarrow{ }^{\circ} \tau_{2} \quad \Gamma \vdash t_{2}:: \tau_{1}}{\Gamma \vdash\left(t_{1} t_{2}\right):: \tau_{2}}
\end{gathered}
$$

A term can have more than one type.

$$
\begin{aligned}
& (\lambda x:: \text { Int. } x):: \operatorname{In} t \rightarrow^{\varepsilon} \operatorname{Int} \\
& (\lambda x:: \operatorname{In} t . x):: \operatorname{In} t \rightarrow^{\circ} \operatorname{Int}
\end{aligned}
$$

... and its Effects on the Typing Rules (2)
More typing rules because of new constructors:

$$
\begin{gathered}
\frac{\Gamma \vdash t_{1}:: \tau_{1} \rightarrow{ }^{\varepsilon} \tau_{2} \quad \Gamma \vdash t_{2}:: \tau_{1}}{\Gamma \vdash\left(t_{1} t_{2}\right):: \tau_{2}} \\
\frac{\Gamma \vdash t_{1}:: \tau_{1} \rightarrow{ }^{\circ} \tau_{2} \quad \Gamma \vdash t_{2}:: \tau_{1}}{\Gamma \vdash\left(t_{1} t_{2}\right):: \tau_{2}}
\end{gathered}
$$

A term can have more than one type.

$$
\begin{aligned}
& (\lambda x:: \operatorname{Int} . x):: \operatorname{In} t \rightarrow^{\varepsilon} \operatorname{In} t \\
& (\lambda x:: \operatorname{Int} . x):: \operatorname{In} t \rightarrow^{\circ} \operatorname{In} t
\end{aligned}
$$

We introduce subtyping.

$$
\frac{\Gamma \vdash t:: \tau_{1} \quad \tau_{1} \preceq \tau_{2}}{\Gamma \vdash t:: \tau_{2}}(\mathrm{SuB})
$$

Refinement Pays Off

The use of selective strictness becomes visible from the type (o- and ε-marks):

$$
\begin{aligned}
& \text { foldl }:: \forall^{\circ} \alpha . \forall^{\circ} \beta .\left(\alpha \rightarrow^{\circ} \beta \rightarrow^{\circ} \alpha\right) \rightarrow^{\varepsilon} \alpha \rightarrow^{\varepsilon}[\beta] \rightarrow^{\varepsilon} \alpha \\
& \text { foldl' }:: \forall^{\varepsilon} \alpha . \forall^{\circ} \beta .\left(\alpha \rightarrow^{\circ} \beta \rightarrow^{\circ} \alpha\right) \rightarrow^{\varepsilon} \alpha \rightarrow^{\varepsilon}[\beta] \rightarrow^{\varepsilon} \alpha
\end{aligned}
$$

Refinement Pays Off

The use of selective strictness becomes visible from the type (o- and ε-marks):

$$
\begin{aligned}
& \text { foldl }:: \forall^{\circ} \alpha . \forall^{\circ} \beta .\left(\alpha \rightarrow^{0} \beta \rightarrow^{\circ} \alpha\right) \rightarrow^{\varepsilon} \alpha \rightarrow^{\varepsilon}[\beta] \rightarrow^{\varepsilon} \alpha \\
& \text { foldl' }:: \forall^{\varepsilon} \alpha . \forall^{\circ} \beta .\left(\alpha \rightarrow^{\circ} \beta \rightarrow^{\circ} \alpha\right) \rightarrow^{\varepsilon} \alpha \rightarrow^{\varepsilon}[\beta] \rightarrow^{\varepsilon} \alpha
\end{aligned}
$$

```
forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total.
    forall k :: t1 -> t3 -> t1.
    forall k' :: t2 -> t3 -> t2.
    (((k /= _l_) \Leftrightarrow(k'/= _l_))
    && (forall x :: t1.
    ((k x /=_l_)<=> (k'(f x) /= _l_))
```


Refinement Pays Off

The use of selective strictness becomes visible from the type (o- and ε-marks):

$$
\begin{aligned}
& \text { foldl }:: \forall^{\circ} \alpha . \forall^{\circ} \beta .\left(\alpha \rightarrow^{\circ} \beta \rightarrow^{\circ} \alpha\right) \rightarrow^{\varepsilon} \alpha \rightarrow^{\varepsilon}[\beta] \rightarrow^{\varepsilon} \alpha \\
& \text { foldl' }:: \forall^{\varepsilon} \alpha . \forall^{\circ} \beta .\left(\alpha \rightarrow^{\circ} \beta \rightarrow^{\circ} \alpha\right) \rightarrow^{\varepsilon} \alpha \rightarrow^{\varepsilon}[\beta] \rightarrow^{\varepsilon} \alpha
\end{aligned}
$$

Restrictions on free theorems can be dropped if the type guarantees selective strictness is not used.

```
forall t1,t2 in TYPES, f :: t1 -> t2
    forall k :: t1 -> t3 -> t1.
    forall k' :: t2 -> t3 -> t2.
        (
            (forall x :: t1.
                            (forall y :: t3. f (k x y) = k' (f x) y)))
        ==> (forall z :: t1.
        forall xs :: [t3].
            f (foldl k z xs) = foldl k' (f z) xs)
```


Refinement Pays Off

The use of selective strictness becomes visible from the type (o- and ε-marks):

$$
\begin{aligned}
& \text { foldl }:: \forall^{\circ} \alpha . \forall^{\circ} \beta .\left(\alpha \rightarrow^{\circ} \beta \rightarrow^{\circ} \alpha\right) \rightarrow^{\varepsilon} \alpha \rightarrow^{\varepsilon}[\beta] \rightarrow^{\varepsilon} \alpha \\
& \text { foldl' }:: \forall^{\varepsilon} \alpha . \forall^{\circ} \beta .\left(\alpha \rightarrow^{\circ} \beta \rightarrow^{\circ} \alpha\right) \rightarrow^{\varepsilon} \alpha \rightarrow^{\varepsilon}[\beta] \rightarrow^{\varepsilon} \alpha
\end{aligned}
$$

Restrictions on free theorems can be dropped if the type guarantees selective strictness is not used.

```
forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total.
    forall k :: t1 -> t3 -> t1.
    forall k' :: t2 -> t3 -> t2.
        (
            (forall x :: t1.
                            (forall y :: t3. f (k x y) = k' (f x) y)))
        ==> (forall z :: t1.
        forall xs :: [t3].
            f (foldl' k z xs) = foldl' k' (f z) xs)
```


Going Algorithmic

Goal: An algorithm retyping from standard types to (minimal) refined types.

Going Algorithmic

Goal: An algorithm retyping from standard types to (minimal) refined types.
Idea: Use typing rules backwards to (re)type a term.

Going Algorithmic

Goal: An algorithm retyping from standard types to (minimal) refined types.
Idea: Use typing rules backwards to (re)type a term.
Problems:

- Type annotations are standard in the input term, but we need refined ones.

Going Algorithmic

Goal: An algorithm retyping from standard types to (minimal) refined types.
Idea: Use typing rules backwards to (re)type a term.
Problems:

- Type annotations are standard in the input term, but we need refined ones.
- Typing rules are in competition, especially the (SUB)-rule is always applicable.

Going Algorithmic

Goal: An algorithm retyping from standard types to (minimal) refined types.
Idea: Use typing rules backwards to (re)type a term.

Problems:

- Type annotations are standard in the input term, but we need refined ones.
- Typing rules are in competition, especially the (SUB)-rule is always applicable.

Solutions:

- Remove the (SUB)-rule by integrating subtyping into the other rules.

Going Algorithmic

Goal: An algorithm retyping from standard types to (minimal) refined types.
Idea: Use typing rules backwards to (re)type a term.

Problems:

- Type annotations are standard in the input term, but we need refined ones.
- Typing rules are in competition, especially the (SuB)-rule is always applicable.

Solutions:

- Remove the (SUB)-rule by integrating subtyping into the other rules.
- Start the algorithm with all possible refined type annotations.

Going Algorithmic

Goal: An algorithm retyping from standard types to (minimal) refined types.
Idea: Use typing rules backwards to (re)type a term.

Problems:

- Type annotations are standard in the input term, but we need refined ones.
- Typing rules are in competition, especially the (SuB)-rule is always applicable.

Solutions:

- Remove the (SUB)-rule by integrating subtyping into the other rules.
- Start the algorithm with all possible refined type annotations.

Are these good ideas?

Going Algorithmic

Goal: An algorithm retyping from standard types to (minimal) refined types.
Idea: Use typing rules backwards to (re)type a term.
Problems:

- Type annotations are standard in the input term, but we need refined ones.
- Typing rules are in competition, especially the (SuB)-rule is always applicable.

Solutions:

- Remove the (SUB)-rule by integrating subtyping into the other rules.
- Start the algorithm with all possible refined type annotations.

Are these good ideas?

Going Algorithmic

Goal: An algorithm retyping from standard types to (minimal) refined types.
Idea: Use typing rules backwards to (re)type a term.
Problems:

- Type annotations are standard in the input term, but we need refined ones.
- Typing rules are in competition, especially the (SuB)-rule is always applicable.

Solutions:

- Remove the (SUB)-rule by integrating subtyping into the other rules.
- Start the algorithm with all possible refined type annotations.

Are these good ideas?

How to Deal with Refined Type Annotations?

Switch to variable marks at the type annotations:

$$
\frac{\Gamma \vdash t_{1}:: \tau_{1} \rightarrow^{\varepsilon} \tau_{2} \quad \Gamma \vdash t_{2}:: \tau_{1}}{\Gamma \vdash\left(t_{1} t_{2}\right):: \tau_{2}} \frac{\Gamma \vdash t_{1}:: \tau_{1} \rightarrow^{\circ} \tau_{2} \quad \Gamma \vdash t_{2}:: \tau_{1}}{\Gamma \vdash\left(t_{1} t_{2}\right):: \tau_{2}}
$$

How to Deal with Refined Type Annotations?

Switch to variable marks at the type annotations:

$$
\begin{gathered}
\frac{\Gamma \vdash t_{1}:: \tau_{1} \rightarrow^{\varepsilon} \tau_{2} \quad \Gamma \vdash t_{2}:: \tau_{1}}{\Gamma \vdash\left(t_{1} t_{2}\right):: \tau_{2}} \\
\frac{\Gamma \vdash t_{1}:: \tau_{1} \rightarrow{ }^{\circ} \tau_{2} \quad \Gamma \vdash t_{2}:: \tau_{1}}{\Gamma \vdash\left(t_{1} t_{2}\right):: \tau_{2}} \\
\qquad \begin{array}{c}
\Gamma \vdash t_{1}:: \tau_{1} \rightarrow{ }^{\nu} \tau_{2} \quad \Gamma \vdash t_{2}:: \tau_{1} \\
\Gamma \vdash\left(t_{1} t_{2}\right):: \tau_{2}
\end{array}
\end{gathered}
$$

How to Deal with Refined Type Annotations?

Switch to variable marks at the type annotations:

$$
\begin{gathered}
\frac{\Gamma \vdash t_{1}:: \tau_{1} \rightarrow^{\varepsilon} \tau_{2} \Gamma \vdash t_{2}:: \tau_{1}}{\Gamma \vdash\left(t_{1} t_{2}\right):: \tau_{2}} \frac{\Gamma \vdash t_{1}:: \tau_{1} \rightarrow{ }^{\circ} \tau_{2} \quad \Gamma \vdash t_{2}:: \tau_{1}}{\Gamma \vdash\left(t_{1} t_{2}\right):: \tau_{2}} \\
\Downarrow \frac{\Gamma \vdash t_{1}:: \tau_{1} \rightarrow^{\nu} \tau_{2} \quad \Gamma \vdash t_{2}:: \tau_{1}}{\Gamma \vdash\left(t_{1} t_{2}\right):: \tau_{2}} \\
\Downarrow \text { add constraints for the mark variables } \\
\frac{\left.\left\langle\dot{\Gamma} \vdash \dot{t}_{1}\right\rangle \Rightarrow\left(C_{1}, \dot{\tau}_{1} \rightarrow^{\nu} \dot{\tau}_{2}\right) \quad \dot{\Gamma} \vdash \dot{t}_{2}\right\rangle \Rightarrow\left(C_{2}, \dot{\tau}_{1}^{\prime}\right) \quad\left\langle\dot{\tau}_{1}=\dot{\tau}_{1}^{\prime}\right\rangle \Rightarrow C_{3}}{\left\langle\dot{\Gamma} \vdash \dot{t}_{1} \dot{t}_{2}\right\rangle \Rightarrow\left(C_{1} \wedge C_{2} \wedge C_{3}, \dot{\tau}_{2}\right)}
\end{gathered}
$$

The Resulting (Re)Typing Algorithm

A deterministic typing algorithm.

The Resulting (Re)Typing Algorithm

A deterministic typing algorithm.
How does it work?

$$
\text { input } \Rightarrow \text { output }
$$

The Resulting (Re)Typing Algorithm

A deterministic typing algorithm.
How does it work?

$$
\begin{aligned}
\text { input } & \Rightarrow \text { output } \\
\langle\dot{\Gamma} \vdash \dot{t}\rangle & \Rightarrow(C, \dot{\tau})
\end{aligned}
$$

The Resulting (Re)Typing Algorithm

A deterministic typing algorithm. How does it work?

$$
\begin{aligned}
\text { input } & \Rightarrow \text { output } \\
\langle\dot{\Gamma} \vdash \dot{t}\rangle & \Rightarrow(C, \dot{\tau})
\end{aligned}
$$

$$
\left\langle\alpha^{\nu_{1}}, x:: \alpha \rightarrow^{\nu_{2}} \alpha \vdash x\right\rangle \Rightarrow(?, ?)
$$

The Resulting (Re)Typing Algorithm

A deterministic typing algorithm. How does it work?

$$
\begin{gathered}
\text { input } \Rightarrow \text { output } \\
\langle\dot{\Gamma} \vdash \dot{t}\rangle \Rightarrow(C, \dot{\tau}) \\
\left\langle\alpha \rightarrow^{\nu_{2}} \alpha \preceq \cdot\right\rangle \Rightarrow(?, ?) \\
\left\langle\alpha^{\nu_{1}}, x:: \alpha \rightarrow^{\nu_{2}} \alpha \vdash x\right\rangle \Rightarrow(?, ?)
\end{gathered}
$$

The Resulting (Re)Typing Algorithm

A deterministic typing algorithm.
How does it work?

$$
\begin{gathered}
\text { input } \Rightarrow \text { output } \\
\langle\dot{\Gamma} \vdash \dot{t}\rangle \Rightarrow(C, \dot{\tau}) \\
\frac{\langle\cdot \preceq \alpha\rangle \Rightarrow(?, ?) \quad\langle\alpha \preceq \cdot\rangle \Rightarrow(?, ?)}{\frac{\left\langle\alpha \rightarrow^{\nu_{2}} \alpha \preceq \cdot\right\rangle \Rightarrow(?, ?)}{\left\langle\alpha^{\nu_{1}}, x:: \alpha \rightarrow^{\nu_{2}} \alpha \vdash x\right\rangle \Rightarrow(?, ?)}}
\end{gathered}
$$

The Resulting (Re)Typing Algorithm

A deterministic typing algorithm. How does it work?

$$
\begin{gathered}
\text { input } \Rightarrow \text { output } \\
\langle\dot{\Gamma} \vdash \dot{t}\rangle \Rightarrow(C, \dot{\tau}) \\
\langle\cdot \preceq \alpha\rangle \Rightarrow(\text { True }, \alpha) \quad\langle\alpha \preceq \cdot\rangle \Rightarrow(?, ?) \\
\frac{\left\langle\alpha \rightarrow^{\nu_{2}} \alpha \preceq \cdot\right\rangle \Rightarrow(?, ?)}{\left\langle\alpha^{\nu_{1}}, x:: \alpha \rightarrow^{\nu_{2}} \alpha \vdash x\right\rangle \Rightarrow(?, ?)}
\end{gathered}
$$

The Resulting (Re)Typing Algorithm

A deterministic typing algorithm.
How does it work?

$$
\begin{gathered}
\text { input } \Rightarrow \text { output } \\
\langle\dot{\Gamma} \vdash \dot{t}\rangle \Rightarrow(C, \dot{\tau}) \\
\frac{\langle\cdot \preceq \alpha\rangle \Rightarrow(\text { True }, \alpha) \quad\langle\alpha \preceq \cdot\rangle \Rightarrow(\text { True }, \alpha)}{\frac{\left\langle\alpha \rightarrow^{\nu_{2}} \alpha \preceq \cdot\right\rangle \Rightarrow(?, ?)}{\left\langle\alpha^{\nu_{1}}, x:: \alpha \rightarrow^{\nu_{2}} \alpha \vdash x\right\rangle \Rightarrow(?, ?)}}
\end{gathered}
$$

The Resulting (Re)Typing Algorithm

A deterministic typing algorithm.
How does it work?

$$
\begin{aligned}
\text { input } & \Rightarrow \text { output } \\
\langle\dot{\Gamma} \vdash \dot{t}\rangle & \Rightarrow(C, \dot{\tau})
\end{aligned}
$$

$$
\langle\cdot \preceq \alpha\rangle \Rightarrow(\text { True }, \alpha) \quad\langle\alpha \preceq \cdot\rangle \Rightarrow(\text { True }, \alpha)
$$

$$
\frac{\left\langle\alpha \rightarrow^{\nu_{2}} \alpha \preceq \cdot\right\rangle \Rightarrow\left(\operatorname{True} \wedge \operatorname{True} \wedge\left(\nu_{3} \leqslant \nu_{2}\right), \alpha \rightarrow^{\nu_{3}} \alpha\right)}{\left\langle\alpha^{\nu_{1}}, x:: \alpha \rightarrow^{\nu_{2}} \alpha \vdash x\right\rangle \Rightarrow(?, ?)}
$$

The Resulting (Re)Typing Algorithm

A deterministic typing algorithm.
How does it work?

$$
\begin{aligned}
\text { input } & \Rightarrow \text { output } \\
\langle\dot{\Gamma} \vdash \dot{t}\rangle & \Rightarrow(C, \dot{\tau})
\end{aligned}
$$

$$
\frac{\langle\cdot \preceq \alpha\rangle \Rightarrow(\text { True }, \alpha) \quad\langle\alpha \preceq \cdot\rangle \Rightarrow(\text { True }, \alpha)}{\frac{\left\langle\alpha \rightarrow^{\nu_{2}} \alpha \preceq \cdot\right\rangle \Rightarrow\left(\operatorname{True} \wedge \operatorname{True} \wedge\left(\nu_{3} \leqslant \nu_{2}\right), \alpha \rightarrow^{\nu_{3}} \alpha\right)}{\left\langle\alpha^{\nu_{1}}, x:: \alpha \rightarrow^{\nu_{2}} \alpha \vdash x\right\rangle \Rightarrow\left(\left(\nu_{3} \leqslant \nu_{2}\right), \alpha \rightarrow^{\nu_{3}} \alpha\right)}}
$$

The Resulting (Re)Typing Algorithm

A deterministic typing algorithm.
How does it work?

$$
\begin{aligned}
\text { input } & \Rightarrow \text { output } \\
\langle\dot{\Gamma} \vdash \dot{t}\rangle & \Rightarrow(C, \dot{\tau})
\end{aligned}
$$

$$
\begin{gathered}
\langle\cdot \preceq \alpha\rangle \Rightarrow(\text { True }, \alpha) \quad\langle\alpha \preceq \cdot\rangle \Rightarrow(\text { True }, \alpha) \\
\frac{\left\langle\alpha \rightarrow^{\nu_{2}} \alpha \preceq \cdot\right\rangle \Rightarrow\left(\operatorname{True} \wedge \operatorname{True} \wedge\left(\nu_{3} \leqslant \nu_{2}\right), \alpha \rightarrow^{\nu_{3}} \alpha\right)}{\left\langle\alpha^{\nu_{1}}, x:: \alpha \rightarrow^{\nu_{2}} \alpha \vdash x\right\rangle \Rightarrow\left(\left(\nu_{3} \leqslant \nu_{2}\right), \alpha \rightarrow_{3}^{\nu_{3}} \alpha\right)}
\end{gathered}
$$

How to get back to concrete types, without mark variables?

Back to Concrete Typability (Example)

We have:

$$
\begin{aligned}
& \left\langle\vdash \wedge \alpha . \wedge \beta . \lambda f:: \alpha \rightarrow^{\nu_{1}} \beta . \lambda x:: \alpha . \text { let! } x^{\prime}=x \text { in } f x^{\prime}\right\rangle \Rightarrow \\
& \left(\left(\nu_{2}=\varepsilon\right) \wedge\left(\nu_{4} \leqslant \nu_{1}\right) \wedge\left(\nu_{1} \leqslant \nu_{6}\right),\right. \\
& \left.\forall^{\nu_{2}} \alpha . \forall^{\nu_{3}} \beta \cdot\left(\alpha \rightarrow^{\nu_{6}} \beta\right) \rightarrow^{\nu_{7}} \alpha \rightarrow^{\nu_{5}} \beta\right)
\end{aligned}
$$

with $\circ<\varepsilon$.

Back to Concrete Typability (Example)

We have:

$$
\begin{aligned}
& \left\langle\vdash \wedge \alpha . \wedge \beta \cdot \lambda f:: \alpha \rightarrow^{\nu_{1}} \beta \cdot \lambda x:: \alpha . \text { let! } x^{\prime}=x \text { in } f x^{\prime}\right\rangle \Rightarrow \\
& \left(\left(\nu_{2}=\varepsilon\right) \wedge\left(\nu_{4} \leqslant \nu_{1}\right) \wedge\left(\nu_{1} \leqslant \nu_{6}\right),\right. \\
& \left.\forall^{\nu_{2}} \alpha \cdot \forall^{\nu_{3}} \beta \cdot\left(\alpha \rightarrow^{\nu_{6}} \beta\right) \rightarrow^{\nu_{7}} \alpha \rightarrow^{\nu_{5}} \beta\right)
\end{aligned}
$$

with $\circ<\varepsilon$.

Back to Concrete Typability (Example)

We have:

$$
\begin{aligned}
& \left\langle\vdash \wedge \alpha . \wedge \beta . \lambda f:: \alpha \rightarrow^{\nu_{1}} \beta . \lambda x:: \alpha . \text { let! } x^{\prime}=x \text { in } f x^{\prime}\right\rangle \Rightarrow \\
& \left(\left(\nu_{2}=\varepsilon\right) \wedge\left(\nu_{4} \leqslant \nu_{1}\right) \wedge\left(\nu_{1} \leqslant \nu_{6}\right),\right. \\
& \left.\forall^{\nu_{2}} \alpha . \forall^{\nu_{3}} \beta \cdot\left(\alpha \rightarrow^{\nu_{6}} \beta\right) \rightarrow^{\nu_{7}} \alpha \rightarrow^{\nu_{5}} \beta\right)
\end{aligned}
$$

with $\circ<\varepsilon$.

Back to Concrete Typability (Example)

We have:

$$
\begin{aligned}
& \left\langle\vdash \wedge \alpha . \wedge \beta . \lambda f:: \alpha \rightarrow^{\nu_{1}} \beta . \lambda x:: \alpha \text {. let! } x^{\prime}=x \text { in } f x^{\prime}\right\rangle \Rightarrow \\
& \left(\left(\nu_{2}=\varepsilon\right) \wedge\left(\nu_{4} \leqslant \nu_{1}\right) \wedge\left(\nu_{1} \leqslant \nu_{6}\right),\right. \\
& \left.\forall^{\nu_{2}} \alpha . \forall^{\nu_{3}} \beta \cdot\left(\alpha \rightarrow \rightarrow^{\nu_{6}} \beta\right) \rightarrow^{\nu_{7}} \alpha \rightarrow^{\nu_{5}} \beta\right)
\end{aligned}
$$

with $\circ<\varepsilon$.

Back to Concrete Typability (Example)

We have:

$$
\begin{aligned}
& \left\langle\vdash \wedge \alpha . \wedge \beta . \lambda f:: \alpha \rightarrow^{\nu_{1}} \beta . \lambda x:: \alpha . \text { let! } x^{\prime}=x \text { in } f x^{\prime}\right\rangle \Rightarrow \\
& \left(\left(\nu_{2}=\varepsilon\right) \wedge\left(\nu_{4} \leqslant \nu_{1}\right) \wedge\left(\nu_{1} \leqslant \nu_{6}\right),\right. \\
& \left.\forall^{\nu_{2}} \alpha . \forall^{\nu_{3}} \beta .\left(\alpha \rightarrow^{\nu_{6}} \beta\right) \rightarrow^{\nu_{7}} \alpha \rightarrow^{\nu_{5}} \beta\right)
\end{aligned}
$$

with $\circ<\varepsilon$.

Back to Concrete Typability (Example)

We have:

$$
\begin{array}{r}
\left\langle\vdash \wedge \alpha . \wedge \beta . \lambda f:: \alpha \rightarrow^{\nu_{1}} \beta . \lambda x:: \alpha . \text { let! } x^{\prime}=x \text { in } f x^{\prime}\right\rangle \Rightarrow \\
\left(\left(\nu_{2}=\varepsilon\right) \wedge\left(\nu_{4} \leqslant \nu_{1}\right) \wedge\left(\nu_{1} \leqslant \nu_{6}\right),\right. \\
\left.\forall^{\nu_{2}} \alpha . \forall^{\nu_{3}} \beta \cdot\left(\alpha \rightarrow^{\nu_{6}} \beta\right) \rightarrow^{\nu_{7}} \alpha \rightarrow^{\nu_{5}} \beta\right)
\end{array}
$$

with $\circ<\varepsilon$.
We test all possible instantiations for the variable marks.

Back to Concrete Typability (Example)

We have:

$$
\begin{aligned}
& \left\langle\vdash \wedge \alpha . \wedge \beta . \lambda f:: \alpha \rightarrow^{\nu_{1}} \beta . \lambda x:: \alpha . \text { let! } x^{\prime}=x \text { in } f x^{\prime}\right\rangle \Rightarrow \\
& \left(\left(\nu_{2}=\varepsilon\right) \wedge\left(\nu_{4} \leqslant \nu_{1}\right) \wedge\left(\nu_{1} \leqslant \nu_{6}\right),\right. \\
& \left.\forall^{\nu_{2}} \alpha . \forall^{\nu_{3}} \beta \cdot\left(\alpha \rightarrow^{\nu_{6}} \beta\right) \rightarrow^{\nu_{7}} \alpha \rightarrow^{\nu_{5}} \beta\right)
\end{aligned}
$$

with $\circ<\varepsilon$.
We test all possible instantiations for the variable marks.

$$
\begin{aligned}
& \nu_{1}=\circ \\
& \nu_{2}=\circ \\
& \nu_{3}=\circ \\
& \nu_{4}=\circ \\
& \nu_{5}=\circ \\
& \nu_{6}=\circ \\
& \nu_{7}=\circ
\end{aligned}
$$

Back to Concrete Typability (Example)

We have:

$$
\begin{aligned}
& \left\langle\vdash \wedge \alpha . \wedge \beta . \lambda f:: \alpha \rightarrow^{\circ} \beta . \lambda x:: \alpha . \text { let! } x^{\prime}=x \text { in } f x^{\prime}\right\rangle \Rightarrow \\
& ((\circ=\varepsilon) \wedge(\circ \leqslant \circ) \wedge(\circ \leqslant \circ), \\
& \left.\forall^{\circ} \alpha . \forall^{\circ} \beta \cdot\left(\alpha \rightarrow^{\circ} \beta\right) \rightarrow^{\circ} \alpha \rightarrow^{\circ} \beta\right)
\end{aligned}
$$

with $\circ<\varepsilon$.
We test all possible instantiations for the variable marks.

$$
\begin{aligned}
& \nu_{1}=\circ \\
& \nu_{2}=\circ \\
& \nu_{3}=\circ \\
& \nu_{4}=\circ \\
& \nu_{5}=\circ \\
& \nu_{6}=\circ \\
& \nu_{7}=\circ
\end{aligned}
$$

Back to Concrete Typability (Example)

We have:

$$
\begin{aligned}
& \left\langle\vdash \wedge \alpha . \Lambda \beta . \lambda f:: \alpha \rightarrow^{\circ} \beta . \lambda x:: \alpha \text {. let! } x^{\prime}=x \text { in } f x^{\prime}\right\rangle \Rightarrow \\
& (\text { False, } \\
& \left.\quad \forall^{\circ} \alpha \cdot \forall^{\circ} \beta .\left(\alpha \rightarrow^{\circ} \beta\right) \rightarrow^{\circ} \alpha \rightarrow^{\circ} \beta\right)
\end{aligned}
$$

with $\circ<\varepsilon$.
We test all possible instantiations for the variable marks.

$$
\begin{aligned}
& \nu_{1}=\circ \\
& \nu_{2}=\circ \\
& \nu_{3}=\circ \\
& \nu_{4}=\circ \\
& \nu_{5}=\circ \\
& \nu_{6}=\circ \\
& \nu_{7}=\circ
\end{aligned}
$$

Back to Concrete Typability (Example)

We have:

$$
\begin{aligned}
&\langle\vdash \wedge \alpha . \wedge \beta . \lambda f:: ~\left.\rightarrow \rightarrow^{\varepsilon} \beta . \lambda x:: \alpha \text {. let! } x^{\prime}=x \text { in } f x^{\prime}\right\rangle \Rightarrow \\
&((\varepsilon=\varepsilon) \wedge(\varepsilon \leqslant \varepsilon) \wedge(\varepsilon \leqslant \varepsilon), \\
&\left.\forall^{\varepsilon} \alpha \cdot \forall^{\varepsilon} \beta .\left(\alpha \rightarrow^{\varepsilon} \beta\right) \rightarrow^{\varepsilon} \alpha \rightarrow^{\varepsilon} \beta\right)
\end{aligned}
$$

with $\circ<\varepsilon$.
We test all possible instantiations for the variable marks.

$$
\begin{aligned}
& \nu_{1}=\circ \quad \nu_{1}=\varepsilon \\
& \nu_{2}=\circ \quad \nu_{2}=\varepsilon \\
& \nu_{3}=\circ \quad \nu_{3}=\varepsilon \\
& \nu_{4}=\circ \quad \nu_{4}=\varepsilon \\
& \nu_{5}=\circ \quad \nu_{5}=\varepsilon \\
& \nu_{6}=\circ \quad \nu_{6}=\varepsilon \\
& \nu_{7}=\circ \quad \nu_{7}=\varepsilon
\end{aligned}
$$

Back to Concrete Typability (Example)

We have:

$$
\left\langle\vdash \wedge \alpha . \wedge \beta . \lambda f:: \alpha \rightarrow^{\varepsilon} \beta . \lambda x:: \alpha \text {. let! } x^{\prime}=x \text { in } f x^{\prime}\right\rangle \Rightarrow
$$

(True,

$$
\left.\forall^{\varepsilon} \alpha . \forall^{\varepsilon} \beta .\left(\alpha \rightarrow^{\varepsilon} \beta\right) \rightarrow^{\varepsilon} \alpha \rightarrow^{\varepsilon} \beta\right)
$$

with $\circ<\varepsilon$.
We test all possible instantiations for the variable marks.
$\nu_{1}=\circ \quad \nu_{1}=\varepsilon$
$\nu_{2}=\circ \quad \nu_{2}=\varepsilon$
$\nu_{3}=\circ \quad \nu_{3}=\varepsilon$
$\nu_{4}=\circ \quad \nu_{4}=\varepsilon$
$\nu_{5}=\circ \quad \nu_{5}=\varepsilon$
$\nu_{6}=\circ \quad \nu_{6}=\varepsilon$
$\nu_{7}=\circ \quad \nu_{7}=\varepsilon$

Back to Concrete Typability (Example)

We have:

$$
\begin{aligned}
&\langle\vdash \wedge \alpha . \wedge \beta . \lambda f:: \alpha\left.\rightarrow^{\circ} \beta . \lambda x:: \alpha . \text { let! } x^{\prime}=x \text { in } f x^{\prime}\right\rangle \Rightarrow \\
&((\varepsilon=\varepsilon) \wedge(\circ \leqslant \circ) \wedge(\circ \leqslant \circ), \\
&\left.\forall^{\varepsilon} \alpha . \forall^{\circ} \beta \cdot\left(\alpha \rightarrow^{\circ} \beta\right) \rightarrow^{\varepsilon} \alpha \rightarrow^{\varepsilon} \beta\right)
\end{aligned}
$$

with $\circ<\varepsilon$.
We test all possible instantiations for the variable marks.
$\nu_{1}=\circ \quad \nu_{1}=\varepsilon \quad \nu_{1}=\circ$
$\nu_{2}=\circ \quad \nu_{2}=\varepsilon \quad \nu_{2}=\varepsilon$
$\nu_{3}=\circ \quad \nu_{3}=\varepsilon \quad \nu_{3}=\circ$
$\nu_{4}=\circ \quad \nu_{4}=\varepsilon \quad \nu_{4}=\circ$
$\nu_{5}=\circ \quad \nu_{5}=\varepsilon \quad \nu_{5}=\varepsilon$
$\nu_{6}=\circ \quad \nu_{6}=\varepsilon$
$\nu_{6}=\circ$
$\nu_{7}=\circ \quad \nu_{7}=\varepsilon$
$\nu_{7}=\varepsilon$

Back to Concrete Typability (Example)

We have:

$$
\begin{aligned}
& \left\langle\vdash \wedge \alpha . \Lambda \beta . \lambda f:: \alpha \rightarrow^{0} \beta . \lambda x:: \alpha \text {. let! } x^{\prime}=x \text { in } f x^{\prime}\right\rangle \Rightarrow \\
& \left(\text { True, } \quad \forall^{\varepsilon} \alpha . \forall^{\circ} \beta .\left(\alpha \rightarrow^{\circ} \beta\right) \rightarrow^{\varepsilon} \alpha \rightarrow^{\varepsilon} \beta\right)
\end{aligned}
$$

with $\circ<\varepsilon$.
We test all possible instantiations for the variable marks.
$\nu_{1}=\circ \quad \nu_{1}=\varepsilon \quad \nu_{1}=\circ$
$\nu_{2}=\circ \quad \nu_{2}=\varepsilon \quad \nu_{2}=\varepsilon$
$\nu_{3}=\circ \quad \nu_{3}=\varepsilon \quad \nu_{3}=\circ$
$\nu_{4}=\circ \quad \nu_{4}=\varepsilon \quad \nu_{4}=\circ$
$\nu_{5}=\circ \quad \nu_{5}=\varepsilon$
$\nu_{5}=\varepsilon$
$\nu_{6}=\circ$
$\nu_{6}=\varepsilon$
$\nu_{6}=\circ$
$\nu_{7}=\circ \quad \nu_{7}=\varepsilon$
$\nu_{7}=\varepsilon$

Back to Concrete Typability (Example)

We have:

$$
\left\langle\vdash \wedge \alpha . \wedge \beta . \lambda f:: \alpha \rightarrow^{\circ} \beta . \lambda x:: \alpha \text {. let! } x^{\prime}=x \text { in } f x^{\prime}\right\rangle \Rightarrow
$$

(True,

$$
\left.\forall^{\varepsilon} \alpha . \forall^{\circ} \beta .\left(\alpha \rightarrow^{\circ} \beta\right) \rightarrow^{\varepsilon} \alpha \rightarrow^{\varepsilon} \beta\right)
$$

with $\circ<\varepsilon$.
We test all possible instantiations for the variable marks.

$$
\begin{aligned}
& \nu_{1}=\varepsilon \quad \nu_{1}=\circ \\
& \nu_{2}=\varepsilon \quad \nu_{2}=\varepsilon \\
& \nu_{3}=\varepsilon \quad \nu_{3}=\circ \\
& \nu_{4}=\varepsilon \quad \nu_{4}=\circ \\
& \nu_{5}=\varepsilon \quad \nu_{5}=\varepsilon \\
& \nu_{6}=\varepsilon \quad \nu_{6}=\circ \\
& \nu_{7}=\varepsilon \quad \nu_{7}=\varepsilon
\end{aligned}
$$

Back to Concrete Typability (Example)

We have:

$$
\begin{aligned}
& \left\langle\vdash \wedge \alpha . \wedge \beta . \lambda f:: \alpha \rightarrow^{\circ} \beta . \lambda x:: \alpha \text {. let! } x^{\prime}=x \text { in } f x^{\prime}\right\rangle \Rightarrow \\
& (\text { True, } \\
& \left.\quad \forall^{\varepsilon} \alpha . \forall^{\circ} \beta .\left(\alpha \rightarrow^{\circ} \beta\right) \rightarrow^{\varepsilon} \alpha \rightarrow^{\varepsilon} \beta\right)
\end{aligned}
$$

with $\circ<\varepsilon$.
We test all possible instantiations for the variable marks.

$$
\begin{aligned}
& \nu_{1}=\circ \\
& \nu_{2}=\varepsilon \\
& \nu_{3}=\circ \\
& \nu_{4}=\circ \\
& \nu_{5}=\varepsilon \\
& \nu_{6}=\circ \\
& \nu_{7}=\varepsilon
\end{aligned}
$$

We take only the minimal solution!

Make it a Type Refinement Algorithm

 input: closed term with standard type annotations
Make it a Type Refinement Algorithm

$$
\begin{aligned}
& \text { input: closed term with standard type annotations } \\
& \qquad \Downarrow \text { add variable marks } \\
& \text { term with parameterized refined type annotations }
\end{aligned}
$$

Make it a Type Refinement Algorithm

input: closed term with standard type annotations
\Downarrow add variable marks
term with parameterized refined type annotations
\Downarrow the main algorithm
constraint and parameterized type

Make it a Type Refinement Algorithm

input: closed term with standard type annotations
\Downarrow add variable marks
term with parameterized refined type annotations
\Downarrow the main algorithm
constraint and parameterized type
\Downarrow solve constraint
all possible refined types

Make it a Type Refinement Algorithm

$$
\begin{gathered}
\hline \text { input: closed term with standard type annotations } \\
\Downarrow \text { add variable marks } \\
\hline \text { term with parameterized refined type annotations } \\
\Downarrow \text { the main algorithm } \\
\text { constraint and parameterized type } \\
\Downarrow \text { solve constraint } \\
\text { all possible refined types } \\
\Downarrow \text { type comparison }
\end{gathered}
$$

output: the refined types leading to the strongest free theorems

The Webinterface

```
The term
t = (/\a.
    (/\b.
    (\c::(a ->> (b -> a))
        (fix (\h::(a -> ([b] -> a)).
            \\n::a.
                (\ys::[b].
                        (seq (c n) (case ys of {[] >n n; x:xs ->
                            (seq xs (seq x (let n' = ((c n) x) in
                                    ((h n') xs)))!})!)!)!)|)
```

can be typed to the optimal type

```
(forall^n a. (forall^e b. ((a ->^n (b >>^e a)) >>^e (a ->^e ([b] ->^e a)))))
```

with the free theorem

```
forall t1,t2 in TYPES, f :: tl -> t2, f strict.
    forall t3,t4 in TYPES, g:: t3 > t4,g strict and total.
    ((t_{tl}_{t3} /= l_) << (t_{t2}_{t4} /= _ l_))
    && (forall p :: t1 -> (t3 -> t1).
        forall q :: t2 -> (t4 -> t2).
        (forall x :: t1.
            ((p\times/= l_) << (q(fx) /=_ _ |))
            && (foral\}y\mathrm{ y :: t3. f (p x y) = q q (fx) (g y)))
        => (((t_{t1}_{t3} p/=_l_) <<>(t_{t2}_{t4} q/=_l_))
            && (forall z :: t1.
                    ((t_{t1}_{t3} p z /=_ l_) << (t_{t2}_{t4} q (f z) /= _ l_))
                    && (forall v :: [t3].
                        f (t_{t1}_{t3} p z v) = t_{t2}_{t4} q (f z) (map_{t3}_{t4} g v)))))
```

The normal free theorem for the type without marks would be:
http://www-ps.iai.uni-bonn.de/cgi-bin/polyseq.cgi

References I

(in Johann, P. and Voigtländer, J. (2004).
Free theorems in the presence of seq.
In Principles of Programming Languages, Proceedings, pages 99-110. ACM Press.

R- Launchbury, J. and Paterson, R. (1996).
Parametricity and unboxing with unpointed types.
In European Symposium on Programming, Proceedings, volume 1058 of LNCS, pages 204-218. Springer-Verlag.

Reynolds, J. (1983).
Types, abstraction and parametric polymorphism.
In Information Processing, Proceedings, pages 513-523. Elsevier.

References II

Seidel, D. and Voigtländer, J. (2009).
Taming selective strictness.
Technical Report TUD-FI09-06, Technische Universität Dresden.
http://wwwtcs.inf.tu-dresden.de/~voigt/TUD-FI09-06.pdf.
固 Wadler, P. (1989).
Theorems for free!
In Functional Programming Languages and Computer Architecture, Proceedings, pages 347-359. ACM Press.

[^0]: $2_{\text {http://www-ps.iai.uni-bonn.de/ft/ }}$

[^1]: $2_{\text {http://www-ps.iai.uni-bonn.de/ft/ }}$

[^2]: $2_{\text {http: }} / /$ www-ps.iai.uni-bonn.de/ft/

