
Can we teach computers to generate
fast OLAP code?

(Research Note, May 2010)

Version of July 20, 2010

Hugo Daniel Macedo1 and José Nuno Oliveira1

High-Assurance Software Lab (HASLab)
CCTC - Minho University, Portugal
{hmacedo,jno}@di.uminho.pt

Abstract. Inspired by previous pointfree relational approaches to data
processing, we investigate how the generation of pivot tables in data
mining (such as those produced by Microsoft Excel) can be expressed
using matrix multiplication and transposition. This generalizes relational
projections and provides a linear algebra approach to the drill-down/roll-
up operations typical of OLAP. In this context, the prospect of using
SPIRAL to generate fast OLAP code is analysed.

1 Introduction

This research note finds its motivation in the need to generate fast running code
for data mining and other database analysis techniques such as OLAP (On-line
Analytical Processing) [2]. These techniques are very useful for summarizing
huge amounts of information in the form of pivot tables whereby new trends
and relationships hidden in raw data can be found. The need for this kind of
operation concerns not only large companies generating huge amounts of data
every day, but also the laptop spreadsheet user who wants to make sense of the
data stored in a particular worksheet.

OLAP is resource-demanding and calls for parallelization. With the advent of
multi-core personal machines, lack of parallelization has become a wide concern,
ranging from large main-frames to laptops. At this side of the spectrum, for
instance, the Microsoft Excel user might legitimately ask: is the generation of
pivot tables in Excel taking real advantage of the underlying multi-core hardware?
How parallel is such construction?

In areas such as digital signal processing (and linear algebra applications in
general), generation of fast (parallel) code has witnessed great advances in re-
cent years under the motto “can we teach computers to write fast libraries?” [11].
Domain specific languages (DSLs) and systems such as (respectively) SPL and
SPIRAL [12], for instance, have shown how automatic generation of high perfor-
mance libraries for linear algebra applications relies on very high-level specifica-
tion scripts written in index-free matrix algebra, in which matrix multiplication



2 H.D. Macedo, J.N. Oliveira

plays a major role, given its amenability to parallelization via divide-and-conquer
algorithms.

Parallelism blends well with functional programming, a discipline in which
the construction of divide-and-conquer algorithms is the natural way to write
programs. Functional programming too has witnessed great advances all over the
years in many respects, namely in the development of an algebra of program-
ming (AoP) [1] which puts emphasis on the “type structure” which is central to
modern functional languages such as Haskell, for instance [4].

In a recent paper [5], we have shown how close to the AoP a “matrices as
arrows” (typed!) approach to linear algebra is, easy to understand after all since
functions are special cases of binary relations which in turn are nothing but
Boolean matrices 1. Elsewhere, one of us has shown how to take advantage of
binary relation algebra in reasoning about data dependencies in databases [7, 9]
and data transformation in general [8].

Given this proximity between relation and matrix algebra, the question arises:
how much gain can we expect from translating results from one side to the other?
In this note we show how a particular construction in relation algebra — that of
building binary relational projections, used in [7, 9] to calculate with functional
dependencies in databases — translates to building pivot tables which are central
to OLAP and data-mining. On the relational side, such projections are always
of the form

f ·R · g◦ (1)

where R is the binary relation being projected and f and g are observing func-
tions. The dot (·) between the symbols denotes relational composition and ( )◦

expresses the converse operation, whereby pair (b, a) belongs to relation R◦ iff
pair (a, b) belongs to R.

Pattern (1) turns up very often in relation algebra 2. In its particular use to
express data dependencies, such projections take the form

fA · [[T ]] · f◦B (2)

where T is a database file, or table (set of data records), A and B are attributes of
the schema of T , fA (resp. fB) means the function which captures the semantics
of attribute A (resp. B), and [[T ]] captures the semantics of T in the form of a
binary relation known as a coreflexive [1]:

[[T ]] = {(t, t) | t ∈ T}
1 Indeed, relation algebra and matrix algebra can be regarded as instances of the

allegory concept [3], the latter under some restrictions on the algebra of matrix
elements.

2 For instance, for R = id, (1) expresses a tabulation [3, 1] wherever the paring of f and
g is injective. For functions f and g inductive on the same input type (such functions
are known as catamorphisms [1]), expression f · g◦ even captures the “divide-and-
conquer” algorithm whose divide step is carried out by g◦ and the conquer step by
f .



Can we teach computers to generate fast OLAP code? 3

However strange (and redundant!) this construction may look like, it proves
essential to the reasoning, as shown in [7, 9].

Essential to (2) is its emphasis on the very basic combinators of relation al-
gebra, composition and converse. These translate to matrix multiplication and
transposition, respectively, which are easy to parallelize by code generating sys-
tems such as SPIRAL. Under this motivation, we show below that the construc-
tion of pivot tables in data mining and OLAP can be expressed by a formula
similar to (2),

tA · [[T ]] · t◦B (3)

paving the way to fast generation of such tables, where A and B are the attributes
(dimensions) of the table to build and [[T ]] is the diagonal matrix capturing the
attribute where calculations take place. The construction of matrices tA and tB
is detailed below with an example. Tables are pictured as generated by Microsoft
Excel.

About this document. We warn the reader that the ideas jotted in this note
have not yet been checked against related work. Anyone knowing about similar
applications of linear algebra to OLAP and data-mining, please report to the
authors.

2 Calculating Pivot Tables

In data processing, a pivot table provides a particular summary or view of data
extracted from a raw data source. As example of raw data consider the table
displayed in Figure 1 (adapted from [14]) where each row records the number
of units of a given product shipped to costumers in a given region at a specific
shipping date. Other attributes of each shipping record in the table include price,
cost and the gender and style classification of the corresponding product.

Fig. 1. Collection of raw data

In general, the raw-data out of which pivot tables are built is not normalized
and arises by collecting into a central database (termed a data warehouse, or



4 H.D. Macedo, J.N. Oliveira

decision support database) huge amounts of information obtained from disparate
databases. Such a central warehouse — typically, a table with an absurd number
of lines — is not easy (if at all possible) to inspect and analyse. To obtain useful
information from it one needs to summarize the data by selecting attributes of
interest and exhibiting their inter-relationships.

Different summaries answer to different questions such as, for instance “how
many units were shipped per region and ship date?”, leading to the corresponding
pivot table. For this particular question, the attributes Region and ShipDate are
selected as dimensions of interest. The corresponding pivot table, as generated
by Excel, as depicted in Figure 2.

Fig. 2. A pivoted table

Pivot table generation is part of OLAP. Broadly speaking, OLAP refers to
the technique of performing sophisticated analysis over the information stored
in a data warehouse, whose complexity is well-known [10]. As mentioned in [2],
numerous SQL extensions are offered by many vendors of OLAP products trying
to address this problem. The solution we put forward in this note does not try to
solve it inside the OLAP and data warehousing technologies, but rather calls for
a synergy with the field of linear algebra application, where satisfactory solutions
have been found for similarly complex operations.

The key resides in expressing OLAP operations in terms of matrix algebra
expressions which can then be parallelized using tools such as SPIRAL [12]. In
the particular case of reporting multi-dimensional analysis of data in the form
of pivot tables, we have to be able to build, according to the hint given by
formula (3), three matrices: two associated to the dimensions (attributes) A and
B being analysed and the other recording which measure or metrics of T is to
be considered.

As an example, let us now see how to generate the pivot table of Figure 2
using matrices.

Building projection functions. Let A be an attribute of raw-data table T and
|A| denote the range of values which can be found in column A of T . Let n be
the number of records in T (rows, or lines in a spreadsheet).

Note that each column in T “is” a function which tells, for each row, which
value of |A| can be found in such column. Such a function can be encoded as an



Can we teach computers to generate fast OLAP code? 5

elementary matrix of type 3 n
tA // |A| , defined as follows:

tA(x, r) =
{

1 if T (r, A) = x
0 otherwise

In our running example, n = 13, A = Region and B = ShipDate. Figures 3 and
4 depict projection matrices tRegion and tShipDate, respectively.

Fig. 3. Region projection

Fig. 4. ShipDate projection

Note that, typewise, the composition of matrices |Region| n
tRegionoo

and n |ShipDate|
t◦ShipDateoo already makes sense, leading to the matrix de-

picted in Figure 5, which essentially counts the number of shipping records per
region and date. This situation (counting), which is what Excel outputs wher-
ever the third attribute chosen is not numeric, corresponds to formula (3) where
the middle matrix is the identity.

Fig. 5. Matrix tRegion · t◦ShipDate (counting)

In order to sum up the number of units shipped rather than just counting
shippings we need to supply a numeric attribute of T which will be used for
3 Hereafter we stick to the arrow notation of [5] in typing matrices.



6 H.D. Macedo, J.N. Oliveira

consolidation. In the case of T (Figure 1) any of Unit, Price and Cost apply.
Because such numeric data has to become available for both projection matrices,
the column chosen is converted into a diagonal matrix.

The diagonal construction. Let T (A) denote the column of raw-data table T
identified by attribute A and T (y, A) denote the element occupying the y-th po-
sition in such column. The conversion of column T (Unit) into the corresponding
diagonal matrix of type n noo is a basic construction:

[[T (A)]](j, i) =
{

T (j, A) if i = j
0 otherwise

Matrix [[T (Unit)]] is given in Figure 6 and the outcome of pivot table calculation
using matrix operations

tRegion · [[T (Unit)]] · t◦ShipDate (4)

is given in Figure 7.

Fig. 6. Diagonal matrix recording metric column Unit

Fig. 7. Pivot table calculated by matrix expression (4)

Grand totals. If compared to Figure 2, the table of Figure 7 misses the two row
and column grand totals. These are very easily obtained via “bang” matrices. We
explain what these are and our choice of terminology: in functional programing,
the (popular) “bang” function, which is of type A → 1 and usually denoted by



Can we teach computers to generate fast OLAP code? 7

symbol “!”, is a polymorphic constant function yielding the unique value which
inhabits the singleton type 1. (In Haskell, both this type and its inhabitant are
denoted by “()”.) The encoding of this function in matricial form will be matrix

1 A
!Aoo wholly filled up with 1s. For instance, !|Region| will be the row vector

with |Region|-many positions all holding number 1.
Clearly, post-composing our pivot table with !|Region| will yield the lower

grand-total row of Figure 2 and pre-composing the same table with the converse
(transpose) of !|ShipDate| will yield the column grand total on the right. The
bottom-right cell holding number 162 is nothing but the singleton matrix

1 1
!n·[[T (unit)]]·!n◦oo

3 “Rolling-up” on functional dependencies

The pre- and post-composition of a given pivot table with the “bang matrices”
of the previous section is already an example of the OLAP operation known as
roll-up.

Rolling-up means replacing a dimension of a pivot table by another which is
more general, in some sense (eg. classification, containment). The latter is there-
fore “higher” in a dimension hierarchy which somehow acts as a classification or
taxonomy of data records.

A simple way of seeing roll-up at work is the acknowledgement of functional
dependencies (FDs) [6] in raw-data. Let us, for instance, look at the column
labelled Season in table T (Figure 1), telling in which season (Spring, Summer,
Autumn or Winter) a particular shipping took place. FD Season← ShipDate
clearly holds, as every date occurs in one and only one season. In other words,
Season is higher in the dimension hierarchy than ShipDate 4.

In general, functional dependency B ← A will hold in a table T iff no pair of
rows can be found in which the values of attribute A are the same and those of
attribute B differ (“B is determined by A”). That is, B acts as a classifier for
A, meaning that every pivot table involving A can be rolled-up to another (less
detailed) involving B instead.

Interestingly enough, the roll-up matrix |A| |B|tB←Aoo associated to FD B ←
A is simply given by

tB←A = tB · tA (5)

(We hope (5) convinces the reader of the advantage of writing FDs the other
way round, namely B ← A instead of the more conventional A→ B [6].) Figure
8 depicts the roll-up matrix calculated from FD Season← ShipDate 5.
4 The fact that T is not normalized reflects the preparation process of merging into

the same data warehouse different tables of a (normalized!) database.
5 Notice that Figure 8 in fact “depicts a function”. More generally, construction (5)

enlables us to check for functional dependencies: FD B ← A will hold wherever



8 H.D. Macedo, J.N. Oliveira

Fig. 8. Roll-up matrix tSeason←ShipDate

So, given a pivot matrix |A| |C|Moo , the effect of rolling it up across a
given FD B ← A is pivot matrix

tB←A ·M

of type |B| |C|oo . Converse (transpose) caters for the same effect on the
right-hand side: rolling M up across another FD D ← C is pivot matrix

M · t◦D←C

Further developments. The matrix representation of FDs opens further perspec-
tives on the roll-up OLAP operation, as the matrix in Figure 9 shows. In this
case, FD Season←Month does not strictly hold, for equinoctial and solsticial
months are doubly classified in the seasons they border, in different proportions.

Fig. 9. Seasons as “fuzzy” sets of months

Perhaps one might say that a “fuzzy” data dependency holds, in this case.
In spite of the possible complexity that this extension of the previous situation
might raise in the traditional OLAP perspective, in our setting it doesn’t change
anything, as such “fuzzy” months-into-seasons roll-up process would work pre-
cisely in the same way, always relying on matrix composition and transposition.

4 Related Work

As written above, thus far we have not done a proper inspection of the literature
on linear algebra application to data-mining and OLAP. Being novices in OLAP

matrix tB←A is simple, a terminology imported from relational algebra and allegory
theory[3] — a N0-valued matrix S will be said to be simple iff its image S · S◦ is
diagonal.



Can we teach computers to generate fast OLAP code? 9

technology, we are still unable to evaluate the novelty of the ideas jotted in this
note, whose single purpose is to gather feedback on their opportunity as far as
the parallelization of OLAP code is concerned.

The prospect of extending such techniques to spreadsheet software running
on multi-core laptops is also of interest 6.

Indeed, there may be work around which we don’t know about. In a quick
search using Google, a particular reference has attracted our attention already: in
[13] Jimeng Sung and others introduce a technique based on the use of tensors
in the area of pattern discovery. (Tensors generalize vectors and matrices, as
happens in the mathematical domain, and can be used to represent data-cubes.)

To capture temporal evolution one uses tensor streams or sequences that are
time indexed structures of tensors, the advantage of this kind of streams being
the generalization of traditional streams and sequences.

The paper generalizes the technique of (PCA) Principal Component Analysis,
which reduces the number of elements of the dimensions. The typical example is
the factorization of a matrix into two “smaller” matrices, whose multiplication
is the matrix which has the minimal difference to the original according to a
least squares distance.

The generalized technique is termed DTA (Dynamic Tensor Analysis) and
a stream version of it STA: “Intuitively, it projects and matricizes along each
mode; and it performs PCA to find the projection matrix for that mode.” Here
mode refers to a way of (matricizing) transforming a tensor into a matrix.

On the background stays singular value decomposition (SVD), whose ma-
tricial expression conspicuously resembles our starting point (3). Thus we have
something to study, already.

5 Future work

Our intention thus far has been to illustrate how the kinship between relation and
matrix algebra can suggest ways of expressing resource intensive data processing
such as OLAP, using linear algebra kernels of the kind systems such as SPIRAL
handle in a very efficient way.

On the practical side, our main expectations reside in checking whether SPI-
RAL can be used in areas other than DSP, in this case in data-mining and OLAP,
based on the strategy outlined in this note.

On the foundations side, much work has to be carried out, namely in provid-
ing a proper “justification” of the approach. In particular, we have to cross-check
our matrix encoding of OLAP (and FDs) with already existing OLAP formal
models, such as given in [2, 10] and very likely elsewhere. Mimicking OLAP al-
gebra (whatever this means) in terms of linear algebra may provide better and
simpler proofs for existing results and possibly generate new ones, as our expe-
rience in pointfree calculation already shows, in the relational algebra field.
6 See project SSaaPP: Spread Sheets as a Programming Paradigm in the HASLab

project portfolio:
http://wiki.di.uminho.pt/twiki/bin/view/DI/FMHAS/Projects.



10 H.D. Macedo, J.N. Oliveira

Anyone wishing to provide feedback on our sketchy ideas is very welcome.

References

1. R. Bird and O. de Moor. Algebra of Programming. Series in Computer Science.
Prentice-Hall International, 1997. C.A.R. Hoare, series editor.

2. Anindya Datta and Helen Thomas. The cube data model: a conceptual model and
algebra for on-line analytical processing in data warehouses. Decis. Support Syst.,
27(3):289–301, 1999.

3. P.J. Freyd and A. Scedrov. Categories, Allegories, volume 39 of Mathematical
Library. North-Holland, 1990.

4. S.L. Peyton Jones. Haskell 98 Language and Libraries. Cambridge University
Press, Cambridge, UK, 2003. Also published as a Special Issue of the Journal of
Functional Programming, 13(1) Jan. 2003.

5. H.D. Macedo and J.N. Oliveira. Matrices as arrows! a biproduct approach to typed
linear algebra, 2010. Accepted by MPC’10.

6. D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.
7. J.N. Oliveira. Functional dependency theory made ’simpler’. Tech-

nical Report DI-PURe-05.01.01, DI/CCTC, University of Minho, Gual-
tar Campus, Braga, 2005. PUReCafé, 2005.01.18 [talk]; available from
http://wiki.di.uminho.pt/twiki/bin/view/Research/PURe/PUReCafe.

8. J.N. Oliveira. Transforming Data by Calculation. In GTTSE’07, volume 5235 of
LNCS, pages 134–195. Springer, 2008.

9. J.N. Oliveira. Pointfree foundations for (generic) lossless decomposition, 2009.
(Submitted to MSCS).

10. Chang-Sup Park, Myoung Ho Kim, and Yoon-Joon Lee. Finding an efficient rewrit-
ing of olap queries using materialized views in data warehouses. Decision Support
Systems, 32(4):379 – 399, 2002.

11. Markus Püschel. Can we teach computers to write fast libraries? In GPCE ’07:
Proceedings of the 6th international conference on Generative programming and
component engineering, pages 1–2, New York, NY, USA, 2007. ACM.

12. Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela
Veloso, Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voro-
nenko, Kang Chen, Robert W. Johnson, and Nicholas Rizzolo. SPIRAL: Code
generation for DSP transforms. Proceedings of the IEEE, special issue on “Pro-
gram Generation, Optimization, and Adaptation”, 93(2):232– 275, 2005.

13. Jimeng Sun, Dacheng Tao, and Christos Faloutsos. Beyond streams and graphs:
dynamic tensor analysis. In KDD ’06: Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 374–383,
New York, NY, USA, 2006. ACM.

14. Wikipedia. Pivot table — wikipedia, the free encyclopedia, 2010. [Online; accessed
12-May-2010].


