
Formal verification of security policies
of cryptographic software

Bárbara Vieira

HasLab/Departamento de Informática
Universidade do Minho

Campus de Gualtar,
Braga, Portugal

Maio, 2011

Joint work with:
Manuel Barbosa, Jorge S. Pinto,
J. Bacelar Almeida, J.C. Filliâtre

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 1 / 38

Motivation

Formal verification key concepts

I Formal methods aim at the design of mathematically-based techniques for
the specification, development and verification of software/hardware systems.

I Formal verification is the formal methods area whose purpose is establishing
the correctness of software systems, by proving that the programs satisfy (or
not) a certain pre-defined specification.

Why should we establish the correctness of software systems?

I Avoid errors – avoid losing human lives, losing money, etc;
I Have a mathematical proof that the software indeed works as prescribed.

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 2 / 38

Motivation

Ariane 5 explosion (1996)

Arithmetic overflow
Trying to represent 64-bit floating point in a 16-bit signed integer1.

1http://en.wikipedia.org/wiki/Ariane_5_Flight_501

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 3 / 38

http://en.wikipedia.org/wiki/Ariane_5_Flight_501

Motivation

Console game exploits

Wii exploits (2008)

Stack overflow
An untrusted program writes more data
to a buffer located on the stack than
there was actually allocated for that
buffer. It corrupts the stack by injecting
the malicious executable code into the
running program.
(http://en.wikipedia.org/wiki/Twilight_hack)

PS3 – USB exploit (2010)

Heap overflow
The overflow occurs when an application
copies more data, than the buffer was
designed to contain. The routine is not
verifying that the source fits into the
destination.
(http://www.thexploit.com/secnews/

ps3-heap-overflow-exploit-explained/)

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 4 / 38

http://en.wikipedia.org/wiki/Twilight_hack
http://www.thexploit.com/secnews/ps3-heap-overflow-exploit-explained/
http://www.thexploit.com/secnews/ps3-heap-overflow-exploit-explained/

Motivation

Outline

Motivation

Formal verification and Cryptography
Deductive verification

Security policies verification using Frama-C
Safety properties
Error propagation
Programs equivalence
Adherence to side-channel countermeasures

CAOVerif: A Deductive Verification Tool for CAO
CAO language
Architecture

Conclusions and Future work

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 5 / 38

Part I

Key concepts

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 6 / 38

Formal verification and Cryptography

Formal verification and Cryptography

Why should we apply formal verification techniques to verify
cryptographic software?

I Cryptographic algorithms are usually given as specifications;
I Specifications are based on mathematical constructions which do not directly

map into programming language structures (mathematical fields, arbitrary
precision integers, etc);

I Because of speed issues, optimizations are introduced in the
implementations;

I Optimizations can introduce errors and compromise the security of the
algorithms.

Remark: We are not particularly interested in Cryptanalysis!

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 7 / 38

Deductive verification

Deductive verification

I Aims to establish correctness in software systems
I It is based on the Design by Contract approach (pre- and post-conditions)
I It relies on the use of logical formulas whose validity implies the correctness

of the original program
I Advantages:

I Helps finding errors in the program and correcting them
I Generalises a verified algorithm to capture new cases that were not

anticipated(e.g. finding pointer de-referencing)
I Gives a better understanding of the verified algorithm

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 8 / 38

Verification platforms

Verification platforms

Verification platforms based on Hoare logic

I Annotation language: allows reasoning about program executions –
specifications are introduced using Hoare triples:{P} C {Q}

I Verification condition generator (VCGen): from an annotated program, it
generates a set of proof obligations

I Proof obligation: formulas in first-order logic whose validity implies that the
software meets its specification

Hoare triples

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 9 / 38

Frama-C

Frama-C

Frama-C
I Framework for static analysis of C programs
I Includes a plug-in – JESSIE plug-in build on the top of Why platform – to make

deductive verification
I The specification language – ACSL – is mostly inspired by JML
I Automatically generates proof-obligations associated with memory safety and

absence of integer overflows

Methodology

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 10 / 38

Part II

Formal verification of security policies using Frama-C

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 11 / 38

Security policies verification using Frama-C

Security policies verification using Frama-C

Safety properties

I Memory safety: e.g. absence of buffer overflows
I Absence of integer overflows

Error propagation
Analysing the behavior of stream ciphers when a bit in the ciphertext is flipped
over the communication channel.

Program equivalence
Verifying the correctness of cryptographic algorithms implementations with
respect to a reference implementation – the specification of cryptographic
algorithms acts as a reference implementation – code refactoring.

Adherence to side-channel countermeasures
Verifying if the NaCl library attests adherence to side-channel countermeasures.

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 12 / 38

Security policies verification using Frama-C Case-study: RC4 openSSL implementation

Case-study: RC4 openSSL implementation

Key Stream Generator
SK

x

y

i

ik i

Figure: Block diagram of the RC4 cipher

RC4

I Symmetric cipher which is structured as two independent blocks
I Its security resides in the strength of the key stream generator
I Informally, at each step, it combines each bit xi of the input with a bit ki

generated by the key stream generator and produces a bit yi of the output

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 13 / 38

Security policies verification using Frama-C Case-study: RC4 openSSL implementation

Verifying safety properties on RC4 openSSL
implementation

I Frama-C tool automatically generates proof obligations associated with
memory safety and absence of integer overflow

I Automatic proof of safety verification conditions is assisted by assertions like:
I pre-conditions on the ranges of the inputs
I loop invariants to reason about the program states before and after loop

execution e.g.: /∗@ loop invariant (0 < i <= (len >> 3L)) ... @∗ /
I simple axioms on ranges of bit-wise operations

I From the annotated program are generated 869 proof obligations
I All the generated proof obligations can be automatically proved using

Alt-Ergo and Z3 theorem provers

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 14 / 38

Security policies verification using Frama-C Error propagation

Error propagation

Stream ciphers property
Flipping one bit of the ciphertext only affects the corresponding decrypted bit.

Encryption algorithm (example)

void encrypt(int input[],int output[],

int key[],int length){

int k;

for(k=0;k<length;k++)

output[k] = input[k] ˆ key[k];

}

Informal property description
An error in the position i of the input is not propagated to the positions between
i +1 and length −1 of the output .

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 15 / 38

Security policies verification using Frama-C Noninterference

Noninterference

Informal definition
Public outputs must not depend of the values of the secret inputs.

Security policies

I Confidentiality – information cannot flow from high variables to low variables
I Integrity – low variables cannot damage information stored in high variables

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 16 / 38

Security policies verification using Frama-C Formalisation of error propagation using noninterference

Formalisation of error propagation using noninterference

I Error propagation can be formalised as a noninterference property;
I Idea – high integrity outputs should not depend on low integrity inputs.

Formalisation of error propagation
The integrity of the values output[i+1..length-1] is not damaged by the value
input[i]
I High integrity: input[0, .., i−1, i +1, .., length −1], key[0..length −1],

output[i +1..length −1], length
I Low integrity: input[i]

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 17 / 38

Security policies verification using Frama-C Formalisation of error propagation using noninterference

Formalisation of error propagation(self-composition)

Applying the self-composition(Barthe et. all) definition:

Pre-condition High integrity inputs are equal.

Post-condition High integrity outputs are equal.

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 18 / 38

Security policies verification using Frama-C Programs equivalence

Programs equivalence (by example)

Informal property
For the same input values, the programs produce the same output values.

Specification

int i=0;
while(i<len) {
outdata[i]=indata[i] ˆ RC4NextKeySymbol(key);
i++;

}

Pre-processing

unsigned char keystream[len];
int i=0;
while(i<len) {
keystream[i] = RC4NextKeySymbol(key);
i++;

}
i=0;
while(i<len) {
outdata[i]=indata[i] ˆ keystream[i];
i++;

}

I RC4NextKeySymbol is the function which processes the key
I Pre-processing algorithm is a refactored version of the specification

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 19 / 38

Security policies verification using Frama-C Equivalence by composition

Equivalence by composition

General idea
Capture if programs that are executed from indistinguishable states, terminate in
states that are also indistinguishable.

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 20 / 38

Security policies verification using Frama-C Equivalence by composition

Applying equivalence by composition to prove program
equivalence

Pre-condition : All inputs are equal.

Post-condition: All outputs are equal.

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 21 / 38

Security policies verification using Frama-C Equivalence by composition

General steps to prove composition properties

I Annotate each loop using the natural invariants technique
I Define a lemma to express that the loop invariant specifications are

equivalent
I Use the Frama-C framework to automatically discharge all the

proof-obligations related with the function behavior

Remark: the proof of the lemma can be done using Coq proof assistant

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 22 / 38

Security policies verification using Frama-C Side-channel attacks

Side-channel attacks

Side-channel attack
Any attack that takes advantage of observing implementation-specific
characteristics of cryptographic algorithms implementations;

Addressed side-channel attacks
I Cache timing attacks – attacks exploiting the time that a computation (in the

cache) takes to perform;
I Branch prediction analysis attacks – attacks exploiting secret information that

can be leaked through conditional branches;

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 23 / 38

Security policies verification using Frama-C Minimizing exposure to side-channel attacks

Minimizing exposure to side-channel attacks

Nacl cryptographic library countermeasures

I No data-dependent branches – there are no conditional branches and loops
with conditions based on input data;

I No data-dependent array indices – there are no array lookups with indices
based on input data;

Goal
Formally verify if the Nacl cryptographic library attests adherence to these
side-channel countermeasures.

Adopted strategy
Formalise these policies as noninterference properties.

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 24 / 38

Security policies verification using Frama-C Formalisation and verification of side-channel countermeasures

Formalisation of side-channel countermeasures (1)

Usual operational semantics

(P,S1) ⇓ S2

Extended operational semantics

(P,S1) ⇓ (S2,M,L)

I M - list of memory locations accessed during program execution;
I L - list of commands executed by the program during its execution;

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 25 / 38

Security policies verification using Frama-C Formalisation and verification of side-channel countermeasures

Formalisation of side-channel countermeasures (2)

Security definition based on noninterference
Informally
For low-equal initial states, executing two instances of the same program, they
must agree on the accessed memory locations and on the executed commands.

Property
Low integrity inputs should not interfere with the accessed memory locations
neither with the executed commands.

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 26 / 38

Security policies verification using Frama-C Formalisation and verification of side-channel countermeasures

Verifying side-channel countermeasures

Verification using Frama-C
I Transform the original program to include two different kind of lists (as ghost

variables):
I Control list – list containing the evaluation of the conditions of all conditional

branches and loops;
I Array access list – for each array variable is created a list containing the

accessed array indexes during program execution;

I Annotate each loop with its natural invariant (must include the ghost
variables);

I Annotate the program with pre- and post-conditions to express the security
definition;

I Use Frama-C to automatically discharge all the proof obligations

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 27 / 38

Part III

CAOVerif: A deductive verification tool for CAO

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 28 / 38

CAOVerif: A Deductive Verification Tool for CAO CAO language

CAO language

CAO: A Cryptography Aware Language and Compiler

I Domain specific language to describe cryptographic software

I Idea – implementation of cryptographic primitives in a way which is close to the
notation used in scientific papers and standards

I Is being developed by Work Package 1 in the CACE project

I C-like language that includes mathematical constructions and operations commonly
used in cryptography as natives data types.

CAO type system

bool booleans
bits[n] bit strings of finite length
vector of τ generic one-dimensional container
struct[e1; ... ; en] structures
int arbitrary precision integers
mod[p] residues modulo an integer
matrix[n1,n2] of τ algebraic matrices
mod[τ < X > / p(X)] extension fields

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 29 / 38

CAOVerif: A Deductive Verification Tool for CAO CAOVerif: A Deductive Verification Tool for CAO

CAOVerif: A Deductive Verification Tool for CAO

Requirements

I Allow the same verification techniques enabled by other verification tools for
different languages such as C.

I Simplify the verification of security-relevant properties, providing a higher
degree of automation

I Automatically generate assertions whose validity implies the safeness of CAO
programs (such as in Frama-C)

CAOVerif

I CAO-SL – CAO specification language – is mostly inspired by ACSL
I Our tool translates annotated CAO programs into Jessie input language
I Jessie generates the proof-obligations using the Why framework
I Generated proof-obligations can be proved using a proof assistant (e.g. Coq)

or an automatic prover (e.g. CVC3)

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 30 / 38

Jessie Plug-in

Jessie Plug-in

I Main advantage: little effort is required to develop
deductive verification tools based on the Jessie plug-in
(e.g. Frama-C and Krakatoa)

I Input language – simple typed imperative language
which includes logical features such as first-order logical
constructions:

I logic datatypes
I logic functions over these datatypes
I axioms to reason over the properties of these functions

I Logical features can be used to “extend” the semantics
of the target language (Jessie) of our translator.

Frama-C
Architecture

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 31 / 38

Jessie Plug-in Jessie Plug-in

Jessie Plug-in

The development of a new deductive verification tool based on the Jessie plug-in
typically implies:

1. translation of the source annotated programs into (extended) Jessie input
language

2. together with the adequate axiomatization of the source language datatypes
in first-order logic

Remark: The axiomatic model of these datatypes should be optimized to allow us
proving some representative examples: requires a compromise between simplicity
and expressiveness.

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 32 / 38

Jessie Plug-in Architecture

CAOVerif Architecture

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 33 / 38

Jessie Plug-in CAO to Jessie

CAO to Jessie

Translation
I Design of a Jessie model that captures the semantic of CAO programs
I Essentially focused on the design of the axiomatic model of the CAO types in

first-order logic
I For each type (not supported by Jessie) it includes its axiomatic model in

first-order logic

Axiomatic model of the CAO types

For each type we include:
I logical type (to translate CAO types)
I set of logical functions (to translate the operations on these types)
I set of axioms (to reason about CAO programs)

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 34 / 38

Conclusions and Future work

Conclusions

I Deductive verification techniques help to improve the development of
cryptographic software, by reducing the error rating and giving better
guarantees that the software indeed behaves like prescribed;

I First, one should identify the security relevant properties that might be
addressed in the context of cryptographic software;

I We demonstrate that these policies can be formalised and verified using tools
such as Frama-C framework: safety properties, error propagation, programs
equivalence, etc;

I We develop a deductive verification tool for CAO which provides a higher
degree of automation in the verification of cryptographic primitives.

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 35 / 38

Conclusions and Future work

Future work

I Establishing CAOVerif correctness – in related work we are working on an
operational semantics for CAO, which we will later use to establish a
correctness result for our VCGen; 2

I We mean correctness by: a CAO program proved correct in Jessie must be
proved correct in CAO too (soundness of the VCGen);

I Problems:
I Although the control structures of both programs are similar, the type theory on

both languages differs;
I There isn’t an operational semantic of Jessie language – Jessie is not an

executable language;
I There isn’t any formalisation of Jessie VCGen;

2We will rely on the certification of the Jessie plug-in of the Frama-C framework
barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 36 / 38

Conclusions and Future work

Future work

Until now, we have:

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 37 / 38

Conclusions and Future work

Publications

J. Bacelar Almeida , M. Barbosa, J. Sousa Pinto and B. Vieira
Deductive verification of cryptographic software
NASA Journal of Innovations in Systems and Software Engineering, 2010.

J. Bacelar Almeida, M. Barbosa, J. Sousa Pinto and B. Vieira
Formal verification of side-channel countermeasures using self-composition
Submitted to Elsevier Journal Science of Computer Programming, 2011.

M. Barbosa, J-C. Filliâtre, J. Sousa Pinto and B. Vieira
An open-source deductive verification platform for cryptographic software
Submitted to Elsevier Journal Science of Computer Programming, 2011.

barbarasv@di.uminho.pt (HasLab/DI) Formal verification of security policies Maio, 2011 38 / 38

	Motivation
	Key concepts
	Formal verification and Cryptography
	Deductive verification
	
	

	Formal verification of security policies using Frama-C
	Security policies verification using Frama-C
	Safety properties
	
	Error propagation
	
	
	Programs equivalence
	
	Adherence to side-channel countermeasures
	
	
	

	CAOVerif: A deductive verification tool for CAO
	CAOVerif: A Deductive Verification Tool for CAO
	CAO language
	

	Jessie Plug-in
	
	Architecture
	

	Conclusions and Future work

