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Data Mining 
I – Introduction 

 The extraction of nontrivial, implicit and useful 

  knowledge from the data 

                

 

 

 

 

 

 

Data Knowledge 

 

• Artificial Intelligence 

• Computer Science 

• Statistics 

• Information Retrieval 

 

Data Mining 
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Data Mining goals 

 To find “structure” in the large amount of 

information available from different sources 

 To organize the data 

 To identify patterns that translate into new 

understandings and viable predictions 

 To discover relationships between data and 

phenomena that ordinary operations and routine analysis 

would otherwise overlook 

I – Introduction 
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Time Series 
I – Introduction 

 People measure things:  

 Oil price 

 Sócrates popularity 

 Blood pressure, etc. 

 

 

 

 

 

 

and things change over time, creating a time series 
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Time Series definition 

 A (numeric) time series is a sequence of observations of 

a numeric property over time 
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I – Introduction 
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Motivation to Work in Time Series  

 Time series are ubiquitous 

 Most of the information (data) produced in a variety 

of areas are time series  

 e.g. about 50% of all newspaper graphics are time 

series 

 Other types of data can be converted to time series 

 

I – Introduction 

Image from E. J. Keogh. A decade of progress in indexing and mining large time series 

databases. In VLDB, page 1268, 2006. 
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Time Series Examples 

historical archives 

ECG 

electroencephalogram 

 sensors 

motion data 

physiology (muscle activation) 

I – Introduction 

Images from a variety of papers by E. J. Keogh. Available at: www.cs.ucr.edu/~eamonn 
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Time Series Examples (cont.) 

stocks 

data 

sales goods consumption 
animal ECG 

images 
motion capture 

handwritten character recognition 
DNA sequences 

I – Introduction 

Image from E. J. Keogh. A decade of progress in indexing and mining large time series 

databases. In VLDB, page 1268, 2006. 
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Time Series data characteristics 

 Analysis is hard, as we are typically dealing with 

massive data-sets: 
 One hour EEG: 1 GB of data 

 Typical weblog: 5 GB / week 

 MACHO database: 5 TB (growing 3 GB a day) 

 Stanford Linear Accelerator database: 500 TB 

 Quadratic complexity algorithms are insufficient 

 The data also present some distortions (noise, 

scaling effects, etc.) that make the analysis more 

difficult 

I – Introduction 
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Time Series Data Mining Tasks 

Image from E. J. Keogh. A decade of progress in indexing and mining large time series 

databases. In VLDB, page 1268, 2006. 

I – Introduction 
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II – Motif Discovery 
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Motif Definition 

 Motifs, also known as “recurrent patterns”, “frequent 

patterns”, “repeated subsequences”, or typical shapes” are 

previously unknown patterns in time series 

II – Motif Discovery 



18/05/2011 Nuno Castro and Paulo Azevedo 

Motivation 

 Finding motifs is an important task: 

 

 Describe the time series at hand 

 

 Help summarize/represent the database 

 

 Provide useful insight to the domain expert 

 

 

 

 

 

II – Motif Discovery 
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Motif Example 

 Patterns that precede a seizure in EEG 

II – Motif Discovery 
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Motif Example (cont.) 

 Bursts in telecommunication traffic 

II – Motif Discovery 
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Our previous work 

 We have proposed a motif discovery algorithm: 

 Multiresolution Motif Discovery in Time Series (MrMotif)* 

 Time efficient: 

 One single sequential disk scan 

 Clever representation technique (iSAX) 

 Use of constant access time structures 

 Memory efficient: 

 Combine our approach with 

  the Space-Saving algorithm  

 Adjustable amount of memory to use 

 

II – Motif Discovery 

*Nuno Castro and Paulo J. Azevedo, Multiresolution Motif Discovery in Time Series,  

  in Proceedings of the SIAM International Conference on Data Mining (SDM 2010), Columbus, Ohio, USA., pp. 665-676. 
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III – Motifs Statistical Significance 
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Problem 

 A large number of proposals recently introduced on  

“how to efficiently mine motifs” 

 Very few works on how to evaluate the motifs 

 Motifs are typically evaluated by humans 

 Subjective 

 Slow 

 Unfeasible for real-world datasets (Terabytes of data) 

 A large number of patterns are returned by motif mining 

algorithms 

 Automatic evaluation measures are necessary. 

III –  Motif Statistical Significance – Introduction 
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Example 

 Randomly generated dataset 

with 65536 time series of 

length 256 

 65 motifs were discovered 

 Most frequent motif: 4 

repetitions 

 Average motif count: 2.17 

III –  Motif Statistical Significance – Introduction 
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Solution 

 Statistical tests are widely used in data mining 

 In bioinformatics, to detect DNA segments with unexpected 

frequency 

 In networks mining, to find significant subgraphs 

 In itemsets mining, to discard redundant rules 

 

 They aim to answer the question: 

 “Can this pattern occur so many times just by chance?” 

 

 We intend to compare a motif‟s expected and observed 

count using statistical tests 

III –  Motif Statistical Significance – Introduction 
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Contribution 

 To present an approach to assess the statistical 

significance of time series motifs:  

       

 

     calculate each motif‟s p-value 

 

III –  Motif Statistical Significance – Introduction 
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Our approach 

 Motifs are extracted  

from the database 

 

 

 Motif‟s expected count  

is calculated 

 

 

 

 Statistical hypothesis tests  

are applied to assess each motif‟s p-value 

III –  Motif Statistical Significance 
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 Motifs are extracted  

from the database 

 

 

 Motif‟s expected count  

is calculated 

 

 

 

 Statistical hypothesis tests  

are applied to assess each motif‟s p-value 

 

III –  Motif Statistical Significance – Approach 
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Extracting motifs 

 In order to leverage existing work from the 

bioinformatics, we are interested in symbolic motifs  

 A symbolic motif is the representation of a motif using 

symbols (integers, letters) 

 For example, the motif { 0, 0, 2, 3, 4, 5, 6, 7 }: 

 

 

 

 

 

    

 

 

0 0 

2 3 
4 5 

6 
7 

III –  Motif Statistical Significance – Approach 
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Symbolic Aggregate Approximation (iSAX) 

 State of the art time series representation technique 

 Widely used in time series data mining 

 Converts a time series to a sequence of symbols (word) 

 Given a resolution (alphabet size) and word size 

 

 

 

 

 * Shieh, J. and Keogh, E., iSAX: indexing and mining terabyte sized time series,  

    in Proceedings of the 14th ACM SIGKDD international Conference on Knowledge Discovery and Data Mining (2008), pp. 623-631. 

Time series is 

represented by the 

iSAX word: 

1, 2, 3, 2, 1, 0, 1, 1 

III –  Motif Statistical Significance – Approach – Extracting Motifs 
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iSAX example 

III –  Motif Statistical Significance – Approach – Extracting Motifs 

Obtained using MATLAB code made available by Eamonn Keogh at www.cs.ucr.edu/~eamonn 
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Extracting motifs (cont.) 

 Frequent motifs are extracted using a motif discovery 

algorithm and symbolized using iSAX* 

 

 

II – Approach 
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 Motifs are extracted  

from the database 

 

 

 Motif‟s expected count  

is calculated 

 

 

 

 Statistical hypothesis tests  

are applied to assess each motif‟s p-value 

 

III –  Motif Statistical Significance – Approach 
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Expected counts 

 Frequency by its own does not guarantee that motifs are 

significant 

 

 A better approach is to consider the difference between 

the motif expected count and its observed count 

 

 The expected count is the number of repetitions of a 

motif we should expect in random sequences that are 

similar to our database  

III –  Motif Statistical Significance – Approach 
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Expected counts (cont.) 

 We use Markov Chain Models to estimate a motif‟s 

probability of occurrence 

 For a motif, we consider its subword count 

 For example, the motif “baccdfah”: 

 

 

 

 

 

 Expected count:  

III –  Motif Statistical Significance – Approach 
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 Motifs are extracted  

from the database 

 

 

 Motif‟s expected count  

is calculated 

 

 

 

 Statistical hypothesis tests  

are applied to assess each motif‟s p-value 

 

III –  Motif Statistical Significance – Approach 
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Statistical Significance 

 We intend to calculate the motifs p-values: 

 P-value is the probability of the motif count to be at least 

as large as the observed count, just by chance. 

 We assume the motif count in time series is Binomial, 

therefore 

 

 

 

 

 If P ≤ α, we say the pattern is accepted as significant 

 α calculated using the Holm method 

 Otherwise, pattern is rejected 

 

 

 

 

 

III –  Motif Statistical Significance – Approach 
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Multiple hypothesis testing problem 

 The significance level (α) is typically fixed to 0.05 

 

 Since we apply a test for each distinct motif, in a dataset 

with 100000 motifs we expect to have 5000 significant 

motifs by chance alone 

 

 The higher the number of simultaneously executed tests, 

the higher the chance to find at least one that 

incorrectly rejects the null hypothesis 

III –  Motif Statistical Significance – Approach 
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Multiple hypothesis testing problem 

 Bonferroni adjustment 

 α„ = α / n 

 e.g. α„ = 0.05 / 65 = 0,00077 

 too strict 

 

 Holm procedure 

 all p-values are sorted increasingly from p1 until pn 

 the first one to reject pj ≤ α / (n-j+1) becomes α‟ 

 

III –  Motif Statistical Significance – Approach 
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Experimental Analysis 

 We test our approach on data from a wide range of 

applications and sizes 

 52 publicly available datasets from a variety of sources 

are used 

 The MrMotif algorithm is used to extract symbolic 

motifs from the time series database 

 The significance level (α) is automatically calculated 

using the Holm procedure 

III –  Motif Statistical Significance 
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Results 
sequence length distinct motifs nr. significant  

      motifs  
adjusted  

cutoff 
% accepted 

III –  Motif Statistical Significance –  Experimental Analysis 
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Pruning power 

 Our approach prunes most of the false discoveries 

 

 For some datasets, all frequent motifs were discarded 

 

 Using statistical tests in time series motif discovery can 

act as a filter, pruning meaningless motifs 

 

 This seems to support the need for  

            statistical tests in time series motif discovery. 

 

III –  Motif Statistical Significance –  Experimental Analysis 
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Number of parameters 

 Pruning the prohibitively large output of pattern discovery 

algorithms is typically done by support or (top) K 

parameters 

 Unintuitive parameters 

 Can only be optimized by experimentation 

 May be unfeasible for some datasets to re-run the algorithm 

with a new parameter setting 

 

 Using our approach avoids the use of unintuitive 

 parameters, since the adjusted cutoff value (α’) is 

 automatically derived 

III –  Motif Statistical Significance –  Experimental Analysis 
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Motif ranking 

 Motifs can be ranked according to their statistical 

significance, i.e. p-value 

 To be able to rank motifs is important: a ranking yields a 

smooth way to select the most representative and 

relevant motifs 

 For example, for the domain expert it is better to 

manually analyze 5 motifs, than 754 

 In some cases, when the number of motifs makes the 

manual analysis very difficult, p-value based rankings 

may become a requirement 

III –  Motif Statistical Significance –  Experimental Analysis 
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Motif ranking (cont.) 
Motif count Motif Probability 

III –  Motif Statistical Significance –  Experimental Analysis 
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IV – Conclusions 

 We proposed an approach to compute the p-values of 

time series motifs 

 

 A motif is accepted if it passes a statistical hypothesis test 

 i.e. p-value ≤ significance level. 
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Conclusions (cont.) 

 Our approach: 

 Significantly reduces the number of returned patterns 

 Avoids the use of unintuitive support or top-K parameters 

 Allows to rank motifs according to their significance 

 Provides researchers and practitioners with an important 

technique to evaluate the degree of relevance of each 

pattern 

 We aim to highlight the importance of motif evaluation, 

since we believe it is crucial to make motif mining an 

useful task in practice 
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 Contact: castro@di.uminho.pt 
 Paper web site (executable, source code and 

datasets): 

   www.di.uminho.pt/~castro/stat 
 

Thank you for your attention! 

mailto:castro@di.uminho.pt
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Future work 

 Extend work to other statistical tests 

 

 Integrate the approach in the motif discovery process 

(currently applied as post-processing) 

 

 Use other approaches (e.g. FDR) to deal with the 

multiple hypothesis problem 


