HASLab Seminar

Time Series Motifs Statistical Significance

NUNO C. CASTRO PAULO J. AZEVEDO

May 18th, 2011

Roadmap

- I. Introduction
 - I. Data Mining
 - II. Time Series
 - III. Motivation
 - IV. Examples
- II. Motif Discovery
 - I. Motif definition and motivation
- III. Motif Statistical Significance
 - I. Introduction
 - II. Approach
 - III. Experimental Analysis
- IV. Conclusions

I – Introduction Data Mining

The extraction of nontrivial, implicit and useful knowledge from the data

Data

Data Mining

- Artificial Intelligence
- Computer Science
- Statistics
- Information Retrieval

Knowledge

I – Introduction Data Mining goals

- To **find "structure"** in the large amount of information available from different sources
- To organize the data
- To identify patterns that translate into new understandings and viable predictions
- To discover relationships between data and phenomena that ordinary operations and routine analysis would otherwise overlook

I – Introduction Time Series

- People measure things:
 - Oil price
 - Sócrates popularity
 - Blood pressure, etc.

and things change over time, creating a time series

Nuno Castro and Paulo Azevedo

Time Series definition

 A (numeric) time series is a sequence of observations of a numeric property over time

Motivation to Work in Time Series

- Time series are **ubiquitous**
- Most of the information (data) produced in a variety of areas are time series
 - e.g. about 50% of all newspaper graphics are time series
- Other types of data can be converted to time series

Image from E. J. Keogh. A decade of progress in indexing and mining large time series databases. In VLDB, page 1268, 2006. Nuno Castro and Paulo Azevedo 18/05/2011

Time Series Examples

Images from a variety of papers by E. J. Keogh. Available at: www.cs.ucr.edu/~eamonn

electroencephalogram

sensors

physiology (muscle activation)

Nuno Castro and Paulo Azevedo

Time Series Examples (cont.)

Image from E. J. Keogh. *A decade of progress in indexing and mining large time series databases.* In VLDB, page 1268, 2006.

Time Series data characteristics

 Analysis is hard, as we are typically dealing with massive data-sets:

- One hour EEG: 1 GB of data
- Typical weblog: 5 GB / week
- MACHO database: 5 TB (growing 3 GB a day)
- Stanford Linear Accelerator database: 500 TB

Quadratic complexity algorithms are insufficient

 The data also present some distortions (noise, scaling effects, etc.) that make the analysis more difficult

Time Series Data Mining Tasks

Image from E. J. Keogh. A decade of progress in indexing and mining large time series databases. In VLDB, page 1268, 2006.

Nuno Castro and Paulo Azevedo

II – Motif Discovery

II – Motif Discovery Motif Definition

 Motifs, also known as "recurrent patterns", "frequent patterns", "repeated subsequences", or typical shapes" are previously unknown patterns in time series

II – Motif Discovery Motivation

- Finding motifs is an important task:
 - Describe the time series at hand
 - Help summarize/represent the database
 - Provide useful insight to the domain expert

II – Motif Discovery Motif Example

Patterns that precede a seizure in EEG

Nuno Castro and Paulo Azevedo

II – Motif Discovery Motif Example (cont.)

Bursts in telecommunication traffic

Nuno Castro and Paulo Azevedo

II – Motif Discovery Our previous work

- We have proposed a motif discovery algorithm:
 - Multiresolution Motif Discovery in Time Series (MrMotif)*
 - Time efficient:
 - One single sequential disk scan
 - Clever representation technique (*iSAX*)
 - Use of constant access time structures
 - Memory efficient:
 - Combine our approach with the Space-Saving algorithm
 - Adjustable amount of memory to use

*Nuno Castro and Paulo J. Azevedo, *Multiresolution Motif Discovery in Time Series*, in Proceedings of the SIAM International Conference on Data Mining (SDM 2010), Columbus, Ohio, USA., pp. 665-676.

Nuno Castro and Paulo Azevedo

III – Motifs Statistical Significance

Nuno Castro and Paulo Azevedo

III – Motif Statistical Significance – Introduction **Problem**

- A large number of proposals recently introduced on "how to efficiently mine motifs"
- Very few works on how to evaluate the motifs
- Motifs are typically evaluated by humans
 - Subjective

- Slow
- Unfeasible for real-world datasets (Terabytes of data)
 - A large number of patterns are returned by motif mining algorithms

Automatic evaluation measures are necessary.

III – Motif Statistical Significance – Introduction **Example**

- Randomly generated dataset with 65536 time series of length 256
- 65 motifs were discovered
- Most frequent motif: 4 repetitions

Average motif count: 2.17

III – Motif Statistical Significance – Introduction Solution

- Statistical tests are widely used in data mining
 - In bioinformatics, to detect DNA segments with unexpected frequency
 - In networks mining, to find significant subgraphs
 - In itemsets mining, to discard redundant rules
- They aim to answer the question:
 - "Can this pattern occur so many times just by chance?"
- We intend to compare a motif's expected and observed count using statistical tests

Nuno Castro and Paulo Azevedo 1

III – Motif Statistical Significance – Introduction

 To present an approach to assess the statistical significance of time series motifs:

calculate each motif's p-value

Nuno Castro and Paulo Azevedo

III – Motif Statistical Significance

 Motifs are extracted from the database

 Motif's expected count is calculated

 Statistical hypothesis tests are applied to assess each motif's p-value

Nuno Castro and Paulo Azevedo

III - Motif Statistical Significance - Approach

 Motifs are extracted from the database

 Motif's expected count is calculated

 Statistical hypothesis tests are applied to assess each motif's p-value

Nuno Castro and Paulo Azevedo

III – Motif Statistical Significance – Approach Extracting motifs

- In order to leverage existing work from the bioinformatics, we are interested in symbolic motifs
- A symbolic motif is the representation of a motif using symbols (integers, letters)
- For example, the motif { 0, 0, 2, 3, 4, 5, 6, 7 }:

III – Motif Statistical Significance – Approach – Extracting Motifs Symbolic Aggregate Approximation (iSAX)

- State of the art time series representation technique
- Widely used in time series data mining
- Converts a time series to a sequence of symbols (word)
 - Given a resolution (alphabet size) and word size

* Shieh, J. and Keogh, E., *iSAX: indexing and mining terabyte sized time series*, in Proceedings of the 14th ACM SIGKDD international Conference on Knowledge Discovery and Data Mining (2008), pp. 623-631.

Nuno Castro and Paulo Azevedo

III – Motif Statistical Significance – Approach – Extracting Motifs

Extracting motifs (cont.)

 Frequent motifs are extracted using a motif discovery algorithm and symbolized using iSAX*

III – Motif Statistical Significance – Approach Expected counts

- Frequency by its own does not guarantee that motifs are significant
- A better approach is to consider the difference between the motif expected count and its observed count
- The expected count is the number of repetitions of a motif we should expect in random sequences that are similar to our database

III – Motif Statistical Significance – Approach Expected counts (cont.)

- We use Markov Chain Models to estimate a motif's probability of occurrence
- For a motif, we consider its **subword** count
- For example, the motif "baccdfah":

M6
$$\mu = \frac{N(baccdfa) N(accdfah)}{3n N(accdfa)}$$

Expected count:
$$\ \hat{N}_{m}(w) = n\,\mu$$

Nuno Castro and Paulo Azevedo

III – Motif Statistical Significance – Approach Statistical Significance

- We intend to calculate the motifs p-values:
 - P-value is the probability of the motif count to be at least as large as the observed count, just by chance.
 - We assume the motif count in time series is Binomial, therefore

$$\mathbb{P}(\mathcal{B}(n,\mu) \ge N^{obs}(w)) = 1 - \sum_{k=0}^{N(w)-1} \binom{n}{k} \mu^k (1-\mu)^{n-k}$$

- If $P \leq \alpha$, we say the pattern is accepted as significant
 - α calculated using the Holm method
- Otherwise, pattern is rejected

Nuno Castro and Paulo Azevedo

III – Motif Statistical Significance – Approach Multiple hypothesis testing problem

- The significance level (α) is typically fixed to **0.05**
- Since we apply a test for each distinct motif, in a dataset with 100000 motifs we expect to have 5000 significant motifs by chance alone
- The higher the number of simultaneously executed tests, the higher the chance to find at least one that incorrectly rejects the null hypothesis

III – Motif Statistical Significance – Approach Multiple hypothesis testing problem

- Bonferroni adjustment
 - α' = α / n
 - e.g. α = 0.05 / 65 = 0,00077
 - too strict
- Holm procedure
 - all p-values are sorted increasingly from p1 until pn
 - the first one to reject $p_j \le \alpha / (n-j+1)$ becomes α'

III – Motif Statistical Significance

Experimental Analysis

- We test our approach on data from a wide range of applications and sizes
- 52 publicly available datasets from a variety of sources are used
- The **MrMotif** algorithm is used to extract **symbolic** motifs from the time series database
- The significance level (α) is automatically calculated using the Holm procedure

III – Motif Statistical Significance – Experimental Analysis **Results**

sequence ler	nath distin	ct motifs r	n <mark>r. signific</mark>	ant adjusted	% acc	ented
	\		motifs	cutoff	/0 400	opica
Dataset	n	N_d	NSM	α'	%	
ERP	47616	2628	95	1.97E-05	3.61	
eog	67493	5882	95	8.64E-06	1.62	
rateeg	576694	100438	95	4.98E-07	0.09	
lightcurves	5327	376	70	0.000163	18.62	
cl2	4310	54	36	0.002632	66.67	
sasa	81280	754	29	6.89E-05	3.85	
koskiecg	2394	360	24	0.000148	6.67	
mallat	803	30	18	0.003846	60.00	
motor	420	60	7	0.000926	11.67	
stocks	18000	1394	7	3.6E-05	0.50	
arrowheads	1231	161	5	0.000318	3.11	
pen	510	46	4	0.001163	8.70	
burstin	1310	221	4	0.000229	1.81	
powerdata	1838	295	4	0.000171	1.36	
shapemixed	160	14	2	0.003846	14.29	
10000	10000	754	2	6.64E-05	0.27	
TEK	180	51	1	0.00098	1.96	
eegheartrate	373	85	1	0.000588	1.18	
leaf	442	72	1	0.000694	1.39	
network	1121	36	1	0.001389	2.78	
insect	1471	77	1	0.000649	1.30	
chaotic	109	4	0	0.0125	0	
random	1718	65	0	0.000769	0	
fortune	500	9	0	0.005556	0	
logistic	2000	181	0	0.000276	0	
packet	2332	187	0	0.000267	0	
tide	2906	6	0	0.008333	0	
eeg	62700	2767	0	1.81E-05	0	

Nuno Castro and Paulo Azevedo

III – Motif Statistical Significance – Experimental Analysis Pruning power

- Our approach prunes <u>most</u> of the false discoveries
- For some datasets, all frequent motifs were discarded
- Using statistical tests in time series motif discovery can act as a filter, pruning *meaningless* motifs

This seems to support the **need** for statistical tests in time series motif discovery.

Nuno Castro and Paulo Azevedo

III – Motif Statistical Significance – Experimental Analysis Number of parameters

- Pruning the prohibitively large output of pattern discovery algorithms is typically done by support or (top) K parameters
- Unintuitive parameters
- Can only be optimized by experimentation
 - May be unfeasible for some datasets to re-run the algorithm with a new parameter setting

Using our approach **avoids** the use of unintuitive parameters, since the adjusted cutoff value (α ') is <u>automatically derived</u>

Nuno Castro and Paulo Azevedo 18/05/2011

III – Motif Statistical Significance – Experimental Analysis Motif ranking

- Motifs can be ranked according to their statistical significance, i.e. p-value
- To be able to rank motifs is important: a ranking yields a smooth way to select the most representative and relevant motifs
- For example, for the domain expert it is better to manually analyze 5 motifs, than 754
- In some cases, when the number of motifs makes the manual analysis very difficult, p-value based rankings may become a requirement

III – Motif Statistical Significance – Experimental Analysis Motif ranking (cont.)

	Motif count		Motif Probability		
			\		
Datasets	Motif	N(w)	μ	Expected	p-value
sasa	gggfebbb	17	3.9E-05	3.172479	4.77E-08
	hggdebbb	8	8.79E-06	0.7143	8.93E-07
	bbbbgggg	14	3.37E-05	2.735099	1.19E-06
	bbbcggfg	10	1.67E-05	1.354194	1.68E-06
	abbdgggg	7	7.16E-06	0.58183	2.7E-06
eog	aacefggg	31	8.79E-05	5.932245	3.69E-13
	caacfggh	11	6.36E-06	0.429089	1.54E-12
	babbeggh	12	8.78E-06	0.592607	2.27E-12
	dbdgggfa	11	7.38E-06	0.497955	7.41E-12
	gabdeggd	12	1.03E-05	0.695669	1.2E-11
cl2	heddddbe	74	0.00193	8.319006	3.98E-13
	hecdccdf	37	0.001998	8.613394	7.54E-13
	hededeed	645	0.049903	215.0832	9.33E-13
	hedddcce	80	0.006069	26.1573	1.06E-12
	hedddccd	64	0.004855	20.92584	1.23E-12
koskiecg	gddddbg	40	0.002734	6.544641	2.37E-12
	ddddbfh	34	0.00299	7.157086	2.88E-12
	heddddb	43	0.006027	14.42812	7.89E-10
	ddddbgh	22	0.001817	4.350855	1.49E-09
	dbggdddd	45	0.00719	17.21198	1.55E-08
mallat	dgbcdche	90	0.03608	28.97219	6E-13
	cgbcdche	97	0.041707	33.49079	6.16E-13
	dgbbdche	92	0.038283	30.74089	6.57E-13
	dgbcdcge	59	0.024542	19.70757	7.29E-13
	dhbcdcge	137	0.056988	45.76165	7.92E-13

Nuno Castro and Paulo Azevedo

IV – Conclusions

- We proposed an approach to compute the p-values of time series motifs
- A motif is accepted if it passes a statistical hypothesis test
 - i.e. p-value \leq significance level.

Conclusions (cont.)

• Our approach:

- Significantly reduces the number of returned patterns
- Avoids the use of unintuitive support or top-K parameters
- Allows to rank motifs according to their significance
- Provides researchers and practitioners with an important technique to evaluate the degree of relevance of each pattern
- We aim to highlight the importance of motif evaluation, since we believe it is crucial to make motif mining an useful task in practice

Thank you for your attention!

- Contact: <u>Castro@di.uminho.pt</u>
- Paper web site (executable, source code and datasets):

www.di.uminho.pt/~castro/stat

Future work

Extend work to other statistical tests

 Integrate the approach in the motif discovery process (currently applied as post-processing)

 Use other approaches (e.g. FDR) to deal with the multiple hypothesis problem

Nuno Castro and Paulo Azevedo