
Translating Alloy Specifications to
the Point-free Style

Nuno Macedo

Departamento de Informática
Universidade do Minho

Braga, Portugal

June 22nd, 2011

Motivation
• Alloy provides a tool for automatic bounded

verification (the Alloy Analyzer);

• Sometimes however, unbounded verification is
necessary;

• Alloy’s logic is a relational, so relational frameworks
are natural choices;

• The point-free (PF) style provides simple enough
formulas for manipulation and analysis.

Objectives

• A complete translation of Alloy models to a PF
relational framework is proposed.

Alloy
Formulas

Alloy
Signatures

PW Rel

PF Rel

Alloy

• State-based modeling language;

• Simple language, based on simple
mathematical notations;

• Characteristics of object modeling;

• Automatic bounded verification.

Calculus of Relations
• Relational Logic:

• First-order logic (FOL) enhanced with relational
operators (composition, meet, join,...)

• Relation Algebras (RAs):

• FOL without variables

• Equivalent to FOL with 3 quantified variables.

R ⊆ S

PF Relational Logic
• Fork Algebras (FAs) were created to overcome the

lack of expressiveness of RAs;

• Introduces pairs and a new operator fork:

• Equivalent to FOL;

• Can be seen as an untyped version of the categorical
relational calculus commonly used.

cR a ∧ b S a ≡ (c, b) �R,S� a

N-ary Relations
• Alloy allows relations of any arity;

• Unary relations are represented by
correflexives (fragments of the identity);

• N-ary relations are “uncurried” to binary
relations with the domain as a tuple:

A → B → C � A×B → C

N-ary Operators
• New operators to manipulate n-ary relations:

• N-ary composition:

• Rotate:

• When dealing with binary relations, they collapse to
binary composition and converse;

• Possess some interesting properties, similar to their
binary counterparts.

Formula Translation
• Marcelo Frias, Carlos Pombo and Nazareno Aguirre,

An equational calculus for Alloy;

• Automatically translates (only) Alloy formulas to FA;

• Resulting formulas are extremely complex:

Formula Translation
• Operations on n-ary relations can not be directly

translated to FA in an efficient way;

• Formulas will be translated in two steps:

• Alloy to FOL: fully expands Alloy formulas to
their PW definition;

• FOL to FA: mechanic PW to PF translation,
enhanced with heuristics.

Formula Translation
• The main idea of the default translation is to “push” all

variables to a single tuple, e.g.:

• Which can be automatically removed in the end:

• However, by further enhancing the translation with
heuristic rules, we obtained extremely simple formulas.

y Rxi � y (R ·Πn
i) (x1, . . . , xn)

y R (x1, . . . , xn) � y R · �id,�� (x1, . . . , xn−1)

Formula Translation

r · r◦ ⊆ id

Type System
• Alloy’s type system is very loose, allowing the

combination of any types (with some restrictions on
the arities);

• By encoding them as correflexives, we are able to
easily define the hierarchy of signatures and check if
types of expressions match;

• A binary relation of type induces the fact R :: A → B

R ⊆ ΦA ·� · ΦB

Signature Translation
• Using the same technique, we are able to encode the

multiplicities defined in Alloy signatures:

• When dealing with binary relations, collapses to the
typical taxonomy (total, injective, surjective...).

Signatures

Relations

Example
FA modelAlloy model

Signature facts

Assertion

(ΦU × ΦU × ΦS) ∩ c1/(e1 · π1) ∩ (c1 · (ΦS × d∗◦))/c1
∩

c1/c2 ∩ c2/c1 ∩ e1/e2 ∩ e2 · π2 · π2 ∩ e2/(e1 ∪ id3)
⊆

c2/(e2 · π1) ∩ (c2 · (ΦS × d∗◦))/c2

id = ΦPerson ∪ ΦCourse ∪ ΦUniversity

ΦStudent ∪ ΦProfessor ⊆ ΦPerson ∧ ΦStudent ∩ ΦProfessor = ⊥
lecturer ⊆ ΦCourse ·� · ΦProfessor

enrolled ⊆ ΦUniversity ·� · ΦStudent

courses ⊆ ΦUniversity ·� · ΦStudent × ΦCourse

depends ⊆ ΦCourse ·� · ΦCourse

id ⊆ lecturer · lecturer◦

abstract sig Person {}
sig Student, Professor extends Person {}
sig Course {

lecturer : some Professor,
depends : set Course

}
sig University {

enrolled : set Student,
courses : Student -> Course

}
pred inv[u : University] {

(u.courses).Course in u.enrolled
all s : Student |

(s.(u.courses)).*depends in s.(u.courses)
}
pred enroll[u, u’ : University, s : Student] {

u’.enrolled = u.enrolled + s
u’.courses = u.courses

}
assert {

all u,u’:University,s:Student |
inv[u] and enroll[u,u’,s] => inv[u’]

}

Conclusions
• Complete and automatic translation of Alloy

models;

• Due to the simplicity, it is suitable for manual
verification;

• Automatic verification is also possible, e. g.,
Prover9 automatically verified the previous
example;

• Complexity increases with the number of n-ary
relations, which are common in Alloy.

Translating Alloy Specifications to
the Point-free Style

Nuno Macedo

Departamento de Informática
Universidade do Minho

Braga, Portugal

June 22nd, 2011

